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Lattice monoid

Let d ≥ 2 and L ⊂ Rd be a lattice of full rank, and let us write

Rd
≥0 =

{
x ∈ Rd : xi ≥ 0 ∀ 1 ≤ i ≤ d

}
for the positive orthant of the Euclidean space Rd and Rd

>0 for its
interior. Define

L+ = L ∩ Rd
≥0,

then L+ is an additive monoid in L.

Our goal is to study the geometry of this monoid L+.

Lemma 1

There exist infinitely many bases for L contained in L+.
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Positive basis

If X = {x1, . . . , xn} is a basis for L contained in L+, which we refer
to as a positive basis for L, we can write

X = (x1 . . . xd)

for the corresponding d × d positive basis matrix, so L = XZd .

Define a submonoid of L+

S(X ) =

{
n∑

i=1

aix i : a1, . . . , an ∈ Z≥0

}
= XZd

≥0,

as well as the positive cone spanned by X

C(X ) =

{
n∑

i=1

aix i : a1, . . . , an ∈ R≥0

}
= XRd

≥0.
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Gaps

Define the set of gaps of S(X ) in L+ to be G (X ) := L+ \ S(X ).

Lemma 2

Let X = {x1, . . . , xd} be a positive basis for L, then

L+ ∩ C(X ) = S(X ), and so G (X ) = L+ \ C(X ).

In particular, the set G (X ) is infinite unless X is an orthogonal
basis, in which case L+ = S(X ).

From here on, assume that X is a positive non-orthogonal basis for
L. Since G (X ) is infinite, we can define

G (X , t) = {z ∈ G (X ) : ‖z‖ ≤ t} ,

and ask for asymptotic behavior of |G (X , t)| as t →∞.
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Counting gaps

Proposition 3

Let L ⊂ Rd be a lattice of full rank and X a positive basis for L.
Let Bd(t) be a ball of radius t > 0 centered at the origin in Rd

and write ωd for the volume of a unit ball in Rd . Let

ν(X ) =
Vold(C(X ) ∩ Bd(1))

ωd
,

be the measure of the solid angle of the cone C(X ). As t →∞,

|G (X , t)| =

(
ωd(1− ν(X )2d)

2d det L

)
td + O(td−1). (1)

Since C(X ) ( Rd
≥0, the solid angle ν(X ) < 1/2d , so the constant

in the main term of (1) is positive.
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Successive minima

Let
µ(L) = min

{
t ∈ R>0 : Bd(t) + L = Rd

}
be the covering radius of L.

For t ∈ R>0, let Cd(t) =
{
x ∈ Rd : |x | ≤ t

}
. We define three

different sets of successive minima with respect to the cube Cd(1).

• λi (L) = min {t ∈ R>0 : dimR spanR (L ∩ Cd(t)) ≥ i} .
• λi (L+) := min {t ∈ R>0 : dimR spanR (L+ ∩ Cd(t)) ≥ i} .
• For a positive basis X of L,

λi (L
+,X ) := min {t ∈ R>0 : dimR spanR (G (X ) ∩ Cd(t)) ≥ i} .

We obtain bounds on these successive minima in the spirit of Minkowski.
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Minkowski-type inequalities
First recall the classical inequalities of Minkowski and Jarnik:

d∏
i=1

λi (L) ≤ det L, µ(L) ≤
√
d

2

d∑
i=1

λi (L).

Theorem 4

Let L ⊂ Rd be a lattice of full rank. Then

λ1(L+) ≤ 2µ(L) + 1, λi (L
+) ≤ 2λi (L)(µ(L) + 1) ∀ 2 ≤ i ≤ d .

Further, assume that no d − 1 elements of X lie in a coordinate
hyperplane, then λd(L+,X ) ≤

max
1≤i≤d

max
1≤m≤d


(

max
1≤k≤d

[
xik∑d

j=1,j 6=i xjk

]
+ 1

)
d∑

j=1,j 6=i

xjm − xim

 .
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Application to totally real number fields

Let K be a totally real number field, d = [K : Q], and

σ1, . . . , σd : K → R

be the embeddings of K . Let NK be the field norm, TrK trace and
∆K the discriminant of K . Let OK be the ring of integers of K .

An ideal I ⊆ OK can be viewed as a Euclidean lattice of rank d with
respect to the symmetric bilinear form

〈α, β〉 = TrK (αβ) =
d∑

i=1

σi (α)σi (β).

Let I+ = {α ∈ I : σi (α) ≥ 0 ∀ 1 ≤ i ≤ d}, and let Z+ = Z ∩ O+
K .

Then I has a Z-basis contained in I+. Let β = {β1, . . . , βd} ⊂ I+

be such a Z-basis for I , which we call a positive basis.
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Application to totally real number fields

Let

S(β) =

{
d∑

i=1

ciβi : c1, . . . , cd ∈ Z+

}
⊆ I+

be the corresponding sub-semigroup, and define the set of gaps of
S(β) in I+ to be

G (β) = I+ \ S(β).

The basis β cannot be orthogonal, hence G (β) is infinite.

We write h for the absolute Weil height: for every α ∈ K ,

h(α) =
∏

v∈M(K)

max{1, |α|v}dv/d ,

where M(K ) = the set of all places of K , dv = [Kv : Qv ] is the local
degree of K at the place v ∈ M(K ). Notice that for each v | ∞,
dv = 1 since K is totally real.
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Application to totally real number fields

Theorem 5

Let I ⊆ OK be an ideal. Then there exist Q-linearly independent
elements s1, . . . , sd ∈ I such that

∏d
i=1 h(si ) ≤ NK (I )

√
|∆K |.

Further, there exist Q-linearly independent elements
α1, . . . , αd ∈ I+ such that

d∏
i=1

h(αi ) ≤
(

3d
√
d
)d (

NK (I )
√
|∆K |

)d+1
.

Let β = {β1, . . . , βd} ⊂ I+ be a positive basis for I and G (β) the
corresponding set of gaps. For each 1 ≤ i ≤ d , let
β′i =

∑d
j=1,j 6=i βj . Then there exist Q-linearly independent gaps

α1, . . . , αd ∈ G (β) such that

h(αi ) ≤
(
h(βi/β

′
i )
d + 1

)
h(β′i )

d , ∀ 1 ≤ i ≤ d .
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