Lattice extensions

Deep holes

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

On lattice extensions

Lenny Fukshansky Claremont McKenna College

(joint work with Maxwell Forst)

Modern Problems in Number Theory Sirius University of Science and Technology July 8 - 13, 2024

m

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Unimodular matrices

Let $A = (a_{ij})$ be an $m \times n$ integer matrix, $1 \le m < n$. A is called **unimodular** if there exists an $(n - m) \times n$ integer matrix $B = (b_{ij})$ so that the $n \times n$ integer matrix

$$\begin{pmatrix} A \\ B \end{pmatrix} = \begin{pmatrix} a_{11} & \dots & a_{1n} \\ \vdots & \ddots & \vdots \\ a_{m1} & \dots & a_{mn} \\ b_{11} & \dots & b_{1n} \\ \vdots & \ddots & \vdots \\ b_{(n-m)1} & \dots & b_{(n-m)n} \end{pmatrix} \in \operatorname{GL}_n(\mathbb{Z}),$$

meaning that det $\begin{pmatrix} A \\ B \end{pmatrix} = \pm 1.$

ъ

Unimodular matrices

Let $A = (a_{ij})$ be an $m \times n$ integer matrix, $1 \le m < n$. A is called **unimodular** if there exists an $(n - m) \times n$ integer matrix $B = (b_{ij})$ so that the $n \times n$ integer matrix

$$\begin{pmatrix} A \\ B \end{pmatrix} = \begin{pmatrix} a_{11} & \dots & a_{1n} \\ \vdots & \ddots & \vdots \\ a_{m1} & \dots & a_{mn} \\ b_{11} & \dots & b_{1n} \\ \vdots & \ddots & \vdots \\ b_{(n-m)1} & \dots & b_{(n-m)n} \end{pmatrix} \in \operatorname{GL}_n(\mathbb{Z}),$$

meaning that det $\begin{pmatrix} A \\ B \end{pmatrix} = \pm 1.$

Question 1

How can we tell if a given matrix A is unimodular?

Deep holes

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Unimodular criterion

Theorem 1 (I. Heger - 1856)

An $m \times n$ integer matrix A is unimodular if and only if the $m \times m$ minors of A (**Plücker coordinates**) are relatively prime.

Deep holes

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Unimodular criterion

Theorem 1 (I. Heger - 1856)

An $m \times n$ integer matrix A is unimodular if and only if the $m \times m$ minors of A (**Plücker coordinates**) are relatively prime.

One can ask how often unimodular matrices occur, or -

Question 2

What is the "probability" that a given $m \times n$ matrix A is unimodular?

Deep holes

Unimodular criterion

Theorem 1 (I. Heger - 1856)

An $m \times n$ integer matrix A is unimodular if and only if the $m \times m$ minors of A (**Plücker coordinates**) are relatively prime.

One can ask how often unimodular matrices occur, or -

Question 2

What is the "probability" that a given $m \times n$ matrix A is unimodular?

To make this question precise, we write

 $\mathcal{U}(T) = \left\{ A = (a_{ij}) \in \mathbb{Z}^{m \times n} : A \text{ is unimodular and } |A| \leq T
ight\},$

where $|A| := \max_{i,j} |a_{ij}|$, and define the **natural density** of $m \times n$ unimodular matrices to be

$$d_{m,n} = \lim_{T \to \infty} \frac{\#\mathcal{U}(T)}{T^{mn}}.$$

Lattice extensions

Deep holes

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Unimodular probability

Theorem 2 (Maze, Rosenthal, Wagner - 2011)

$$d_{m,n} = \left(\prod_{j=n-m+1}^n \zeta(j)\right)^{-1},$$

where ζ stands for the Riemann ζ -function.

Lattice extensions

Deep holes

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Unimodular probability

Theorem 2 (Maze, Rosenthal, Wagner - 2011)

$$d_{m,n} = \left(\prod_{j=n-m+1}^n \zeta(j)\right)^{-1},$$

where ζ stands for the Riemann ζ -function.

In other words, this quantity can be viewed as the "probability" that a "random" $m \times n$ integer matrix is unimodular.

Lattice extensions

Deep holes

Unimodular probability

Theorem 2 (Maze, Rosenthal, Wagner - 2011)

$$d_{m,n} = \left(\prod_{j=n-m+1}^n \zeta(j)\right)^{-1},$$

where ζ stands for the Riemann ζ -function.

In other words, this quantity can be viewed as the "probability" that a "random" $m \times n$ integer matrix is unimodular.

For the special case of $1 \times n$ integer matrices, we have

$$d_{1,n}=1//\zeta(n),$$

which (via Heger's theorem) follows from the classical result of Cesáro (1884) about coprimality of a random n-tuple of integers. Cesáro's theorem has been independently rediscovered several times by different mathematicians since.

▲ロト ▲周ト ▲ヨト ▲ヨト ヨー のくで

Extending a basis

On the other hand, A is unimodular if and only if its rows form a **primitive collection** of vectors, i.e. extendable to a basis for \mathbb{Z}^n . If there is one such extension, there are infinitely many.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Extending a basis

On the other hand, A is unimodular if and only if its rows form a **primitive collection** of vectors, i.e. extendable to a basis for \mathbb{Z}^n . If there is one such extension, there are infinitely many.

Question 3

If $\mathbf{a}_1, \ldots, \mathbf{a}_m \in \mathbb{Z}^n$ is a primitive collection, then how many collections $\mathbf{b}_1, \ldots, \mathbf{b}_{n-m} \in \mathbb{Z}^n$ there exist so that

$$\boldsymbol{a}_1,\ldots,\boldsymbol{a}_m,\boldsymbol{b}_1,\ldots,\boldsymbol{b}_{n-m}$$

is a basis for \mathbb{Z}^n , $|\boldsymbol{b}_i| \leq T \ \forall \ 1 \leq i \leq n-m \ as \ T \to \infty$?

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Counting basis extensions - I

Theorem 3 (M. Forst, L.F. - 2022)

Let $a_1, \ldots, a_m \in \mathbb{Z}^n$ be a primitive collection of vectors.

- If m < n − 1, the number of vectors b ∈ Zⁿ with |b| ≤ T such that the collection a₁,..., a_m, b is again primitive is equal to Θ(Tⁿ) as T → ∞.
- If m = n − 1, the number of vectors b ∈ Zⁿ with |b| ≤ T such that the collection a₁,..., a_m, b is a basis for Zⁿ is equal to Θ(T^{n−1}) as T → ∞.

As a result, for any $1 \le k < n - m$ there exist $\Theta(T^{nk})$ collections of vectors $\mathbf{b}_1, \ldots, \mathbf{b}_k \in \mathbb{Z}^n$ with $|\mathbf{b}_i| \le T$, $1 \le i \le k$, such that $\{\mathbf{a}_i, \mathbf{b}_j : 1 \le i \le m, 1 \le j \le k\}$ is again primitive. Further, there are $\Theta(T^{n^2-nm-1})$ such collections $\mathbf{b}_1, \ldots, \mathbf{b}_{n-m}$ so that

$$\mathbb{Z}^n = \operatorname{span}_{\mathbb{Z}} \left\{ \boldsymbol{a}_1, \dots, \boldsymbol{a}_m, \boldsymbol{b}_1, \dots, \boldsymbol{b}_{n-m} \right\}.$$

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Counting basis extensions - II

Any lattice $\Lambda \subset \mathbb{R}^n$ is of the form $\Lambda = U\mathbb{Z}^n$ for some matrix $U \in GL_n(\mathbb{R})$. As such, bases in Λ are in bijective correspondence with bases in \mathbb{Z}^n , given by multiplication by U. This correspondence allows to extend Theorem 3 to arbitrary lattices, where we call a collection of vectors in Λ primitive if it is a basis or can be extended to a basis of Λ .

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Counting basis extensions - II

Any lattice $\Lambda \subset \mathbb{R}^n$ is of the form $\Lambda = U\mathbb{Z}^n$ for some matrix $U \in GL_n(\mathbb{R})$. As such, bases in Λ are in bijective correspondence with bases in \mathbb{Z}^n , given by multiplication by U. This correspondence allows to extend Theorem 3 to arbitrary lattices, where we call a collection of vectors in Λ primitive if it is a basis or can be extended to a basis of Λ .

Corollary 4

Let $\mathbf{a}_1, \ldots, \mathbf{a}_m$ be a primitive collection of vectors in a full-rank lattice $\Lambda \subset \mathbb{R}^n$ with $1 \le m < n$. Then there are $\Theta(T^{n^2-nm-1})$ collections of vectors $\mathbf{b}_1, \ldots, \mathbf{b}_{n-m} \in \Lambda$ such that $|\mathbf{b}_i| \le T$ for each $1 \le i \le n-m$ and

$$\Lambda = \operatorname{span}_{\mathbb{Z}} \left\{ \boldsymbol{a}_1, \ldots, \boldsymbol{a}_m, \boldsymbol{b}_1, \ldots, \boldsymbol{b}_{n-m} \right\}.$$

Deep holes

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Defining a lattice extension

So far, we only talked about extending a collection of vectors to a basis in a lattice. Now, let Λ be a lattice of rank n in \mathbb{R}^n and let $\Omega \subset \Lambda$ be a sublattice of rank m < n. We say that Λ is an **extension** lattice of Ω if

 $\Lambda\cap \text{span}_{\mathbb{R}}\,\Omega=\Omega.$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Defining a lattice extension

So far, we only talked about extending a collection of vectors to a basis in a lattice. Now, let Λ be a lattice of rank n in \mathbb{R}^n and let $\Omega \subset \Lambda$ be a sublattice of rank m < n. We say that Λ is an **extension** lattice of Ω if

 $\Lambda\cap \text{span}_{\mathbb{R}}\,\Omega=\Omega.$

As a first example, we can demonstrate a construction of a smalldeterminant extension of a sublattice inside of the integer lattice \mathbb{Z}^n . We identify the wedge product of vectors $\mathbf{x}_1 \wedge \cdots \wedge \mathbf{x}_m$ in the Grassmann algebra with the corresponding vector of Plücker coordinates in $\mathbb{R}^{\binom{n}{m}}$ with respect to a lexicographic embedding.

Defining a lattice extension

So far, we only talked about extending a collection of vectors to a basis in a lattice. Now, let Λ be a lattice of rank n in \mathbb{R}^n and let $\Omega \subset \Lambda$ be a sublattice of rank m < n. We say that Λ is an **extension** lattice of Ω if

 $\Lambda\cap \text{span}_{\mathbb{R}}\,\Omega=\Omega.$

As a first example, we can demonstrate a construction of a smalldeterminant extension of a sublattice inside of the integer lattice \mathbb{Z}^n . We identify the wedge product of vectors $\mathbf{x}_1 \wedge \cdots \wedge \mathbf{x}_m$ in the Grassmann algebra with the corresponding vector of Plücker coordinates in $\mathbb{R}^{\binom{n}{m}}$ with respect to a lexicographic embedding.

Additionally, define the covering radius of $\boldsymbol{\Omega}$ to be

$$\mu(\Omega) = \min \left\{ r \in \mathbb{R} : \Omega + B_m(r) = \operatorname{span}_{\mathbb{R}} \Omega \right\},\,$$

where $B_m(r) \subset \operatorname{span}_{\mathbb{R}} \Omega$ is a ball of radius r centered at **0**.

・ロト・西ト・山田・山田・山口・

Small-determinant lattice extension

Theorem 5 (Forst, L.F. - 2024)

Let $\mathbf{x}_1, \ldots, \mathbf{x}_m$ be linearly independent vectors in \mathbb{Z}^n and let

$$\Omega = \operatorname{\mathsf{span}}_{\mathbb{Z}} \left\{ {m{x}}_1, \ldots, {m{x}}_m
ight\} \subset {\mathbb{Z}}^n$$

be the sublattice of rank m spanned by these vectors. Then there exists a full-rank extension $\Omega' \subseteq \mathbb{Z}^n$ of Ω so that

$$\det \Omega' = \gcd(\boldsymbol{x}_1 \wedge \cdots \wedge \boldsymbol{x}_m). \tag{1}$$

Further, if m = n - 1 then there exists $\mathbf{y} \in \mathbb{Z}^n$ so that $\Omega' = \operatorname{span}_{\mathbb{Z}} \{\Omega, \mathbf{y}\}$ and

$$\|\boldsymbol{y}\| \leq \left\{ \left(\frac{\gcd(\boldsymbol{x}_1 \wedge \dots \wedge \boldsymbol{x}_m)}{\det \Omega} \right)^2 + \mu(\Omega)^2 \right\}^{1/2}.$$
 (2)

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Idea of proof

Any basis of the lattice $\Lambda = \mathbb{Z}^n \cap \operatorname{span}_{\mathbb{R}} \Omega$ is extendable to a basis of \mathbb{Z}^n . Let $\mathbf{y}_1, \ldots, \mathbf{y}_m$ be a basis of Λ , extended to a basis of \mathbb{Z}^n by $\mathbf{y}_{m+1}, \ldots, \mathbf{y}_n$. Then,

$$\operatorname{span}_{\mathbb{R}}\{\boldsymbol{x}_1,\ldots,\boldsymbol{x}_m\}=\operatorname{span}_{\mathbb{R}}\{\boldsymbol{y}_1,\ldots,\boldsymbol{y}_m\},$$

and, by Heger's theorem, Plücker coordinates of $\pmb{y}_1 \wedge \dots \wedge \pmb{y}_m$ are relatively prime. Hence

$$\mathbf{x}_1 \wedge \cdots \wedge \mathbf{x}_m = \gcd(\mathbf{x}_1 \wedge \cdots \wedge \mathbf{x}_m)(\mathbf{y}_1 \wedge \cdots \wedge \mathbf{y}_m).$$

Define $\Omega' = \operatorname{span}_{\mathbb{Z}} \{ \boldsymbol{x}_1, \ldots, \boldsymbol{x}_m, \boldsymbol{y}_{m+1}, \ldots, \boldsymbol{y}_n \}$, then (1) follows by the bilinearity of the wedge product.

Idea of proof

Any basis of the lattice $\Lambda = \mathbb{Z}^n \cap \operatorname{span}_{\mathbb{R}} \Omega$ is extendable to a basis of \mathbb{Z}^n . Let $\mathbf{y}_1, \ldots, \mathbf{y}_m$ be a basis of Λ , extended to a basis of \mathbb{Z}^n by $\mathbf{y}_{m+1}, \ldots, \mathbf{y}_n$. Then,

$$\operatorname{span}_{\mathbb{R}}\{\boldsymbol{x}_1,\ldots,\boldsymbol{x}_m\}=\operatorname{span}_{\mathbb{R}}\{\boldsymbol{y}_1,\ldots,\boldsymbol{y}_m\},$$

and, by Heger's theorem, Plücker coordinates of $\pmb{y}_1 \wedge \dots \wedge \pmb{y}_m$ are relatively prime. Hence

$$\mathbf{x}_1 \wedge \cdots \wedge \mathbf{x}_m = \gcd(\mathbf{x}_1 \wedge \cdots \wedge \mathbf{x}_m)(\mathbf{y}_1 \wedge \cdots \wedge \mathbf{y}_m).$$

Define $\Omega' = \operatorname{span}_{\mathbb{Z}} \{ \boldsymbol{x}_1, \ldots, \boldsymbol{x}_m, \boldsymbol{y}_{m+1}, \ldots, \boldsymbol{y}_n \}$, then (1) follows by the bilinearity of the wedge product. The proof of (2) is more involved: it uses the orthogonal projection

 $\rho_{\Omega} = A(A^{\top}A)^{-1}A^{\top}$ onto span_{\mathbb{R}} Ω , where $A = (\mathbf{x}_1 \ \ldots \ \mathbf{x}_{n-1})$.

▲□▶▲□▶▲≡▶▲≡▶ ≡ めぬる

Successive minima extensions

The successive minima of a rank-n lattice Λ are real numbers

 $0 < \lambda_1(\Lambda) \leq \cdots \leq \lambda_n(\Lambda),$

given by $\lambda_i(\Lambda) = \min \left\{ r \in \mathbb{R} : \dim_{\mathbb{R}} \operatorname{span}_{\mathbb{R}} (B_n(r) \cap \Lambda) \ge i \right\}.$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ● ●

Successive minima extensions

The successive minima of a rank-n lattice Λ are real numbers

 $0 < \lambda_1(\Lambda) \leq \cdots \leq \lambda_n(\Lambda),$

given by $\lambda_i(\Lambda) = \min \{r \in \mathbb{R} : \dim_{\mathbb{R}} \operatorname{span}_{\mathbb{R}} (B_n(r) \cap \Lambda) \ge i\}$. Our main goal is to explore lattice extensions with control over their geometric invariants. In particular, we say that Λ is a **successive minima extension** of Ω if Λ is an extension of Ω such that

$$\lambda_j(\Lambda) = \lambda_j(\Omega) \ \forall \ 1 \leq j \leq m.$$

Successive minima extensions

The successive minima of a rank-n lattice Λ are real numbers

 $0 < \lambda_1(\Lambda) \leq \cdots \leq \lambda_n(\Lambda),$

given by $\lambda_i(\Lambda) = \min \{r \in \mathbb{R} : \dim_{\mathbb{R}} \operatorname{span}_{\mathbb{R}} (B_n(r) \cap \Lambda) \ge i\}$. Our main goal is to explore lattice extensions with control over their geometric invariants. In particular, we say that Λ is a **successive minima extension** of Ω if Λ is an extension of Ω such that

$$\lambda_j(\Lambda) = \lambda_j(\Omega) \ \forall \ 1 \leq j \leq m.$$

To construct a rank-(m+1) successive minima extension Λ of Ω , take $\boldsymbol{u} \in \mathbb{R}^n$ to be a vector perpendicular to $\operatorname{span}_{\mathbb{R}} \Omega$ of norm $> \lambda_m(\Omega)$ and define $\Lambda = \operatorname{span}_{\mathbb{Z}} \{\Omega, \boldsymbol{u}\}$. It is a more delicate problem to construct such an extension inside of a given full-rank lattice in \mathbb{R}^n : a perpendicular vector \boldsymbol{u} may not exist inside of our given lattice.

Deep holes

Successive minima extensions

Theorem 6 (Forst, L.F. - 2024)

Let $\Lambda \subset \mathbb{R}^n$ be a lattice of full rank, and let $\Omega_m \subset \Lambda$ be a sublattice of rank $1 \leq m < n$. Write $\mu = \mu(\Lambda)$, $\lambda_m = \lambda_m(\Omega_m)$. There exists a sublattice $\Omega_{m+1} \subset \Lambda$ of rank m+1 such that $\Omega_m \subset \Omega_{m+1}$ is a lattice extension, $\lambda_j(\Omega_{m+1}) = \lambda_j(\Omega_m)$ for all $1 \leq j \leq m$ and

$$\lambda_{m+1}(\Omega_{m+1}) \le \frac{\lambda_m(\Omega_m)(v_*^2 + \sqrt{1 - v_*^2})}{\sqrt{1 - v_*^4}} + 2\mu(\Lambda), \qquad (3)$$

where v_* is the smallest root of the polynomial p(v) =

$$\left(\frac{\mu^2}{\lambda_m^2}(1-v^4)-v^2(v^4-v^2+1)\right)^2-\left(\frac{2\mu^2}{\lambda_m^2}v(1-v^4)+2v^4\right)^2(1-v^2)$$

in the interval (0,1): such v_* necessarily exists.

Sketch of proof

Let $V_m = \operatorname{span}_{\mathbb{R}} \Omega_m$, $\theta \in (0, \pi/2]$, and define the cone

$$C_{\theta}(V_m) = \{ \boldsymbol{x} \in \mathbb{R}^n : \mathfrak{a}(\boldsymbol{x}, \boldsymbol{y}) \in [\theta, \pi - \theta] \, \forall \, \boldsymbol{y} \in V_m \} \,,$$

where $\mathfrak{a}(\mathbf{x}, \mathbf{y})$ stands for the angle between two vectors.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Sketch of proof

Let $V_m = \operatorname{span}_{\mathbb{R}} \Omega_m$, $heta \in (0,\pi/2]$, and define the cone

$$C_{\theta}(V_m) = \{ \boldsymbol{x} \in \mathbb{R}^n : \mathfrak{a}(\boldsymbol{x}, \boldsymbol{y}) \in [\theta, \pi - \theta] \, \forall \, \boldsymbol{y} \in V_m \} \,,$$

where a(x, y) stands for the angle between two vectors.

Lemma 7

If $\mathbf{x} \in C_{\theta}(V_m)$ and

$$\|m{x}\| \geq rac{\lambda_m(\Omega_m)(\cot heta\cos heta+1)}{\sqrt{1+\cos^2 heta}},$$

then $\|\mathbf{x} + \mathbf{y}\| \ge \lambda_m(\Omega_m)$ for every $\mathbf{y} \in V_m$.

Sketch of proof

Let $V_m = \operatorname{span}_{\mathbb{R}} \Omega_m$, $heta \in (0,\pi/2]$, and define the cone

$$C_{\theta}(V_m) = \left\{ \boldsymbol{x} \in \mathbb{R}^n : \mathfrak{a}(\boldsymbol{x}, \boldsymbol{y}) \in [\theta, \pi - \theta] \,\,\forall \,\, \boldsymbol{y} \in V_m \right\},\$$

where a(x, y) stands for the angle between two vectors.

Lemma 7

If $\mathbf{x} \in C_{\theta}(V_m)$ and

$$\|m{x}\| \geq rac{\lambda_m(\Omega_m)(\cot heta\cos heta+1)}{\sqrt{1+\cos^2 heta}},$$

then $\|\mathbf{x} + \mathbf{y}\| \ge \lambda_m(\Omega_m)$ for every $\mathbf{y} \in V_m$. Let us write $B_n(r)$ for the ball of radius r > 0 centered at the origin in \mathbb{R}^n . Let $\theta \in (0, \pi/2]$ and

$$r(\theta) = \frac{\lambda_m(\Omega_m)(\cot\theta\cos\theta + 1)}{\sqrt{1 + \cos^2\theta}}.$$

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Sketch of proof

Then Lemma 7 guarantees that for any vector

 $\mathbf{x} \in \Lambda \cap (C_{\theta}(V_m) \setminus B_n(r(\theta))),$

the lattice $L = \operatorname{span}_{\mathbb{Z}} \{\Omega_m, \mathbf{x}\}$ satisfies $\lambda_j(L) = \lambda_j(\Omega_m)$ for all $1 \le j \le m$ and $\lambda_{m+1}(L) \le \|\mathbf{x}\|$.

Sketch of proof

Then Lemma 7 guarantees that for any vector

 $\mathbf{x} \in \Lambda \cap (C_{\theta}(V_m) \setminus B_n(r(\theta))),$

the lattice $L = \operatorname{span}_{\mathbb{Z}} \{\Omega_m, \mathbf{x}\}$ satisfies $\lambda_j(L) = \lambda_j(\Omega_m)$ for all $1 \leq j \leq m$ and $\lambda_{m+1}(L) \leq \|\mathbf{x}\|$. Hence we want to minimize

$$\lambda_{m+1}(\theta) := \min \{ \|\boldsymbol{x}\| : \boldsymbol{x} \in \Lambda \cap (C_{\theta}(V_m) \setminus B_n(r(\theta)) \}$$

as a function of θ .

Any translated copy of the ball of radius $\mu(\Lambda)$ in \mathbb{R}^n must contain a point of Λ . Suppose that $\theta \in (0, \pi/2]$ is such that

$$B'_n(\mu(\Lambda)) \subset (C_{\theta}(V_m) \cap B_n(r(\theta) + 2\mu(\Lambda))) \setminus B_n(r(\theta)),$$

where $B'_n(\mu(\Lambda))$ is such a translated copy. Then $C_{\theta}(V_m) \setminus B_n(r(\theta))$ would be guaranteed to contain a point \mathbf{x} of Λ with

$$\|\boldsymbol{x}\| \leq r(\theta) + 2\mu(\Lambda).$$

Lattice extensions

Deep holes

Sketch of proof

▲□▶▲圖▶★≣▶★≣▶ ≣ の�?

Lattice extensions

Deep holes

Sketch of proof

As shown in the picture, we have a right triangle with legs $r(\theta)+\mu(\Lambda)$ and $\mu(\Lambda)$ and the angle $\pi/2 - \theta$ opposite to the second leg. Hence we have the equation

$$\tan(\pi/2 - \theta) = \frac{\mu(\Lambda)}{r(\theta) + \mu(\Lambda)}.$$

Sketch of proof

Writing $v = \cos \theta$, $\mu = \mu(\Lambda)$, and $\lambda_m = \lambda_m(\Omega_m)$, we obtain the following relation in terms of v:

$$\mu\left(\sqrt{1-v^2}-v\right)=\frac{\lambda_m\left(v^2+\sqrt{1-v^2}\right)v}{\sqrt{1-v^4}},$$

which transforms into the polynomial equation p(v) = 0. It follows from our construction that this equation has at least one solution v in the interval (0, 1).

A D N A 目 N A E N A E N A B N A C N

Sketch of proof

Writing $v = \cos \theta$, $\mu = \mu(\Lambda)$, and $\lambda_m = \lambda_m(\Omega_m)$, we obtain the following relation in terms of v:

$$\mu\left(\sqrt{1-v^2}-v\right)=\frac{\lambda_m\left(v^2+\sqrt{1-v^2}\right)v}{\sqrt{1-v^4}},$$

which transforms into the polynomial equation p(v) = 0. It follows from our construction that this equation has at least one solution v in the interval (0, 1). Then $r(\theta)$ as a function of v becomes

$$r(v)=\frac{\lambda_m(v^2+\sqrt{1-v^2})}{\sqrt{1-v^4}},$$

which is an increasing function of v in the interval (0, 1), so we pick the root v_* of p(v) as small as possible.

Equal covering extensions

 Λ is an equal covering extension of Ω if Λ is an extension of Ω such that

$$\mu(\Lambda) = \mu(\Omega).$$

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Equal covering extensions

A is an equal covering extension of Ω if A is an extension of Ω such that

 $\mu(\Lambda) = \mu(\Omega).$

Equal covering extensions may not exist inside of a given lattice.

Equal covering extensions

 Λ is an equal covering extension of Ω if Λ is an extension of Ω such that

 $\mu(\Lambda) = \mu(\Omega).$

Equal covering extensions may not exist inside of a given lattice.

Theorem 8 (Forst, L.F. - 2024)

A lattice $\Lambda \subset \mathbb{R}^2$ is equal covering extension of $\mathbb{Z} \bm{e}_1$ if and only if

$$\Lambda = \Lambda(\alpha) := \begin{pmatrix} \alpha & \alpha - 1 \\ \sqrt{\alpha - \alpha^2} & \sqrt{\alpha - \alpha^2} \end{pmatrix} \mathbb{Z}^2$$
(4)

for some real number $0 < \alpha < 1$. More generally, a lattice $\Lambda \subset \mathbb{R}^n$ of rank 2 is an equal covering extension of a rank-one lattice $\Omega \subset \Lambda$ if and only if it is isometric to some lattice of the form $\det(\Omega)\Lambda(\alpha)$, where $\Lambda(\alpha)$ is as in (4).

Idea of proof

For a planar lattice L with successive minima λ_1, λ_2 and angle $\theta \in [\pi/3, \pi/2]$ between the corresponding minimal vectors, the covering radius can be computed as:

$$\mu(L) = \frac{\sqrt{\lambda_1^2 + \lambda_2^2 - 2\lambda_1\lambda_2\cos\theta}}{2\sin\theta}.$$
 (5)

Idea of proof

For a planar lattice L with successive minima λ_1, λ_2 and angle $\theta \in [\pi/3, \pi/2]$ between the corresponding minimal vectors, the covering radius can be computed as:

$$\mu(L) = \frac{\sqrt{\lambda_1^2 + \lambda_2^2 - 2\lambda_1\lambda_2\cos\theta}}{2\sin\theta}.$$
 (5)

The lattices $\Lambda(\alpha)$ are orthogonal, and so

$$\theta = \pi/2, \ \lambda_{1,2} = \sqrt{\alpha}, \sqrt{1-\alpha}.$$

This implies that $\mu(\Lambda(\alpha)) = 1/2 = \mu(\mathbb{Z}\boldsymbol{e}_1).$

Idea of proof

For a planar lattice L with successive minima λ_1, λ_2 and angle $\theta \in [\pi/3, \pi/2]$ between the corresponding minimal vectors, the covering radius can be computed as:

$$\mu(L) = \frac{\sqrt{\lambda_1^2 + \lambda_2^2 - 2\lambda_1\lambda_2\cos\theta}}{2\sin\theta}.$$
 (5)

The lattices $\Lambda(\alpha)$ are orthogonal, and so

$$\theta = \pi/2, \ \lambda_{1,2} = \sqrt{\alpha}, \sqrt{1-\alpha}.$$

This implies that $\mu(\Lambda(\alpha)) = 1/2 = \mu(\mathbb{Z}\boldsymbol{e}_1)$.

The reverse direction involves looking for the **fundamental deep** hole of a planar lattice *L*, i.e. the point $z \in \mathbb{R}^2_{>0}$ with $||z|| = \mu(L)$ so that

$$\min_{\boldsymbol{x}\in L} \|\boldsymbol{z}-\boldsymbol{x}\| = \max_{\boldsymbol{y}\in\mathbb{R}^2} \min_{\boldsymbol{x}\in L} \|\boldsymbol{y}-\boldsymbol{x}\|.$$

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Rings of quadratic integers

Corollary 9

Let D be a squarefree integer and $K = \mathbb{Q}(\sqrt{D})$ a quadratic number field. Let \mathcal{O}_K be its ring of integers and let

 $\Omega_{\mathcal{K}} = \sigma_{\mathcal{K}}(\mathcal{O}_{\mathcal{K}}) \subset \mathbb{R}^2$

be the lattice that is the image of \mathcal{O}_{K} in the plane under Minkowski embedding σ_{K} . Then Ω_{K} is an equal covering extension of a rank-one lattice if and only if $D \not\equiv 1 \pmod{4}$. If this is the case, then Ω_{K} is an equal covering extension of the lattice

$$\mathbb{Z}\sigma_{\mathcal{K}}(1+\sqrt{D}).$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Orthogonal equal covering extensions

While we do not have a characterization of equal covering extensions in higher dimensions, we can construct orthogonal equal covering extensions in any dimension.

Theorem 10 (Forst, L.F. - 2024)

Let $\Lambda_m \subset \mathbb{R}^n$ be an orthogonal lattice of rank m < n. There exists an orthogonal lattice $\Lambda_{m+1} \subset \mathbb{R}^n$ of rank m+1 so that $\Lambda_m \subset \Lambda_{m+1}$ is a lattice extension and $\mu(\Lambda_{m+1}) = \mu(\Lambda_m)$. Further, if z is a deep hole of Λ_m it is also a deep hole of Λ_{m+1} .

Deep holes in more detail

In general, a **deep hole** of a full-rank lattice $L \subset \mathbb{R}^n$ is a point z in \mathbb{R}^n furthest removed from the lattice, i.e.

$$\min_{\boldsymbol{x}\in L} \|\boldsymbol{z}-\boldsymbol{x}\| = \max_{\boldsymbol{y}\in\mathbb{R}^n} \min_{\boldsymbol{x}\in L} \|\boldsymbol{y}-\boldsymbol{x}\|.$$

Deep holes in more detail

In general, a **deep hole** of a full-rank lattice $L \subset \mathbb{R}^n$ is a point z in \mathbb{R}^n furthest removed from the lattice, i.e.

$$\min_{\boldsymbol{x}\in L} \|\boldsymbol{z}-\boldsymbol{x}\| = \max_{\boldsymbol{y}\in\mathbb{R}^n} \min_{\boldsymbol{x}\in L} \|\boldsymbol{y}-\boldsymbol{x}\|.$$

Lemma 11

Let $\Lambda \subset \mathbb{R}^2$ be a lattice of rank 2 with minimal basis **x**, **y** and angle $\theta \in [\pi/3, \pi/2]$ between these basis vectors. Write λ_1, λ_2 for the successive minima of Λ , so that $0 < \lambda_1 = \|\mathbf{x}\| \le \lambda_2 = \|\mathbf{y}\|$. Then the fundamental parallelogram

$$\mathfrak{P} = \{ s \mathbf{x} + t \mathbf{y} : 0 \le s, t < 1 \}$$

contains two deep holes z_1, z_2 with $z_1 + z_2 \in \Lambda$. If the angle $\theta = \pi/2$, then $\mathbf{z}_1 = \mathbf{z}_2$ is the center of \mathfrak{P} , and we say that this deep hole has multiplicity 2. ▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Deep holes

Deep holes in more detail

Figure: Fundamental parallelogram \mathfrak{P} of Λ with deep holes z_1 and z_2 .

An immediate implication of Lemma 11 is that deep holes z_1, z_2 are each other's inverses in the additive abelian group \mathbb{R}^2/Λ . Further, z_1 is an element of order two in this group if and only if the angle $\theta = \pi/2$; in this case $z_1 = z_2$. On the other hand, z_1, z_2 can be elements of finite order in other situations too.

Deep holes

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Deep holes in more detail

For instance, in the hexagonal lattice

$$L_{\pi/3} = \begin{pmatrix} 1 & \frac{1}{2} \\ 0 & \frac{\sqrt{3}}{2} \end{pmatrix} \mathbb{Z}^2$$

the deep holes are $z_1 = (1/2, 1/(2\sqrt{3}))$, $z_2 = (1, 1/\sqrt{3})$ have order three in the group $\mathbb{R}^2/L_{\pi/3}$, while the lattice

$$\mathcal{L}' = \begin{pmatrix} 1 & rac{1}{2} \\ 0 & \sqrt{3} \end{pmatrix} \mathbb{Z}^2$$

has a deep hole $\boldsymbol{z}_1 = (1/2, 11\sqrt{3}/24)$ satisfying the condition

$$48z_1 = 13(1,0) + 22(1/2,\sqrt{3}) \in L',$$

which makes z_1 an element of order dividing 48 in the group \mathbb{R}^2/L' .

Deep holes

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Deep holes in more detail

These observations raise a natural question: when does a deep hole of $\Lambda \subset \mathbb{R}^2$ have finite order as an element of the group \mathbb{R}^2/Λ ?

Deep holes

Deep holes in more detail

These observations raise a natural question: when does a deep hole of $\Lambda \subset \mathbb{R}^2$ have finite order as an element of the group \mathbb{R}^2/Λ ?

Theorem 12 (Forst, L.F. - 2024)

Let $\Lambda \subset \mathbb{R}^2$ be a full-rank lattice with successive minima λ_1, λ_2 and corresponding minimal basis vectors $\mathbf{x}_1, \mathbf{x}_2$. A deep hole \mathbf{z} of Λ has finite order in the group \mathbb{R}^2/Λ if and only if Λ is orthogonal or there exist rational numbers p, q so that $p\lambda_1^2 = \mathbf{x}_1 \cdot \mathbf{x}_2 = q\lambda_2^2$. Moreover, if $\lambda_1^2, \lambda_2^2, \mathbf{x}_1 \cdot \mathbf{x}_2 \in \mathbb{Z}$ then the order of \mathbf{z} in \mathbb{R}^2/Λ is $\leq 12\sqrt{3} \lambda_2^4$.

Deep holes

Deep holes in more detail

These observations raise a natural question: when does a deep hole of $\Lambda \subset \mathbb{R}^2$ have finite order as an element of the group \mathbb{R}^2/Λ ?

Theorem 12 (Forst, L.F. - 2024)

Let $\Lambda \subset \mathbb{R}^2$ be a full-rank lattice with successive minima λ_1, λ_2 and corresponding minimal basis vectors $\mathbf{x}_1, \mathbf{x}_2$. A deep hole \mathbf{z} of Λ has finite order in the group \mathbb{R}^2/Λ if and only if Λ is orthogonal or there exist rational numbers p, q so that $p\lambda_1^2 = \mathbf{x}_1 \cdot \mathbf{x}_2 = q\lambda_2^2$. Moreover, if $\lambda_1^2, \lambda_2^2, \mathbf{x}_1 \cdot \mathbf{x}_2 \in \mathbb{Z}$ then the order of \mathbf{z} in \mathbb{R}^2/Λ is $\leq 12\sqrt{3} \lambda_2^4$.

Remark 1

The proof of this theorem uses Siegel's lemma for a simple situation of a 3×2 integral linear system.

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

References

M. Forst and L. Fukshansky, *Counting basis extensions in a lattice*, Proceedings of the American Mathematical Society, vol. 150 no. 8 (2022), pg. 3199–3213

M. Forst and L. Fukshansky, *On lattice extensions*, Monatshefte für Mathematik, vol. 203 no. 3 (2024) pg. 613–634

Preprints are available at:

https://www1.cmc.edu/pages/faculty/lenny/research.html

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

References

M. Forst and L. Fukshansky, *Counting basis extensions in a lattice*, Proceedings of the American Mathematical Society, vol. 150 no. 8 (2022), pg. 3199–3213

M. Forst and L. Fukshansky, *On lattice extensions*, Monatshefte für Mathematik, vol. 203 no. 3 (2024) pg. 613–634

Preprints are available at:

https://www1.cmc.edu/pages/faculty/lenny/research.html

Thank you!