
LATTICE POINTS IN HOMOGENEOUSLY EXPANDING COMPACT DOMAINS

Lenny Fukshansky

����������	�
����
We state two problems in the general direction of counting lattice points in a compact domain.

A variety of interesting and important questions in geometric combinatorics and in geometry of numbers
is connected to counting integer lattice points in compact subsets of a Euclidean space. In case such a subset
is a rational polyhedron, the problem can be reformulated in terms of Ehrhart polynomial. In a general
situation, however, one often has to rely on estimates of asymptotic nature. A good example of such an
estimate is presented by S. Lang in Theorem 2 on p. 128 of [3]. We state it here. In the rest of this note we
assume that N > 1 is an integer.

Theorem #1, ([3]). Let D be a compact subset of R
N , and let L be a lattice of rank N in R

N with
fundamental domain F . Assume that the boundary ∂D of D is Lipschitz-parametrizable. Then for each
positive t ∈ R the number of points of L in tD is given by the following asymptotic formula:

(1) |L ∩ tD| =
Vol(D)

Vol(F )
tN + O(tN−1),

where Vol stands for volume in R
N , and the constant in O depends on L, N , and Lipschitz constants.

We recall that the condition that ∂D is Lipschitz-parametrizable means that there exists a finite collection
of maps ϕj : [0, 1]N −→ ∂D, the union of images of which covers ∂D and there exists a constant K such
that for all x, z ∈ [0, 1]N

|ϕj(x) − ϕj(z)| ≤ K|x − z|,

for each j, where | | stands for the sup-norm on R
N , i.e. |x| = max1≤i≤N |xi|. The constant K is called the

associated Lipschitz constant.

Notice that the main term in the upper bound in (1) is explicit and easily computable, but the error
term is implicit. Loosely speaking, the main term of such an asymptotic estimate counts the number of
“interior points” of L in D, i.e. points that are away from the boundary, and the error term accounts for
the points near the boundary. For practical applications it is important to be able to explicitly estimate the
error term. Such an estimate was carried out for instance by H. Davenport in [1] (see also [5] for a very
nice account and generalizations of Davenport’s theorem). However Davenport’s bound on the error term
depends on projection volumes of D onto certain subspaces of R

N as well as determinants of projections of L
onto these subspaces. These are hard to compute. In some situations one would prefer perhaps cruder, but
more tractable bounds on the error term. An alternative approach to this problem is to try to “quantify”
the original argument in Lang’s theorem. This has been partially done by P. G. Spain in [4]. We briefly
outline this approach here and ask some further questions.

We start by sketching out the main idea of proof of Theorem #1. One proceeds by noticing that for each
positive real number t

m(t) ≤ |L ∩ tD| ≤ m(t) + b(t),
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where

(1) m(t) = number of x ∈ L such that F + x ⊆ interior of of tD,
(2) b(t) = number of x ∈ L such that F + x intersects ∂(tD).

It is obvious that

m(t) ≤
Vol(tD)

Vol(F )
=

Vol(D)

Vol(F )
tN ,

which produces the main term. In order to produce the error term one needs to estimate b(t). This
unfortunately is not so easy. Lang only proves that b(t) = O(tN−1) using the fact that the boundary ∂(tD)
of tD is Lipschitz-parametrizable, but does not exhibit any explicit upper bound. Although, as we discussed
above, there are other methods for estimating the error term, the quantity b(t) seems to be interesting in
its own right. It can, for instance, be related to a covering problem, namely: how many translates of the
closure of the fundamental domain F does it take to cover the the compact domain tD? Such a number can
again be approximated by the expression m(t) + b(t) as above. The following estimate for b(t) in the special
case when L = Z

N was produced by P G. Spain.

Theorem #2, ([4]). Let D be as in Theorem #1, so that the boundary ∂D is Lipschitz-parametrizable with
Lipschitz constant K. Let L = Z

N . Let F be the fundamental domain of L with respect to the standard basis,
and let b(t) as above be the number of translates of F that have nonempty intersection with ∂(tD) where
t ≥ 1/K. Then

(2) b(t) ≤ 2N(Kt + 1)N−1,

and therefore

(3) |ZN ∩ tD| ≤ Vol(D)tN + 2N (Kt + 1)N−1 = Vol(D)tN + 2N

N−1
∑

i=0

Kiti.

Problem #1. Provide an explicit bound on b(t) as in Theorem #2 for a general lattice L.

Perhaps one can modify Spain’s argument to produce a solution to Problem #1. Notice that the upper
bound on |L∩ tD| as it comes out in (3) is a polynomial in t whose coefficients depend on volume of D and
on the Lipschitz constant K. This suggests a certain analogy with Ehrhart polynomial: one may look for
polynomial upper and lower bounds on |L ∩ tD| for some more or less general instances of L and D. Here
is an example for a simple choice of D when L is any sublattice of Z

N of full rank. Let

CN
t = {y ∈ R

N : max{|y1|, ..., |yN |} ≤ t},

that is CN
t is a cube with side length 2t centered at the origin in R

N .

Theorem #3, ([2]). Let Λ ⊆ Z
N be a lattice of full rank in R

N of determinant ∆. Then for each point z

in R
N we have

(4)

(

2N

∆

)

tN ≤ |Λ ∩ (CN
t + z)| ≤

(

2t

∆
+ 1

)

(2t + 1)N−1 =

(

2N

∆

)

tN +

N−1
∑

i=1

2i

(

1

∆
+ 1

)

ti + 1.

In [2] an analogous bound for a rectangular box instead of a cube is also produced; the result of Theorem
#3 is extended to lattices of not full rank and to certain modules over the ring of algebraic integers in a
number field, viewed as Z-modules.

Problem #2. Produce explicit polynomial bounds like (4) for more general choices of compact domain D.
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