On lattice extensions

Lenny Fukshansky Claremont McKenna College

(joint work with Maxwell Forst)

Modern Problems in Number Theory Sirius University of Science and Technology

July 8 -13, 2024

Unimodular matrices

Let $A=\left(a_{i j}\right)$ be an $m \times n$ integer matrix, $1 \leq m<n$. A is called unimodular if there exists an $(n-m) \times n$ integer matrix $B=\left(b_{i j}\right)$ so that the $n \times n$ integer matrix

$$
\binom{A}{B}=\left(\begin{array}{ccc}
a_{11} & \cdots & a_{1 n} \\
\vdots & \ddots & \vdots \\
a_{m 1} & \cdots & a_{m n} \\
b_{11} & \cdots & b_{1 n} \\
\vdots & \ddots & \vdots \\
b_{(n-m) 1} & \cdots & b_{(n-m) n}
\end{array}\right) \in \mathrm{GL}_{n}(\mathbb{Z})
$$

meaning that $\operatorname{det}\binom{A}{B}= \pm 1$.

Unimodular matrices

Let $A=\left(a_{i j}\right)$ be an $m \times n$ integer matrix, $1 \leq m<n$. A is called unimodular if there exists an $(n-m) \times n$ integer matrix $B=\left(b_{i j}\right)$ so that the $n \times n$ integer matrix

$$
\binom{A}{B}=\left(\begin{array}{ccc}
a_{11} & \cdots & a_{1 n} \\
\vdots & \ddots & \vdots \\
a_{m 1} & \cdots & a_{m n} \\
b_{11} & \cdots & b_{1 n} \\
\vdots & \ddots & \vdots \\
b_{(n-m) 1} & \cdots & b_{(n-m) n}
\end{array}\right) \in \mathrm{GL}_{n}(\mathbb{Z})
$$

meaning that $\operatorname{det}\binom{A}{B}= \pm 1$.

Question 1

How can we tell if a given matrix A is unimodular?

Unimodular criterion

Theorem 1 (I. Heger - 1856)
An $m \times n$ integer matrix A is unimodular if and only if the $m \times m$ minors of A (Plücker coordinates) are relatively prime.

Unimodular criterion

Theorem 1 (I. Heger - 1856)

An $m \times n$ integer matrix A is unimodular if and only if the $m \times m$ minors of A (Plücker coordinates) are relatively prime.

One can ask how often unimodular matrices occur, or -

Question 2

What is the "probability" that a given $m \times n$ matrix A is unimodular?

Unimodular criterion

Theorem 1 (I. Heger - 1856)

An $m \times n$ integer matrix A is unimodular if and only if the $m \times m$ minors of A (Plücker coordinates) are relatively prime.

One can ask how often unimodular matrices occur, or -

Question 2

What is the "probability" that a given $m \times n$ matrix A is unimodular?

To make this question precise, we write

$$
\mathcal{U}(T)=\left\{A=\left(a_{i j}\right) \in \mathbb{Z}^{m \times n}: A \text { is unimodular and }|A| \leq T\right\}
$$

where $|A|:=\max _{i, j}\left|a_{i j}\right|$, and define the natural density of $m \times n$ unimodular matrices to be

$$
d_{m, n}=\lim _{T \rightarrow \infty} \frac{\# \mathcal{U}(T)}{T^{m n}}
$$

Unimodular probability

Theorem 2 (Maze, Rosenthal, Wagner - 2011)

$$
d_{m, n}=\left(\prod_{j=n-m+1}^{n} \zeta(j)\right)^{-1}
$$

where ζ stands for the Riemann ζ-function.

Unimodular probability

Theorem 2 (Maze, Rosenthal, Wagner - 2011)

$$
d_{m, n}=\left(\prod_{j=n-m+1}^{n} \zeta(j)\right)^{-1}
$$

where ζ stands for the Riemann ζ-function.
In other words, this quantity can be viewed as the "probability" that a "random" $m \times n$ integer matrix is unimodular.

Unimodular probability

Theorem 2 (Maze, Rosenthal, Wagner - 2011)

$$
d_{m, n}=\left(\prod_{j=n-m+1}^{n} \zeta(j)\right)^{-1}
$$

where ζ stands for the Riemann ζ-function.
In other words, this quantity can be viewed as the "probability" that a "random" $m \times n$ integer matrix is unimodular.

For the special case of $1 \times n$ integer matrices, we have

$$
d_{1, n}=1 / / \zeta(n)
$$

which (via Heger's theorem) follows from the classical result of Cesáro (1884) about coprimality of a random n-tuple of integers. Cesáro's theorem has been independently rediscovered several times by different mathematicians since.

Extending a basis

On the other hand, A is unimodular if and only if its rows form a primitive collection of vectors, i.e. extendable to a basis for \mathbb{Z}^{n}. If there is one such extension, there are infinitely many.

Extending a basis

On the other hand, A is unimodular if and only if its rows form a primitive collection of vectors, i.e. extendable to a basis for \mathbb{Z}^{n}. If there is one such extension, there are infinitely many.

Question 3

If $\boldsymbol{a}_{1}, \ldots, \boldsymbol{a}_{m} \in \mathbb{Z}^{n}$ is a primitive collection, then how many collections $\boldsymbol{b}_{1}, \ldots, \boldsymbol{b}_{n-m} \in \mathbb{Z}^{n}$ there exist so that

$$
\boldsymbol{a}_{1}, \ldots, \boldsymbol{a}_{m}, \boldsymbol{b}_{1}, \ldots, \boldsymbol{b}_{n-m}
$$

is a basis for $\mathbb{Z}^{n},\left|\boldsymbol{b}_{i}\right| \leq T \forall 1 \leq i \leq n-m$ as $T \rightarrow \infty$?

Counting basis extensions - I

Theorem 3 (M. Forst, L.F. - 2022)

Let $\boldsymbol{a}_{1}, \ldots, \boldsymbol{a}_{m} \in \mathbb{Z}^{n}$ be a primitive collection of vectors.

1. If $m<n-1$, the number of vectors $\boldsymbol{b} \in \mathbb{Z}^{n}$ with $|\boldsymbol{b}| \leq T$ such that the collection $\boldsymbol{a}_{1}, \ldots, \boldsymbol{a}_{m}, \boldsymbol{b}$ is again primitive is equal to $\Theta\left(T^{n}\right)$ as $T \rightarrow \infty$.
2. If $m=n-1$, the number of vectors $\boldsymbol{b} \in \mathbb{Z}^{n}$ with $|\boldsymbol{b}| \leq T$ such that the collection $\boldsymbol{a}_{1}, \ldots, \boldsymbol{a}_{m}, \boldsymbol{b}$ is a basis for \mathbb{Z}^{n} is equal to $\Theta\left(T^{n-1}\right)$ as $T \rightarrow \infty$.
As a result, for any $1 \leq k<n-m$ there exist $\Theta\left(T^{n k}\right)$ collections of vectors $\boldsymbol{b}_{1}, \ldots, \boldsymbol{b}_{k} \in \mathbb{Z}^{n}$ with $\left|\boldsymbol{b}_{i}\right| \leq T, 1 \leq i \leq k$, such that $\left\{\boldsymbol{a}_{i}, \boldsymbol{b}_{j}: 1 \leq i \leq m, 1 \leq j \leq k\right\}$ is again primitive. Further, there are $\Theta\left(T^{n^{2}-n m-1}\right)$ such collections $\boldsymbol{b}_{1}, \ldots, \boldsymbol{b}_{n-m}$ so that

$$
\mathbb{Z}^{n}=\operatorname{span}_{\mathbb{Z}}\left\{\boldsymbol{a}_{1}, \ldots, \boldsymbol{a}_{m}, \boldsymbol{b}_{1}, \ldots, \boldsymbol{b}_{n-m}\right\}
$$

Counting basis extensions - II

Any lattice $\Lambda \subset \mathbb{R}^{n}$ is of the form $\Lambda=U \mathbb{Z}^{n}$ for some matrix $U \in$ $G L_{n}(\mathbb{R})$. As such, bases in Λ are in bijective correspondence with bases in \mathbb{Z}^{n}, given by multiplication by U. This correspondence allows to extend Theorem 3 to arbitrary lattices, where we call a collection of vectors in Λ primitive if it is a basis or can be extended to a basis of Λ.

Counting basis extensions - II

Any lattice $\Lambda \subset \mathbb{R}^{n}$ is of the form $\Lambda=U \mathbb{Z}^{n}$ for some matrix $U \in$ $G L_{n}(\mathbb{R})$. As such, bases in Λ are in bijective correspondence with bases in \mathbb{Z}^{n}, given by multiplication by U. This correspondence allows to extend Theorem 3 to arbitrary lattices, where we call a collection of vectors in Λ primitive if it is a basis or can be extended to a basis of Λ.

Corollary 4

Let $\boldsymbol{a}_{1}, \ldots, \boldsymbol{a}_{m}$ be a primitive collection of vectors in a full-rank lattice $\Lambda \subset \mathbb{R}^{n}$ with $1 \leq m<n$. Then there are $\Theta\left(T^{n^{2}-n m-1}\right)$ collections of vectors $\boldsymbol{b}_{1}, \ldots, \boldsymbol{b}_{n-m} \in \Lambda$ such that $\left|\boldsymbol{b}_{i}\right| \leq T$ for each $1 \leq i \leq n-m$ and

$$
\Lambda=\operatorname{span}_{\mathbb{Z}}\left\{\boldsymbol{a}_{1}, \ldots, \boldsymbol{a}_{m}, \boldsymbol{b}_{1}, \ldots, \boldsymbol{b}_{n-m}\right\}
$$

Defining a lattice extension

So far, we only talked about extending a collection of vectors to a basis in a lattice. Now, let Λ be a lattice of rank n in \mathbb{R}^{n} and let $\Omega \subset \Lambda$ be a sublattice of rank $m<n$. We say that Λ is an extension lattice of Ω if

$$
\Lambda \cap \operatorname{span}_{\mathbb{R}} \Omega=\Omega
$$

Defining a lattice extension

So far, we only talked about extending a collection of vectors to a basis in a lattice. Now, let Λ be a lattice of rank n in \mathbb{R}^{n} and let $\Omega \subset \Lambda$ be a sublattice of rank $m<n$. We say that Λ is an extension lattice of Ω if

$$
\Lambda \cap \operatorname{span}_{\mathbb{R}} \Omega=\Omega
$$

As a first example, we can demonstrate a construction of a smalldeterminant extension of a sublattice inside of the integer lattice \mathbb{Z}^{n}. We identify the wedge product of vectors $x_{1} \wedge \cdots \wedge x_{m}$ in the Grassmann algebra with the corresponding vector of Plücker coordinates in $\mathbb{R}\binom{n}{m}$ with respect to a lexicographic embedding.

Defining a lattice extension

So far, we only talked about extending a collection of vectors to a basis in a lattice. Now, let Λ be a lattice of rank n in \mathbb{R}^{n} and let $\Omega \subset \Lambda$ be a sublattice of rank $m<n$. We say that Λ is an extension lattice of Ω if

$$
\Lambda \cap \operatorname{span}_{\mathbb{R}} \Omega=\Omega
$$

As a first example, we can demonstrate a construction of a smalldeterminant extension of a sublattice inside of the integer lattice \mathbb{Z}^{n}. We identify the wedge product of vectors $\boldsymbol{x}_{1} \wedge \cdots \wedge \boldsymbol{x}_{m}$ in the Grassmann algebra with the corresponding vector of Plücker coordinates in $\mathbb{R}^{\binom{n}{m}}$ with respect to a lexicographic embedding. Additionally, define the covering radius of Ω to be

$$
\mu(\Omega)=\min \left\{r \in \mathbb{R}: \Omega+B_{m}(r)=\operatorname{span}_{\mathbb{R}} \Omega\right\},
$$

where $B_{m}(r) \subset \operatorname{span}_{\mathbb{R}} \Omega$ is a ball of radius r centered at $\mathbf{0}$.

Small-determinant lattice extension

Theorem 5 (Forst, L.F. - 2024)

Let $\boldsymbol{x}_{1}, \ldots, \boldsymbol{x}_{m}$ be linearly independent vectors in \mathbb{Z}^{n} and let

$$
\Omega=\operatorname{span}_{\mathbb{Z}}\left\{\boldsymbol{x}_{1}, \ldots, \boldsymbol{x}_{m}\right\} \subset \mathbb{Z}^{n}
$$

be the sublattice of rank m spanned by these vectors. Then there exists a full-rank extension $\Omega^{\prime} \subseteq \mathbb{Z}^{n}$ of Ω so that

$$
\begin{equation*}
\operatorname{det} \Omega^{\prime}=\operatorname{gcd}\left(\boldsymbol{x}_{1} \wedge \cdots \wedge \boldsymbol{x}_{m}\right) \tag{1}
\end{equation*}
$$

Further, if $m=n-1$ then there exists $\boldsymbol{y} \in \mathbb{Z}^{n}$ so that $\Omega^{\prime}=\operatorname{span}_{\mathbb{Z}}\{\Omega, \boldsymbol{y}\}$ and

$$
\begin{equation*}
\|\boldsymbol{y}\| \leq\left\{\left(\frac{\operatorname{gcd}\left(\boldsymbol{x}_{1} \wedge \cdots \wedge \boldsymbol{x}_{m}\right)}{\operatorname{det} \Omega}\right)^{2}+\mu(\Omega)^{2}\right\}^{1 / 2} \tag{2}
\end{equation*}
$$

Idea of proof

Any basis of the lattice $\Lambda=\mathbb{Z}^{n} \cap \operatorname{span}_{\mathbb{R}} \Omega$ is extendable to a basis of \mathbb{Z}^{n}. Let $\boldsymbol{y}_{1}, \ldots, \boldsymbol{y}_{m}$ be a basis of Λ, extended to a basis of \mathbb{Z}^{n} by $\boldsymbol{y}_{m+1}, \ldots, \boldsymbol{y}_{n}$. Then,

$$
\operatorname{span}_{\mathbb{R}}\left\{\boldsymbol{x}_{1}, \ldots, \boldsymbol{x}_{m}\right\}=\operatorname{span}_{\mathbb{R}}\left\{\boldsymbol{y}_{1}, \ldots, \boldsymbol{y}_{m}\right\}
$$

and, by Heger's theorem, Plücker coordinates of $\boldsymbol{y}_{1} \wedge \cdots \wedge \boldsymbol{y}_{m}$ are relatively prime. Hence

$$
\boldsymbol{x}_{1} \wedge \cdots \wedge \boldsymbol{x}_{m}=\operatorname{gcd}\left(\boldsymbol{x}_{1} \wedge \cdots \wedge \boldsymbol{x}_{m}\right)\left(\boldsymbol{y}_{1} \wedge \cdots \wedge \boldsymbol{y}_{m}\right)
$$

Define $\Omega^{\prime}=\operatorname{span}_{\mathbb{Z}}\left\{\boldsymbol{x}_{1}, \ldots, \boldsymbol{x}_{m}, \boldsymbol{y}_{m+1}, \ldots, \boldsymbol{y}_{n}\right\}$, then (1) follows by the bilinearity of the wedge product.

Idea of proof

Any basis of the lattice $\Lambda=\mathbb{Z}^{n} \cap \operatorname{span}_{\mathbb{R}} \Omega$ is extendable to a basis of \mathbb{Z}^{n}. Let $\boldsymbol{y}_{1}, \ldots, \boldsymbol{y}_{m}$ be a basis of Λ, extended to a basis of \mathbb{Z}^{n} by $\boldsymbol{y}_{m+1}, \ldots, \boldsymbol{y}_{n}$. Then,

$$
\operatorname{span}_{\mathbb{R}}\left\{\boldsymbol{x}_{1}, \ldots, \boldsymbol{x}_{m}\right\}=\operatorname{span}_{\mathbb{R}}\left\{\boldsymbol{y}_{1}, \ldots, \boldsymbol{y}_{m}\right\}
$$

and, by Heger's theorem, Plücker coordinates of $\boldsymbol{y}_{1} \wedge \cdots \wedge \boldsymbol{y}_{m}$ are relatively prime. Hence

$$
\boldsymbol{x}_{1} \wedge \cdots \wedge \boldsymbol{x}_{m}=\operatorname{gcd}\left(\boldsymbol{x}_{1} \wedge \cdots \wedge \boldsymbol{x}_{m}\right)\left(\boldsymbol{y}_{1} \wedge \cdots \wedge \boldsymbol{y}_{m}\right)
$$

Define $\Omega^{\prime}=\operatorname{span}_{\mathbb{Z}}\left\{\boldsymbol{x}_{1}, \ldots, \boldsymbol{x}_{m}, \boldsymbol{y}_{m+1}, \ldots, \boldsymbol{y}_{n}\right\}$, then (1) follows by the bilinearity of the wedge product.
The proof of (2) is more involved: it uses the orthogonal projection $\rho_{\Omega}=A\left(A^{\top} A\right)^{-1} A^{\top}$ onto $\operatorname{span}_{\mathbb{R}} \Omega$, where $A=\left(\begin{array}{lll}\boldsymbol{x}_{1} & \ldots & \boldsymbol{x}_{n-1}\end{array}\right)$.

Successive minima extensions

The successive minima of a rank- n lattice Λ are real numbers

$$
0<\lambda_{1}(\Lambda) \leq \cdots \leq \lambda_{n}(\Lambda)
$$

given by $\lambda_{i}(\Lambda)=\min \left\{r \in \mathbb{R}: \operatorname{dim}_{\mathbb{R}} \operatorname{span}_{\mathbb{R}}\left(B_{n}(r) \cap \Lambda\right) \geq i\right\}$.

Successive minima extensions

The successive minima of a rank- n lattice Λ are real numbers

$$
0<\lambda_{1}(\Lambda) \leq \cdots \leq \lambda_{n}(\Lambda)
$$

given by $\lambda_{i}(\Lambda)=\min \left\{r \in \mathbb{R}: \operatorname{dim}_{\mathbb{R}} \operatorname{span}_{\mathbb{R}}\left(B_{n}(r) \cap \Lambda\right) \geq i\right\}$. Our main goal is to explore lattice extensions with control over their geometric invariants. In particular, we say that Λ is a successive minima extension of Ω if Λ is an extension of Ω such that

$$
\lambda_{j}(\Lambda)=\lambda_{j}(\Omega) \forall 1 \leq j \leq m
$$

Successive minima extensions

The successive minima of a rank- n lattice Λ are real numbers

$$
0<\lambda_{1}(\wedge) \leq \cdots \leq \lambda_{n}(\Lambda)
$$

given by $\lambda_{i}(\Lambda)=\min \left\{r \in \mathbb{R}: \operatorname{dim}_{\mathbb{R}} \operatorname{span}_{\mathbb{R}}\left(B_{n}(r) \cap \Lambda\right) \geq i\right\}$.
Our main goal is to explore lattice extensions with control over their geometric invariants. In particular, we say that Λ is a successive minima extension of Ω if Λ is an extension of Ω such that

$$
\lambda_{j}(\Lambda)=\lambda_{j}(\Omega) \forall 1 \leq j \leq m .
$$

To construct a rank- $(m+1)$ successive minima extension Λ of Ω, take $\boldsymbol{u} \in \mathbb{R}^{n}$ to be a vector perpendicular to $\operatorname{span}_{\mathbb{R}} \Omega$ of norm $>\lambda_{m}(\Omega)$ and define $\Lambda=\operatorname{span}_{\mathbb{Z}}\{\Omega, \boldsymbol{u}\}$. It is a more delicate problem to construct such an extension inside of a given full-rank lattice in \mathbb{R}^{n} : a perpendicular vector \boldsymbol{u} may not exist inside of our given lattice.

Successive minima extensions

Theorem 6 (Forst, L.F. - 2024)

Let $\Lambda \subset \mathbb{R}^{n}$ be a lattice of full rank, and let $\Omega_{m} \subset \Lambda$ be a sublattice of rank $1 \leq m<n$. Write $\mu=\mu(\Lambda), \lambda_{m}=\lambda_{m}\left(\Omega_{m}\right)$. There exists a sublattice $\Omega_{m+1} \subset \Lambda$ of rank $m+1$ such that $\Omega_{m} \subset \Omega_{m+1}$ is a lattice extension, $\lambda_{j}\left(\Omega_{m+1}\right)=\lambda_{j}\left(\Omega_{m}\right)$ for all $1 \leq j \leq m$ and

$$
\begin{equation*}
\lambda_{m+1}\left(\Omega_{m+1}\right) \leq \frac{\lambda_{m}\left(\Omega_{m}\right)\left(v_{*}^{2}+\sqrt{1-v_{*}^{2}}\right)}{\sqrt{1-v_{*}^{4}}}+2 \mu(\Lambda) \tag{3}
\end{equation*}
$$

where v_{*} is the smallest root of the polynomial $p(v)=$

$$
\left(\frac{\mu^{2}}{\lambda_{m}^{2}}\left(1-v^{4}\right)-v^{2}\left(v^{4}-v^{2}+1\right)\right)^{2}-\left(\frac{2 \mu^{2}}{\lambda_{m}^{2}} v\left(1-v^{4}\right)+2 v^{4}\right)^{2}\left(1-v^{2}\right)
$$

in the interval $(0,1)$: such v_{*} necessarily exists.

Sketch of proof

Let $V_{m}=\operatorname{span}_{\mathbb{R}} \Omega_{m}, \theta \in(0, \pi / 2]$, and define the cone

$$
C_{\theta}\left(V_{m}\right)=\left\{\boldsymbol{x} \in \mathbb{R}^{n}: \mathfrak{a}(\boldsymbol{x}, \boldsymbol{y}) \in[\theta, \pi-\theta] \forall \boldsymbol{y} \in V_{m}\right\}
$$

where $\mathfrak{a}(\boldsymbol{x}, \boldsymbol{y})$ stands for the angle between two vectors.

Sketch of proof

Let $V_{m}=\operatorname{span}_{\mathbb{R}} \Omega_{m}, \theta \in(0, \pi / 2]$, and define the cone

$$
C_{\theta}\left(V_{m}\right)=\left\{\boldsymbol{x} \in \mathbb{R}^{n}: \mathfrak{a}(\boldsymbol{x}, \boldsymbol{y}) \in[\theta, \pi-\theta] \forall \boldsymbol{y} \in V_{m}\right\}
$$

where $\mathfrak{a}(\boldsymbol{x}, \boldsymbol{y})$ stands for the angle between two vectors.
Lemma 7
If $\boldsymbol{x} \in C_{\theta}\left(V_{m}\right)$ and

$$
\|\boldsymbol{x}\| \geq \frac{\lambda_{m}\left(\Omega_{m}\right)(\cot \theta \cos \theta+1)}{\sqrt{1+\cos ^{2} \theta}}
$$

then $\|\boldsymbol{x}+\boldsymbol{y}\| \geq \lambda_{m}\left(\Omega_{m}\right)$ for every $\boldsymbol{y} \in V_{m}$.

Sketch of proof

Let $V_{m}=\operatorname{span}_{\mathbb{R}} \Omega_{m}, \theta \in(0, \pi / 2]$, and define the cone

$$
C_{\theta}\left(V_{m}\right)=\left\{\boldsymbol{x} \in \mathbb{R}^{n}: \mathfrak{a}(\boldsymbol{x}, \boldsymbol{y}) \in[\theta, \pi-\theta] \forall \boldsymbol{y} \in V_{m}\right\}
$$

where $\mathfrak{a}(\boldsymbol{x}, \boldsymbol{y})$ stands for the angle between two vectors.
Lemma 7
If $\boldsymbol{x} \in C_{\theta}\left(V_{m}\right)$ and

$$
\|\boldsymbol{x}\| \geq \frac{\lambda_{m}\left(\Omega_{m}\right)(\cot \theta \cos \theta+1)}{\sqrt{1+\cos ^{2} \theta}}
$$

then $\|\boldsymbol{x}+\boldsymbol{y}\| \geq \lambda_{m}\left(\Omega_{m}\right)$ for every $\boldsymbol{y} \in V_{m}$.
Let us write $B_{n}(r)$ for the ball of radius $r>0$ centered at the origin in \mathbb{R}^{n}. Let $\theta \in(0, \pi / 2]$ and

$$
r(\theta)=\frac{\lambda_{m}\left(\Omega_{m}\right)(\cot \theta \cos \theta+1)}{\sqrt{1+\cos ^{2} \theta}}
$$

Sketch of proof

Then Lemma 7 guarantees that for any vector

$$
x \in \Lambda \cap\left(C_{\theta}\left(V_{m}\right) \backslash B_{n}(r(\theta))\right),
$$

the lattice $L=\operatorname{span}_{\mathbb{Z}}\left\{\Omega_{m}, \boldsymbol{x}\right\}$ satisfies $\lambda_{j}(L)=\lambda_{j}\left(\Omega_{m}\right)$ for all $1 \leq$ $j \leq m$ and $\lambda_{m+1}(L) \leq\|\boldsymbol{x}\|$.

Sketch of proof

Then Lemma 7 guarantees that for any vector

$$
x \in \Lambda \cap\left(C_{\theta}\left(V_{m}\right) \backslash B_{n}(r(\theta))\right),
$$

the lattice $L=\operatorname{span}_{\mathbb{Z}}\left\{\Omega_{m}, \boldsymbol{x}\right\}$ satisfies $\lambda_{j}(L)=\lambda_{j}\left(\Omega_{m}\right)$ for all $1 \leq$ $j \leq m$ and $\lambda_{m+1}(L) \leq\|\boldsymbol{x}\|$.
Hence we want to minimize

$$
\lambda_{m+1}(\theta):=\min \left\{\|\boldsymbol{x}\|: \boldsymbol{x} \in \Lambda \cap\left(C_{\theta}\left(V_{m}\right) \backslash B_{n}(r(\theta))\right\}\right.
$$

as a function of θ.
Any translated copy of the ball of radius $\mu(\Lambda)$ in \mathbb{R}^{n} must contain a point of Λ. Suppose that $\theta \in(0, \pi / 2]$ is such that

$$
B_{n}^{\prime}(\mu(\Lambda)) \subset\left(C_{\theta}\left(V_{m}\right) \cap B_{n}(r(\theta)+2 \mu(\Lambda))\right) \backslash B_{n}(r(\theta))
$$

where $B_{n}^{\prime}(\mu(\Lambda))$ is such a translated copy. Then $C_{\theta}\left(V_{m}\right) \backslash B_{n}(r(\theta))$ would be guaranteed to contain a point x of Λ with

$$
\|\boldsymbol{x}\| \leq r(\theta)+2 \mu(\Lambda)
$$

Sketch of proof

Sketch of proof

As shown in the picture, we have a right triangle with legs $r(\theta)+\mu(\Lambda)$ and $\mu(\Lambda)$ and the angle $\pi / 2-\theta$ opposite to the second leg. Hence we have the equation

$$
\tan (\pi / 2-\theta)=\frac{\mu(\Lambda)}{r(\theta)+\mu(\Lambda)}
$$

Sketch of proof

Writing $v=\cos \theta, \mu=\mu(\Lambda)$, and $\lambda_{m}=\lambda_{m}\left(\Omega_{m}\right)$, we obtain the following relation in terms of v :

$$
\mu\left(\sqrt{1-v^{2}}-v\right)=\frac{\lambda_{m}\left(v^{2}+\sqrt{1-v^{2}}\right) v}{\sqrt{1-v^{4}}}
$$

which transforms into the polynomial equation $p(v)=0$. It follows from our construction that this equation has at least one solution v in the interval $(0,1)$.

Sketch of proof

Writing $v=\cos \theta, \mu=\mu(\Lambda)$, and $\lambda_{m}=\lambda_{m}\left(\Omega_{m}\right)$, we obtain the following relation in terms of v :

$$
\mu\left(\sqrt{1-v^{2}}-v\right)=\frac{\lambda_{m}\left(v^{2}+\sqrt{1-v^{2}}\right) v}{\sqrt{1-v^{4}}}
$$

which transforms into the polynomial equation $p(v)=0$. It follows from our construction that this equation has at least one solution v in the interval $(0,1)$. Then $r(\theta)$ as a function of v becomes

$$
r(v)=\frac{\lambda_{m}\left(v^{2}+\sqrt{1-v^{2}}\right)}{\sqrt{1-v^{4}}}
$$

which is an increasing function of v in the interval $(0,1)$, so we pick the root v_{*} of $p(v)$ as small as possible.

Equal covering extensions

Λ is an equal covering extension of Ω if Λ is an extension of Ω such that

$$
\mu(\Lambda)=\mu(\Omega)
$$

Equal covering extensions

Λ is an equal covering extension of Ω if Λ is an extension of Ω such that

$$
\mu(\Lambda)=\mu(\Omega)
$$

Equal covering extensions may not exist inside of a given lattice.

Equal covering extensions

Λ is an equal covering extension of Ω if Λ is an extension of Ω such that

$$
\mu(\Lambda)=\mu(\Omega)
$$

Equal covering extensions may not exist inside of a given lattice.

Theorem 8 (Forst, L.F. - 2024)

A lattice $\Lambda \subset \mathbb{R}^{2}$ is equal covering extension of $\mathbb{Z} \boldsymbol{e}_{1}$ if and only if

$$
\Lambda=\Lambda(\alpha):=\left(\begin{array}{cc}
\alpha & \alpha-1 \tag{4}\\
\sqrt{\alpha-\alpha^{2}} & \sqrt{\alpha-\alpha^{2}}
\end{array}\right) \mathbb{Z}^{2}
$$

for some real number $0<\alpha<1$. More generally, a lattice $\Lambda \subset \mathbb{R}^{n}$ of rank 2 is an equal covering extension of a rank-one lattice $\Omega \subset \Lambda$ if and only if it is isometric to some lattice of the form $\operatorname{det}(\Omega) \wedge(\alpha)$, where $\Lambda(\alpha)$ is as in (4).

Idea of proof

For a planar lattice L with successive minima λ_{1}, λ_{2} and angle $\theta \in$ $[\pi / 3, \pi / 2]$ between the corresponding minimal vectors, the covering radius can be computed as:

$$
\begin{equation*}
\mu(L)=\frac{\sqrt{\lambda_{1}^{2}+\lambda_{2}^{2}-2 \lambda_{1} \lambda_{2} \cos \theta}}{2 \sin \theta} \tag{5}
\end{equation*}
$$

Idea of proof

For a planar lattice L with successive minima λ_{1}, λ_{2} and angle $\theta \in$ $[\pi / 3, \pi / 2]$ between the corresponding minimal vectors, the covering radius can be computed as:

$$
\begin{equation*}
\mu(L)=\frac{\sqrt{\lambda_{1}^{2}+\lambda_{2}^{2}-2 \lambda_{1} \lambda_{2} \cos \theta}}{2 \sin \theta} \tag{5}
\end{equation*}
$$

The lattices $\Lambda(\alpha)$ are orthogonal, and so

$$
\theta=\pi / 2, \quad \lambda_{1,2}=\sqrt{\alpha}, \sqrt{1-\alpha}
$$

This implies that $\mu(\Lambda(\alpha))=1 / 2=\mu\left(\mathbb{Z} \mathbf{e}_{1}\right)$.

Idea of proof

For a planar lattice L with successive minima λ_{1}, λ_{2} and angle $\theta \in$ [$\pi / 3, \pi / 2$] between the corresponding minimal vectors, the covering radius can be computed as:

$$
\begin{equation*}
\mu(L)=\frac{\sqrt{\lambda_{1}^{2}+\lambda_{2}^{2}-2 \lambda_{1} \lambda_{2} \cos \theta}}{2 \sin \theta} \tag{5}
\end{equation*}
$$

The lattices $\Lambda(\alpha)$ are orthogonal, and so

$$
\theta=\pi / 2, \quad \lambda_{1,2}=\sqrt{\alpha}, \sqrt{1-\alpha}
$$

This implies that $\mu(\Lambda(\alpha))=1 / 2=\mu\left(\mathbb{Z} \mathbf{e}_{1}\right)$.
The reverse direction involves looking for the fundamental deep hole of a planar lattice L, i.e. the point $\boldsymbol{z} \in \mathbb{R}_{>0}^{2}$ with $\|\boldsymbol{z}\|=\mu(L)$ so that

$$
\min _{\boldsymbol{x} \in L}\|\boldsymbol{z}-\boldsymbol{x}\|=\max _{\boldsymbol{y} \in \mathbb{R}^{2}} \min _{\boldsymbol{x} \in L}\|\boldsymbol{y}-\boldsymbol{x}\| .
$$

Rings of quadratic integers

Corollary 9

Let D be a squarefree integer and $K=\mathbb{Q}(\sqrt{D})$ a quadratic number field. Let \mathcal{O}_{K} be its ring of integers and let

$$
\Omega_{K}=\sigma_{K}\left(\mathcal{O}_{K}\right) \subset \mathbb{R}^{2}
$$

be the lattice that is the image of \mathcal{O}_{K} in the plane under Minkowski embedding σ_{K}. Then Ω_{K} is an equal covering extension of a rank-one lattice if and only if $D \not \equiv 1(\bmod 4)$. If this is the case, then Ω_{K} is an equal covering extension of the lattice

$$
\mathbb{Z} \sigma_{K}(1+\sqrt{D})
$$

Orthogonal equal covering extensions

While we do not have a characterization of equal covering extensions in higher dimensions, we can construct orthogonal equal covering extensions in any dimension.

Theorem 10 (Forst, L.F. - 2024)
Let $\Lambda_{m} \subset \mathbb{R}^{n}$ be an orthogonal lattice of rank $m<n$. There exists an orthogonal lattice $\Lambda_{m+1} \subset \mathbb{R}^{n}$ of rank $m+1$ so that $\Lambda_{m} \subset \Lambda_{m+1}$ is a lattice extension and $\mu\left(\Lambda_{m+1}\right)=\mu\left(\Lambda_{m}\right)$. Further, if \boldsymbol{z} is a deep hole of Λ_{m} it is also a deep hole of Λ_{m+1}.

Deep holes in more detail

In general, a deep hole of a full-rank lattice $L \subset \mathbb{R}^{n}$ is a point \boldsymbol{z} in \mathbb{R}^{n} furthest removed from the lattice, i.e.

$$
\min _{\boldsymbol{x} \in L}\|\boldsymbol{z}-\boldsymbol{x}\|=\max _{\boldsymbol{y} \in \mathbb{R}^{n}} \min _{\boldsymbol{x} \in L}\|\boldsymbol{y}-\boldsymbol{x}\|
$$

Deep holes in more detail

In general, a deep hole of a full-rank lattice $L \subset \mathbb{R}^{n}$ is a point \boldsymbol{z} in \mathbb{R}^{n} furthest removed from the lattice, i.e.

$$
\min _{\boldsymbol{x} \in L}\|\boldsymbol{z}-\boldsymbol{x}\|=\max _{\boldsymbol{y} \in \mathbb{R}^{n}} \min _{\boldsymbol{x} \in L}\|\boldsymbol{y}-\boldsymbol{x}\|
$$

Lemma 11

Let $\Lambda \subset \mathbb{R}^{2}$ be a lattice of rank 2 with minimal basis $\boldsymbol{x}, \boldsymbol{y}$ and angle $\theta \in[\pi / 3, \pi / 2]$ between these basis vectors. Write λ_{1}, λ_{2} for the successive minima of Λ, so that $0<\lambda_{1}=\|\boldsymbol{x}\| \leq \lambda_{2}=\|\boldsymbol{y}\|$. Then the fundamental parallelogram

$$
\mathfrak{P}=\{s \boldsymbol{x}+t \boldsymbol{y}: 0 \leq s, t<1\}
$$

contains two deep holes $\boldsymbol{z}_{1}, \boldsymbol{z}_{2}$ with $\boldsymbol{z}_{1}+\boldsymbol{z}_{2} \in \Lambda$. If the angle $\theta=\pi / 2$, then $\boldsymbol{z}_{1}=\boldsymbol{z}_{2}$ is the center of \mathfrak{P}, and we say that this deep hole has multiplicity 2.

Deep holes in more detail

Figure: Fundamental parallelogram \mathfrak{P} of Λ with deep holes \boldsymbol{z}_{1} and \boldsymbol{z}_{2}.

An immediate implication of Lemma 11 is that deep holes $\boldsymbol{z}_{1}, \boldsymbol{z}_{2}$ are each other's inverses in the additive abelian group \mathbb{R}^{2} / Λ. Further, \boldsymbol{z}_{1} is an element of order two in this group if and only if the angle $\theta=\pi / 2$; in this case $\boldsymbol{z}_{1}=\boldsymbol{z}_{2}$. On the other hand, $\boldsymbol{z}_{1}, \boldsymbol{z}_{2}$ can be elements of finite order in other situations too.

Deep holes in more detail

For instance, in the hexagonal lattice

$$
L_{\pi / 3}=\left(\begin{array}{cc}
1 & \frac{1}{2} \\
0 & \frac{\sqrt{3}}{2}
\end{array}\right) \mathbb{Z}^{2}
$$

the deep holes are $z_{1}=(1 / 2,1 /(2 \sqrt{3})), z_{2}=(1,1 / \sqrt{3})$ have order three in the group $\mathbb{R}^{2} / L_{\pi / 3}$, while the lattice

$$
L^{\prime}=\left(\begin{array}{cc}
1 & \frac{1}{2} \\
0 & \sqrt{3}
\end{array}\right) \mathbb{Z}^{2}
$$

has a deep hole $\boldsymbol{z}_{1}=(1 / 2,11 \sqrt{3} / 24)$ satisfying the condition

$$
48 z_{1}=13(1,0)+22(1 / 2, \sqrt{3}) \in L^{\prime}
$$

which makes z_{1} an element of order dividing 48 in the group $\mathbb{R}^{2} / L^{\prime}$.

Deep holes in more detail

These observations raise a natural question: when does a deep hole of $\Lambda \subset \mathbb{R}^{2}$ have finite order as an element of the group \mathbb{R}^{2} / Λ ?

Deep holes in more detail

These observations raise a natural question: when does a deep hole of $\Lambda \subset \mathbb{R}^{2}$ have finite order as an element of the group \mathbb{R}^{2} / Λ ?

Theorem 12 (Forst, L.F. - 2024)
Let $\Lambda \subset \mathbb{R}^{2}$ be a full-rank lattice with successive minima λ_{1}, λ_{2} and corresponding minimal basis vectors $\boldsymbol{x}_{1}, \boldsymbol{x}_{2}$. A deep hole \boldsymbol{z} of Λ has finite order in the group \mathbb{R}^{2} / Λ if and only if Λ is orthogonal or there exist rational numbers p, q so that $p \lambda_{1}^{2}=\boldsymbol{x}_{1} \cdot \boldsymbol{x}_{2}=q \lambda_{2}^{2}$. Moreover, if $\lambda_{1}^{2}, \lambda_{2}^{2}, \boldsymbol{x}_{1} \cdot \boldsymbol{x}_{2} \in \mathbb{Z}$ then the order of \boldsymbol{z} in \mathbb{R}^{2} / Λ is $\leq 12 \sqrt{3} \lambda_{2}^{4}$.

Deep holes in more detail

These observations raise a natural question: when does a deep hole of $\Lambda \subset \mathbb{R}^{2}$ have finite order as an element of the group \mathbb{R}^{2} / Λ ?

Theorem 12 (Forst, L.F. - 2024)
Let $\Lambda \subset \mathbb{R}^{2}$ be a full-rank lattice with successive minima λ_{1}, λ_{2} and corresponding minimal basis vectors $\boldsymbol{x}_{1}, \boldsymbol{x}_{2}$. A deep hole \boldsymbol{z} of Λ has finite order in the group \mathbb{R}^{2} / Λ if and only if Λ is orthogonal or there exist rational numbers p, q so that $p \lambda_{1}^{2}=\boldsymbol{x}_{1} \cdot \boldsymbol{x}_{2}=q \lambda_{2}^{2}$. Moreover, if $\lambda_{1}^{2}, \lambda_{2}^{2}, \boldsymbol{x}_{1} \cdot \boldsymbol{x}_{2} \in \mathbb{Z}$ then the order of \boldsymbol{z} in \mathbb{R}^{2} / Λ is $\leq 12 \sqrt{3} \lambda_{2}^{4}$.

Remark 1

The proof of this theorem uses Siegel's lemma for a simple situation of a 3×2 integral linear system.

References

M. Forst and L. Fukshansky, Counting basis extensions in a lattice, Proceedings of the American Mathematical Society, vol. 150 no. 8 (2022), pg. 3199-3213
M. Forst and L. Fukshansky, On lattice extensions, Monatshefte für Mathematik, vol. 203 no. 3 (2024) pg. 613-634

Preprints are available at:
https://www1.cmc.edu/pages/faculty/lenny/research.html

References

M. Forst and L. Fukshansky, Counting basis extensions in a lattice, Proceedings of the American Mathematical Society, vol. 150 no. 8 (2022), pg. 3199-3213
M. Forst and L. Fukshansky, On lattice extensions, Monatshefte für Mathematik, vol. 203 no. 3 (2024) pg. 613-634

Preprints are available at:
https://www1.cmc.edu/pages/faculty/lenny/research.html

Thank you!

