On the geometry of period lattices for elliptic curves

Lenny Fukshansky Claremont McKenna College

René 2025, August 18 - 22 University of French Polynesia

Every $A \in GL_2(\mathbb{R})$ is a basis matrix for some planar lattice

$$\Omega := A\mathbb{Z}^2 = AB\mathbb{Z}^2,$$

for any $B \in GL_2(\mathbb{Z})$.

Every $A \in GL_2(\mathbb{R})$ is a basis matrix for some planar lattice

$$\Omega := A\mathbb{Z}^2 = AB\mathbb{Z}^2,$$

for any $B \in GL_2(\mathbb{Z})$. Hence the space of planar lattices \mathcal{L}_2 can be identified with $GL_2(\mathbb{R})/GL_2(\mathbb{Z})$.

Every $A \in GL_2(\mathbb{R})$ is a basis matrix for some planar lattice

$$\Omega := A\mathbb{Z}^2 = AB\mathbb{Z}^2,$$

for any $B \in GL_2(\mathbb{Z})$. Hence the space of planar lattices \mathcal{L}_2 can be identified with $GL_2(\mathbb{R})/GL_2(\mathbb{Z})$.

Two lattices Ω and Γ are said to be **similar**, denoted $\Omega \sim \Gamma$, if $\Omega = \alpha U \Gamma$ for some positive real constant α and orthogonal matrix U.

Every $A \in GL_2(\mathbb{R})$ is a basis matrix for some planar lattice

$$\Omega := A\mathbb{Z}^2 = AB\mathbb{Z}^2,$$

for any $B \in GL_2(\mathbb{Z})$. Hence the space of planar lattices \mathcal{L}_2 can be identified with $GL_2(\mathbb{R})/GL_2(\mathbb{Z})$.

Two lattices Ω and Γ are said to be **similar**, denoted $\Omega \sim \Gamma$, if $\Omega = \alpha U \Gamma$ for some positive real constant α and orthogonal matrix U.

Every lattice $\Omega \in \mathcal{L}_2$ is similar to a unique lattice of the form

$$\Gamma_{ au} := egin{pmatrix} 1 & a \ 0 & b \end{pmatrix} \mathbb{Z}^2 ext{ for some } au := a + bi ext{ in }$$

$$\mathcal{F}:=\{\tau=a+bi\in\mathbb{C}:0\leq a\leq 1/2,b\geq 0,|\tau|\geq 1\}.$$

We refer to \mathcal{F} as the **set of similarity classes** of lattices in \mathcal{L}_2 .

Given lattices $\Lambda, \Lambda' \subset \mathbb{C}$ a nonzero morphism $\mathcal{E} \to \mathcal{E}'$ between the corresponding elliptic curves $\mathcal{E} = \mathbb{C}/\Lambda$ and $\mathcal{E}' = \mathbb{C}/\Lambda'$ which takes 0 to 0 is called an **isogeny**.

Given lattices $\Lambda, \Lambda' \subset \mathbb{C}$ a nonzero morphism $\mathcal{E} \to \mathcal{E}'$ between the corresponding elliptic curves $\mathcal{E} = \mathbb{C}/\Lambda$ and $\mathcal{E}' = \mathbb{C}/\Lambda'$ which takes 0 to 0 is called an **isogeny**. An isogeny is always surjective and has a finite kernel. For instance, if $\beta \in \mathbb{C}^*$ is such that $\beta \Lambda \subseteq \Lambda'$, then multiplication by β function $z \mapsto \beta z$ maps $\mathbb{C} \to \mathbb{C}$ modulo the lattices, hence maps $\mathcal{E} \to \mathcal{E}'$.

Given lattices $\Lambda, \Lambda' \subset \mathbb{C}$ a nonzero morphism $\mathcal{E} \to \mathcal{E}'$ between the corresponding elliptic curves $\mathcal{E} = \mathbb{C}/\Lambda$ and $\mathcal{E}' = \mathbb{C}/\Lambda'$ which takes 0 to 0 is called an **isogeny**. An isogeny is always surjective and has a finite kernel. For instance, if $\beta \in \mathbb{C}^*$ is such that $\beta \Lambda \subseteq \Lambda'$, then multiplication by β function $z \mapsto \beta z$ maps $\mathbb{C} \to \mathbb{C}$ modulo the lattices, hence maps $\mathcal{E} \to \mathcal{E}'$. In fact, every isogeny is of this form. The **degree** of this isogeny is the degree of the morphism, which is equal to the index of the sublattice $\beta \Lambda$ in Λ' , i.e.

$$deg(\beta) = [\Lambda' : \beta \Lambda].$$

Given lattices $\Lambda, \Lambda' \subset \mathbb{C}$ a nonzero morphism $\mathcal{E} \to \mathcal{E}'$ between the corresponding elliptic curves $\mathcal{E} = \mathbb{C}/\Lambda$ and $\mathcal{E}' = \mathbb{C}/\Lambda'$ which takes 0 to 0 is called an **isogeny**. An isogeny is always surjective and has a finite kernel. For instance, if $\beta \in \mathbb{C}^*$ is such that $\beta \Lambda \subseteq \Lambda'$, then multiplication by β function $z \mapsto \beta z$ maps $\mathbb{C} \to \mathbb{C}$ modulo the lattices, hence maps $\mathcal{E} \to \mathcal{E}'$. In fact, every isogeny is of this form. The **degree** of this isogeny is the degree of the morphism, which is equal to the index of the sublattice $\beta \Lambda$ in Λ' , i.e.

$$\deg(\beta) = [\Lambda' : \beta \Lambda].$$

This is precisely the size of its kernel. If an isogeny $\mathcal{E} \to \mathcal{E}'$ exists, then there also exists the dual isogeny $\mathcal{E}' \to \mathcal{E}$ of the same degree such that their composition is the multiplication-by-degree map, and hence the curves are called **isogenous**: this is an equivalence relation. There may exist multiple isogenies between two elliptic curves, but since degree of an isogeny is a positive integer, we can ask for an isogeny of minimal degree.

Isomorphism classes of elliptic curves

An **isomorphism** of elliptic curves is an injective isogeny, i.e. of degree one. Each elliptic curve is isomorphic to an elliptic curve \mathcal{E}_{τ} with period lattice

$$\Gamma_{ au} = egin{pmatrix} 1 & a \ 0 & b \end{pmatrix} \mathbb{Z}^2$$
 for some $au := a + bi$ in

$$\mathcal{D} := \{ \tau = \mathsf{a} + \mathsf{b} \mathsf{i} \in \mathbb{C} : -1/2 < \mathsf{a} \le 1/2, \mathsf{b} \ge 0, |\tau| \ge 1 \}.$$

Further, $\mathcal{D}' := \mathcal{D} \setminus \{e^{i\theta} : \pi/2 < \theta < 2\pi/3\}$ is precisely the **set of isomorphism classes** of elliptic curves.

Isomorphism classes of elliptic curves

An **isomorphism** of elliptic curves is an injective isogeny, i.e. of degree one. Each elliptic curve is isomorphic to an elliptic curve \mathcal{E}_{τ} with period lattice

$$\Gamma_{ au} = \begin{pmatrix} 1 & a \ 0 & b \end{pmatrix} \mathbb{Z}^2$$
 for some $au := a + bi$ in

$$\mathcal{D} := \{ \tau = a + bi \in \mathbb{C} : -1/2 < a \le 1/2, b \ge 0, |\tau| \ge 1 \}.$$

Further, $\mathcal{D}':=\mathcal{D}\setminus\{e^{i\theta}:\pi/2<\theta<2\pi/3\}$ is precisely the **set of isomorphism classes** of elliptic curves.

This set \mathcal{D} can also be viewed as a fundamental domain for the action of the group $SL_2(\mathbb{Z})$ on the set of lattices Γ_{τ} by right matrix multiplication by g^{-1} for each $g \in SL_2(\mathbb{Z})$:

$$\Gamma_{ au} = egin{pmatrix} 1 & a \ 0 & b \end{pmatrix} \mathbb{Z}^2 \mapsto g \cdot \Gamma_{ au} := egin{pmatrix} 1 & a \ 0 & b \end{pmatrix} g^{-1} \mathbb{Z}^2.$$

Arithmetic, well-rounded, semi-stable lattices

A lattice $\Gamma = A\mathbb{Z}^2$ is called **arithmetic** if the matrix A^tA is a scalar multiple of an integral matrix: this property is independent of the choice of the basis matrix A.

Arithmetic, well-rounded, semi-stable lattices

A lattice $\Gamma = A\mathbb{Z}^2$ is called **arithmetic** if the matrix A^tA is a scalar multiple of an integral matrix: this property is independent of the choice of the basis matrix A.

Successive minima of Γ are real numbers $0 < \lambda_1(\Gamma) \le \lambda_2(\Gamma)$:

$$\lambda_i(\Gamma) := \min \left\{ r \in \mathbb{R}_{>0} : \dim_{\mathbb{R}} \operatorname{span}_{\mathbb{R}} \left(\mathbb{B}(r) \cap L \right) \geq i \right\},$$

where $\mathbb{B}(r)$ is the disk of radius r centered at the origin in \mathbb{R}^2 . Γ is called **well-rounded (WR)** if $\lambda_1(\Gamma) = \lambda_2(\Gamma)$. WR lattices are central to discrete optimization and connected areas.

Arithmetic, well-rounded, semi-stable lattices

A lattice $\Gamma = A\mathbb{Z}^2$ is called **arithmetic** if the matrix A^tA is a scalar multiple of an integral matrix: this property is independent of the choice of the basis matrix A.

Successive minima of Γ are real numbers $0 < \lambda_1(\Gamma) \le \lambda_2(\Gamma)$:

$$\lambda_i(\Gamma) := \min \left\{ r \in \mathbb{R}_{>0} : \dim_{\mathbb{R}} \operatorname{span}_{\mathbb{R}} \left(\mathbb{B}(r) \cap L \right) \geq i \right\},$$

where $\mathbb{B}(r)$ is the disk of radius r centered at the origin in \mathbb{R}^2 . Γ is called **well-rounded (WR)** if $\lambda_1(\Gamma) = \lambda_2(\Gamma)$. WR lattices are central to discrete optimization and connected areas.

Γ is called **semi-stable** if

$$\lambda_1(L)^2 \ge \det(\Gamma) := |\det(A)|.$$

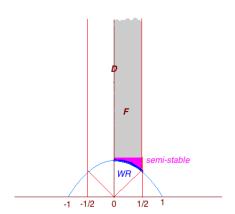
Semi-stable lattices are important in reduction theory of algebraic groups.

Geometrically speaking...

These properties of lattices are constant on similarity classes, hence we speak of arithmetic, WR, semi-stable similarity classes in \mathcal{L}_2 , and therefore in \mathcal{F} .

Geometrically speaking...

These properties of lattices are constant on similarity classes, hence we speak of arithmetic, WR, semi-stable similarity classes in \mathcal{L}_2 , and therefore in \mathcal{F} .



Algebraically speaking...

 Γ_{τ} is arithmetic iff $\tau \in \mathcal{F}$ is of the form

$$\tau = \tau(a, b, c, d) := \frac{a}{b} + i\sqrt{\frac{c}{d}}$$

for some integers a, b, c, d such that

$$gcd(a, b) = gcd(c, d) = 1, \ 0 \le a \le b/2, \ c/d \ge 1 - a^2/b^2.$$

Algebraically speaking...

 Γ_{τ} is arithmetic iff $\tau \in \mathcal{F}$ is of the form

$$\tau = \tau(a, b, c, d) := \frac{a}{b} + i\sqrt{\frac{c}{d}}$$

for some integers a, b, c, d such that

$$\gcd(a,b) = \gcd(c,d) = 1, \ 0 \le a \le b/2, \ c/d \ge 1 - a^2/b^2.$$

This condition is equivalent to the elliptic curve \mathcal{E}_{τ} with period lattice Γ_{τ} having **complex multiplication** (CM) by the imaginary quadratic field $\mathbb{Q}(\tau)$, i.e. the endomorphism ring of \mathcal{E}_{τ} is an order in $\mathbb{Q}(\tau)$ properly containing \mathbb{Z} .

The **Klein** j-function is a bijective holomorphic map $j: \mathcal{D}' \to \mathbb{C}$. If \mathcal{E} is an elliptic curve, then it is isomorphic to an elliptic curve \mathcal{E}_{τ} for precisely one $\tau \in \mathcal{D}'$, and hence the value $j(\tau)$ is an invariant of this elliptic curve, called its j-invariant.

The **Klein** j-function is a bijective holomorphic map $j: \mathcal{D}' \to \mathbb{C}$. If \mathcal{E} is an elliptic curve, then it is isomorphic to an elliptic curve \mathcal{E}_{τ} for precisely one $\tau \in \mathcal{D}'$, and hence the value $j(\tau)$ is an invariant of this elliptic curve, called its j-invariant. Here are some properties of the j-invariant in terms of the corresponding lattices:

The **Klein** j-function is a bijective holomorphic map $j: \mathcal{D}' \to \mathbb{C}$. If \mathcal{E} is an elliptic curve, then it is isomorphic to an elliptic curve \mathcal{E}_{τ} for precisely one $\tau \in \mathcal{D}'$, and hence the value $j(\tau)$ is an invariant of this elliptic curve, called its j-invariant. Here are some properties of the j-invariant in terms of the corresponding lattices:

• For $\tau \in \mathcal{D}$, $j(\tau) \in \mathbb{R}$ iff τ belongs to the boundary of \mathcal{F} , and Γ_{τ} is WR iff $j(\tau) \in [0,1]$.

The **Klein** j-function is a bijective holomorphic map $j: \mathcal{D}' \to \mathbb{C}$. If \mathcal{E} is an elliptic curve, then it is isomorphic to an elliptic curve \mathcal{E}_{τ} for precisely one $\tau \in \mathcal{D}'$, and hence the value $j(\tau)$ is an invariant of this elliptic curve, called its j-invariant. Here are some properties of the j-invariant in terms of the corresponding lattices:

- For $\tau \in \mathcal{D}$, $j(\tau) \in \mathbb{R}$ iff τ belongs to the boundary of \mathcal{F} , and Γ_{τ} is WR iff $j(\tau) \in [0,1]$.
- Suppose $\tau \in \mathcal{F}$ is algebraic. Then

$$\Gamma_{\tau}$$
 is arithmetic $\iff \deg_{\mathbb{Q}}(\tau) = 2 \iff j(\tau) \in \overline{\mathbb{Q}}$.

In this case, the degree of the algebraic number $j(\tau)$ is the class number of the quadratic imaginary number field $\mathbb{Q}(\tau)$.

Maximum height

We define the **maximum height** of an arithmetic similarity class $\Gamma_{\tau(a,b,c,d)}$ to be

$$\mathfrak{m}(\Gamma_{\tau(a,b,c,d)}) = \mathfrak{m}(\tau(a,b,c,d)) := \max\{|a|,|b|,|c|,|d|\}.$$

Then, the number of arithmetic similarity classes with $\mathfrak{m}(\Gamma_{\tau(a,b,c,d)}) \leq T$ is finite for every real number T.

Maximum height

We define the **maximum height** of an arithmetic similarity class $\Gamma_{\tau(a,b,c,d)}$ to be

$$\mathfrak{m}(\Gamma_{\tau(a,b,c,d)}) = \mathfrak{m}(\tau(a,b,c,d)) := \max\{|a|,|b|,|c|,|d|\}.$$

Then, the number of arithmetic similarity classes with $\mathfrak{m}(\Gamma_{\tau(a,b,c,d)}) \leq T$ is finite for every real number T.

Let $T \in \mathbb{Z}_{>0}$, and define

$$\begin{split} & N_1(T) = \left| \left\{ \Lambda_\tau : \Lambda_\tau \text{ is arithmetic and } \mathfrak{m}(\Lambda_\tau) \leq T \right\} \right|, \\ & N_2(T) = \left| \left\{ \Lambda_\tau : \Lambda_\tau \text{ is arithmetic semi-stable and } \mathfrak{m}(\Lambda_\tau) \leq T \right\} \right|, \end{split}$$

$$N_3(T) = |\{\Lambda_\tau : \Lambda_\tau \text{ is arithmetic WR and } \mathfrak{m}(\Lambda_\tau) \leq T\}|$$
.

Counting estimate

Theorem 1 (F., Guerzhoy, Luca (2015))

With notation as above, $N_1(T) > N_2(T) > N_3(T)$, and as $T \to \infty$,

$$N_1(T) = \frac{39T^4}{8\pi^4} + O(T^3 \log T),$$

and

$$N_2(T) = \frac{3T^4}{8\pi^4} + O(T^3 \log T),$$

while

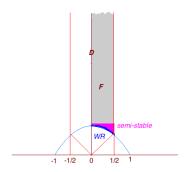
$$N_3(T) = \frac{3T^2}{2\pi^2} + O(T \log T).$$

Consequence

It follows from Theorem 1 that about 7.7% of arithmetic similarity classes in the plane are semi-stable, when counted with respect to the maximum height.

Consequence

It follows from Theorem 1 that about 7.7% of arithmetic similarity classes in the plane are semi-stable, when counted with respect to the maximum height.



On the other hand, only about 4.5% (with respect to Poincare measure) of all similarity classes in the plane are semi-stable.

Virtually rectangular lattices

A planar lattice M is **rectangular** if it has an orthogonal basis, i.e. if it is similar to a lattice of the form

$$M' = \begin{pmatrix} a & 0 \\ 0 & b \end{pmatrix}. \tag{1}$$

Virtually rectangular lattices

A planar lattice M is **rectangular** if it has an orthogonal basis, i.e. if it is similar to a lattice of the form

$$M' = \begin{pmatrix} a & 0 \\ 0 & b \end{pmatrix}. \tag{1}$$

L is **virtually rectangular** if it contains a rectangular sublattice M of finite index. If M is a rectangular sublattice of L of smallest index, then L is similar to L' containing a sublattice of the form M' as in (1) similar to M and

$$[L:M] = [L':M'] = \frac{\det(L)}{|ab|}.$$

Virtually rectangular elliptic curves

Theorem 2 (F., Guerzhoy, Kühnlein (2020))

Let $\tau = a + bi \in \mathcal{D}$ and let E_{τ} be the corresponding elliptic curve with the period lattice Γ_{τ} . The following are equivalent:

- 1. Either $a \in \mathbb{Q}$ or there exists some $t \in \mathbb{R}$ such that $\frac{v'}{v} := a bt, \frac{w'}{w} := a + b/t \in \mathbb{Q}$,
- 2. Γ_{τ} is virtually rectangular,
- 3. E_{τ} is isogenous to E' with real j-invariant ≥ 1 ,
- 4. E_{τ} is isogenous to E' with real j-invariant in [0,1].

If (1) - (4) hold with $a = p/q \in \mathbb{Q}$, then exists an isogeny $E' \to E_{\tau}$ with degree $\delta(E'/E_{\tau}) = q$. If If (1) - (4) hold with $a \notin \mathbb{Q}$ and $t \in \mathbb{R}$ satisfies (1), then exists an isogeny $E' \to E_{\tau}$ with

$$\delta(E'/E_{\tau}) = \frac{|b||vw|(t^2+1)}{|t|}.$$

Remarks

 Degree of the isogeny is precisely the smallest index of a rectangular sublattice.

Remarks

- Degree of the isogeny is precisely the smallest index of a rectangular sublattice.
- CM elliptic curves are the only ones whose period lattice contains non-parallel rectangular sublattices: in the CM case, there are infinitely many t satisfying condition (1) of Theorem 2 (each corresponding to a different rectangular sublattice), whereas for all other virtually rectangular elliptic curves such t is essentially unique.

Remarks

- Degree of the isogeny is precisely the smallest index of a rectangular sublattice.
- CM elliptic curves are the only ones whose period lattice contains non-parallel rectangular sublattices: in the CM case, there are infinitely many t satisfying condition (1) of Theorem 2 (each corresponding to a different rectangular sublattice), whereas for all other virtually rectangular elliptic curves such t is essentially unique.
- Virtually rectangular lattices in the plane have intrinsic geometric meaning in terms of the corresponding points on the modular curve: they correspond precisely to the points that lie on geodesics intersecting the real axis at rational points only.

Deep holes

Let $L \subset \mathbb{R}^2$ be a lattice with successive minima $\lambda_1 \leq \lambda_2$ and the corresponding minimal basis vectors $\mathbf{x}_1, \mathbf{x}_2$. It is well known that, choosing $\pm \mathbf{x}_1, \pm \mathbf{x}_2$ if necessary, we can ensure that the angle θ between these vectors is in the interval $[\pi/3, \pi/2]$: this angle is an invariant of the lattice, we call it **angle** of L.

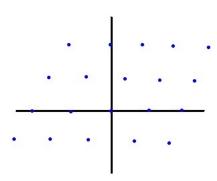
Deep holes

Let $L \subset \mathbb{R}^2$ be a lattice with successive minima $\lambda_1 \leq \lambda_2$ and the corresponding minimal basis vectors $\mathbf{x}_1, \mathbf{x}_2$. It is well known that, choosing $\pm \mathbf{x}_1, \pm \mathbf{x}_2$ if necessary, we can ensure that the angle θ between these vectors is in the interval $[\pi/3, \pi/2]$: this angle is an invariant of the lattice, we call it **angle** of L.

A **deep hole** of L is a point in \mathbb{R}^2 which is farthest away from the lattice. The distance from the origin to the nearest deep hole is the covering radius μ of L. There is a unique deep hole z of L contained in the triangle T with vertices $\mathbf{0}$ and the endpoints of $\mathbf{x}_1, \mathbf{x}_2$: we call it the fundamental deep hole of L. Define the **deep hole lattice** of L to be

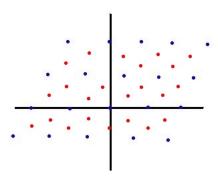
$$H(L) := \operatorname{span}_{\mathbb{Z}} \{ \boldsymbol{x}_1, \boldsymbol{z} \}.$$

Deep holes



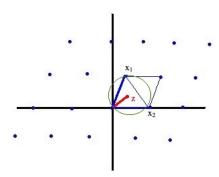
Lattice points in blue

Deep holes



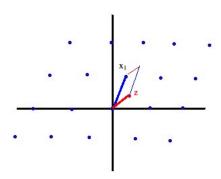
Deep holes in red

Deep holes



Fundamental deep hole

Deep holes



Deep hole lattice: $H(L) = \operatorname{span}_{\mathbb{Z}} \{x_1, z\}.$

Properties of deep hole lattices

Theorem 3 (F., Guerzhoy, Nielsen (2023))

Let L be a lattice in the plane with the angle $\theta \in [\pi/3, \pi/2]$ and successive minima λ_1 and $\lambda_2 = \alpha \lambda_1$ for some $\alpha \geq 1$. Let H(L) be the deep hole lattice of L. The following statements hold:

- 1. If $\alpha \leq 2\sin(\theta + \pi/6)$, then H(L) is WR.
- 2. If L is semi-stable, then H(L) is WR.
- 3. If L is WR, then $H(L) \sim L$.
- 4. If $L \subset K^2$ for some subfield K of \mathbb{R} , then $H(L) \subset K^2$.

Deep hole lattices in the fundamental strip

Next we turn our attention specifically to the lattices of the form Γ_{τ} for $\tau \in \mathcal{F}$ parameterizing all the similarity classes in the plane. Given a subfield K of \mathbb{R} , we say that a similarity class represented by τ lies over K if $\tau = a + bi$ with real numbers $a, b \in K$. This is equivalent to saying that some lattice in this similarity class is contained in $K(i) \subseteq \mathbb{C}$, which is identified with $K^2 \subseteq \mathbb{R}^2$.

Deep hole lattices in the fundamental strip

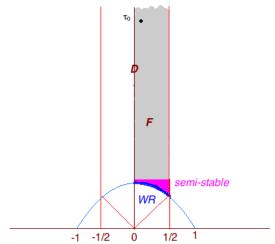
Next we turn our attention specifically to the lattices of the form Γ_{τ} for $\tau \in \mathcal{F}$ parameterizing all the similarity classes in the plane. Given a subfield K of \mathbb{R} , we say that a similarity class represented by τ lies over K if $\tau = a + bi$ with real numbers $a, b \in K$. This is equivalent to saying that some lattice in this similarity class is contained in $K(i) \subseteq \mathbb{C}$, which is identified with $K^2 \subseteq \mathbb{R}^2$.

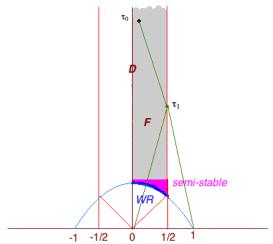
Theorem 4 (F., Guerzhoy, Nielsen (2023))

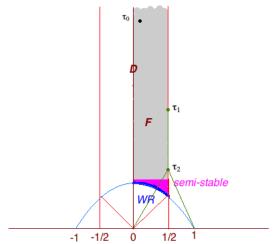
Let $\tau_0 = a_0 + b_0 i \in \mathcal{F}$ with $a_0, b_0 \in K$ for some subfield $K \subseteq \mathbb{R}$. There exists a finite sequence of numbers τ_1, \ldots, τ_n given by $\tau_k = a_k + b_k i$ for all $1 \le k \le n$, so that

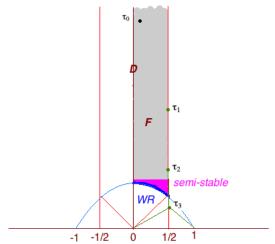
$$a_k = \frac{1}{2}, \ b_k = \frac{a_{k-1}^2 + b_{k-1}^2 - a_{k-1}}{2b_{k-1}} \in K \ \forall \ 1 \le k \le n,$$
 (2)

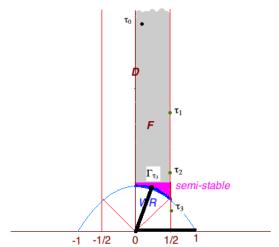
with
$$\Gamma_{\tau_k} = H(\Gamma_{\tau_{k-1}})$$
 and Γ_{τ_n} WR, hence $H(\Gamma_{\tau_n}) \sim \Gamma_{\tau_n}$. Also, $\tau_1, \ldots, \tau_{n-1} \in \mathcal{F}$, $|\tau_n| \leq 1$ and $n \leq \log_2\left(2b_0/\sqrt{3}\right)$.

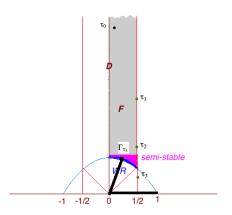












Thus, the map $\tau_i \to \tau_{i+1}$ defines a dynamical system, in which every point is (pre-)periodic with orbit size n as in Theorem 4.

CM case

This orbit is especially interesting in the arithmetic/CM case.

CM case

This orbit is especially interesting in the arithmetic/CM case.

Theorem 5 (F., Guerzhoy, Nielsen (2023))

Let $\tau_0 = a_0 + b_0 i \in \mathcal{F}$ be a quadratic irrationality and

$$\{\tau_k = a_k + b_k i\}_{k=1}^n$$

its corresponding deep hole sequence. For each $0 \le k \le n$, let \mathcal{E}_{τ_k} be the corresponding CM elliptic curve with the arithmetic period lattice Γ_{τ_k} . Then all of these elliptic curves are isogenous. Furthermore, for any $0 \le k \le n-1$, there exists an isogeny between \mathcal{E}_{τ_k} and $\mathcal{E}_{\tau_{k+1}}$ with degree

$$\delta_k \leq \frac{12\sqrt{3} b_{k+1} d_k^4 (a_k^2 + b_k^2)^2}{b_k},$$

where $d_k = \min\{d \in \mathbb{Z}_{>0} : da_k, d^2b_k^2 \in \mathbb{Z}\}.$

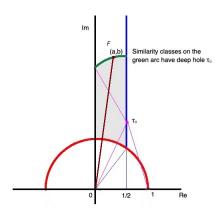
Lattices with a prescribed deep hole

Now, we consider a certain inverse problem. Let K be a number field of degree n and suppose that the similarity class represented by $\tau_0 = \frac{1}{2} + it \in \mathcal{F}$ lies over K. Consider the set

$$S_{K,\tau_0} = \{ \tau \in \mathcal{F} : \tau \text{ is defined over } K \text{ and } H(\Gamma_{\tau}) = \Gamma_{\tau_0} \}.$$
 (3)

i.e., the set of similarity classes defined over K whose deep hole lattice is Γ_{τ_0} . While this is an infinite set, we can count these similarity classes bounding the so-called primitive height \mathcal{H}^p of τ .

Lattices with a prescribed deep hole



Similarity classes with a prescribed deep hole. Pink lines are radii of the circle centered at τ_0 . The brown line $y=\frac{b}{a}x$ intersects the green arc at a point $\tau=a+bi$ defined over K.

The primitive height

- Δ_K = be the discriminant of K
- \mathcal{O}_K = ring of integers of K
- r_1 = number of real embeddings, r_2 = number of conjugate pairs of complex embeddings, so $n = r_1 + 2r_2$
- M(K) = set of place of K

The primitive height

- Δ_K = be the discriminant of K
- \mathcal{O}_K = ring of integers of K
- r_1 = number of real embeddings, r_2 = number of conjugate pairs of complex embeddings, so $n = r_1 + 2r_2$
- M(K) = set of place of K

For a point $x \in K^m$, define its **denominator** to be

$$d(\mathbf{x}) = \min\{c \in \mathbb{Q}_{>0} : c\mathbf{x} \in \mathcal{O}_K^m\},\tag{4}$$

and let the (rationally) primitive point corresponding to x be $x_p = d(x)x$.

The primitive height

- Δ_K = be the discriminant of K
- \mathcal{O}_K = ring of integers of K
- r_1 = number of real embeddings, r_2 = number of conjugate pairs of complex embeddings, so $n = r_1 + 2r_2$
- M(K) = set of place of K

For a point $x \in K^m$, define its **denominator** to be

$$d(\mathbf{x}) = \min\{c \in \mathbb{Q}_{>0} : c\mathbf{x} \in \mathcal{O}_K^m\},\tag{4}$$

and let the (rationally) primitive point corresponding to x be $x_p = d(x)x$.

We define the **primitive height** of $x \in K^m$ to be

$$\mathcal{H}^p(\mathbf{x}) := \max_{\mathbf{v} \mid \infty} |\mathbf{x}_p|_{\mathbf{v}}.$$

The counting estimate

Theorem 6 (F., Guerzhoy, Nielsen (2023))

For a real number $T \ge 1$, define

$$S_{K,\tau_0}(T) = \{ \tau \in S_{K,\tau_0} : \mathcal{H}^p(\tau) \leq T \},\,$$

where $\tau_0 = \frac{1}{2} + it \in \mathcal{F}$ lies over K. Then, as $T \to \infty$,

$$|S_{K,\tau_0}(T)| \leq \left(\frac{4^{r_1}\pi^{2r_2}}{8\zeta(2n)\left(2t+\sqrt{4t^2+1}\right)|\Delta_K|}\right)T^{2n} + O(T^{2n-1}),$$

where ζ stands for the Riemann zeta-function and $n = [K : \mathbb{Q}]$.

References

- L. Fukshansky, P. Guerzhoy, F. Luca. *On arithmetic lattices in the plane*, Proceedings of the American Mathematical Society, vol. 145 no. 4 (2017), pg. 1453–1465
- L. Fukshansky, P. Guerzhoy, S. Kühnlein. *On sparse geometry of numbers*, Research in the Mathematical Sciences, vol. 8 no. 1 (2021), Article #2
- L. Fukshansky, P. Guerzhoy, T. Nielsen. *Deep hole lattices and isogenies of elliptic curves*, Research in Number Theory, vol. 10 no. 2 (2024), Article#33, 12 pp.

http://math.cmc.edu/lenny/research.html

References

- L. Fukshansky, P. Guerzhoy, F. Luca. *On arithmetic lattices in the plane*, Proceedings of the American Mathematical Society, vol. 145 no. 4 (2017), pg. 1453–1465
- L. Fukshansky, P. Guerzhoy, S. Kühnlein. *On sparse geometry of numbers*, Research in the Mathematical Sciences, vol. 8 no. 1 (2021), Article #2
- L. Fukshansky, P. Guerzhoy, T. Nielsen. *Deep hole lattices and isogenies of elliptic curves*, Research in Number Theory, vol. 10 no. 2 (2024), Article#33, 12 pp.

http://math.cmc.edu/lenny/research.html

Thank you!

