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Thue & Siegel

The following observation was first made by A. Thue (1909) and
then formally proved by C. L. Siegel (1929).

Theorem 1 (Siegel’s Lemma)

Let A be a nonzero integer m ˆ n matrix, 1 ď m ă n. Then there
exits 0 ‰ x P Zn such that Ax “ 0 and

|x | ď 1 ` pn|A|q
m

n´m , (1)

where | ¨ | is the sup-norm (maximum of the absolute values of the
coordinates) of the vector x and the matrix A, respectively.

This result is used in transcendental number theory and Diophantine
approximation for construction of auxiliary polynomials with small
integer coefficients which vanish with prescribed multiplicity at given
algebraic points. The exponent m

n´m in (2) is sharp.
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Invariant version

The bound (2) lacks invariance under linear transformations: for
any m ˆ m integer matrix U,

pUAqx “ Ax “ 0,

however |UA| and |A| can be very different.

The first invariant
version of Siegel’s lemma was obtained by E. Bombieri and J. Vaaler.

Theorem 2 (Bombieri-Vaaler, 1983)

Let A be a nonzero integer m ˆ n matrix, 1 ď m ă n. Then there
exits 0 ‰ x P Zn such that Ax “ 0 and

|x | ď

ˆ

D´1
b

detpAJAq

˙
1

n´m

, (2)

where D “ gcd of the determinants of all m ˆ m minors of A.
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Absolute values

There is interest in extending this theory to the more general setting
of algebraic numbers. For this, we need some notation.

K “ number field, MpK q “ its set of places, ∆K “ its discriminant

d “ r1 ` 2r2 “ rK : Qs, where r1 “ number of real embeddings and
r2 “ number of pairs of complex conjugate embeddings of K

@v P MpK q, dv “ rKv : Qv s, and |¨|v extends the usual archimedean
or the usual p-adic absolute value on Q

Product Formula:
ś

vPMpKq |a|dvv “ 1, @ 0 ‰ a P K
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Height function

Let n ě 2, and define local norms

|x |v “ max
1ďiďn

|xi |v @ v P MpK q, }x}v “

˜

n
ÿ

i“1

|xi |
2
v

¸1{2

@ v | 8,

where x “ px1, . . . , xnq P Kn.

A height function H : Kn Ñ Rě0 is then given by

Hpxq “

¨

˝

ź

v ∤8
|x |dvv ˆ

ź

v |8

}x}dvv

˛

‚

1{d

.

By product formula, Hpaxq “ Hpxq for every 0 ‰ a P K , hence H
is projectively defined. Further, H is absolute, i.e. Hpxq is the same
computed over any number field containing coordinates of x . We
define Hp0q “ 0.
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Schmidt’s height on subspaces
We can also talk about height of subspaces of Kn, as first introduced
by W. M. Schmidt (1967). Let V Ď Kn be an m-dimensional
subspace, and let x1, . . . , xm be a basis for V .

Write ^ for the usual wedge product of vectors, and let

y :“ x1 ^ ¨ ¨ ¨ ^ xm P K pn
mq

under the standard lexicographic embedding. Define

HpV q :“ Hpyq.

This definition does not depend on the choice of the basis.
Duality: If A “ pa1 . . . an´mqJ is an pn ´ mq ˆ n matrix over K
such that

V “ tx P Kn : Ax “ 0u,

then
HpV q “ HpAq :“ Hpa1 ^ ¨ ¨ ¨ ^ an´mq.
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Finiteness property

An important property that height functions satisfy, by analogy with
| ¨ | or } ¨ } over Z is finiteness.

Northcott’s theorem: For every d ,B P Rą0 the set

!

rxs P PpQn
q : degQpxq ď d ,Hpxq ď B

)

is finite.

More generally, height measures arithmetic complexity (by analogy
with degree in algebraic geometry measuring geometric complexity),
and so a point of relatively small height is arithmetically simple.
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Bombieri – Vaaler

The following generalized and powerful subspace version of Siegel’s
lemma was proved by Bombieri and Vaaler.

Theorem 3 (Bombieri-Vaaler, 1983)

Let K be a number field of degree d with r2 pairs of complex
conjugate embeddings and discriminant ∆K , and let V Ď Kn be
an m-dimensional subspace, 1 ď m ď n. There exists a basis
x1, . . . , xm for V over K such that

m
ź

i“1

Hpx i q ď nm{2

ˆˆ

2

π

˙r2

|∆K |

˙
m
2d

HpV q. (3)

In situations when |∆K | is very large, it may overpower HpV q in
the upper bound. This calls for an absolute version that would not
depend on a number field.
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Roy – Thunder

An absolute version of Siegel’s lemma was established by Roy &
Thunder (a similar result was independently obtained by S. Zhang
(1995)).

Theorem 4 (Roy-Thunder, 1996)

Let V Ď Qn
be an m-dimensional subspace, 1 ď m ď n. There

exists a basis x1, . . . , xm for V over Q such that

m
ź

i“1

Hpx i q ď

´

e
mpm´1q

4 ` ε
¯

HpV q, (4)

for any ε ą 0 (the choice of the basis depends on ε).

While the Roy-Thunder bound does not depend on any number field,
the vectors x1, . . . , xm are also not guaranteed to lie over a fixed
number field and their degrees over Q are not bounded.
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Monotone basis

A vector is s-sparse if it has no more than s nonzero coordinates.

Theorem 5 (Forst-F., 2023)

Let K be a number field and V “ AKm Ď Kn be an
m-dimensional subspace, 1 ď m ă n, where A is an n ˆ m basis
matrix for V . Let B be a full rank m ˆ m submatrix of A, and
write tx1, . . . , xmu for the column vectors of the matrix AB´1.
Then x1, . . . , xm is another basis for V over K , which consists of
pn ´ m ` 1q-sparse vectors satisfying the following property: if
I Ď t1, . . . ,mu is a nonempty subset, and

WI “ spanK tx i : i P I u ,

then
HpWI q ď HpV q.
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Monotone basis

Theorem 5, continuation

In particular,
max

1ďiďm
Hpx i q ď HpV q. (5)

Moreover, if I1 Ĺ I2 Ď t1, . . . ,mu, then

HpWI1q ď HpWI2q. (6)

Equality is attained in (6) if and only if x i is a standard basis
vector for each i P I2zI1.



Siegel’s lemma Heights Subspace version References

Idea of proof
We outline a construction of a basis x1, . . . , xm for V with

Hpx jq ď HpV q @ 1 ď j ď m.

Since dimK V “ m, there exists an pn ´ mq ˆ n matrix A of rank
n ´ m with entries in K so that

V “ tx P Kn : Ax “ 0u ,

then HpAq “ HpV q by the duality principle. Since rkpAq “ n ´ m,
there must exist standard basis vectors e i1 , . . . , e im P Kn so that the

matrix B :“

ˆ

A
E

˙

with E :“ pe i1 . . . e imqJ is in GLnpK q.

For each 1 ď j ď m define the vector

x j “ B´1e j`n´m,

which is the pj ` n ´mq-th column vector of the matrix B´1. Then
for every 1 ď j ď m, Ax j “ 0, i.e. x j P V .
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Idea of proof

Further, these vectors are linearly independent since they are columns
of a nonsingular matrix B´1, and so they form a basis for V . We
will now estimate their heights.

Let us write Bj for the pn ´ 1q ˆ n submatrix of B without the
pj ` n ´ mq-th row, then Bjx j “ 0 since the pj ` n ´ mq-th is the
only row of B whose dot-product with the pj ` n´mq-th column of
B´1 is nonzero.

Using some standard height inequalities, we obtain:

Hpx jq “ HpBjq ď HpAq

m
ź

k“1
k‰j`n´m

Hpekq “ HpAq “ HpV q,

since height of a standard basis vector is equal to 1. This completes
the proof.
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Some remarks
‚ Our result does not imply Bombieri-Vaaler or Roy-Thunder,
but is also not implied by them. Our bound is sharp.

‚ Our bound is absolute with basis vectors lying over K .

‚ In situations when height of the subspace V is dominated by
the constant depending on n and K in Bombieri-Vaaler (3) or
on m in Roy-Thunder (4) our bound (5) may be better.
Additionally, our bound can be preferable in some applications
due to its simplicity.

‚ Bombieri-Vaaler and Roy-Thunder arguments rely on
sophisticated tools from the geometry of numbers. Ours uses
only linear algebra.

‚ Our result produces a small-height basis with additional sparse
and monotone properties, which can also be valuable in
potential applications.
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Example

We demonstrate Theorem 5 on a simple example. Let K “ Q,
n “ 4, m “ 3, and take

A “

¨

˚

˚

˝

1 2 3
4 3 1
5 2 1
2 1 3

˛

‹

‹

‚

.

The corresponding vector of Grassmann coordinates is ´18¨p1, 1, 1, 1q,
and hence the height of the subspace V “ AQ3 Ă Q4 is HpV q “ 2.
Take the indexing set I “ t1, 2, 3u and consider the corresponding
nonsingular minor

AI “

¨

˝

1 2 3
4 3 1
5 2 1

˛

‚.



Siegel’s lemma Heights Subspace version References

Example

Then we obtain the new basis matrix

X “ AA´1
I “

¨

˚

˚

˝

1 0 0
0 1 0
0 0 1
1 ´1 1

˛

‹

‹

‚

.

The column vectors x1, x2, x3 of X are 2-sparse and of height
?
2

each. Further, the 2-dimensional subspace spanned by any two of
these column vectors has height

?
3. For instance, take

Wt1u “ spanQtx1u, Wt1,2u “ spanQtx1, x2u,

and observe that

HpWt1uq “
?
2 ă HpWt1,2uq “

?
3 ă HpV q “ 2.
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Many bases

We also obtain the following generalization:

Theorem 6 (Forst-F., 2023)

Let V Ď Kn be a subspace of dimension m where 1 ď m ă n. For
each integer ℓ ą m there exists a collection of vectors

Spℓq “ ty1, . . . , y ℓu Ă V

with the following properties:

1. Every subset of m vectors from Spℓq forms a basis for V ,

2. For every y i P Spℓq,

Hpy i q ď m3{2p2ℓq
m´1
m min

!

HpV qm, γK pmqm{2HpV q

)

,

where γK pmq1{2 is the generalized Hermite’s constant.
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Proof ingredients

The proof of Theorem 6 uses the following ingredients:

‚ Our Theorem 5

‚ A version of Bombieri-Vaaler theorem with an improved
constant (due to Vaaler, 2003)

‚ A construction of small-norm integer sensing matrices (due to
Konyagin & Sudakov, 2020)

The idea is to multiply a small-height basis matrix by an integer
sensing matrix with controlled coefficients: every maximal minor of
such a matrix is nonsingular.
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