Published papers.
1. The convex hull of the interpolating Blaschke products.
(pdf), (postscript), (latex)
2. J. E. McMillan's area theorem. Colloq. Math. 79 (1999), no. 2, 229--234.
3. Random walk and boundary behavior of functions in the
disk.
379--386.
(pdf), (postscript), (latex)
4. with Thurman, Robert E. Extremal domains for
Robin capacity. Complex Variables Theory Appl. 41
(2000), no. 1, 91--109.
5.
341--352.
6. Vertical variation of harmonic functions in upper half-spaces. Colloq. Math. 87 (2001), no. 1, 1--12
(pdf), (postscript), (latex)
7. with Khamsi, M. A.; Knaust, H.; Nguyen, N.
T. Lambda-hyperconvexity in metric spaces.
Nonlinear Anal. 43
(2001), no. 1, 21--31.
(tex)
8. with Thurman, Robert
E. McMillan's area problem.
(pdf), (postscript), (latex)
9. Extremal domains for the geometric reformulation of
Brennan's conjecture. Rocky Mountain J. Math. 30
(2000), no. 4, 1481--1501.
10. with Thurman, Robert E. A problem of McMillan on conformal mappings. Pacific J. Math. 197 (2001), no. 1, 145--150.
(pdf), (postscript), (latex)
11. Chaotic orbits of a pendulum with variable length, with Massimo Furi,
Mario Martelli and Carolyn Staples.
Electron. J. Differential Equations, no. 36, 2004. (pdf)
12. Equality in Pollard's theorem on set addition of congruence classes, with
Eva Nazarewicz, Michael O'Brien and
Carolyn Staples. Acta Arith. 127, no. 1:1-15, 2007. (pdf)
13. Global stability of equilibria, with Massimo Furi and Mario Martelli. J. Difference Equ. Appl. 15, no. 4: 387-397, 2009.
14. A Green proof of Fatou's theorem. Journal of Statistical Theory and Practice,5, no. 3: 497-512, 2011. (.pdf)
15. A geometric and stochastic proof of the twist point theorem. Publicacions Matematiques. 56, no. 1: 41-63, 2012. (.pdf)
16. Sharp estimates in some inequalities of
Zygmund type for Riesz Transforms. To appear in Proc. AMS. (.pdf)
Preprints and other things.
McMillan type theorems on boundary behavior of conformal mappings.
An Osculation method for conformal mapping. This is an old file and may not work on newer versions of Mathematica.