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Introduction to lattices

A lattice Λ in the Euclidean space RN is a

discrete subgroup, which is the same as a

free Z-module. In other words,

Λ = spanZ{a1, . . . ,aL}

for some R-linearly independent vectors

a1, . . . ,aL, (1)

where L ≤ N . These vectors form a basis for

Λ and L is called the rank of Λ. If L = N ,

then Λ is co-compact in RN and we say that

it has full rank. Define the basis matrix

corresponding to the choice of the basis (1)

to be the N × L matrix

A =
(
a1 . . . aL

)
,

then

Λ = AZL.
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WR Lattices

Let N ≥ 2 be an integer, and let Λ ⊆ RN be
a lattice of full rank. Define the minimum
of Λ to be

|Λ| = min
x∈Λ\{0}

‖x‖2,

where ‖ ‖ stands for the usual Euclidean norm
on RN . Let

S(Λ) = {x ∈ Λ : ‖x‖2 = |Λ|}
be the set of minimal vectors of Λ. We say
that Λ is a well-rounded lattice (abbreviated
WR) if S(Λ) spans RN .

WR lattices come up in connection with sphere
packing, covering, and kissing number prob-
lems, coding theory, Minkowski conjecture
and Woods covering conjecture in the geom-
etry of numbers, and the linear Diophantine
problem of Frobenius, just to name a few of
the contexts.

Still, the WR condition is special enough so
that one would expect WR lattices to be
rather sparce among all lattices.
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WR similarity classes in R2

Two lattices Λ1,Λ2 are called similar if

Λ2 = αAΛ1

for some real number α and orthogonal ma-

trix A. This is an equivalence relation.

A WR lattice can only be similar to another

WR lattice, hence we can talk about simi-

larity classes of WR lattices.

A lattice Λ ⊂ R2 is WR if and only if S(Λ)

contains two vectors x,y with the angle θ

between them lying in the interval [π/3, π/2].

Such vectors form a minimal basis for Λ,

and the angle between them is an invariant

of the lattice, we denote it by θ(Λ).

Two lattices Λ1,Λ2 ⊂ R2 are similar if and

only if θ(Λ1) = θ(Λ2). Similarity classes of all

WR lattices in the plane are then indexed by

values of the angle in the interval [π/3, π/2].
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Examples of WR lattices in R2

The integer lattice

Z2 :=

{(
x
y

)
∈ R2 : x, y ∈ Z

}
.

The hexagonal lattice

Λh :=

1 −1
2

0
√

3
2

Z2.

WR sublattices of Z2, not similar to Z2:(
4 4
3 −3

)
Z2,

(
7 7
5 −5

)
Z2,

(
7 −1
4 8

)
Z2.

WR sublattices of Λh, not similar to Λh: 5
2

−1
2√

3
2

3
√

3
2

Z2,

 7
2 −1√
3

2 2
√

3

Z2,

 4 −1
2√

3 5
√

3
2

Z2.
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Distribution questions

Due to the importance of WR lattices, it is

interesting to understand how are they dis-

tributed. The first part of this talk will be

motivated by the following two general ques-

tions.

Question 1. Let Ω ⊂ RN be a lattice of full

rank. Does Ω contain any WR sublattices?

Question 2. If so, how are they distributed?

More specifically, define NWR(Ω, B) =

|{Λ ⊆ Ω : Λ is WR and |Ω : Λ| ≤ B}| .

What is the asymptotic behavior of NWR(Ω, B)

as B →∞?

These questions are not currently well under-

stood for N ≥ 3. We will therefore concen-

trate on the known results in R2.
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Some more notation

Given a full-rank lattice

Ω = AZ2 ⊂ R2,

the Gram matrix corresponding to the basis

matrix A is the 2× 2 non-singular symmetric

matrix (
a b
b c

)
:= AtA,

which is the coefficient matrix of the corre-

sponding quadratic norm-form

QA(X,Y ) =
(
X Y

)
AtA

(
X
Y

)
.

The lattice is called integral if the entries

a, b, c of the matrix AtA are integers. This

property is independent of the choice of the

basis for Ω. Integral lattices are of particular

importance in number theory and arithmetic

theory of quadratic forms.
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And a little more (following S. Kühnlein)

More generally, define

δ(Ω) = dimQ
(
spanQ{a, b, c}

)
,

which is again independent of the choice of

the basis for Ω. The lattice is called arith-

metic if δ(Ω) = 1. Notice that this happens

if and only if

Ω = αΩ′

for some α ∈ R and Ω′ an integral lattice. In

other words, every arithmetic lattice is similar

to some integral lattice.

On the other hand, δ(Ω) can also be 2 or 3.

If δ(Ω) = 2, then there exist x, y, z ∈ Z such

that

xa+ yb+ zc = 0,

and define σ(Ω) to be the squarefree part of

y2 − 4xz. This is an invariant of the lattice,

which Kühnlein calls the strange invariant.
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Kühnlein’s criterion

The following characterization gives a com-

plete answer to Question 1 for N = 2.

Theorem 1 (Kühnlein, 2011). Let Ω ⊂ R2

be a lattice of full rank.

• If δ(Ω) = 1, then Ω contains infinitely

many non-similar WR sublattices.

• If δ(Ω) = 3, then Ω does not contain any

WR sublattices.

• If δ(Ω) = 2 and σ(Ω) = 1, then Ω con-

tains infinitely many non-similar WR sub-

lattices.

• If δ(Ω) = 2 and σ(Ω) 6= 1, then Ω does

not contain any WR sublattices.
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Counting principle

To answer Question 2, define the WR zeta-

function of a planar lattice Ω to be

ζWR(Ω, s) =
∑

WR Λ⊆Ω

|Ω : Λ|−s =
∞∑
n=1

ann
−s,

where an = an(Ω) :=

|{Λ ⊆ Ω : Λ is WR and |Ω : Λ| = n}|

and s is a complex variable. Then

NWR(Ω, B) =
B∑

n=1

an(Ω),

and asymptotic behavior of NWR(Ω, B) can

be obtained from analytic properties of the

zeta-function ζWR(Ω, s) using a Tauberian-

type theorem.
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Estimates: non-arithmetic case

As can be expected, the analytic properties of

ζWR(Ω, s) (and hence the asymptotic behav-

ior of NWR(Ω, B)) are different in the arith-

metic and non-arithmetic cases.

We start with the non-arithmetic case.

Theorem 2 (Kühnlein, 2011). Suppose that

δ(Ω) = 2, σ(Ω) = 1, then the abscissa of

convergence of ζWR(Ω, s) is 1 and the limit

lim
s→1+

(s− 1)ζWR(Ω, s)

exists and is nonzero. Further,

NWR(Ω, B) = O(B)

as B →∞.
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Estimates: arithmetic case

We now discuss the arithmetic case.

Theorem 3 (F., 2012). Suppose δ(Ω) = 1,
then abscissa of convergence of ζWR(Ω, s) is
1, and for s ∈ R the limit

lim
s→1+

(s− 1)2ζWR(Ω, s)

exists and is nonzero. Further,

NWR(Ω, B) = O(B logB)

as B →∞.

Remark 1. The proof uses a convenient pa-
rameterization of integral WR lattices in the
plane, obtained by F., Henshaw, Liao, Prince,
Sun, Whitehead (2011). The result of The-
orem 3 in case Ω = Z2 has been obtained by
F. in 2007 using a different method. In addi-
tion, the fact that abscissa of convergence of
ζWR(Ω, s) is 1 for any arithmetic planar lat-
tice Ω was proved by Kühnlein in 2011, also
by a different method.
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Further counting (F., et al. – 2011)

We consider a different counting problem.

Question 3. Let ∆ ∈ R>0 and let IWR(∆)
be the set of integral WR planar lattices, up
to rotation and reflection, with determinant
= ∆. How big is this set for a fixed ∆?

Theorem 4. IWR(∆) is finite for any ∆,
and nonempty if and only if ∆ = ka

√
D with

k, a,D ∈ Z>0, D squarefree, and a such that
the equation a2D = x2− y2 has integer solu-
tions with x ≤ 2y. Let M = ka, then

|IWR(∆)| ≤
1

2

∑
r|M

2ω(rD).

Moreover,

|IWR(∆)| �
∑
r|M

∑
g|r
µ

(
r

g

)
τ(g2D)√
ω(gD)

,

where τ(u) is the number of divisors, ω(u)
is the number of prime divisors, and µ(u) is
the Möbius function of an integer u. The
constant in the Vinogradov notation � does
not depend on ∆.
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Ideal lattices

A particularly important class of integral lat-

tices are ideal lattices, which were exten-

sively studied in the 1990’s and 2000’s by

many authors, including E. Bayer-Fluckiger

and her co-authors. We consider the sim-

plest kind of ideal lattices, those of trace

type.

Let K be a number field, OK its ring of in-

tegers, and

d = [K : Q] = r1 + 2r2,

where r1 is the number of real embeddings

and r2 the number of pairs of complex con-

jugate embeddings of K. In fact, let

σ1, . . . , σr1 : K → R

and

τ1, τ̄1, . . . , τr2, τ̄r2 : K → C

be these embeddings.
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The canonical embedding σK : K → Rd is

defined by σK =

(σ1, . . . , σr1,<(τ1),=(τ1), . . . ,<(τr2),=(τr2)),

where < and = stand for real and imaginary

parts, respectively.

For each ideal I ⊆ OK,

ΛK(I) := σK(I)

is a lattice of full rank in Rd, called an ideal

lattice (of trace type). The lattice

ΛK := σK(OK)

is called a principal ideal lattice (of trace

type).

In addition to their importance in number

theory, ideal lattices appear in many differ-

ent contexts, including cryptography, coding

theory, and discrete optimization problems.

This motivates us to better understand their

geometric properties.
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WR ideals

We will call an ideal I ⊆ OK well-rounded

(WR) if the corresponding ideal lattice ΛK(I)

is WR. We investigate the following two ques-

tions.

Question 4. For which number fields K is

the ring of integers OK WR?

Question 5. For which number fields K the

ring of integers OK contains WR ideals?

Theorem 5 (F., Petersen (2010)). OK is

WR if and only if K is cyclotomic. On the

other hand, infinitely many real and imagi-

nary quadratic number fields (K = Q(
√
±D))

contain WR ideals.

Remark 2. There are only two quadratic cy-

clotomic number fields: Q(
√
−1) and Q(

√
−3),

whose rings of integers give rise to the princi-

pal ideal lattices Z2 and the hexagonal lattice

Λh, respectively.
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WR ideals: quadratic fields

We can say more in the case of quadratic
number fields. We say that a positive square-
free integer D satisfies the ν-nearsquare con-
dition if it has a divisor d with

√
D
ν ≤ d <

√
D,

where ν > 1 is a real number. We also write
K WR to indicate that a number field K

contains WR ideals.

Theorem 6 (F., et al., 2011). If D satisfies
the 3-nearsquare condition, then the rings
of integers of quadratic number fields K =
Q(
√
±D) contain WR ideals; the statement

becomes if and only if when K = Q(
√
−D).

This in particular implies that a positive pro-
portion (more than 1/5) of real and imagi-
nary quadratic number fields contain WR ide-
als, more specifically

lim inf
N→∞

∣∣∣{Q(
√
±D) WR : 0 < D ≤ N

}∣∣∣∣∣∣{Q(
√
±D) : 0 < D ≤ N

}∣∣∣
≥
√

3− 1

2
√

3
.
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WR ideals: imaginary quadratics

Theorem 7 (F., et al., 2011). Moreover, for
every D satisfying the 3-nearsquare condition
the corresponding imaginary quadratic num-
ber field K = Q(

√
−D) contains only finitely

many WR ideals, up to similarity of the cor-
responding lattices, and this number is

� min

2ω(D)−1,
2ω(D)√
ω(D)

 . (2)

Remark 3. In fact, two WR ideal lattices com-
ing from the same imaginary quadratic field
K = Q(

√
−D) are similar if and only if the

corresponding ideals are in the same ideal
class, hence their number up to similarity is
no greater than the class number hK. More-
over, Siegel’s estimate implies that

hK is about O(
√
D) as D →∞.

On the other hand, (2), a bound on the num-
ber of WR ideal classes, is usually about

(logD)log 2
√

log logD
.
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WR ideals: real quadratics

Question 6. Do there exist real quadratic

number fields Q(
√
D) with positive square-

free D not satisfying the 3-nearsquare condi-

tion containing WR ideals?

Computational evidence suggests that the an-

swer to this question is no, however at the

moment we only have partial results in this

direction.
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