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Introduction to lattices

A lattice A in the Euclidean space RN is a
discrete subgroup, which is the same as a
free Z-module. In other words,

N = spang{ai,...,ar}

for some R-linearly independent vectors

ai,...,ar, (1)

where L < N. These vectors form a basis for
A\ and L is called the rank of A. If L = N,
then A is co-compact in RN and we say that
it has full rank. Define the basis matrix
corresponding to the choice of the basis (1)
to be the N x L matrix

Az(al aL),
then
A= AZ".



WR Lattices

Let N > 2 be an integer, and let A C RY be
a lattice of full rank. Define the minimum
of A to be
Al=min x|
xeN\{0}
where || || stands for the usual Euclidean norm
on RV, Let

S(N) ={z e A:|z|? = |A}

be the set of minimal vectors of A. We say
that A is a well-rounded lattice (abbreviated
WR) if S(A) spans RY.

WR lattices come up in connection with sphere
packing, covering, and kissing number prob-
lems, coding theory, Minkowski conjecture
and Woods covering conjecture in the geom-
etry of numbers, and the linear Diophantine
problem of Frobenius, just to name a few of
the contexts.

Still, the WR condition is special enough so
that one would expect WR lattices to be
rather sparce among all lattices.



WR similarity classes in R2

Two lattices Aq,\> are called similar if
No = aAN\q

for some real number o« and orthogonal ma-
trix A. This is an equivalence relation.

A WR lattice can only be similar to another
WR lattice, hence we can talk about simi-
larity classes of WR lattices.

A lattice A C R? is WR if and only if S(A)
contains two vectors x,y with the angle 6
between them lying in the interval [7/3,7/2].
Such vectors form a minimal basis for A,
and the angle between them is an invariant
of the lattice, we denote it by 6(A).

Two lattices A1, A» C R? are similar if and
only if (A1) = 6(/N\>). Similarity classes of all
WR lattices in the plane are then indexed by
values of the angle in the interval [n/3,7/2].
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Examples of WR lattices in R?

The integer lattice

7.2 ={<‘:§> ERQZx,yEZ}.

The hexagonal lattice
Ay = (; ;%) 7.
2
WR sublattices of Z2, not similar to Z=2:
AN SARN AR

WR sublattices of A;, not similar to Ay:
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Distribution questions

Due to the importance of WR lattices, it is
interesting to understand how are they dis-
tributed. The first part of this talk will be
motivated by the following two general ques-
tions.

Question 1. Let Q2 ¢ RN be a lattice of full
rank. Does €2 contain any WR sublattices?

Question 2. If so, how are they distributed?
More specifically, define Nywr(£2, B) =
{ANCQ:ANis WR and |2 : \| < B}|.

What is the asymptotic behavior of N\ywr (€2, B)
as B — o7

T hese questions are not currently well under-
stood for N > 3. We will therefore concen-
trate on the known results in R2.



Some more notation

Given a full-rank lattice
Q = AZ? C R?,

the Gram matrix corresponding to the basis
matrix A is the 2 x 2 non-singular symmetric

matrix
a b . t
(b c) = A"A,

which is the coefficient matrix of the corre-
sponding quadratic norm-form

Qi(X,Y) = (X Y) At A (if) .

The lattice is called integral if the entries
a,b,c of the matrix A'A are integers. This
property is independent of the choice of the
basis for 2. Integral lattices are of particular
importance in number theory and arithmetic
theory of quadratic forms.



And a little more (following S. Kuhnlein)

More generally, define

5(2) = dimg (spang{a, b, c}),

which is again independent of the choice of
the basis for 2. The lattice is called arith-
metic if §(€2) = 1. Notice that this happens
if and only if

Q = o

for some a € R and ’ an integral lattice. In
other words, every arithmetic lattice is similar
to some integral lattice.

On the other hand, §(€2) can also be 2 or 3.
If 6(2) = 2, then there exist z,y,z € Z such
that

xa + yb+ zc = 0,

and define o(2) to be the squarefree part of

y? — 4zz. This is an invariant of the lattice,

which Kuhnlein calls the strange invariant.
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Kuhnlein’s criterion

The following characterization gives a com-
plete answer to Question 1 for N = 2.

Theorem 1 (Kiihnlein, 2011). Let Q C R?
be a lattice of full rank.

e If 6(2) = 1, then 2 contains infinitely
many non-similar WR sublattices.

o IF5(2) = 3, then 2 does not contain any
WR sublattices.

o If 6(Q2) =2 and o(2) = 1, then 2 con-
tains infinitely many non-similar WR sub-
lattices.

e IFf 6(Q2) = 2 and o(2) # 1, then 2 does
not contain any WR sublattices.



Counting principle

To answer Question 2, define the WR zeta-
function of a planar lattice €2 to be

xO
Cwr(S2,8) = > QAT =) apn?,
WR ACQ n—=1

{ACQ:Ais WR and |Q2: Al =n}]

and s is a complex variable. Then

B
Nwr(£2,B) = ) an(2),

n=1
and asymptotic behavior of Mywr(€2, B) can
be obtained from analytic properties of the
zeta-function {wr(£2,s) using a Tauberian-
type theorem.
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Estimates: non-arithmetic case

AsS can be expected, the analytic properties of
(wr(€2,s) (and hence the asymptotic behav-
ior of M\\wgr(£2, B)) are different in the arith-
metic and non-arithmetic cases.

We start with the non-arithmetic case.

Theorem 2 (Kihnlein, 2011). Suppose that
0(R2) = 2, 0(2) = 1, then the abscissa of
convergence of (wr(£2,s) is 1 and the limit

lim —1 Q
S_>1+(S )CWR(£2, )
exists and is nonzero. Further,

as B — oo.
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Estimates: arithmetic case

We now discuss the arithmetic case.

Theorem 3 (F., 2012). Suppose §6(2) = 1,
then abscissa of convergence of (Wwr(£2,s) is
1, and for s € R the limit

s|—i>T+(S — 1)%¢wr(£2, 5)

exists and is nonzero. Further,

Nwr(2,B) = O(Blog B)

as B — .

Remark 1. The proof uses a convenient pa-
rameterization of integral WR lattices in the
plane, obtained by F., Henshaw, Liao, Prince,
Sun, Whitehead (2011). The result of The-
orem 3 in case Q = Z2 has been obtained by
F. in 2007 using a different method. In addi-
tion, the fact that abscissa of convergence of
(wr(€2,s) is 1 for any arithmetic planar lat-
tice €2 was proved by Kuhnlein in 2011, also
by a different method.
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Further counting (F., et al. — 2011)

We consider a different counting problem.

Question 3. Let A € Ryg and let IWR(A)
be the set of integral WR planar lattices, up
to rotation and reflection, with determinant
= A. How big is this set for a fixed A7

Theorem 4.IWR(A) is finite for any A,
and nonempty if and only if A = ka/D with
k,a,D € Z~q, D squarefree, and a such that
the equation a?D = z2 — y2 has integer solu-
tions with x < 2y. Let M = ka, then

1
WR(A)| < = Y 2wirD),
2
r|M
Moreover,

2
IWR(A)| < > > u <E> s D) :
r|M g|r g ‘\/W(QD)

where t(u) is the number of divisors, w(u)
is the number of prime divisors, and u(u) is
the MOobius function of an integer w. The
constant in the Vinogradov notation < does
not depend on A.
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Ideal lattices

A particularly important class of integral lat-
tices are ideal lattices, which were exten-
sively studied in the 1990's and 2000’'s by
many authors, including E. Bayer-Fluckiger
and her co-authors. We consider the sim-
plest kind of ideal lattices, those of trace

type.

Let K be a number field, O its ring of in-
tegers, and

d=[K:Q] =r1+2r,

where r1 is the number of real embeddings
and ro the number of pairs of complex con-
jugate embeddings of K. In fact, let

01,...,0r; . K =R
and
7_177__1,...,7_’]"2,7_;2 : K%C

be these embeddings.
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The canonical embedding oy : K — R? is
defined by o =

(01, y0r, R(71),S(71), ..., R(7r5), S(75)),

where  and <& stand for real and imaginary
parts, respectively.

For each ideal I C Oy,

Ng(I) = o)

is a lattice of full rank in R?, called an ideal
lattice (of trace type). The lattice

Ak = ok (Ok)
is called a principal ideal lattice (of trace
type).

In addition to their importance in number
theory, ideal lattices appear in many differ-
ent contexts, including cryptography, coding
theory, and discrete optimization problems.
This motivates us to better understand their
geometric properties.
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WR ideals

We will call an ideal I C Ok well-rounded
(WR) if the corresponding ideal lattice Ag (1)
IS WR. We investigate the following two ques-
tions.

Question 4. For which number fields K is
the ring of integers O WR?

Question 5. For which number fields K the
ring of integers Oy contains WR ideals?

Theorem 5 (F., Petersen (2010)). Oy is
WR if and only if K is cyclotomic. On the
other hand, infinitely many real and imagi-
nary quadratic number fields (K = Q(v/£D))
contain WR ideals.

Remark 2. There are only two quadratic cy-

clotomic number fields: Q(+/—1) and Q(+/—3),

whose rings of integers give rise to the princi-
pal ideal lattices Z2 and the hexagonal lattice
Ny, respectively.
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WR ideals: quadratic fields

We can say more in the case of quadratic
number fields. We say that a positive square-
free integer D satisfies the v-nearsquare con-
dition if it has a divisor d with /2 < d < v/D,
where v > 1 is a real number. We also write
K WR to indicate that a number field K
contains WR ideals.

Theorem 6 (F., et al., 2011). If D satisfies
the 3-nearsquare condition, then the rings
of integers of quadratic number fields K =
Q(v/£D) contain WR ideals; the statement
becomes if and only if when K = Q(\/—D).
This in particular implies that a positive pro-
portion (more than 1/5) of real and imagi-
nary quadratic number fields contain WR ide-
als, more specifically

~ |{eED) wr:0<D <N}
liminf

N—oo  {Q(vED):0< D < N}
>\@—1

— 2V3
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WR ideals: imaginary quadratics

Theorem 7 (F., et al., 2011). Moreover, for
every D satisfying the 3-nearsquare condition
the corresponding imaginary quadratic num-
ber field K = Q(v/—D) contains only finitely
many WR ideals, up to similarity of the cor-
responding lattices, and this number is

ow(D)

’\/w(D)

Remark 3.1In fact, two WR ideal lattices com-
ing from the same imaginary quadratic field
K = Q(+~/—D) are similar if and only if the
corresponding ideals are in the same ideal
class, hence their number up to similarity is
no greater than the class number hy. More-
over, Siegel’s estimate implies that

hi is about O(VD) as D — cc.

On the other hand, (2), a bound on the num-
ber of WR ideal classes, is usually about

(log D)'092
vioglogD

< min{2w(P)-1 (2)
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WR ideals: real quadratics

Question 6. Do there exist real quadratic
number fields Q(v/D) with positive square-
free D not satisfying the 3-nearsquare condi-
tion containing WR ideals?

Computational evidence suggests that the an-
swer to this question is no, however at the
moment we only have partial results in this
direction.
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