Positive semigroups in lattices and totally real number fields

Lenny Fukshansky Claremont McKenna College (joint work with Siki Wang)

JMM 2023, Boston, AMS Special Session on Number Theory at Non-PhD Granting Institutions January 4 - 7, 2023

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Lattice monoid

Let $d \geq 2$ and $L \subset \mathbb{R}^d$ be a lattice of full rank, and let us write

$$\mathbb{R}_{\geq 0}^{d} = \left\{ \boldsymbol{x} \in \mathbb{R}^{d} : x_{i} \geq 0 \,\,\forall \,\, 1 \leq i \leq d \right\}$$

for the positive orthant of the Euclidean space \mathbb{R}^d and $\mathbb{R}^d_{>0}$ for its interior. Define

$$L^+ = L \cap \mathbb{R}^d_{\geq 0},$$

・ロト ・ 目 ・ ・ ヨト ・ ヨ ・ うへつ

then L^+ is an additive monoid in L.

Lattice monoid

Let $d \geq 2$ and $L \subset \mathbb{R}^d$ be a lattice of full rank, and let us write

$$\mathbb{R}^{d}_{\geq 0} = \left\{ \boldsymbol{x} \in \mathbb{R}^{d} : x_{i} \geq 0 \,\,\forall \,\, 1 \leq i \leq d \right\}$$

for the positive orthant of the Euclidean space \mathbb{R}^d and $\mathbb{R}^d_{>0}$ for its interior. Define

$$L^+ = L \cap \mathbb{R}^d_{\geq 0},$$

then L^+ is an additive monoid in L.

Our goal is to study the geometry of this monoid L^+ .

Lattice monoid

Let $d \geq 2$ and $L \subset \mathbb{R}^d$ be a lattice of full rank, and let us write

$$\mathbb{R}^{d}_{\geq 0} = \left\{ \boldsymbol{x} \in \mathbb{R}^{d} : x_{i} \geq 0 \,\,\forall \,\, 1 \leq i \leq d \right\}$$

for the positive orthant of the Euclidean space \mathbb{R}^d and $\mathbb{R}^d_{>0}$ for its interior. Define

$$L^+ = L \cap \mathbb{R}^d_{\geq 0},$$

then L^+ is an additive monoid in L.

Our goal is to study the geometry of this monoid L^+ .

Lemma 1

There exist infinitely many bases for L contained in L^+ .

Positive basis

If $X = \{x_1, ..., x_n\}$ is a basis for *L* contained in L^+ , which we refer to as a *positive basis* for *L*, we can write

$$\mathcal{X} = (\mathbf{x}_1 \ldots \mathbf{x}_d)$$

for the corresponding $d \times d$ positive basis matrix, so $L = \mathcal{X}\mathbb{Z}^d$.

Positive basis

If $X = \{x_1, ..., x_n\}$ is a basis for *L* contained in L^+ , which we refer to as a *positive basis* for *L*, we can write

$$\mathcal{X} = (\mathbf{x}_1 \ldots \mathbf{x}_d)$$

for the corresponding $d \times d$ positive basis matrix, so $L = \mathcal{X}\mathbb{Z}^d$. Define a submonoid of L^+

$$S(X) = \left\{\sum_{i=1}^n a_i \mathbf{x}_i : a_1, \dots, a_n \in \mathbb{Z}_{\geq 0}\right\} = \mathcal{X}\mathbb{Z}_{\geq 0}^d,$$

as well as the positive cone spanned by X

$$\mathcal{C}(X) = \left\{\sum_{i=1}^n a_i \mathbf{x}_i : a_1, \dots, a_n \in \mathbb{R}_{\geq 0}\right\} = \mathcal{X} \mathbb{R}^d_{\geq 0}.$$

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ○ □ ○ ○ ○ ○

Gaps

Define the set of gaps of S(X) in L^+ to be $G(X) := L^+ \setminus S(X)$.

Gaps

Define the set of gaps of S(X) in L^+ to be $G(X) := L^+ \setminus S(X)$.

Lemma 2

Let $X = \{x_1, \ldots, x_d\}$ be a positive basis for L, then

$$L^+ \cap \mathcal{C}(X) = S(X), \text{ and so } G(X) = L^+ \setminus \mathcal{C}(X).$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

In particular, the set G(X) is infinite unless X is an orthogonal basis, in which case $L^+ = S(X)$.

Gaps

Define the set of gaps of S(X) in L^+ to be $G(X) := L^+ \setminus S(X)$.

Lemma 2

Let $X = \{x_1, \ldots, x_d\}$ be a positive basis for L, then

$$L^+ \cap \mathcal{C}(X) = S(X)$$
, and so $G(X) = L^+ \setminus \mathcal{C}(X)$.

In particular, the set G(X) is infinite unless X is an orthogonal basis, in which case $L^+ = S(X)$.

From here on, assume that X is a positive non-orthogonal basis for L. Since G(X) is infinite, we can define

$$G(X,t) = \{ \boldsymbol{z} \in G(X) : \|\boldsymbol{z}\| \leq t \},\$$

and ask for asymptotic behavior of |G(X, t)| as $t \to \infty$.

・ロト・西・・日・・日・・日・

Counting gaps

Proposition 3

Let $L \subset \mathbb{R}^d$ be a lattice of full rank and X a positive basis for L. Let $B_d(t)$ be a ball of radius t > 0 centered at the origin in \mathbb{R}^d and write ω_d for the volume of a unit ball in \mathbb{R}^d . Let

$$\nu(X) = \frac{\operatorname{Vol}_d(\mathcal{C}(X) \cap B_d(1))}{\omega_d},$$

be the measure of the solid angle of the cone $\mathcal{C}(X)$. As $t \to \infty$,

$$|G(X,t)| = \left(\frac{\omega_d(1-\nu(X)2^d)}{2^d \det L}\right) t^d + O(t^{d-1}).$$
(1)

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Counting gaps

Proposition 3

Let $L \subset \mathbb{R}^d$ be a lattice of full rank and X a positive basis for L. Let $B_d(t)$ be a ball of radius t > 0 centered at the origin in \mathbb{R}^d and write ω_d for the volume of a unit ball in \mathbb{R}^d . Let

$$\nu(X) = \frac{\operatorname{Vol}_d(\mathcal{C}(X) \cap B_d(1))}{\omega_d},$$

be the measure of the solid angle of the cone $\mathcal{C}(X)$. As $t \to \infty$,

$$|G(X,t)| = \left(\frac{\omega_d(1-\nu(X)2^d)}{2^d \det L}\right) t^d + O(t^{d-1}).$$
(1)

Since $\mathcal{C}(X) \subsetneq \mathbb{R}^d_{\geq 0}$, the solid angle $\nu(X) < 1/2^d$, so the constant in the main term of (1) is positive.

Let

$$\mu(L) = \min\left\{t \in \mathbb{R}_{>0} : B_d(t) + L = \mathbb{R}^d\right\}$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

be the covering radius of L.

Let

$$\mu(L) = \min\left\{t \in \mathbb{R}_{>0} : B_d(t) + L = \mathbb{R}^d\right\}$$

be the covering radius of L.

For $t \in \mathbb{R}_{>0}$, let $C_d(t) = \{ \mathbf{x} \in \mathbb{R}^d : |\mathbf{x}| \le t \}$. We define three different sets of *successive minima* with respect to the cube $C_d(1)$.

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Let

$$\mu(L) = \min\left\{t \in \mathbb{R}_{>0} : B_d(t) + L = \mathbb{R}^d\right\}$$

be the covering radius of L.

For $t \in \mathbb{R}_{>0}$, let $C_d(t) = \{ \mathbf{x} \in \mathbb{R}^d : |\mathbf{x}| \le t \}$. We define three different sets of *successive minima* with respect to the cube $C_d(1)$.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

• $\lambda_i(L) = \min \{t \in \mathbb{R}_{>0} : \dim_{\mathbb{R}} \operatorname{span}_{\mathbb{R}} (L \cap C_d(t)) \ge i\}.$

Let

$$\mu(L) = \min\left\{t \in \mathbb{R}_{>0} : B_d(t) + L = \mathbb{R}^d\right\}$$

be the covering radius of L.

For $t \in \mathbb{R}_{>0}$, let $C_d(t) = \{ \mathbf{x} \in \mathbb{R}^d : |\mathbf{x}| \le t \}$. We define three different sets of *successive minima* with respect to the cube $C_d(1)$.

- $\lambda_i(L) = \min \{t \in \mathbb{R}_{>0} : \dim_{\mathbb{R}} \operatorname{span}_{\mathbb{R}} (L \cap C_d(t)) \ge i\}.$
- $\lambda_i(L^+) := \min \{t \in \mathbb{R}_{>0} : \dim_{\mathbb{R}} \operatorname{span}_{\mathbb{R}} (L^+ \cap C_d(t)) \ge i\}.$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ● ●

Let

$$\mu(L) = \min\left\{t \in \mathbb{R}_{>0} : B_d(t) + L = \mathbb{R}^d\right\}$$

be the covering radius of L.

For $t \in \mathbb{R}_{>0}$, let $C_d(t) = \{ \mathbf{x} \in \mathbb{R}^d : |\mathbf{x}| \le t \}$. We define three different sets of *successive minima* with respect to the cube $C_d(1)$.

- $\lambda_i(L) = \min \{t \in \mathbb{R}_{>0} : \dim_{\mathbb{R}} \operatorname{span}_{\mathbb{R}} (L \cap C_d(t)) \ge i\}.$
- $\lambda_i(L^+) := \min \{t \in \mathbb{R}_{>0} : \dim_{\mathbb{R}} \operatorname{span}_{\mathbb{R}} (L^+ \cap C_d(t)) \ge i\}.$
- For a positive basis X of L,

$$\lambda_i(L^+,X) := \min \left\{ t \in \mathbb{R}_{>0} : \dim_{\mathbb{R}} \operatorname{span}_{\mathbb{R}} \left(G(X) \cap C_d(t) \right) \geq i
ight\}.$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ● ●

Let

$$\mu(L) = \min\left\{t \in \mathbb{R}_{>0} : B_d(t) + L = \mathbb{R}^d\right\}$$

be the covering radius of L.

For $t \in \mathbb{R}_{>0}$, let $C_d(t) = \{ \mathbf{x} \in \mathbb{R}^d : |\mathbf{x}| \le t \}$. We define three different sets of *successive minima* with respect to the cube $C_d(1)$.

- $\lambda_i(L) = \min \{t \in \mathbb{R}_{>0} : \dim_{\mathbb{R}} \operatorname{span}_{\mathbb{R}} (L \cap C_d(t)) \ge i\}.$
- $\lambda_i(L^+) := \min \{t \in \mathbb{R}_{>0} : \dim_{\mathbb{R}} \operatorname{span}_{\mathbb{R}} (L^+ \cap C_d(t)) \ge i\}.$
- For a positive basis X of L,

$$\lambda_i(L^+,X) := \min \left\{ t \in \mathbb{R}_{>0} : \dim_{\mathbb{R}} \operatorname{span}_{\mathbb{R}} \left(G(X) \cap C_d(t) \right) \ge i
ight\}.$$

We obtain bounds on these successive minima in the spirit of Minkowski.

Minkowski-type inequalities

First recall the classical inequalities of Minkowski and Jarnik:

$$\prod_{i=1}^d \lambda_i(L) \leq \det L, \ \mu(L) \leq \frac{\sqrt{d}}{2} \sum_{i=1}^d \lambda_i(L).$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Minkowski-type inequalities

First recall the classical inequalities of Minkowski and Jarnik:

$$\prod_{i=1}^d \lambda_i(L) \leq \det L, \ \mu(L) \leq \frac{\sqrt{d}}{2} \sum_{i=1}^d \lambda_i(L).$$

Theorem 4

Let $L \subset \mathbb{R}^d$ be a lattice of full rank. Then

 $\lambda_1(L^+) \leq 2\mu(L) + 1, \ \lambda_i(L^+) \leq 2\lambda_i(L)(\mu(L) + 1) \ \forall \ 2 \leq i \leq d.$

Further, assume that no d-1 elements of X lie in a coordinate hyperplane, then $\lambda_d(L^+, X) \leq$

$$\max_{1 \le i \le d} \max_{1 \le m \le d} \left\{ \left(\max_{1 \le k \le d} \left[\frac{x_{ik}}{\sum_{j=1, j \ne i}^d x_{jk}} \right] + 1 \right) \sum_{j=1, j \ne i}^d x_{jm} - x_{im} \right\}.$$

Let K be a totally real number field, $d = [K : \mathbb{Q}]$, and

$$\sigma_1,\ldots,\sigma_d:K\to\mathbb{R}$$

be the embeddings of K. Let \mathbb{N}_K be the field norm, Tr_K trace and Δ_K the discriminant of K. Let \mathcal{O}_K be the ring of integers of K.

Let K be a totally real number field, $d = [K : \mathbb{Q}]$, and

$$\sigma_1,\ldots,\sigma_d:K\to\mathbb{R}$$

be the embeddings of K. Let \mathbb{N}_K be the field norm, Tr_K trace and Δ_K the discriminant of K. Let \mathcal{O}_K be the ring of integers of K.

An ideal $I \subseteq \mathcal{O}_K$ can be viewed as a Euclidean lattice of rank d with respect to the symmetric bilinear form

$$\langle \alpha, \beta \rangle = \mathsf{Tr}_{\mathcal{K}}(\alpha\beta) = \sum_{i=1}^{d} \sigma_i(\alpha) \sigma_i(\beta).$$

Let $I^+ = \{ \alpha \in I : \sigma_i(\alpha) \ge 0 \ \forall \ 1 \le i \le d \}$, and let $\mathbb{Z}^+ = \mathbb{Z} \cap \mathcal{O}_K^+$. Then *I* has a \mathbb{Z} -basis contained in I^+ . Let $\beta = \{\beta_1, \ldots, \beta_d\} \subset I^+$ be such a \mathbb{Z} -basis for *I*, which we call a positive basis.

Let

$$\mathcal{S}(oldsymbol{eta}) = \left\{ \sum_{i=1}^d c_i eta_i : c_1, \dots, c_d \in \mathbb{Z}^+
ight\} \subseteq I^+$$

be the corresponding sub-semigroup, and define the set of gaps of $S(\beta)$ in I^+ to be

$$G(\beta) = I^+ \setminus S(\beta).$$

The basis β cannot be orthogonal, hence $G(\beta)$ is infinite.

Let

$$\mathcal{S}(oldsymbol{eta}) = \left\{ \sum_{i=1}^d c_i eta_i : c_1, \dots, c_d \in \mathbb{Z}^+
ight\} \subseteq I^+$$

be the corresponding sub-semigroup, and define the set of gaps of $S(\beta)$ in I^+ to be

$$G(\boldsymbol{\beta}) = I^+ \setminus S(\boldsymbol{\beta}).$$

The basis β cannot be orthogonal, hence $G(\beta)$ is infinite.

We write *h* for the absolute Weil height: for every $\alpha \in K$,

$$h(\alpha) = \prod_{\nu \in \mathcal{M}(\mathcal{K})} \max\{1, |\alpha|_{\nu}\}^{d_{\nu}/d},$$

where M(K) = the set of all places of K, $d_v = [K_v : \mathbb{Q}_v]$ is the local degree of K at the place $v \in M(K)$. Notice that for each $v \mid \infty$, $d_v = 1$ since K is totally real.

Theorem 5

Let $I \subseteq \mathcal{O}_K$ be an ideal. Then there exist \mathbb{Q} -linearly independent elements $s_1, \ldots, s_d \in I$ such that $\prod_{i=1}^d h(s_i) \leq \mathbb{N}_K(I)\sqrt{|\Delta_K|}$. Further, there exist \mathbb{Q} -linearly independent elements $\alpha_1, \ldots, \alpha_d \in I^+$ such that

$$\prod_{i=1}^{d} h(\alpha_i) \leq \left(3d\sqrt{d}\right)^{d} \left(\mathbb{N}_{\mathcal{K}}(I)\sqrt{|\Delta_{\mathcal{K}}|}\right)^{d+1}$$

Let $\beta = \{\beta_1, \dots, \beta_d\} \subset I^+$ be a positive basis for I and $G(\beta)$ the corresponding set of gaps. For each $1 \leq i \leq d$, let $\beta'_i = \sum_{j=1, j \neq i}^d \beta_j$. Then there exist \mathbb{Q} -linearly independent gaps $\alpha_1, \dots, \alpha_d \in G(\beta)$ such that

$$h(\alpha_i) \leq \left(h(\beta_i/\beta'_i)^d + 1\right)h(\beta'_i)^d, \ \forall \ 1 \leq i \leq d.$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Reference

L. Fukshansky, S. Wang, *Positive semigroups in lattices and totally real number fields*, Advances in Geometry, vol. 22 no. 4 (2022), pg. 503–512

Preprint is available at:

http://math.cmc.edu/lenny/research.html

Reference

L. Fukshansky, S. Wang, *Positive semigroups in lattices and totally real number fields*, Advances in Geometry, vol. 22 no. 4 (2022), pg. 503–512

Preprint is available at:

http://math.cmc.edu/lenny/research.html

Thank you!