
Math in the Grocery Aisle:

from stacking oranges to

constructing error-correcting

codes

Lenny Fukshansky

Claremont McKenna College

GEMS

February 28, 2009

1



What is the best way to pack oranges?

(from Wikipedia)

How do you stack perfectly round oranges

of equal size so that they take up the least

amount of space?

In other words, what is the densest packing

of oranges in a box?
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Packing density

Each orange of radius R has volume 4πR3

3 .

A cubic box with side length L has volume L3.

If N equal oranges of radius R are packed

into a cubic box with side length L, then the

proportion of space in the box occupied by

the oranges is

Total volume of oranges

Volume of the box
=

4πR3N

3L3
.

The larger is L, the larger is N . Then the

density of an arrangement of oranges is the

value of this ratio as L becomes very large,

that is as the box grows unboundedly.

What arrangement of oranges gives you high-

est possible density? What is this highest

possible density?
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The big conjecture

The highest possible density ≈ 74%, which is

achieved by the face-centered cubic packing:

FCC packing: mathPAD Online, vol. 15

(2006)
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Historical note

From Wikipedia:

The conjecture is named after Johannes Ke-

pler, who stated the conjecture in 1611 in

Strena sue de nive sexangula (On the Six-

Cornered Snowflake). Kepler had started to

study arrangements of spheres as a result of

his correspondence with the English mathe-

matician and astronomer Thomas Harriot

in 1606. Harriot was a friend and assistant

of Sir Walter Raleigh, who had set Har-

riot the problem of determining how best to

stack cannon balls on the decks of his ships.

Harriot published a study of various stacking

patterns in 1591, and went on to develop an

early version of atomic theory.
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Brief history

• In 1831, C. F. Gauss proved that the FCC

packing gives optimal packing density among

a large class of periodic (self-repeating) ar-

rangements

• In 1953, L. F. Toth showed that the proof

of Kepler’s conjecture can be reduced to a

finite (albeit very large) number of computa-

tions

• “Symmetric Bilinear Forms” by J. Mil-

nor and D. Husemoller, 1973, p. 35:

... according to [C. A.] Rogers, “many math-

ematicians believe and all physicists know that

the density cannot exceed π√
18

”
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Done!

In 1998, T. C. Hales announced the proof,

which was checked by a team of mathemati-

cians, and finally published in 2005/2006 in

the Annals of Mathematics (overview: 120

pages) and Discrete and Computational Ge-

ometry (full version: 265 pages); a part of it

was done in collaboration with (Hales’ grad-

uate student at the time) S. P. Ferguson.

(from Wikipedia)
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In the news

(from New York Times, April 6, 2004)
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A similar problem in the plane

The two-dimensional analogue of Kepler’s con-

jecture states that the best circle packing

in the plane is the hexagonal arrangement,

which gives density ≈ 90%:

Lattices, Linear Codes, and Invariants,

Part I, N. D. Elkies, AMS Notices, vol. 47

no. 10

This was proved by A. Thue in 1910 (a dif-

ferent proof was also given by L. F. Toth in

1940).
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A comparison study

Here you can compare two different circle

packing arrangements in the plane, and ob-

serve that the hexagonal is better than the

square:

(from MathWorld)

The gaps between the circles are bigger in

the square packing, meaning that the hexag-

onal packing is denser.
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An application: error-correcting codes

Suppose we want to transmit data in en-

coded format from a transmitter to a re-

ceiver over a noisy channel.

(from Wikipedia)

To transmit information, we want to encode

it first using a collection of codewords, so

that:

• The data is compressed to make the trans-

mission fast.

• Our encoding allows the receiver to self-

correct errors that happen in the channel.
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Transmission with encoding

A more detailed picture of our transmission

procedure looks like this:

Question: Why is this needed?
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Is this used?

Error-correcting codes are used in:

• Telephone communications

• Cell phones

• Radio and TV transmission

• Recording and playing a CD

• Data transmission from satellite

• Compressing / storing data on a computer

And many, many other engineering applica-

tions!

Question: How do we construct such codes?
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A geometric idea
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A geometric idea
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Why circles?

Why do we use circles and not, for example,

squares, triangles, or rectangular boxes?

The circle (and more generally, sphere in higher

dimensions) has the simplest algebraic de-

scription, which turns out to be most con-

venient for the correction algorithm:

A circle of radius R centered at the point

P = (a, b) is the set of all points (x, y) in the

plane, whose distance from P is at most R,

namely

(x− a)2 + (y − b)2 ≤ R2.

This is very easy to use!
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Does the arrangement of circles matter?

Each codeword in our code corresponds to
the center of a circle in a packing arrange-
ment.

The size of the code used in data transmis-
sion is the side length L of the square box,
which fits all the circles corresponding to our
codewords.

The smaller is L, the faster we can transmit
the information.

The higher is packing density of our circle
arrangement, the more circles we can fit into
the box of the same size.

Therefore efficient packing arrangements
allow to transmit more data in the same amount
of time.

For even more efficient data transmission with
error-correcting codes, dense sphere pack-
ing arrangements in higher dimensions can
be used.
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