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Unimodular matrices
Let A = (aj) be an m x n integer matrix, 1 < m < n. Ais called
unimodular if there exists an (n — m) x n integer matrix B = (bjj)
so that the n X n integer matrix

all e din
A ami e dmn
= € GLA(Z),
(B> by ... b, (Z)
b(n—m)l s b(n—m)n

meaning that det (g) =+1.
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Deep holes
Unimodular matrices
Let A = (aj) be an m x n integer matrix, 1 < m < n. Ais called
unimodular if there exists an (n — m) x n integer matrix B = (bjj)
so that the n X n integer matrix

ail

dln
A _ dm1
B =

a
m € GL,(Z),
b11 b1n o(Z)
b(n—m)l b(n—m)n
. A
meaning that det (B) =+1.

How can we tell if a given matrix A is unimodular?ﬁl )
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Deep holes
Unimodular criterion
An m X n integer matrix A is unimodular if and only if the m x m

minors of A (Pliicker coordinates) are relatively prime.
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Deep holes
Unimodular criterion
An m X n integer matrix A is unimodular if and only if the m x m

minors of A (Pliicker coordinates) are relatively prime.

One can ask how often unimodular matrices occur, or —
What is the “probability” that a given m X n matrix A is
unimodular?
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Deep holes
Unimodular criterion
An m X n integer matrix A is unimodular if and only if the m x m
minors of A (Pliicker coordinates) are relatively prime.
One can ask how often unimodular matrices occur, or —
What is the “probability” that a given m X n matrix A is
unimodular?

To make this question precise, we write

unimodular matrices to be

U(T) = {A = (aj) € Z™" : A'is unimodular and |A| < T} ,
where |A| := max; |ajj|, and define the natural density

of mxn
)
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Unimodular probability

dm,n II W

’ - 9
Jj=n—m+1
where ( stands for the Riemann (-function.
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Unimodular probability

dm,n II W

’ - 9
Jj=n—m+1
where ( stands for the Riemann (-function.

In other words, this quantity can be viewed as the “probability” that
a “random” m X n integer matrix is unimodular.
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Unimodular probability

-1

dm,n - H C(_/) 5

Jj=n—m+1

where ( stands for the Riemann (-function.
In other words, this quantity can be viewed as the “probability” that
a “random” m X n integer matrix is unimodular.

For the special case of 1 x n integer matrices, we have

din = 1//¢(n),

which (via Heger's theorem) follows from the classical result of
Cesédro (1884) about coprimality of a random n-tuple of integers.
Cesdro's theorem has been independently rediscovered several times
by different mathematicians since.
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Extending a basis

On the other hand, A is unimodular if and only if its rows form a
primitive collection of vectors, i.e. extendable to a basis for Z". If
there is one such extension, there are infinitely many.
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Extending a basis

On the other hand, A is unimodular if and only if its rows form a
primitive collection of vectors, i.e. extendable to a basis for Z". If
there is one such extension, there are infinitely many.

Ifai,...,am € Z" is a primitive collection, then how many
collections by, . ..

,bn_m € Z" there exist so that

al,...,am,bl,.
is a basis for 7Z.",

s bpom

b|<TV1<i<n—masT — c0?
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Counting basis extensions - |

Let aj,...,am € Z" be a primitive collection of vectors.

1. If m < n—1, the number of vectors b € 7" with |b| < T
such that the collection a1, ..., am,b is again primitive is
equal to ©(T") as T — oo.

2. If m= n—1, the number of vectors b € Z" with |b| < T
such that the collection a1, ...,am,b is a basis for Z" is
equal to ©(T" 1) as T — oco.

As a result, for any 1 < k < n— m there exist ©( T"X) collections
of vectors by, ..., by € Z" with |b;j| < T, 1 < i < k, such that
{ai,bj : 1 <i<m1<j<k} isagain primitive. Further, there
are @(T”z_"m_l) such collections b, ..., b, _, so that

7" =spang{ai,...,am,b1,...,bp_m}.
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Counting basis extensions - |l

Any lattice A C R" is of the form A = UZ" for some matrix U €
GL,(R). As such, bases in A are in bijective correspondence with
bases in Z", given by multiplication by U. This correspondence
allows to extend Theorem 3 to arbitrary lattices, where we call a
collection of vectors in A primitive if it is a basis or can be extended
to a basis of A.
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Counting basis extensions - |l

Any lattice A C R" is of the form A = UZ" for some matrix U €
GL,(R). As such, bases in A are in bijective correspondence with
bases in Z", given by multiplication by U. This correspondence
allows to extend Theorem 3 to arbitrary lattices, where we call a
collection of vectors in A primitive if it is a basis or can be extended
to a basis of A.

Let a1,...,am be a primitive collection of vectors in a full-rank
lattice A C R™ with 1 < m < n. Then there are ©(T"~"m~1)
collections of vectors by, ..., b,_m € A such that |b;| < T for
each1<i<n—mand

A =spang{ai,...,am,b1,...,bp_m}.
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Defining a lattice extension

So far, we only talked about extending a collection of vectors to a
basis in a lattice. Now, let A be a lattice of rank n in R” and let
Q C A be a sublattice of rank m < n. We say that A is an extension
lattice of Q if

AN spang Q2 = Q.
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Defining a lattice extension

So far, we only talked about extending a collection of vectors to a
basis in a lattice. Now, let A be a lattice of rank n in R” and let
Q C A be a sublattice of rank m < n. We say that A is an extension
lattice of Q if

AN spang Q2 = Q.

As a first example, we can demonstrate a construction of a small-

determinant extension of a sublattice inside of the integer lattice Z".
We identify the wedge product of vectors x; A--- A Xy, in the Grass-
mann algebra with the corresponding vector of Pliicker coordinates
in R(n) with respect to a lexicographic embedding.
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Defining a lattice extension

So far, we only talked about extending a collection of vectors to a
basis in a lattice. Now, let A be a lattice of rank n in R” and let
Q C A be a sublattice of rank m < n. We say that A is an extension
lattice of Q if

AN spang Q2 = Q.

As a first example, we can demonstrate a construction of a small-

determinant extension of a sublattice inside of the integer lattice Z".
We identify the wedge product of vectors x; A--- A Xy, in the Grass-
mann algebra with the corresponding vector of Pliicker coordinates

in R(n) with respect to a lexicographic embedding.

Additionally, define the covering radius of <2 to be
() =min{r e R: Q+ Bn(r) = spang Q},

where Bn,(r) C spang € is a ball of radius r centered at 0.
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Small-determinant lattice extension
Let x1,...,Xxm be linearly independent vectors in Z" and let

Q = spany, {x1,

G Xm} CZ"

be the sublattice of rank m spanned by these vectors. Then there
exists a full-rank extension Q' C 7" of Q so that

det Q' = ged(x1 A+ A xp).

(1)

Further, if m = n — 1 then there exists y € Z" so that
Q' =span; {Q,y} and

oo X 2 1/2
IlyI\S{(ng(xld/;tQ/\ ’")) +u(9)2} :

m]

=
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Idea of proof

Any basis of the lattice A = Z" Nspanp Q is extendable to a basis
of Z". Let yq,...,¥, be a basis of A, extended to a basis of Z" by
Ymitr--->Yn Then,

spanp{X1,...,Xm} =spang{¥1,---»¥m}

and, by Heger's theorem, Pliicker coordinates of y; A--- Ay, are
relatively prime. Hence

X1 A Axm =ged(x1 A AXm)(Y1 A A Ym).

Define Q" = spanz{x1,...,Xm,¥mi1,---,¥n}, then (1) follows by
the bilinearity of the wedge product.
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Idea of proof

Any basis of the lattice A = Z" Nspanp Q is extendable to a basis
of Z". Let yq,...,¥, be a basis of A, extended to a basis of Z" by

Ymitr--->Yn Then,
spanp{X1,...,Xm} =spang{¥1,---»¥m}

and, by Heger's theorem, Pliicker coordinates of y; A--- Ay, are
relatively prime. Hence

X1 A Axm =ged(x1 A AXm)(Y1 A A Ym).

Define Q" = spanz{x1,...,Xm,¥mi1,---,¥n}, then (1) follows by
the bilinearity of the wedge product.

The proof of (2) is more involved: it uses the orthogonal projection
pa = A(ATA)LAT onto spang Q, where A= (x1 ... xp-1).
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Successive minima extensions

The successive minima of a rank-n lattice A are real numbers
0 < A1(A) < - < Ap(N),

given by A\;(A) = min{r € R : dimg spang (B,(r) N A) > i}.
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Successive minima extensions
The successive minima of a rank-n lattice A are real numbers
0 < A1(A) < - < Ap(N),

given by A\;(A) = min{r € R : dimg spang (B,(r) N A) > i}.
Our main goal is to explore lattice extensions with control over their
geometric invariants. In particular, we say that A is a successive
minima extension of Q if A is an extension of € such that

)\J(/\) = /\J(Q) V1 S] S m.
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Successive minima extensions

The successive minima of a rank-n lattice A are real numbers
0 < A1(A) < - < Ap(N),

given by A\;(A) = min{r € R : dimg spang (B,(r) N A) > i}.
Our main goal is to explore lattice extensions with control over their
geometric invariants. In particular, we say that A is a successive
minima extension of Q if A is an extension of € such that

)\J(/\) = /\J(Q) V1 S] S m.

To construct a rank-(m-1) successive minima extension A of 2, take
u € R" to be a vector perpendicular to spang Q of norm > A, ()
and define A = spany{Q,u}. It is a more delicate problem to
construct such an extension inside of a given full-rank lattice in R":
a perpendicular vector u may not exist inside of our given lattice.
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Successive minima extensions

Let A C R" be a lattice of full rank, and let Q,, C \ be a
sublattice of rank 1 < m < n. Write ;1 = p(N), Am = Am(Qm).
There exists a sublattice Qm11 C N\ of rank m+ 1 such that
Qm C Qmy1 is a lattice extension, \j(Qm+1) = Aj(Qm) for all
1<j<mand

)‘m(Qm)(VE ++/1- VE)

V31—

where v, is the smallest root of the polynomial p(v) =

Am41(Qmy1) <

+2u(N),  (3)

(ga v =B = v+ 1))2—(%\/(1 —vh + 2v4)2 (1—v?)

in the interval (0,1): such v, necessarily exists.
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Sketch of proof
Let Vi, = spang Qpm, 0 € (0,7/2], and define the cone

G(Vm)={xeR":a(x,y)e[0,mr—0]VyeE Vn},

where a(x, y) stands for the angle between two vectors.

Deep holes
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Sketch of proof
Let Vi, = spang Q. 6 € (0,7/2], and define the cone

G(Vm)={xeR":a(x,y)e[0,mr—0]VyeE Vn},

where a(x, y) stands for the angle between two vectors.
If x € Co(Vim) and

x|l > Am(Qm)(cot O cosb + 1)
- V14 cos? 0 ’
then || x + y|| = Am(Qm) for every y € V.

Deep holes
00000
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Sketch of proof
Let Vi, = spang Q. 6 € (0,7/2], and define the cone

G(Vm)={xeR":a(x,y)e[0,mr—0]VyeE Vn},

where a(x, y) stands for the angle between two vectors.

If x € Co(Vim) and

Am(Qm)(cot O cosb + 1)
V14 cos? 0 ’

then || x + y|| = Am(Qm) for every y € V.
Let us write B,(r) for the ball of radius r > 0 centered at the origin
in R”. Let 6 € (0,7/2] and
Am(Qm)(cot O cosb + 1)
V1+cos28 '

x| =

r(0) =
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Sketch of proof

Then Lemma 7 guarantees that for any vector

x € AN (Cy(Vim) \ Ba(r(6))) ,
the lattice L = spany {Qm, x} satisfies \;j(L) = \j(Qm) for all 1 <
J<mand Apya(L) < x|
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Sketch of proof
Then Lemma 7 guarantees that for any vector
x € AN (Co(Vim) \ Bn(r(0)))

the lattice L = spany {Qm, x} satisfies \;j(L) = \j(Qm) for all 1 <
J<mand Api1(L) < |x]|.
Hence we want to minimize

Am+1(0) ;== min{||x|| : x € AN (Cy(Vim) \ Ba(r(0))}

as a function of 6.
Any translated copy of the ball of radius p(A) in R” must contain a
point of A. Suppose that § € (0,7/2] is such that

Br(1(N)) € (Co(Vim) N Ba(r(0) +211(A))) \ Ba(r(9)),

where B/ (11(A\)) is such a translated copy. Then Cy( V) \ Ba(r(6))
would be guaranteed to contain a point x of A with

X[l < r(0) + 2u(A).
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Sketch of proof
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Sketch of proof

As shown in the picture, we have a right triangle with legs r(6)+u(A\)
and p(A) and the angle 7/2 — 6 opposite to the second leg. Hence
we have the equation

1(A)
tan(m/2 =) = Lo
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Sketch of proof

Writing v = cos@, u = u(A), and Ay, = Apn(Q2m), we obtain the
following relation in terms of v:

Am V21— v2) v
(i

which transforms into the polynomial equation p(v) = 0. It follows
from our construction that this equation has at least one solution v
in the interval (0, 1).
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Sketch of proof

Writing v = cos@, u = u(A), and Ay, = Apn(Q2m), we obtain the
following relation in terms of v:

Am V21— v2) v
(i

which transforms into the polynomial equation p(v) = 0. It follows
from our construction that this equation has at least one solution v
in the interval (0,1). Then r(#) as a function of v becomes

Am(vZ + V1 — v2)
V1—v4 ’

which is an increasing function of v in the interval (0, 1), so we pick
the root v, of p(v) as small as possible.

r(v) =
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Equal covering extensions

A is an equal covering extension of ) if A is an extension of 2
such that
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Equal covering extensions

A is an equal covering extension of ) if A is an extension of 2
such that

Equal covering extensions may not exist inside of a given lattice.
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Equal covering extensions

A is an equal covering extension of € if A is an extension of

such that
u(A) = u(Q).

Equal covering extensions may not exist inside of a given lattice.

A lattice N C R? is equal covering extension of Zey if and only if

O W = L )

for some real number 0 < o < 1. More generally, a lattice A C R"”
of rank 2 is an equal covering extension of a rank-one lattice
Q C A if and only if it is isometric to some lattice of the form

det(Q)A(«), where N(«) is as in (4).
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Idea of proof
For a planar lattice L with successive minima A1, A2 and angle 6 €
[w/3,7/2] between the corresponding minimal vectors, the covering
radius can be computed as:

YA+ 28— 2\ cosd
- 2sinf '

p(L) (5)
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Idea of proof
For a planar lattice L with successive minima A1, A2 and angle 6 €
[w/3,7/2] between the corresponding minimal vectors, the covering
radius can be computed as:

YA+ 28— 2\ cosd

2sinf (5)

(L)

The lattices A(«) are orthogonal, and so
0=m/2, M2 =V, V1—a.
This implies that u(A(a)) = 1/2 = u(Zey).
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Idea of proof
For a planar lattice L with successive minima A1, A2 and angle 6 €
[w/3,7/2] between the corresponding minimal vectors, the covering
radius can be computed as:

YA+ 28— 2\ cosd
u(k) = 2sinf '

(5)

The lattices A(«) are orthogonal, and so
0=m/2, M2 =V, V1—a.

This implies that u(A(a)) = 1/2 = u(Zey).
The reverse direction involves looking for the fundamental deep
hole of a planar lattice L, i.e. the point z € R2 with ||z|| = u(L)
so that

min ||z — x|| = max min ly — x||.
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Rings of quadratic integers

Let D be a squarefree integer and K = Q(\/B) a quadratic
number field. Let Ok be its ring of integers and let

Qx = O’K(OK) C R2

be the lattice that is the image of Ok in the plane under
Minkowski embedding ok. Then Qg is an equal covering
extension of a rank-one lattice if and only if D # 1 (mod 4). If this
is the case, then Qi is an equal covering extension of the lattice

Zok(1+ VD).
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Orthogonal equal covering extensions

While we do not have a characterization of equal covering extensions
in higher dimensions, we can construct orthogonal equal covering

extensions in any dimension.

Let A, C R” be an orthogonal lattice of rank m < n. There exists
an orthogonal lattice Ajp1 C R” of rank m+ 1 so that
Am C N1 is a lattice extension and (1(Amy1) = p(Am). Further,
if z is a deep hole of Ny, it is also a deep hole of Npyy1.
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Deep holes in more detail

In general, a deep hole of a full-rank lattice L C R" is a point z in
R"™ furthest removed from the lattice, i.e.

min ||z — x| = max min ly — x]|.
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Deep holes in more detail

In general, a deep hole of a full-rank lattice L C R" is a point z in
R"™ furthest removed from the lattice, i.e.

min |z - x|| = maxmin [ly — x|

Let A C R? be a lattice of rank 2 with minimal basis x,y and
angle 6 € [r/3,7/2] between these basis vectors. Write A1,y for
the successive minima of N\, so that 0 < A1 = [|x|| < X2 = ||y||.
Then the fundamental parallelogram

P={sx+ty:0<s,t<1}

contains two deep holes z1,z5 with z1 + z5 € A. If the angle
0 = /2, then z1 = z, is the center of B, and we say that this
deep hole has multiplicity 2.
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Deep holes in more detail

0] y Y

Figure: Fundamental parallelogram B of A with deep holes z; and z;.

An immediate implication of Lemma 11 is that deep holes z1, z5 are
each other’s inverses in the additive abelian group Rz//\. Further,
z;y is an element of order two in this group if and only if the angle
0 = 7/2; in this case z; = z. On the other hand, z1, 2z, can be
elements of finite order in other situations too.



Deep holes
0000

Deep holes in more detail

For instance, in the hexagonal lattice

AT
L7r/3: 0 ﬁ Z
2

the deep holes are z; = (1/2,1/(2v/3)), z2 = (1,1/+/3) have order
three in the group RZ/LW/g,, while the lattice

! 1 % 2
has a deep hole z; = (1/2,11+/3/24) satisfying the condition
4821 = 13(1,0) +22(1/2,V3) € L,

which makes z; an element of order dividing 48 in the group R2/L’.
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Deep holes in more detail

These observations raise a natural question: when does a deep hole
of A C R? have finite order as an element of the group R?/A?
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Deep holes in more detail

These observations raise a natural question: when does a deep hole
of A C R? have finite order as an element of the group R?/A?

Let A C R? be a full-rank lattice with successive minima A1, A2
and corresponding minimal basis vectors x1, x>. A deep hole z of
A has finite order in the group R? /A if and only if \ is orthogonal
or there exist rational numbers p, q so that p)\% = X1 Xy = qu.
Moreover, if A2, A3, x1 - xo € Z then the order of z in R?/\ is
<123 A3




Basis extensions Lattice extensions Deep holes
000000 0000000000000 00000

Deep holes in more detail

These observations raise a natural question: when does a deep hole
of A C R? have finite order as an element of the group R?/A?

Let A C R? be a full-rank lattice with successive minima A1, A2
and corresponding minimal basis vectors x1, x>. A deep hole z of
A has finite order in the group R? /A if and only if \ is orthogonal
or there exist rational numbers p, q so that p)\% = X1 Xy = q)\%.
Moreover, if A2, A3, x1 - xo € Z then the order of z in R?/\ is
<123 A3

The proof of this theorem uses Siegel's lemma for a simple
situation of a 3 x 2 integral linear system.

u}
o)
I
i
it
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