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Similarity classes of planar lattices

Every A ∈ GL2(R) is a basis matrix for some planar lattice

Ω := AZ2 = ABZ2,

for any B ∈ GL2(Z).

Hence the space of planar lattices L2 can be
identified with GL2(R)/GL2(Z).
Two lattices Ω and Γ are said to be similar, denoted Ω ∼ Γ, if
Ω = αUΓ for some positive real constant α and orthogonal
matrix U.
Every lattice Ω ∈ L2 is similar to a unique lattice of the form

Γτ :=

(
1 a
0 b

)
Z2 for some τ := a+ bi in

F := {τ = a+ bi ∈ C : 0 ≤ a ≤ 1/2, b ≥ 0, |τ | ≥ 1}.

We refer to F as the set of similarity classes of lattices in L2.
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Elliptic curves and isogenies
Given lattices Λ,Λ′ ⊂ C a nonzero morphism E → E ′ between the
corresponding elliptic curves E = C/Λ and E ′ = C/Λ′ which takes
0 to 0 is called an isogeny.

An isogeny is always surjective and has
a finite kernel. For instance, if β ∈ C∗ is such that βΛ ⊆ Λ′, then
multiplication by β function z 7→ βz maps C → C modulo the
lattices, hence maps E → E ′. In fact, every isogeny is of this form.
The degree of this isogeny is the degree of the morphism, which is
equal to the index of the sublattice βΛ in Λ′, i.e.

deg(β) = [Λ′ : βΛ].

This is precisely the size of its kernel. If an isogeny E → E ′ exists,
then there also exists the dual isogeny E ′ → E of the same degree
such that their composition is the multiplication-by-degree map,
and hence the curves are called isogenous: this is an equivalence
relation. There may exist multiple isogenies between two elliptic
curves, but since degree of an isogeny is a positive integer, we can
ask for an isogeny of minimal degree.
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Isomorphism classes of elliptic curves
An isomorphism of elliptic curves is an injective isogeny, i.e. of
degree one. Each elliptic curve is isomorphic to an elliptic curve Eτ
with period lattice

Γτ =

(
1 a
0 b

)
Z2 for some τ := a+ bi in

D := {τ = a+ bi ∈ C : −1/2 < a ≤ 1/2, b ≥ 0, |τ | ≥ 1}.

Further, D′ := D \ {e iθ : π/2 < θ < 2π/3} is precisely the set of
isomorphism classes of elliptic curves.

This set D can also be viewed as a fundamental domain for the
action of the group SL2(Z) on the set of lattices Γτ by right matrix
multiplication by g−1 for each g ∈ SL2(Z):

Γτ =

(
1 a
0 b

)
Z2 7→ g · Γτ :=

(
1 a
0 b

)
g−1Z2.
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Arithmetic, well-rounded, semi-stable lattices

A lattice Γ = AZ2 is called arithmetic if the matrix AtA is a scalar
multiple of an integral matrix: this property is independent of the
choice of the basis matrix A.

Successive minima of Γ are real numbers 0 < λ1(Γ) ≤ λ2(Γ):

λi (Γ) := min {r ∈ R>0 : dimR spanR (B(r) ∩ L) ≥ i} ,

where B(r) is the disk of radius r centered at the origin in R2. Γ is
called well-rounded (WR) if λ1(Γ) = λ2(Γ). WR lattices are
central to discrete optimization and connected areas.

Γ is called semi-stable if

λ1(L)
2 ≥ det(Γ) := | det(A)|.

Semi-stable lattices are important in reduction theory of algebraic
groups.
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Geometrically speaking...

These properties of lattices are constant on similarity classes,
hence we speak of arithmetic, WR, semi-stable similarity classes
in L2, and therefore in F .
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Algebraically speaking...

Γτ is arithmetic iff τ ∈ F is of the form

τ = τ(a, b, c , d) :=
a

b
+ i

√
c

d

for some integers a, b, c , d such that

gcd(a, b) = gcd(c , d) = 1, 0 ≤ a ≤ b/2, c/d ≥ 1− a2/b2.

This condition is equivalent to the elliptic curve Eτ with period
lattice Γτ having complex multiplication (CM) by the imaginary
quadratic field Q(τ), i.e. the endomorphism ring of Eτ is an order
in Q(τ) properly containing Z.
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The j-invariant
The Klein j-function is a bijective holomorphic map

j : D′ := D \ {e iθ : π/2 < θ < 2π/3} → C.

If E is an elliptic curve, then it is isomorphic to an elliptic curve Eτ
for precisely one τ ∈ D′, and hence the value j(τ) is an invariant of
this elliptic curve, called its j-invariant. Here are some properties
of the j-invariant in terms of the corresponding lattices:

• For τ ∈ D, j(τ) ∈ R iff τ belongs to the boundary of F , and
Γτ is WR iff j(τ) ∈ [0, 1].

• Suppose τ ∈ F is algebraic. Then

Γτ is arithmetic ⇐⇒ degQ(τ) = 2 ⇐⇒ j(τ) ∈ Q.

In this case, the degree of the algebraic number j(τ) is the
class number of the quadratic imaginary number field Q(τ).



Parameter spaces Types of lattices Deep hole lattices Lattices with a prescribed deep hole Conclusion

The j-invariant
The Klein j-function is a bijective holomorphic map

j : D′ := D \ {e iθ : π/2 < θ < 2π/3} → C.

If E is an elliptic curve, then it is isomorphic to an elliptic curve Eτ
for precisely one τ ∈ D′, and hence the value j(τ) is an invariant of
this elliptic curve, called its j-invariant.

Here are some properties
of the j-invariant in terms of the corresponding lattices:

• For τ ∈ D, j(τ) ∈ R iff τ belongs to the boundary of F , and
Γτ is WR iff j(τ) ∈ [0, 1].

• Suppose τ ∈ F is algebraic. Then

Γτ is arithmetic ⇐⇒ degQ(τ) = 2 ⇐⇒ j(τ) ∈ Q.

In this case, the degree of the algebraic number j(τ) is the
class number of the quadratic imaginary number field Q(τ).



Parameter spaces Types of lattices Deep hole lattices Lattices with a prescribed deep hole Conclusion

The j-invariant
The Klein j-function is a bijective holomorphic map

j : D′ := D \ {e iθ : π/2 < θ < 2π/3} → C.

If E is an elliptic curve, then it is isomorphic to an elliptic curve Eτ
for precisely one τ ∈ D′, and hence the value j(τ) is an invariant of
this elliptic curve, called its j-invariant. Here are some properties
of the j-invariant in terms of the corresponding lattices:

• For τ ∈ D, j(τ) ∈ R iff τ belongs to the boundary of F , and
Γτ is WR iff j(τ) ∈ [0, 1].

• Suppose τ ∈ F is algebraic. Then

Γτ is arithmetic ⇐⇒ degQ(τ) = 2 ⇐⇒ j(τ) ∈ Q.

In this case, the degree of the algebraic number j(τ) is the
class number of the quadratic imaginary number field Q(τ).



Parameter spaces Types of lattices Deep hole lattices Lattices with a prescribed deep hole Conclusion

The j-invariant
The Klein j-function is a bijective holomorphic map

j : D′ := D \ {e iθ : π/2 < θ < 2π/3} → C.

If E is an elliptic curve, then it is isomorphic to an elliptic curve Eτ
for precisely one τ ∈ D′, and hence the value j(τ) is an invariant of
this elliptic curve, called its j-invariant. Here are some properties
of the j-invariant in terms of the corresponding lattices:

• For τ ∈ D, j(τ) ∈ R iff τ belongs to the boundary of F , and
Γτ is WR iff j(τ) ∈ [0, 1].

• Suppose τ ∈ F is algebraic. Then

Γτ is arithmetic ⇐⇒ degQ(τ) = 2 ⇐⇒ j(τ) ∈ Q.

In this case, the degree of the algebraic number j(τ) is the
class number of the quadratic imaginary number field Q(τ).



Parameter spaces Types of lattices Deep hole lattices Lattices with a prescribed deep hole Conclusion

The j-invariant
The Klein j-function is a bijective holomorphic map

j : D′ := D \ {e iθ : π/2 < θ < 2π/3} → C.

If E is an elliptic curve, then it is isomorphic to an elliptic curve Eτ
for precisely one τ ∈ D′, and hence the value j(τ) is an invariant of
this elliptic curve, called its j-invariant. Here are some properties
of the j-invariant in terms of the corresponding lattices:

• For τ ∈ D, j(τ) ∈ R iff τ belongs to the boundary of F , and
Γτ is WR iff j(τ) ∈ [0, 1].

• Suppose τ ∈ F is algebraic. Then

Γτ is arithmetic ⇐⇒ degQ(τ) = 2 ⇐⇒ j(τ) ∈ Q.

In this case, the degree of the algebraic number j(τ) is the
class number of the quadratic imaginary number field Q(τ).



Parameter spaces Types of lattices Deep hole lattices Lattices with a prescribed deep hole Conclusion

Deep holes

Let L ⊂ R2 be a lattice with successive minima λ1 ≤ λ2 and the
corresponding minimal basis vectors x1, x2. It is well known that,
choosing ±x1,±x2 if necessary, we can ensure that the angle θ
between these vectors is in the interval [π/3, π/2]: this angle is an
invariant of the lattice, we call it angle of L.

A deep hole of L is a point in R2 which is farthest away from the
lattice. The distance from the origin to the nearest deep hole is the
covering radius µ of L. There is a unique deep hole z of L
contained in the triangle T with vertices 0 and the endpoints of
x1, x2: we call it the fundamental deep hole of L. Define the deep
hole lattice of L to be

H(L) := spanZ{x1, z}.
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Deep holes

Lattice points in blue
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Deep holes

Deep holes in red
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Deep holes

Fundamental deep hole
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Deep holes

Deep hole lattice: H(L) = spanZ{x1, z}.
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Properties of deep hole lattices

Theorem 1 (F., Guerzhoy, Nielsen (2023))

Let L be a lattice in the plane with the angle θ ∈ [π/3, π/2] and
successive minima λ1 and λ2 = αλ1 for some α ≥ 1. Let H(L) be
the deep hole lattice of L. The following statements hold:

1. If α ≤ 2 sin(θ + π/6), then H(L) is WR.

2. If L is semi-stable, then H(L) is WR.

3. If L is WR, then H(L) ∼ L.

4. If L ⊂ K 2 for some subfield K of R, then H(L) ⊂ K 2.
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Idea of proof

∥z∥ = ∥x1 − z∥ =

√
λ2
1 + λ2

2 − 2λ1λ2 cos θ

2 sin θ
is the covering radius of L, where x1 and x2 are vectors
corresponding to successive minima of L so that θ is the angle
between them. If the angle between z and x1 − z is in [π/3, π/2],
then H(L) is WR.
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Deep hole lattices in the fundamental strip
Next we turn our attention specifically to the lattices of the form
Γτ for τ ∈ F parameterizing all the similarity classes in the plane.
Given a subfield K of R, we say that a similarity class represented
by τ lies over K if τ = a+ bi with real numbers a, b ∈ K . This is
equivalent to saying that some lattice in this similarity class is
contained in K (i) ⊆ C, which is identified with K 2 ⊆ R2.

Theorem 2 (F., Guerzhoy, Nielsen (2023))

Let τ0 = a0 + b0i ∈ F with a0, b0 ∈ K for some subfield K ⊆ R.
There exists a finite sequence of numbers τ1, . . . , τn given by
τk = ak + bk i for all 1 ≤ k ≤ n, so that

ak =
1

2
, bk =

a2k−1 + b2k−1 − ak−1

2bk−1
∈ K ∀ 1 ≤ k ≤ n, (1)

with Γτk = H(Γτk−1
) and Γτn WR, hence H(Γτn) ∼ Γτn . Also,

τ1, . . . , τn−1 ∈ F , |τn| ≤ 1 and n ≤ log2
(
2b0/

√
3
)
.
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Deep hole sequence
We call τk = ak + bk i , 1 ≤ k ≤ n the deep hole sequence for
τ0 = a0 + b0i ∈ F .
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Deep hole sequence

Thus, the map τi → τi+1 defines a dynamical system, in which
every point is (pre-)periodic with orbit size n as in Theorem 2.
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CM case
This orbit is especially interesting in the arithmetic/CM case.

Theorem 3 (F., Guerzhoy, Nielsen (2023))

Let τ0 = a0 + b0i ∈ F be a quadratic irrationality and

{τk = ak + bk i}nk=1

its corresponding deep hole sequence. For each 0 ≤ k ≤ n, let Eτk
be the corresponding CM elliptic curve with the arithmetic period
lattice Γτk . Then all of these elliptic curves are isogenous.
Furthermore, for any 0 ≤ k ≤ n − 1, there exists an isogeny
between Eτk and Eτk+1

with degree

δk ≤
12

√
3 bk+1 d4

k (a2k + b2k)
2

bk
,

where dk = min{d ∈ Z>0 : dak , d
2b2k ∈ Z}.
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Proof idea

The proof is based on our previous work with Max Forst. Consider
the deep hole τk+1 as an element of the quotient group R2/Γτk . In
the arithmetic/CM case, since all the τj ’s are quadratic
irrationalities, τk+1 has finite order ℓ in this group, meaning that
ℓτk+1 ∈ Γτk .

This implies that Γτk contains a similar copy of Γτk+1
as a

sublattice. Hence, the corresponding elliptic curves Eτk and Eτk+1

are isogenous. Since isogeny is an equivalence relation, we have
that the entire sequence of elliptic curves {Eτk}nk=0 is isogenous.

A bound on the smallest degree of an isogeny follows by an
application of Siegel’s lemma, guaranteeing a “small” solution to a
certain 2× 3 homogeneous linear system over Z.
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The counting problem

Now, we consider a certain inverse problem. Let K be a number
field of degree n and suppose that the similarity class represented
by τ0 =

1
2 + it ∈ F lies over K . Consider the set

SK ,τ0 = {τ ∈ F : τ is defined over K and H(Γτ ) = Γτ0} . (2)

i.e., the set of similarity classes defined over K whose deep hole
lattice is Γτ0 . While this is an infinite set, we can count these
similarity classes bounding the so-called primitive height Hp of τ .
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The counting problem

Similarity classes with a prescribed deep hole. Pink lines are radii
of the circle centered at τ0. The brown line y = b

ax intersects the
green arc at a point τ = a+ bi defined over K .
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The primitive height

• ∆K = be the discriminant of K

• OK = ring of integers of K

• r1 = number of real embeddings, r2 = number of conjugate
pairs of complex embeddings, so n = r1 + 2r2

• M(K ) = set of place of K

For a point x ∈ Km, define its denominator to be

d(x) = min{c ∈ Q>0 : cx ∈ Om
K }, (3)

and let the (rationally) primitive point corresponding to x be
xp = d(x)x .
We define the primitive height of x ∈ Km to be

Hp(x) := max
v |∞

|xp|v .
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The counting estimate

Theorem 4 (F., Guerzhoy, Nielsen (2023))

For a real number T ≥ 1, define

SK ,τ0(T ) = {τ ∈ SK ,τ0 : H
p(τ) ≤ T} ,

where τ0 =
1
2 + it ∈ F lies over K . Then, as T → ∞,

|SK ,τ0(T )| ≤

 4r1π2r2

8ζ(2n)
(
2t +

√
4t2 + 1

)
|∆K |

T 2n + O(T 2n−1),

where ζ stands for the Riemann zeta-function and n = [K : Q].
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Proof idea

• Use Minkowski embedding of the number field K to turn OK

into a full-rank lattice in Rn.

• Use some standard lattice-point counting methods to count
all the points satisfying the appropriate “size” restrictions.

• Use a theorem of Nyman (a version of Cesàro’s theorem) on
the density of primitive points to specialize the counting
estimate to the primitive points we need.
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