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Unimodular matrices
Let A = (aij) be an m × n integer matrix, 1 ≤ m < n. A is called
unimodular if there exists an (n−m)× n integer matrix B = (bij)
so that the n × n integer matrix

(
A
B

)
=



a11 . . . a1n
...

. . .
...

am1 . . . amn

b11 . . . b1n
...

. . .
...

b(n−m)1 . . . b(n−m)n


∈ GLn(Z),

meaning that det

(
A
B

)
= ±1.

Question 1

How can we tell if a given matrix A is unimodular?
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Unimodular criterion

Theorem 1 (I. Heger - 1856)

An m × n integer matrix A is unimodular if and only if the m ×m
minors of A (Plücker coordinates) are relatively prime.

One can ask how often unimodular matrices occur, or –

Question 2

What is the “probability” that a given m × n matrix A is
unimodular?

To make this question precise, we write

U(T ) =
{
A = (aij) ∈ Zm×n : A is unimodular and |A| ≤ T

}
,

where |A| := maxi ,j |aij |, and define the natural density of m × n
unimodular matrices to be

dm,n = lim
T→∞

#U(T )

Tmn
.
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minors of A (Plücker coordinates) are relatively prime.

One can ask how often unimodular matrices occur, or –

Question 2

What is the “probability” that a given m × n matrix A is
unimodular?

To make this question precise, we write

U(T ) =
{
A = (aij) ∈ Zm×n : A is unimodular and |A| ≤ T

}
,

where |A| := maxi ,j |aij |, and define the natural density of m × n
unimodular matrices to be

dm,n = lim
T→∞

#U(T )

Tmn
.



Basis extensions Lattice extensions Deep holes

Unimodular criterion

Theorem 1 (I. Heger - 1856)

An m × n integer matrix A is unimodular if and only if the m ×m
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Unimodular probability

Theorem 2 (Maze, Rosenthal, Wagner - 2011)

dm,n =

 n∏
j=n−m+1

ζ(j)

−1

,

where ζ stands for the Riemann ζ-function.

In other words, this quantity can be viewed as the “probability” that
a “random” m × n integer matrix is unimodular.

For the special case of 1× n integer matrices, we have

d1,n = 1//ζ(n),

which (via Heger’s theorem) follows from the classical result of
Cesáro (1884) about coprimality of a random n-tuple of integers.
Cesáro’s theorem has been independently rediscovered several times
by different mathematicians since.
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Cesáro’s theorem has been independently rediscovered several times
by different mathematicians since.



Basis extensions Lattice extensions Deep holes

Unimodular probability

Theorem 2 (Maze, Rosenthal, Wagner - 2011)

dm,n =

 n∏
j=n−m+1

ζ(j)

−1

,

where ζ stands for the Riemann ζ-function.

In other words, this quantity can be viewed as the “probability” that
a “random” m × n integer matrix is unimodular.

For the special case of 1× n integer matrices, we have

d1,n = 1//ζ(n),

which (via Heger’s theorem) follows from the classical result of
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Extending a basis

On the other hand, A is unimodular if and only if its rows form a
primitive collection of vectors, i.e. extendable to a basis for Zn. If
there is one such extension, there are infinitely many.

Question 3

If a1, . . . , am ∈ Zn is a primitive collection, then how many
collections b1, . . . ,bn−m ∈ Zn there exist so that

a1, . . . , am,b1, . . . ,bn−m

is a basis for Zn, |bi | ≤ T ∀ 1 ≤ i ≤ n −m as T → ∞?
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Counting basis extensions - I

Theorem 3 (M. Forst, L.F. - 2022)

Let a1, . . . , am ∈ Zn be a primitive collection of vectors.

1. If m < n − 1, the number of vectors b ∈ Zn with |b| ≤ T
such that the collection a1, . . . , am,b is again primitive is
equal to Θ(T n) as T → ∞.

2. If m = n − 1, the number of vectors b ∈ Zn with |b| ≤ T
such that the collection a1, . . . , am,b is a basis for Zn is
equal to Θ(T n−1) as T → ∞.

As a result, for any 1 ≤ k < n −m there exist Θ(T nk) collections
of vectors b1, . . . ,bk ∈ Zn with |bi | ≤ T , 1 ≤ i ≤ k, such that
{ai ,bj : 1 ≤ i ≤ m, 1 ≤ j ≤ k} is again primitive. Further, there

are Θ(T n2−nm−1) such collections b1, . . . ,bn−m so that

Zn = spanZ {a1, . . . , am,b1, . . . ,bn−m} .
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Counting basis extensions - II

Any lattice Λ ⊂ Rn is of the form Λ = UZn for some matrix U ∈
GLn(R). As such, bases in Λ are in bijective correspondence with
bases in Zn, given by multiplication by U. This correspondence
allows to extend Theorem 3 to arbitrary lattices, where we call a
collection of vectors in Λ primitive if it is a basis or can be extended
to a basis of Λ.

Corollary 4

Let a1, . . . , am be a primitive collection of vectors in a full-rank
lattice Λ ⊂ Rn with 1 ≤ m < n. Then there are Θ(T n2−nm−1)
collections of vectors b1, . . . ,bn−m ∈ Λ such that |bi | ≤ T for
each 1 ≤ i ≤ n −m and

Λ = spanZ {a1, . . . , am,b1, . . . ,bn−m} .
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Defining a lattice extension

So far, we only talked about extending a collection of vectors to a
basis in a lattice. Now, let Λ be a lattice of rank n in Rn and let
Ω ⊂ Λ be a sublattice of rank m < n. We say that Λ is an extension
lattice of Ω if

Λ ∩ spanRΩ = Ω.

As a first example, we can demonstrate a construction of a small-

determinant extension of a sublattice inside of the integer lattice Zn.
We identify the wedge product of vectors x1∧· · ·∧xm in the Grass-
mann algebra with the corresponding vector of Plücker coordinates

in R(
n
m) with respect to a lexicographic embedding.

Additionally, define the covering radius of Ω to be

µ(Ω) = min {r ∈ R : Ω + Bm(r) = spanRΩ} ,

where Bm(r) ⊂ spanRΩ is a ball of radius r centered at 0.
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Small-determinant lattice extension

Theorem 5 (Forst, L.F. - 2024)

Let x1, . . . , xm be linearly independent vectors in Zn and let

Ω = spanZ {x1, . . . , xm} ⊂ Zn

be the sublattice of rank m spanned by these vectors. Then there
exists a full-rank extension Ω′ ⊆ Zn of Ω so that

detΩ′ = gcd(x1 ∧ · · · ∧ xm). (1)

Further, if m = n − 1 then there exists y ∈ Zn so that
Ω′ = spanZ {Ω, y} and

∥y∥ ≤

{(
gcd(x1 ∧ · · · ∧ xm)

detΩ

)2

+ µ(Ω)2

}1/2

. (2)
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Idea of proof

Any basis of the lattice Λ = Zn ∩ spanRΩ is extendable to a basis
of Zn. Let y1, . . . , ym be a basis of Λ, extended to a basis of Zn by
ym+1, . . . , yn. Then,

spanR{x1, . . . , xm} = spanR{y1, . . . , ym},

and, by Heger’s theorem, Plücker coordinates of y1 ∧ · · · ∧ ym are
relatively prime. Hence

x1 ∧ · · · ∧ xm = gcd(x1 ∧ · · · ∧ xm)(y1 ∧ · · · ∧ ym).

Define Ω′ = spanZ{x1, . . . , xm, ym+1, . . . , yn}, then (1) follows by
the bilinearity of the wedge product.

The proof of (2) is more involved: it uses the orthogonal projection
ρΩ = A(A⊤A)−1A⊤ onto spanRΩ, where A =

(
x1 . . . xn−1

)
.
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Successive minima extensions

The successive minima of a rank-n lattice Λ are real numbers

0 < λ1(Λ) ≤ · · · ≤ λn(Λ),

given by λi (Λ) = min {r ∈ R : dimR spanR (Bn(r) ∩ Λ) ≥ i} .

Our main goal is to explore lattice extensions with control over their
geometric invariants. In particular, we say that Λ is a successive
minima extension of Ω if Λ is an extension of Ω such that

λj(Λ) = λj(Ω) ∀ 1 ≤ j ≤ m.

To construct a rank-(m+1) successive minima extension Λ of Ω, take
u ∈ Rn to be a vector perpendicular to spanRΩ of norm > λm(Ω)
and define Λ = spanZ{Ω,u}. It is a more delicate problem to
construct such an extension inside of a given full-rank lattice in Rn:
a perpendicular vector u may not exist inside of our given lattice.
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Successive minima extensions

Theorem 6 (Forst, L.F. - 2024)

Let Λ ⊂ Rn be a lattice of full rank, and let Ωm ⊂ Λ be a
sublattice of rank 1 ≤ m < n. Write µ = µ(Λ), λm = λm(Ωm).
There exists a sublattice Ωm+1 ⊂ Λ of rank m + 1 such that
Ωm ⊂ Ωm+1 is a lattice extension, λj(Ωm+1) = λj(Ωm) for all
1 ≤ j ≤ m and

λm+1(Ωm+1) ≤
λm(Ωm)(v

2
∗ +

√
1− v2∗ )√

1− v4∗
+ 2µ(Λ), (3)

where v∗ is the smallest root of the polynomial p(v) =(
µ2

λ2
m

(1− v4)− v2(v4 − v2 + 1)

)2

−
(
2µ2

λ2
m

v(1− v4) + 2v4
)2

(1−v2)

in the interval (0, 1): such v∗ necessarily exists.
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Sketch of proof
Let Vm = spanRΩm, θ ∈ (0, π/2], and define the cone

Cθ(Vm) = {x ∈ Rn : a(x , y) ∈ [θ, π − θ] ∀ y ∈ Vm} ,

where a(x , y) stands for the angle between two vectors.

Lemma 7

If x ∈ Cθ(Vm) and

∥x∥ ≥ λm(Ωm)(cot θ cos θ + 1)√
1 + cos2 θ

,

then ∥x + y∥ ≥ λm(Ωm) for every y ∈ Vm.

Let us write Bn(r) for the ball of radius r > 0 centered at the origin
in Rn. Let θ ∈ (0, π/2] and

r(θ) =
λm(Ωm)(cot θ cos θ + 1)√

1 + cos2 θ
.
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Sketch of proof
Then Lemma 7 guarantees that for any vector

x ∈ Λ ∩ (Cθ(Vm) \ Bn(r(θ))) ,

the lattice L = spanZ {Ωm, x} satisfies λj(L) = λj(Ωm) for all 1 ≤
j ≤ m and λm+1(L) ≤ ∥x∥.

Hence we want to minimize

λm+1(θ) := min {∥x∥ : x ∈ Λ ∩ (Cθ(Vm) \ Bn(r(θ))}

as a function of θ.
Any translated copy of the ball of radius µ(Λ) in Rn must contain a
point of Λ. Suppose that θ ∈ (0, π/2] is such that

B ′
n(µ(Λ)) ⊂ (Cθ(Vm) ∩ Bn(r(θ) + 2µ(Λ))) \ Bn(r(θ)),

where B ′
n(µ(Λ)) is such a translated copy. Then Cθ(Vm) \Bn(r(θ))

would be guaranteed to contain a point x of Λ with

∥x∥ ≤ r(θ) + 2µ(Λ).
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Sketch of proof

As shown in the picture, we have a right triangle with legs r(θ)+µ(Λ)
and µ(Λ) and the angle π/2− θ opposite to the second leg. Hence
we have the equation

tan(π/2− θ) =
µ(Λ)

r(θ) + µ(Λ)
.
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Sketch of proof

Writing v = cos θ, µ = µ(Λ), and λm = λm(Ωm), we obtain the
following relation in terms of v :

µ
(√

1− v2 − v
)
=

λm

(
v2 +

√
1− v2

)
v

√
1− v4

,

which transforms into the polynomial equation p(v) = 0. It follows
from our construction that this equation has at least one solution v
in the interval (0, 1).

Then r(θ) as a function of v becomes

r(v) =
λm(v

2 +
√
1− v2)√

1− v4
,

which is an increasing function of v in the interval (0, 1), so we pick
the root v∗ of p(v) as small as possible.



Basis extensions Lattice extensions Deep holes

Sketch of proof

Writing v = cos θ, µ = µ(Λ), and λm = λm(Ωm), we obtain the
following relation in terms of v :

µ
(√

1− v2 − v
)
=

λm

(
v2 +

√
1− v2

)
v

√
1− v4

,

which transforms into the polynomial equation p(v) = 0. It follows
from our construction that this equation has at least one solution v
in the interval (0, 1). Then r(θ) as a function of v becomes

r(v) =
λm(v

2 +
√
1− v2)√

1− v4
,

which is an increasing function of v in the interval (0, 1), so we pick
the root v∗ of p(v) as small as possible.



Basis extensions Lattice extensions Deep holes

Equal covering extensions
Λ is an equal covering extension of Ω if Λ is an extension of Ω
such that

µ(Λ) = µ(Ω).

Equal covering extensions may not exist inside of a given lattice.

Theorem 8 (Forst, L.F. - 2024)

A lattice Λ ⊂ R2 is equal covering extension of Ze1 if and only if

Λ = Λ(α) :=

(
α α− 1√

α− α2
√
α− α2

)
Z2 (4)

for some real number 0 < α < 1. More generally, a lattice Λ ⊂ Rn

of rank 2 is an equal covering extension of a rank-one lattice
Ω ⊂ Λ if and only if it is isometric to some lattice of the form
det(Ω)Λ(α), where Λ(α) is as in (4).
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Theorem 8 (Forst, L.F. - 2024)

A lattice Λ ⊂ R2 is equal covering extension of Ze1 if and only if

Λ = Λ(α) :=

(
α α− 1√

α− α2
√
α− α2

)
Z2 (4)

for some real number 0 < α < 1. More generally, a lattice Λ ⊂ Rn

of rank 2 is an equal covering extension of a rank-one lattice
Ω ⊂ Λ if and only if it is isometric to some lattice of the form
det(Ω)Λ(α), where Λ(α) is as in (4).
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Idea of proof
For a planar lattice L with successive minima λ1, λ2 and angle θ ∈
[π/3, π/2] between the corresponding minimal vectors, the covering
radius can be computed as:

µ(L) =

√
λ2
1 + λ2

2 − 2λ1λ2 cos θ

2 sin θ
. (5)

The lattices Λ(α) are orthogonal, and so

θ = π/2, λ1,2 =
√
α,

√
1− α.

This implies that µ(Λ(α)) = 1/2 = µ(Ze1).
The reverse direction involves looking for the fundamental deep
hole of a planar lattice L, i.e. the point z ∈ R2

>0 with ∥z∥ = µ(L)
so that

min
x∈L

∥z − x∥ = max
y∈R2

min
x∈L

∥y − x∥.
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Rings of quadratic integers

Corollary 9

Let D be a squarefree integer and K = Q(
√
D) a quadratic

number field. Let OK be its ring of integers and let

ΩK = σK (OK ) ⊂ R2

be the lattice that is the image of OK in the plane under
Minkowski embedding σK . Then ΩK is an equal covering
extension of a rank-one lattice if and only if D ̸≡ 1 (mod 4). If this
is the case, then ΩK is an equal covering extension of the lattice

ZσK (1 +
√
D).
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Orthogonal equal covering extensions

While we do not have a characterization of equal covering extensions
in higher dimensions, we can construct orthogonal equal covering
extensions in any dimension.

Theorem 10 (Forst, L.F. - 2024)

Let Λm ⊂ Rn be an orthogonal lattice of rank m < n. There exists
an orthogonal lattice Λm+1 ⊂ Rn of rank m + 1 so that
Λm ⊂ Λm+1 is a lattice extension and µ(Λm+1) = µ(Λm). Further,
if z is a deep hole of Λm it is also a deep hole of Λm+1.
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Deep holes in more detail
In general, a deep hole of a full-rank lattice L ⊂ Rn is a point z in
Rn furthest removed from the lattice, i.e.

min
x∈L

∥z − x∥ = max
y∈Rn

min
x∈L

∥y − x∥.

Lemma 11

Let Λ ⊂ R2 be a lattice of rank 2 with minimal basis x , y and
angle θ ∈ [π/3, π/2] between these basis vectors. Write λ1, λ2 for
the successive minima of Λ, so that 0 < λ1 = ∥x∥ ≤ λ2 = ∥y∥.
Then the fundamental parallelogram

P = {sx + ty : 0 ≤ s, t < 1}

contains two deep holes z1, z2 with z1 + z2 ∈ Λ. If the angle
θ = π/2, then z1 = z2 is the center of P, and we say that this
deep hole has multiplicity 2.
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Deep holes in more detail

Figure: Fundamental parallelogram P of Λ with deep holes z1 and z2.

An immediate implication of Lemma 11 is that deep holes z1, z2 are
each other’s inverses in the additive abelian group R2/Λ. Further,
z1 is an element of order two in this group if and only if the angle
θ = π/2; in this case z1 = z2. On the other hand, z1, z2 can be
elements of finite order in other situations too.
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Deep holes in more detail

For instance, in the hexagonal lattice

Lπ/3 =

(
1 1

2

0
√
3
2

)
Z2

the deep holes are z1 = (1/2, 1/(2
√
3)), z2 = (1, 1/

√
3) have order

three in the group R2/Lπ/3, while the lattice

L′ =

(
1 1

2

0
√
3

)
Z2

has a deep hole z1 = (1/2, 11
√
3/24) satisfying the condition

48z1 = 13(1, 0) + 22(1/2,
√
3) ∈ L′,

which makes z1 an element of order dividing 48 in the group R2/L′.
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Deep holes in more detail

These observations raise a natural question: when does a deep hole
of Λ ⊂ R2 have finite order as an element of the group R2/Λ?

Theorem 12 (Forst, L.F. - 2024)

Let Λ ⊂ R2 be a full-rank lattice with successive minima λ1, λ2

and corresponding minimal basis vectors x1, x2. A deep hole z of
Λ has finite order in the group R2/Λ if and only if Λ is orthogonal
or there exist rational numbers p, q so that pλ2

1 = x1 · x2 = qλ2
2.

Moreover, if λ2
1, λ

2
2, x1 · x2 ∈ Z then the order of z in R2/Λ is

≤ 12
√
3 λ4

2.

Remark 1

The proof of this theorem uses Siegel’s lemma for a simple
situation of a 3× 2 integral linear system.
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