Positive semigroups in lattices and totally real number fields

Lenny Fukshansky
Claremont McKenna College
(joint work with Siki Wang)

JMM 2023, Boston, AMS Special Session on
Number Theory at Non-PhD Granting Institutions
January 4-7, 2023

Lattice monoid

Let $d \geq 2$ and $L \subset \mathbb{R}^{d}$ be a lattice of full rank, and let us write

$$
\mathbb{R}_{\geq 0}^{d}=\left\{x \in \mathbb{R}^{d}: x_{i} \geq 0 \forall 1 \leq i \leq d\right\}
$$

for the positive orthant of the Euclidean space \mathbb{R}^{d} and $\mathbb{R}_{>0}^{d}$ for its interior. Define

$$
L^{+}=L \cap \mathbb{R}_{\geq 0}^{d}
$$

then L^{+}is an additive monoid in L.

Lattice monoid

Let $d \geq 2$ and $L \subset \mathbb{R}^{d}$ be a lattice of full rank, and let us write

$$
\mathbb{R}_{\geq 0}^{d}=\left\{x \in \mathbb{R}^{d}: x_{i} \geq 0 \forall 1 \leq i \leq d\right\}
$$

for the positive orthant of the Euclidean space \mathbb{R}^{d} and $\mathbb{R}_{>0}^{d}$ for its interior. Define

$$
L^{+}=L \cap \mathbb{R}_{\geq 0}^{d}
$$

then L^{+}is an additive monoid in L.

Our goal is to study the geometry of this monoid L^{+}.

Lattice monoid

Let $d \geq 2$ and $L \subset \mathbb{R}^{d}$ be a lattice of full rank, and let us write

$$
\mathbb{R}_{\geq 0}^{d}=\left\{x \in \mathbb{R}^{d}: x_{i} \geq 0 \forall 1 \leq i \leq d\right\}
$$

for the positive orthant of the Euclidean space \mathbb{R}^{d} and $\mathbb{R}_{>0}^{d}$ for its interior. Define

$$
L^{+}=L \cap \mathbb{R}_{\geq 0}^{d}
$$

then L^{+}is an additive monoid in L.

Our goal is to study the geometry of this monoid L^{+}.

Lemma 1

There exist infinitely many bases for L contained in L^{+}.

Positive basis

If $X=\left\{\boldsymbol{x}_{1}, \ldots, \boldsymbol{x}_{n}\right\}$ is a basis for L contained in L^{+}, which we refer to as a positive basis for L, we can write

$$
\mathcal{X}=\left(x_{1} \ldots x_{d}\right)
$$

for the corresponding $d \times d$ positive basis matrix, so $L=\mathcal{X} \mathbb{Z}^{d}$.

Positive basis

If $X=\left\{\boldsymbol{x}_{1}, \ldots, \boldsymbol{x}_{n}\right\}$ is a basis for L contained in L^{+}, which we refer to as a positive basis for L, we can write

$$
\mathcal{X}=\left(x_{1} \ldots x_{d}\right)
$$

for the corresponding $d \times d$ positive basis matrix, so $L=\mathcal{X} \mathbb{Z}^{d}$.
Define a submonoid of L^{+}

$$
S(X)=\left\{\sum_{i=1}^{n} a_{i} x_{i}: a_{1}, \ldots, a_{n} \in \mathbb{Z}_{\geq 0}\right\}=\mathcal{X} \mathbb{Z}_{\geq 0}^{d}
$$

as well as the positive cone spanned by X

$$
\mathcal{C}(X)=\left\{\sum_{i=1}^{n} a_{i} \boldsymbol{x}_{i}: a_{1}, \ldots, a_{n} \in \mathbb{R}_{\geq 0}\right\}=\mathcal{X} \mathbb{R}_{\geq 0}^{d}
$$

Gaps

Define the set of gaps of $S(X)$ in L^{+}to be $G(X):=L^{+} \backslash S(X)$.

Gaps

Define the set of gaps of $S(X)$ in L^{+}to be $G(X):=L^{+} \backslash S(X)$.

Lemma 2

Let $X=\left\{\boldsymbol{x}_{1}, \ldots, \boldsymbol{x}_{d}\right\}$ be a positive basis for L, then

$$
L^{+} \cap \mathcal{C}(X)=S(X), \text { and so } G(X)=L^{+} \backslash \mathcal{C}(X)
$$

In particular, the set $G(X)$ is infinite unless X is an orthogonal basis, in which case $L^{+}=S(X)$.

Gaps

Define the set of gaps of $S(X)$ in L^{+}to be $G(X):=L^{+} \backslash S(X)$.

Lemma 2

Let $X=\left\{\boldsymbol{x}_{1}, \ldots, \boldsymbol{x}_{d}\right\}$ be a positive basis for L, then

$$
L^{+} \cap \mathcal{C}(X)=S(X), \text { and so } G(X)=L^{+} \backslash \mathcal{C}(X)
$$

In particular, the set $G(X)$ is infinite unless X is an orthogonal basis, in which case $L^{+}=S(X)$.

From here on, assume that X is a positive non-orthogonal basis for L. Since $G(X)$ is infinite, we can define

$$
G(X, t)=\{\boldsymbol{z} \in G(X):\|\boldsymbol{z}\| \leq t\}
$$

and ask for asymptotic behavior of $|G(X, t)|$ as $t \rightarrow \infty$.

Counting gaps

Proposition 3

Let $L \subset \mathbb{R}^{d}$ be a lattice of full rank and X a positive basis for L. Let $B_{d}(t)$ be a ball of radius $t>0$ centered at the origin in \mathbb{R}^{d} and write ω_{d} for the volume of a unit ball in \mathbb{R}^{d}. Let

$$
\nu(X)=\frac{\operatorname{Vol}_{d}\left(\mathcal{C}(X) \cap B_{d}(1)\right)}{\omega_{d}},
$$

be the measure of the solid angle of the cone $\mathcal{C}(X)$. As $t \rightarrow \infty$,

$$
\begin{equation*}
|G(X, t)|=\left(\frac{\omega_{d}\left(1-\nu(X) 2^{d}\right)}{2^{d} \operatorname{det} L}\right) t^{d}+O\left(t^{d-1}\right) \tag{1}
\end{equation*}
$$

Counting gaps

Proposition 3

Let $L \subset \mathbb{R}^{d}$ be a lattice of full rank and X a positive basis for L. Let $B_{d}(t)$ be a ball of radius $t>0$ centered at the origin in \mathbb{R}^{d} and write ω_{d} for the volume of a unit ball in \mathbb{R}^{d}. Let

$$
\nu(X)=\frac{\operatorname{Vol}_{d}\left(\mathcal{C}(X) \cap B_{d}(1)\right)}{\omega_{d}}
$$

be the measure of the solid angle of the cone $\mathcal{C}(X)$. As $t \rightarrow \infty$,

$$
\begin{equation*}
|G(X, t)|=\left(\frac{\omega_{d}\left(1-\nu(X) 2^{d}\right)}{2^{d} \operatorname{det} L}\right) t^{d}+O\left(t^{d-1}\right) \tag{1}
\end{equation*}
$$

Since $\mathcal{C}(X) \subsetneq \mathbb{R}_{\geq 0}^{d}$, the solid angle $\nu(X)<1 / 2^{d}$, so the constant in the main term of (1) is positive.

Successive minima

Let

$$
\mu(L)=\min \left\{t \in \mathbb{R}_{>0}: B_{d}(t)+L=\mathbb{R}^{d}\right\}
$$

be the covering radius of L.

Successive minima

Let

$$
\mu(L)=\min \left\{t \in \mathbb{R}_{>0}: B_{d}(t)+L=\mathbb{R}^{d}\right\}
$$

be the covering radius of L.
For $t \in \mathbb{R}_{>0}$, let $C_{d}(t)=\left\{\boldsymbol{x} \in \mathbb{R}^{d}:|\boldsymbol{x}| \leq t\right\}$. We define three different sets of successive minima with respect to the cube $C_{d}(1)$.

Successive minima

Let

$$
\mu(L)=\min \left\{t \in \mathbb{R}_{>0}: B_{d}(t)+L=\mathbb{R}^{d}\right\}
$$

be the covering radius of L.
For $t \in \mathbb{R}_{>0}$, let $C_{d}(t)=\left\{\boldsymbol{x} \in \mathbb{R}^{d}:|\boldsymbol{x}| \leq t\right\}$. We define three different sets of successive minima with respect to the cube $C_{d}(1)$.

- $\lambda_{i}(L)=\min \left\{t \in \mathbb{R}_{>0}: \operatorname{dim}_{\mathbb{R}} \operatorname{span}_{\mathbb{R}}\left(L \cap C_{d}(t)\right) \geq i\right\}$.

Successive minima

Let

$$
\mu(L)=\min \left\{t \in \mathbb{R}_{>0}: B_{d}(t)+L=\mathbb{R}^{d}\right\}
$$

be the covering radius of L.
For $t \in \mathbb{R}_{>0}$, let $C_{d}(t)=\left\{\boldsymbol{x} \in \mathbb{R}^{d}:|\boldsymbol{x}| \leq t\right\}$. We define three different sets of successive minima with respect to the cube $C_{d}(1)$.

- $\lambda_{i}(L)=\min \left\{t \in \mathbb{R}_{>0}: \operatorname{dim}_{\mathbb{R}} \operatorname{span}_{\mathbb{R}}\left(L \cap C_{d}(t)\right) \geq i\right\}$.
- $\lambda_{i}\left(L^{+}\right):=\min \left\{t \in \mathbb{R}_{>0}: \operatorname{dim}_{\mathbb{R}} \operatorname{span}_{\mathbb{R}}\left(L^{+} \cap C_{d}(t)\right) \geq i\right\}$.

Successive minima

Let

$$
\mu(L)=\min \left\{t \in \mathbb{R}_{>0}: B_{d}(t)+L=\mathbb{R}^{d}\right\}
$$

be the covering radius of L.
For $t \in \mathbb{R}_{>0}$, let $C_{d}(t)=\left\{\boldsymbol{x} \in \mathbb{R}^{d}:|\boldsymbol{x}| \leq t\right\}$. We define three different sets of successive minima with respect to the cube $C_{d}(1)$.

- $\lambda_{i}(L)=\min \left\{t \in \mathbb{R}_{>0}: \operatorname{dim}_{\mathbb{R}} \operatorname{span}_{\mathbb{R}}\left(L \cap C_{d}(t)\right) \geq i\right\}$.
- $\lambda_{i}\left(L^{+}\right):=\min \left\{t \in \mathbb{R}_{>0}: \operatorname{dim}_{\mathbb{R}} \operatorname{span}_{\mathbb{R}}\left(L^{+} \cap C_{d}(t)\right) \geq i\right\}$.
- For a positive basis X of L,

$$
\lambda_{i}\left(L^{+}, X\right):=\min \left\{t \in \mathbb{R}_{>0}: \operatorname{dim}_{\mathbb{R}} \operatorname{span}_{\mathbb{R}}\left(G(X) \cap C_{d}(t)\right) \geq i\right\}
$$

Successive minima

Let

$$
\mu(L)=\min \left\{t \in \mathbb{R}_{>0}: B_{d}(t)+L=\mathbb{R}^{d}\right\}
$$

be the covering radius of L.
For $t \in \mathbb{R}_{>0}$, let $C_{d}(t)=\left\{\boldsymbol{x} \in \mathbb{R}^{d}:|\boldsymbol{x}| \leq t\right\}$. We define three different sets of successive minima with respect to the cube $C_{d}(1)$.

- $\lambda_{i}(L)=\min \left\{t \in \mathbb{R}_{>0}: \operatorname{dim}_{\mathbb{R}} \operatorname{span}_{\mathbb{R}}\left(L \cap C_{d}(t)\right) \geq i\right\}$.
- $\lambda_{i}\left(L^{+}\right):=\min \left\{t \in \mathbb{R}_{>0}: \operatorname{dim}_{\mathbb{R}} \operatorname{span}_{\mathbb{R}}\left(L^{+} \cap C_{d}(t)\right) \geq i\right\}$.
- For a positive basis X of L,

$$
\lambda_{i}\left(L^{+}, X\right):=\min \left\{t \in \mathbb{R}_{>0}: \operatorname{dim}_{\mathbb{R}} \operatorname{span}_{\mathbb{R}}\left(G(X) \cap C_{d}(t)\right) \geq i\right\}
$$

We obtain bounds on these successive minima in the spirit of Minkowski.

Minkowski-type inequalities

First recall the classical inequalities of Minkowski and Jarnik:

$$
\prod_{i=1}^{d} \lambda_{i}(L) \leq \operatorname{det} L, \mu(L) \leq \frac{\sqrt{d}}{2} \sum_{i=1}^{d} \lambda_{i}(L)
$$

Minkowski-type inequalities

First recall the classical inequalities of Minkowski and Jarnik:

$$
\prod_{i=1}^{d} \lambda_{i}(L) \leq \operatorname{det} L, \mu(L) \leq \frac{\sqrt{d}}{2} \sum_{i=1}^{d} \lambda_{i}(L)
$$

Theorem 4

Let $L \subset \mathbb{R}^{d}$ be a lattice of full rank. Then

$$
\lambda_{1}\left(L^{+}\right) \leq 2 \mu(L)+1, \quad \lambda_{i}\left(L^{+}\right) \leq 2 \lambda_{i}(L)(\mu(L)+1) \forall 2 \leq i \leq d
$$

Further, assume that no $d-1$ elements of X lie in a coordinate hyperplane, then $\lambda_{d}\left(L^{+}, X\right) \leq$

$$
\max _{1 \leq i \leq d} \max _{1 \leq m \leq d}\left\{\left(\max _{1 \leq k \leq d}\left[\frac{x_{i k}}{\sum_{j=1, j \neq i}^{d} x_{j k}}\right]+1\right) \sum_{j=1, j \neq i}^{d} x_{j m}-x_{i m}\right\}
$$

Application to totally real number fields

Let K be a totally real number field, $d=[K: \mathbb{Q}]$, and

$$
\sigma_{1}, \ldots, \sigma_{d}: K \rightarrow \mathbb{R}
$$

be the embeddings of K. Let \mathbb{N}_{K} be the field norm, Tr_{K} trace and Δ_{K} the discriminant of K. Let \mathcal{O}_{K} be the ring of integers of K.

Application to totally real number fields

Let K be a totally real number field, $d=[K: \mathbb{Q}]$, and

$$
\sigma_{1}, \ldots, \sigma_{d}: K \rightarrow \mathbb{R}
$$

be the embeddings of K. Let \mathbb{N}_{K} be the field norm, Tr_{K} trace and Δ_{K} the discriminant of K. Let \mathcal{O}_{K} be the ring of integers of K.

An ideal $I \subseteq \mathcal{O}_{K}$ can be viewed as a Euclidean lattice of rank d with respect to the symmetric bilinear form

$$
\langle\alpha, \beta\rangle=\operatorname{Tr}_{K}(\alpha \beta)=\sum_{i=1}^{d} \sigma_{i}(\alpha) \sigma_{i}(\beta)
$$

Let $I^{+}=\left\{\alpha \in I: \sigma_{i}(\alpha) \geq 0 \forall 1 \leq i \leq d\right\}$, and let $\mathbb{Z}^{+}=\mathbb{Z} \cap \mathcal{O}_{K}^{+}$. Then I has a \mathbb{Z}-basis contained in I^{+}. Let $\boldsymbol{\beta}=\left\{\beta_{1}, \ldots, \beta_{d}\right\} \subset I^{+}$ be such a \mathbb{Z}-basis for I, which we call a positive basis.

Application to totally real number fields

Let

$$
S(\boldsymbol{\beta})=\left\{\sum_{i=1}^{d} c_{i} \beta_{i}: c_{1}, \ldots, c_{d} \in \mathbb{Z}^{+}\right\} \subseteq I^{+}
$$

be the corresponding sub-semigroup, and define the set of gaps of $S(\boldsymbol{\beta})$ in I^{+}to be

$$
G(\boldsymbol{\beta})=I^{+} \backslash S(\boldsymbol{\beta})
$$

The basis $\boldsymbol{\beta}$ cannot be orthogonal, hence $G(\boldsymbol{\beta})$ is infinite.

Application to totally real number fields

Let

$$
S(\boldsymbol{\beta})=\left\{\sum_{i=1}^{d} c_{i} \beta_{i}: c_{1}, \ldots, c_{d} \in \mathbb{Z}^{+}\right\} \subseteq I^{+}
$$

be the corresponding sub-semigroup, and define the set of gaps of $S(\boldsymbol{\beta})$ in I^{+}to be

$$
G(\boldsymbol{\beta})=I^{+} \backslash S(\boldsymbol{\beta})
$$

The basis $\boldsymbol{\beta}$ cannot be orthogonal, hence $G(\boldsymbol{\beta})$ is infinite.
We write h for the absolute Weil height: for every $\alpha \in K$,

$$
h(\alpha)=\prod_{v \in M(K)} \max \left\{1,|\alpha|_{v}\right\}^{d_{v} / d},
$$

where $M(K)=$ the set of all places of $K, d_{v}=\left[K_{v}: \mathbb{Q}_{v}\right]$ is the local degree of K at the place $v \in M(K)$. Notice that for each $v \mid \infty$, $d_{v}=1$ since K is totally real.

Application to totally real number fields

Theorem 5

Let $I \subseteq \mathcal{O}_{K}$ be an ideal. Then there exist \mathbb{Q}-linearly independent elements $s_{1}, \ldots, s_{d} \in I$ such that $\prod_{i=1}^{d} h\left(s_{i}\right) \leq \mathbb{N}_{K}(I) \sqrt{\left|\Delta_{K}\right|}$. Further, there exist \mathbb{Q}-linearly independent elements $\alpha_{1}, \ldots, \alpha_{d} \in I^{+}$such that

$$
\prod_{i=1}^{d} h\left(\alpha_{i}\right) \leq(3 d \sqrt{d})^{d}\left(\mathbb{N}_{K}(I) \sqrt{\left|\Delta_{K}\right|}\right)^{d+1}
$$

Let $\boldsymbol{\beta}=\left\{\beta_{1}, \ldots, \beta_{d}\right\} \subset I^{+}$be a positive basis for I and $G(\boldsymbol{\beta})$ the corresponding set of gaps. For each $1 \leq i \leq d$, let $\beta_{i}^{\prime}=\sum_{j=1, j \neq i}^{d} \beta_{j}$. Then there exist \mathbb{Q}-linearly independent gaps $\alpha_{1}, \ldots, \alpha_{d} \in G(\boldsymbol{\beta})$ such that

$$
h\left(\alpha_{i}\right) \leq\left(h\left(\beta_{i} / \beta_{i}^{\prime}\right)^{d}+1\right) h\left(\beta_{i}^{\prime}\right)^{d}, \forall 1 \leq i \leq d
$$

Reference

L. Fukshansky, S. Wang, Positive semigroups in lattices and totally real number fields, Advances in Geometry, vol. 22 no. 4 (2022), pg. 503-512

Preprint is available at:
http://math.cmc.edu/lenny/research.html

Reference

L. Fukshansky, S. Wang, Positive semigroups in lattices and totally real number fields, Advances in Geometry, vol. 22 no. 4 (2022), pg. 503-512

Preprint is available at:
http://math.cmc.edu/lenny/research.html

Thank you!

