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Abstract. Assuming an integral quadratic polynomial with nonsingular qua-

dratic part has a nontrivial zero on an integer lattice outside of a union of finite-
index sublattices, we prove that there exists such a zero of bounded norm and

provide an explicit bound. This is a contribution related to the celebrated

theorem of Cassels on small-height zeros of quadratic forms, which builds on
some previous work in this area. We also demonstrate an application of these

results to the problem of effective distribution of angles between vectors in the

integer lattice.

1. Introduction and statement of results

Let n ≥ 2 and let

F (x,y) =

n∑
i=1

n∑
j=1

fijxiyj ∈ Z[x,y]

be a symmetric bilinear form in 2n variables with integer coefficients fij = fji, and
let F (x) := F (x,x) be the corresponding integral quadratic form in n variables.
We say that F is isotropic over Z if there exists a point 0 ̸= z ∈ Zn such that
F (z) = 0. A classical 1955 theorem of Cassels [2] (see also §6.8 of [3]) asserts that
an isotropic integral quadratic form in n variables has a nontrivial integral zero z
of small size. Specifically, we will use the norms

|z| = max
1≤i≤n

|zi|, ∥z∥ =
(
z21 + · · ·+ z2n

)1/2
to measure the size of z, so that |z| ≤ ∥z∥ ≤

√
n |z|. Then the bound obtained by

Cassels is of the form

(1) |z| ≪ |F |
n−1
2 ,

where |F | = max1≤i,j≤n |fij | and the constant in the Vinogradov notation ≪ de-
pends only on n. Cassels’ theorem has opened a lively new avenue of research
into the effective arithmetic theory of quadratic forms; see [7] for a survey of many
results by different authors in this general direction.

Notice that the questions of existence of integral or rational zeros for the qua-
dratic form F are equivalent. On the other hand, these questions become quite
different for inhomogeneous quadratic equations. Let us write F = (fij)1≤i,j≤n for
the n× n symmetric coefficient matrix of F , then

F (x,y) = x⊤Fy.
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From here on, we will assume that the form F is regular, meaning that the coefficient
matrix F is nonsingular. Define an inhomogeneous quadratic polynomial in n
variables x = (x1, . . . , xn) as

Q(x) = F (x) + L(x) + t,

where F (x) is a quadratic form as above, L(x) =
∑n

i=1 ℓixi is a linear form with
integer coefficients, and t ∈ Z. Since F is regular, we will refer to this Q as regular
too. We write |L| for max1≤i≤n |ℓi| and set |Q| = max{|F |, |L|, |t|}. Masser in [12]
proved the existence of small-size rational solutions for an equation Q(x) = 0 with
the bound being in terms of |Q|, assuming that Q is isotropic over Q. Our main
interest in this paper, however, is in integer solutions. Assuming that n ≥ 3 and
Q is isotropic over Z, Dietmann proved in [5] that there exists z ∈ Zn such that
Q(z) = 0 and

(2) |z| ≪ |Q|ρ(n),

where

(3) ρ(n) =


2100 if n = 3,

84 if n = 4,

5n+ 19 + 74/(n− 4) if n ≥ 5

and the constant in upper bound of (2) depends only on n and is effectively com-
putable. In the case n = 2, Kornhauser [10] proved under the same conditions that
Q(x) = 0 has an integer solution z with

(4) |z| ≤ (28|Q|)10|Q|,

and showed that in the binary case an upper bound on |z| that would be polynomial
in Q is, in general, not possible.

We want to focus on the distribution of small-size zeros of integral quadratic poly-
nomials. Specifically, one can speculate that if these zeros are “well-distributed”,
in some sense, it should not be easy to “cut them out” by a finite collection of
sublattices of the integer lattice. In particular, Theorem 1.5 of [4] implies that if
a regular isotropic integral quadratic form Q assumes the value t ∈ Z on a rank-k
lattice Λ ⊆ Zn, 3 ≤ k ≤ n and Ω1, . . . ,Ωm ⊂ Λ are sublattices of rank k − 1, then
Q(z) = t for some small-size point z ∈ Λ \ (

⋃m
i=1 Ωi), with an explicit bound on

|z|. In other words, the equation Q(x) = t has solutions of controllably small size
avoiding any finite union of sublattices of smaller rank. A key observation implic-
itly used in the proof of this result is a certain “projective nature” of the problem:
there exist points z ∈ Λ such that αz ̸∈ (

⋃m
i=1 Ωi) for any α ∈ Z. This is due

to the assumption that the sublattices Ω1, . . . ,Ωm have smaller rank than Λ. On
the other hand, if their rank were also k, then all of them would have finite index
in Λ and hence for any z ∈ Λ there exist integers α1, . . . , αm so that αiz ∈ Ωi

for every 1 ≤ i ≤ m. This observation makes the method of [4] unusable for the
case of sublattices of finite index, which constitute an “inhomogeneous” situation,
in a certain sense. The main result of our present paper addresses precisely this
situation using a rather different method.

Theorem 1.1. Let Λ ⊆ Zn be a sublattice of rank k, 2 ≤ k ≤ n. Let Ω1, . . . ,Ωm ⊂
Λ be proper sublattices of finite indices and let Ω =

⋂m
j=1 Ωj be their intersection

sublattice, which then also has a finite index in Λ. Assume that Q is regular and



INTEGRAL ZEROS OF QUADRATIC POLYNOMIALS AVOIDING SUBLATTICES 3

there exists some point z ∈ Λ \
(⋃m

j=1 Ωj

)
such that Q(z) = 0. If k ≥ 3, then there

exists such z with

(5) |z| ≪ det(Ω)2ρ(k)+1|Q|ρ(k),
where ρ(k) is given by (3) with n replaced by k. If k = 2, then there exists such z
with

(6) |z| ≪ det(Ω)
(
2408(det(Ω))2|Q|

)860n2(det(Ω))2|Q|
,

and the constants in upper bounds of (5) and (6) depend only on n and k and are
effectively computable.

We prove Theorem 1.1 in Section 2. Our argument uses Hermite’s inequality to
select a “short” basis for Λ and then a variant of a normal form for a corresponding
basis for the intersection lattice Ω. This allows us to choose “short” coset repre-
sentatives of Ω in Λ and reduce our problem to a search for small-size integer zero
of a regular integral quadratic polynomial. We then use Dietmann’s theorem.

Our method also allows for a simple proof of existence of a small-size point in our
lattice Λ outside of a finite union of finite-index sublattices. A more general version
of this problem was previously considered by Henk and Thiel in [9] and their bound
is generally better than ours. We still record our observation in Corollary 2.1 only
because it is a particularly simple alternative proof.

In Section 3, we show an application of the bounds on zeros of quadratic equa-
tions discussed above to the problem of effective distribution of angles between
vectors in the integer lattice Zn. Specifically, fixing a vector a ∈ Zn and assuming
that there exists some vector b ∈ Zn making a prescribed angle θ with a, one can
ask for such a vector of bounded norm. A similar question can be asked with the
additional condition that the vector b avoids a union of finite-index sublattices. We
discuss these questions and derive respective bounds in Corollaries 3.3 and 3.4. We
are now ready to proceed.

2. Proof of Theorem 1.1

Let us set ∆ = det(Λ) and start by selecting a basis for Λ. Hermite’s inequality
(see, e.g., [11], Section 2.2) guarantees that there exists a basis a1, . . . ,ak for Λ
such that

(7) max
1≤i≤k

|ai| ≤
k∏

i=1

|ai| ≤
k∏

i=1

∥ai∥ ≤
(
4

3

) k(k−1)
2

∆.

The first inequality follows from the fact that each ai ∈ Zn, and hence |ai| ≥ 1.
Now, there exists a basis b1, . . . , bk for Ω so that

b1 = v11a1

b2 = v21a1 + v22a2

. . . . . . . . . . . . . . . . . . . . . . . .
bk = vk1a1 + · · ·+ vkkak,

where all vij ∈ Z and 0 ≤ vij < vii for all 1 ≤ j < i ≤ k (see Section I.2 of [1]). Let
us write di = [Λ : Ωi] > 1 for each 1 ≤ i ≤ m, then d := [Λ : Ω] ≤ d1 · · · dm. With
this notation, we have ∏

i=1

vii = d = |Λ/Ω|
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is the number of cosets of Ω in Λ. In particular, since all the vij are positive integers,
this implies that

max
1≤i,j≤k

vij ≤ d.

Let us write c1, . . . , cd for the coset representatives of the form c1 = 0 and

(8) 0 ̸= ci =

k∑
j=1

qijaj , 0 ≤ qij < vii,

for all 2 ≤ i ≤ d. Then notice that

(9) max
1≤i≤k

|bi| ≤ k

(
max
1≤i≤k

vii

)(
max
1≤i≤k

|ai|
)

≤
(
4

3

) k(k−1)
2

kd∆,

and analogously

(10) max
2≤i≤k

|ci| ≤ k

(
max

1≤i,j≤k
qij

)(
max
1≤i≤k

|ai|
)

≤
(
4

3

) k(k−1)
2

kd∆.

Let us write B = (b1 . . . bk) for the n × k matrix, whose columns are the basis
vectors b1, . . . , bk for Ω. Notice that every x ∈ Λ can be written in the form

(11) x = ci +

k∑
j=1

xjbj = ci +Bx′,

for some 2 ≤ i ≤ d and x′ := (x1, . . . , xk)
⊤ ∈ Zk. Since Bx′ ∈ Ωj for every

1 ≤ j ≤ m, we have x ̸∈
⋃m

j=1 Ωj if and only if the corresponding ci ̸∈
⋃m

j=1 Ωj .
Hence, the equation

Gi(x1, . . . , xk) := Q

ci +

k∑
j=1

xjbj


=

n∑
r=1

n∑
s=1

frs

cir +

k∑
j=1

bjrxj

cis +

k∑
j=1

bjsxj


+

n∑
r=1

ℓr

cir +

k∑
j=1

bjrxj

+ t = 0

has a solution in integers x1, . . . , xk for some 2 ≤ i ≤ d. Fix this i, and let us
crudely estimate |Gi|, using (9) and (10):

|Gi| ≤
(
n2(k + 1)2 + n(k + 1) + 1

)
|Q|max

{
|ci|2, |ci| max

1≤j≤k
|bj |, max

1≤j≤k
|bj |2

}

≤
(
4

3

) 2k(k−1)
2 (

n2(k + 1)2 + n(k + 1) + 1
)
k2d2∆2|Q|.(12)

Now, Gi(x
′) = 0 is an inhomogeneous quadratic equation in k variables with inte-

ger coefficients which has an integer solution. Further, the quadratic part of this
equation can be written as

x′⊤(B⊤FB)x′,
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where the k × k coefficient matrix B⊤FB is nonsingular. Then, by a theorem of
Dietmann [5] (see inequality (2) above), there exists a point z′ ∈ Zk such that
Gi(z

′) = 0 and

(13) |z′| ≪

{
(28|Gi|)10|Gi| if k = 2,

|Gi|ρ(k) if k ≥ 3,

where the implied constant is 1 if k = 2 and depends only on k if k ≥ 3, and ρ(k) as

in (3). The corresponding z as in (11) is then a zero ofQ contained in Λ\
(⋃m

j=1 Ωj

)
.

Combining (11) with (10) and (9), it follows that

(14) |z| ≤ |ci|+ |Bz′| ≤
(
4

3

) k(k−1)
2

kd∆+ k|B||z′| ≤
(
4

3

) k(k−1)
2

kd∆(1 + k|z′|).

Observe that d∆ = det(Ω). The bound (5) now follows upon combining (14)
with (13) and (12). In the case k = 2, we presented a slightly weaker bound than
actually follows from our inequalities in the interest of a simpler looking result. This
completes the proof of Theorem 1.1. □

We also want to remark that our method allows for a simple observation on
the basic problem of finding short vectors in a lattice outside of a collection of
sublattices. In the case of sublattices of lower rank, this problem was originally
treated in [6]. More recently, Henk and Thiel [9] considered this problem in the
case of sublattices of finite index. Specifically, Theorem 1.2 of [9] applied to our
situation states that, assuming Λ ̸⊆

⋃m
i=1 Ωi, there exists z ∈ Λ \

⋃m
i=1 Ωi with

(15) |z| < det(Ω)

λ1(Ω)k−1

(
m∑
i=1

1

di
− m− 1

d
+

λ1(Ω)
k

det(Ω)

)
,

where λ1(Ω) = min{|x| : x ∈ Ω \ {0}} is the first successive minimum of Ω with
respect to the sup-norm | |. This result was obtained using a careful analysis and
volume computations on the torus group Rk/Ω. On the other hand, our proof of
Theorem 1.1 suggests a very simple argument producing a bound for such a point z,
albeit with weaker than (15).

Corollary 2.1. Let Λ ⊆ Zn be a sublattice of rank k, 2 ≤ k ≤ n, and let
Ω1, . . . ,Ωm ⊂ Λ be sublattices of finite indices. Let Ω =

⋂m
j=1 Ωj, so Ω ⊂ Λ is

also a sublattice of finite index. Assume that Λ ̸⊆
⋃m

j=1 Ωj, then there exists a

point z ∈ Λ \
(⋃m

j=1 Ωj

)
such that

|z| ≤
(
4

3

) k(k−1)
2

k det(Ω).

Proof. Since Λ ̸⊆
⋃m

j=1 Ωj , at least one of the coset representatives c1, . . . , cd con-

structed in (8) above has to be in Λ \
(⋃m

j=1 Ωj

)
. Take z to be that coset repre-

sentative, then the bound on |z| follows from (10). □



6 LENNY FUKSHANSKY AND SEHUN JEONG

3. Angular distribution in Zn

In this section, we apply the results on small-norm zeros of integral quadratic
equations to the problem of effective distribution of angles between vectors in Zn.
Specifically, let us write ∠(a, b) for the angle between two vectors a, b ∈ Zn and
define

Θn = {∠(a, b) : a, b ∈ Zn}

to be the set of all possible angles between such vectors. Fixing a particular vector
a ∈ Zn, let us also write

Θn(a) = {∠(a, b) : b ∈ Zn} .

It is established in [13] that Θn = Θn(a) for every a ∈ Zn whenever n = 2 or n ≥ 4,
although this is not the case when n = 3. In particular, when n ≥ 5,

Θn(a) = {π/2} ∪
{
θ : tan2 θ ∈ Q

}
for each a ∈ Zn. For n ≤ 4, an integer vector making an assumed angle θ with
a can be fairly explicitly described, as shown in [13], so we will focus here on the
situation n ≥ 5 where the results of [13] are less explicit (relying on Meyer’s theorem
instead; see, e.g., §6.1 of [3]). Assuming θ ∈ Θn(a), there can exist multiple vectors
b ∈ Zn such that ∠(a, b) = θ. If θ = π/2, then all such vectors are characterized
as solutions to the linear equation

∑n
i=1 aixi = 0, however the situation is more

interesting when θ ̸= π/2. Here is our first observation in this direction.

Lemma 3.1. Let n ≥ 5 and a = (a1, . . . , an)
⊤ ∈ Zn be a nonzero vector and write

t = ∥a∥2 ∈ Z. Let π/2 ̸= θ ∈ Θn(a), so tan2 θ = q/p ∈ Q. Then ∠(a, b) = θ for
some b ∈ Zn if and only if b is a nontrivial zero of the quadratic form

(16) Qa,θ(x) = pt

n∑
i=1

x2
i − (p+ q)

(
n∑

i=1

aixi

)2

.

Proof. Notice that ∠(a, b) = θ if and only if

cos θ =
a · b

∥a∥∥b∥
,

where a · b =
∑n

i=1 aibi, ∥a∥ =
√
t, and ∥b∥ =

(∑n
i=1 b

2
i

)1/2
. Then

(17)
q

p
= tan2 θ =

1− cos2 θ

cos2 θ
=

t
∑n

i=1 b
2
i − (

∑n
i=1 aibi)

2

(
∑n

i=1 aibi)
2 ,

which is equivalent to saying that b is a zero of Qa,θ(x). □

Now notice that (16) can be expanded as

Qa,θ(x) = pt

n∑
i=1

x2
i − (p+ q)

n∑
i=1

n∑
j=1

aiajxixj ,

so

(18) |Qa,θ| ≤ max{pt, 2(p+ q)aiaj : 1 ≤ i, j ≤ n} < 2(p+ q)∥a∥2,
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and the symmetric coefficient matrix of Qa,θ is

Aa,θ =


p∥a∥2 − (p+ q)a21 −(p+ q)a1a2 . . . −(p+ q)a1an

−(p+ q)a1a2 p∥a∥2 − (p+ q)a22 . . . −(p+ q)a2an
...

...
. . .

...
−(p+ q)a1an −(p+ q)a2an . . . p∥a∥2 − (p+ q)a2n

 .

Lemma 3.2. detAa,θ = −pn−1q∥a∥2n.

Proof. Notice that Θn(a) = Θn, i.e. it does not depend on a ̸= 0. This means
that for any nonzero vector a there exists b so that (17) holds for the given q/p.
Picking such a and b, there exists a real orthogonal matrix Ua such that

a = ∥a∥Uae1,

where e1 = (1, 0, . . . , 0), and then we can write the vector b = Uab
′ for some

appropriate b′ ∈ Zn. Then θ = ∠(a, b) = ∠(e1, b
′), and we can rewrite (17) as

follows:

q

p
=

∥a∥2∥b∥2 − (a · b)2

(a · b)2
=

∥a∥2∥Uab
′∥2 − ∥a∥2

(
e⊤1 (U

⊤
a Ua)b

′)2
∥a∥2

(
e⊤1 (U

⊤
a Ua)b

′)2
=

∑n
i=1(b

′
i)

2 − (b′1)
2

(b′1)
2

,

so b′ is a zero of the quadratic form Qe1,θ(x
′) = p

∑n
i=1(x

′
i)

2− (p+q)(x′
1)

2. In fact,

Qa,θ(x) = Qe1,θ(∥a∥Uax
′) = ∥a∥2Qe1,θ(Uax

′),

and so

detAa,θ = ∥a∥2n det(U⊤
a Ae1,θUa) = ∥a∥2n detAe1,θ,

where

Ae1,θ =


−q 0 . . . 0
0 p . . . 0
...

...
. . .

...
0 0 . . . p

 .

The conclusion follows. □

This quadratic form is closely related to the nonsingular indefinite form defined
in equation (2.2) of [13]. Further, by Lemma 3.2, detAa,θ ̸= 0, so Qa,θ is also
nonsingular, and it is isotropic over Z by Lemma 3.1 above, since we are assuming
that there exists a vector b ∈ Zn so that ∠(a, b) = θ. Then we obtain the following
effective observation as an immediate consequence of Cassels’ bound (1).

Corollary 3.3. Let n ≥ 5 and 0 ̸= a ∈ Zn. Let θ ∈ Θn, so that tan2 θ = q/p ∈ Q.
There exists a vector b ∈ Zn such that ∠(a, b) = θ and

(19) |b| ≪
(
2(p+ q)∥a∥2

)n−1
2 ,

where the implied constant in the upper bound is explicitly computable and depends
only on n.

Proof. Combining (1) with (18) above, we obtain a point b ∈ Zn with sup-norm
bounded as in (19) so that Qa,θ(b) = 0. Hence, by Lemma 3.1, ∠(a, b) = θ. □
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Further, we can use our Theorem 1.1 to obtain a bound on the sup-norm of a
vector b making a given angle with a outside of a union of sublattices, provided
such a vector exists.

Corollary 3.4. Let n ≥ 5 and 0 ̸= a ∈ Zn. Let θ ∈ Θn, so that tan2 θ = q/p ∈ Q.
Let Ω1, . . . ,Ωm ⊂ Zn be proper sublattices of finite indices such that there exists
b ∈ Zn \ (

⋃m
i=1 Ωi) with ∠(a, b) = θ. Then there exists such a vector with

(20) |b| ≪ det(Ω)2ρ(n)+1
(
2(p+ q)∥a∥2

)ρ(n)
,

where Ω =
⋂m

i=1 Ωi and the implied constant in the upper bound is explicitly com-
putable and depends only on n.

Proof. Combining Theorem 1.1 with (18) above, we obtain a point b ∈ Zn \
(
⋃m

i=1 Ωi) with sup-norm bounded as in (20) so that Qa,θ(b) = 0. Hence, by
Lemma 3.1, ∠(a, b) = θ. □
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