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Abstract. Let K be a number field of degree d that contains elements of

degree m for some divisor m of d. Then every ideal I in the ring of integers

OK contains infinitely many elements of degree m. We prove a bound on
the smallest height of such an element in I. As a corollary of our result in

the case m = d, we obtain small-height primitive elements for K in every

ideal, an observation closely related to a 1998 conjecture of W. Ruppert. Our
bound depends on the degree of the element, degree and discriminant of the

number field, and the norm of the ideal. We investigate the optimality of our

bound for quadratic number fields, proving that in that case dependence on
the discriminant is sharp. This dependence differs from Ruppert’s bound for

quadratic fields without restriction to an ideal. Finally, in the case of a totally
real field, we obtain a height bound for a totally positive primitive element in

an ideal.

1. Introduction and statement of results

Let K be a number field of degree d := [K : Q] ≥ 1. Let σ1, . . . , σd : K ↪→ C be
the embeddings of K, ordered so that the first r1 of them are real and the remaining
2r2 are conjugate pairs of complex embeddings so that σr2+j = σ̄j for

d = r1 + 2r2.

An element α ∈ K is called primitive if K = Q(α). This is equivalent to the
condition that degQ(α) = d, and hence there are infinitely many primitive elements
in K. A conjecture of Ruppert [7] asserts that there exists a primitive element
α ∈ K such that

h(α) ≤ Cd|∆K | 1
2d ,

where h is the absolute Weil height, ∆K is the discriminant of the number field K,
and Cd is a constant depending only on the degree d. Ruppert himself proved this
conjecture for quadratic number fields and for totally real fields of prime degree.
There has been quite a bit of later work on this conjecture; for instance, Vaaler
and Widmer [9] proved the conjecture for number fields with at least one real
embedding.

In this note, we consider a somewhat different, but related problem. Suppose
that m | d is such that K contains elements of degree m over Q. Let OK ⊂ K be
the ring of integers of K and let I ⊆ OK be an ideal in this ring. It is not difficult
to see that I contains infinitely many elements of degree m. We want to produce an
upper bound on the height of the “smallest” (with respect to height) such element
in I; naturally, we would expect this bound to depend on d, ∆K and the norm of
the ideal I, which we denote by NK(I).
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Theorem 1.1. Suppose that the number field K of degree d = r1 + 2r2 as above
contains an element α of degree m | d with q1 real algebraic conjugates and q2
complex pairs of complex algebraic conjugates. Then there exists such an α ∈ I
with

h(α) ≤
(
d(d− 3) + 2m+ 4

4

)(
2

d+m
2 −q1

πq2

)
NK(I)

√
|∆K |.

We review the necessary notation and technical tools in Section 2 and prove Theo-
rem 1.1 in Section 3. Our main tools are Minkowski embedding, height-bounds in-
equalities, Minkowski’s Successive Minima Theorem and a lemma on non-vanishing
of polynomials in the spirit of Alon’s Combinatorial Nullstellensatz. An immediate
corollary of our main result upon taking m = d, q1 = r1 and q2 = r2 is an upper
bound on the height of the smallest primitive element in a given ideal I, in the
spirit of Ruppert’s conjecture.

Corollary 1.2. Let the notation be as above. Then there exists α ∈ I such that
K = Q(α) and

h(α) ≤ d(d2 − d+ 4)

4

(
4

π

)r2

NK(I)
√
|∆K |.

We show that the dependence of our bound on |∆K | is optimal, at least in the
case of quadratic fields. In particular, it follows that if K = Q(α) is an imaginary
quadratic field and α ∈ OK , then h(α) ≫ |∆K |1/2. On the other hand, Ruppert’s
conjecture (proved by Ruppert himself [7] in the quadratic case) asserts that there
exists such α ∈ K with h(α) ≪ |∆K |1/4. It is unclear whether the dependence
of our bound on NK(I) is optimal. We produce the following bound for quadratic
number fields.

Theorem 1.3. Let D be a squarefree integer and let K = Q(
√
D) be a quadratic

number field. Let I ⊆ OK be an ideal with the canonical basis {a, b + gδ}, as
described in (11), so b < a. Let

hmin(I) = min {h(α) : α ∈ I,K = Q(α)} .
If D ̸≡ 1(mod 4), then

√
ag < hmin(I) ≤ g

(
b+

√
|∆K |/2

)
,

and additionally hmin(I) > g
√
|∆K |/2 if D < 0.

If D ≡ 1(mod 4), then

√
ag < hmin(I) ≤ g

(
(2b+ 1) +

√
|∆K |

2

)
,

and additionally hmin(I) > g
√
|∆K |/2 if D < 0.

To compare the bounds of Theorem 1.3 to that of Corollary 1.2, notice that

bg < ag =

{
NK(I) if D ̸≡ 1(mod 4),
2NK(I) if D ≡ 1(mod 4).

We review all the necessary notation and prove Theorem 1.3 in Section 4.

Now, suppose that K is a totally real number field, meaning that all of its
embeddings are real; this is equivalent to the condition that r1 = d and r2 = 0. An
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element α ∈ K is called totally positive if all of its algebraic conjugates are positive,
i.e. σj(α) > 0 for all 1 ≤ j ≤ d. For an ideal I ⊆ OK , we can define its semigroup
of totally positive elements as

I+ = {α ∈ I : σj(α) > 0 ∀ 1 ≤ j ≤ d} .

The investigation of elements of bounded height in I+ has been initiated in [5].
Here we use the results of [5] to prove a bound on the smallest height of a primitive
element in I+.

Theorem 1.4. Let the notation be as above. Then there exists α ∈ I+ such that
K = Q(α) and

h(α) ≤ 3dd
3d+2

2
d(d− 1)

2

(
NK(I)

√
|∆K |

)d+1

.

We prove Theorem 1.4 in Section 5. We are now ready to proceed.

2. Notation and heights

Continuing to set up the notation, notice that the space KR := K ⊗Q R can be
viewed as a subspace of{

(x,y) ∈ Rr1 × C2r2 : yr2+j = ȳj ∀ 1 ≤ j ≤ r2
} ∼= Rr1 × Cr2 ⊂ Cd,

where in the last containment each copy of R is identified with the real part of the
corresponding copy of C. Then KR is a d-dimensional Euclidean space with the
bilinear form induced by the trace form on K:

⟨α, β⟩ := TrK(αβ̄) ∈ R,

for every α, β ∈ K, where TrK is the number field trace on K. We also define the
sup-norm on KR by

|x| := max{|x1|, . . . , |xd|},
for any x ∈ KR, where |xj | stands for the usual absolute value of xj on C. Let
ΣK = (σ1, . . . , σd) : K ↪→ KR be the Minkowski embedding, then for any ideal
I ⊆ OK the image ΣK(I) is a lattice of full rank in KR. We define the determinant
of a full-rank lattice to be the absolute value of the determinant of any basis matrix
for the lattice, then

(1) det(ΣK(I)) = NK(I)|∆K |1/2,

as follows, for instance, from Corollary 2.4 of [2]. More generally, for a lattice
L ⊂ KR of rank m ≤ d with a basis x1, . . . ,xm, the determinant of L is given by

(2) det(L) = ∥x1 ∧ · · · ∧ xm∥ = det(X⊤X)1/2,

where X = (x1 . . . xm) is the corresponding basis matrix, ∥ ∥ is the Euclidean
norm on vectors over KR and ∧ stands for the wedge-product of vectors: the wedge
product x1 ∧ · · · ∧ xm is identified with the vector of Grassmann coordinates of

the matrix X under the lexicographic embedding into C(
d
m). The second equality

in (2) is a consequence of the Laplace identity (see [8], p.15). We have the following
useful technical lemma, which is a direct consequence of Lemma 8A on p.28 of [8].
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Lemma 2.1. Let L = spanZ{x1, . . . ,xm} be as above. Let V ⊂ KR be a k-
dimensional rational subspace with a basis y1, . . . ,yk consisting of vectors with
integer relatively prime coordinates. If L ∩ V ̸= {0}, then it is a lattice and

det(L ∩ V ) ≤ det(L)∥y1 ∧ · · · ∧ yk∥.

Next we normalize absolute values and introduce the standard height function.
Let us write M(K) for the set of places of K. For each v ∈ M(K) let dv = [Kv : Qv]
be the local degree, then for each u ∈ M(Q),

∑
v|u dv = d. We select the absolute

values so that | |v extends the usual archimedean absolute value on Q when v | ∞,
or the usual p-adic absolute value on Q when v ∤ ∞. With this choice, the product
formula reads ∏

v∈M(K)

|α|dv
v = 1,

for each nonzero α ∈ K. We define the multiplicative Weil height on algebraic
vectors α = (α1, . . . , αn) ∈ Kn as

h(α) =
∏

v∈M(K)

max{1, |α1|v, . . . , |αn|v}
dv
d ,

for all n ≥ 1. This height is absolute, meaning that it is the same when computed
over any number field K containing α1, . . . , αn: this is due to the normalizing
exponent 1/d in the definition. Hence we can compute height for points defined
over Q.

We will need a few technical lemmas. The first is a well-known property of
heights, which can be found, for instance, as Lemma 2.1 of [4].

Lemma 2.2. Let ξ1, . . . , ξm ∈ Q and x, . . . ,xm ∈ Qn
for m,n ≥ 1. Then

h

 m∑
j=1

ξjxj

 ≤ mh(ξ)

m∏
j=1

h(xj),

where ξ = (ξ1, . . . , ξm).

Next is Lemma 4.1 of [5]: while in that paper the lemma is stated for totally
real fields, its proof holds verbatim for any number field with our definition of
Minkowski embedding ΣK .

Lemma 2.3. For any α ∈ OK ,

1 ≤ h(α) ≤ |ΣK(α)|,

where | | stands for the sup-norm on KR, as above.

We also revisit the important principle that a polynomial that is not identically
zero cannot vanish “too much”. There are several versions of this principle in
the literature, including Alon’s celebrated Combinatorial Nullstellensatz [1]. The
following formulation, which is most convenient for our purposes follows easily from
Theorem 4.2 of [4].

Lemma 2.4. Let F be a field, n ≥ 1 and integer and v1, . . . ,vm ∈ Fn be linearly
independent vectors, 1 ≤ m ≤ n. Let P (x) := P (x1, . . . , xn) ∈ F [x1, . . . , xn] be a
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polynomial which is not identically zero with m := degP ≥ 1. Let S1, . . . , Sm ⊂ F
be sets with cardinalities |Sj | ≥ m+ 1 for every j. Then there exists a point

ξ = (ξ1, . . . , ξm) ∈ S1 × · · · × Sm,

such that P
(∑m

j=1 ξjvi

)
̸= 0.

3. Proof of Theorem 1.1

Suppose that the number field K has elements of degree m for some 1 < m < d,
then m must be a divisor of d. In this case, there must exist elements of degree m in
every ideal I ⊂ OK . Indeed, for every α ∈ K there exists a tα ∈ Z such that tαα ∈
OK and then NK(I)tαα ∈ I, while deg(NK(I)tαα) = deg(α) since NK(I)tα ∈ Z.
Fix an ideal I ⊂ OK and let α ∈ I have degree m, then α has precisely m distinct
algebraic conjugates. In other words, precisely m of the coordinates of the vector
ΣK(α) are distinct, meaning that α satisfies a system of d−m equations

(3) σik(α) = σjk(α), ∀ 1 ≤ k ≤ d−m,

for some collection of distinct indices {i1, . . . , id−m} ⊂ {1, . . . , d} and possibly re-
peating indices

{j1, . . . , jd−m} ⊂ {1, . . . , d} \ {i1, . . . , id−m}.
For this choice of indices,

V = {x ∈ KR : xik = xjk ∀ 1 ≤ k ≤ d−m}
be an m-dimensional subspace of KR. Then LK(I, V ) := ΣK(I) ∩ V is a lattice of
full rank in V , since for every Σ(α) ∈ V ,

ΣK(NK(I)tαα) = NK(I)tαΣK(α) ∈ LK(I, V ).

For each 1 ≤ k ≤ d − m define Jk = {i : σi(α) = σik(α)}. Write ei for the i-th
standard basis vector, and notice that the collection of distinct vectors among{

ejk +
∑
i∈Jk

ei : 1 ≤ k ≤ d−m

}
∪ {eℓ : ℓ ∈ {1, . . . , d} \ {i1, j1, . . . , id−m, jd−m}}

forms an integral relatively prime basis for V . For example, if d = 5, m = 3 and
the system (3) looks like

σ1(α) = σ2(α), σ3(α) = σ2(α),

then {i1, i2} = {1, 3}, {j1, j2} = {2, 2}, J1 = J2 = {1, 3}, and
{e2 + e1 + e3, e4, e5}

is a basis for V .
Let us write y1, . . . ,ym for these basis vectors and G(V ) for their wedge product,

viewed as a vector in C(
d
m). Then Lemma 2.1 implies that

(4) det(LK(I, V )) ≤ det(ΣK(I))∥G(V )∥.
Now, Lemma 5F(i) of [8] implies that

∥G(V )∥ ≤
m∏
i=1

∥yi∥,
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and if some yi is a sum of, say, t ≥ 2 distinct standard basis vectors, then

∥yi∥ =
√
t ≤ 2

t−1
2 .

For instance, in our example above, ∥e2 + e1 + e3∥ =
√
3 < 2

3−1
2 = 2. Combining

these observations with (4) and (1), we see that

(5) det(LK(I, V )) ≤ 2
d−m

2 NK(I)|∆K |1/2.

Let S be the set of d−m pairs of indices (ik, jk) for which (3) holds, and define
a polynomial

(6) PS(x1, . . . , xd) =
∏
a̸=b

(a,b)/∈S

(xa − xb) ∈ K[x1, . . . , xd].

This polynomial has degree
(
d
2

)
− |S| = d(d−3)+2m

2 and we see that if ΣK(α) ∈
LK(I, V ) is such that

PS (ΣK(α)) ̸= 0,

then α ∈ I has degree m. Since such ΣK(α) ∈ LK(I, V ) must exist, the polynomial
PS does not vanish identically on the lattice LK(I, V ).

Notice that in equation (3), embeddings on different sides of the equality are
either both real or both complex for each given k. Further, if σik(α) = σjk(α)
for some k, then σ̄ik(α) = σ̄jk(α), thus equations corresponding to complex em-
beddings in (3) come in conjugate pairs. Let s1 be the number of equations with
real embeddings in (3) and s2 be the number of conjugate pairs of equations with
complex embeddings. Then

d−m = s1 + 2s2,

and every α ∈ K that satisfies (3) has q1 = r1−s1 distinct real algebraic conjugates
and q2 = r2 − s2 distinct complex conjugate pairs of complex algebraic conjugates.
Define the set

U = {x ∈ V : |x| ≤ 1} ,
which is the Cartesian product of q1 intervals [−1, 1] and q2 circles of radius 1.
Hence, U is a convex 0-symmetric set with m-dimensional volume

Volm(U) = 2q1πq2 .

Let λ1, . . . , λm be the successive minima of U with respect to the lattice LK(I, V )
in V . Let v1, . . . ,vm ∈ LK(I, V ) be vectors corresponding to these successive
minima, respectively. Then, by Minkowski’s Successive Minima Theorem (see, for
instance [6], Section 9.1, Theorem 1) combined with (5), we have

(7)

m∏
j=1

|vj | =
m∏
j=1

λj ≤
2m det(LK(I, V ))

Volm(U)
≤

(
2

d+m
2 −q1

πq2

)
NK(I)|∆K |1/2.

Also, notice that if x ∈ ΣK(I) then x = (σ1(α), . . . , σd(α)) for some α ∈ I.
Then

1 =
∏

v∈M(K)

|α|dv
v =

∏
v∤∞

|α|dv
v ×

d∏
j=1

|σj(α)| ≤
d∏

j=1

|σj(α)|,

since α ∈ OK , and so |α|v ≤ 1 for each v ∤ ∞. This implies that

(8) |x| = max
1≤j≤d

|σj(α)| ≥ 1.
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Now, let c := d(d−3)+2m
2 and define T1 := {−[c/2] − 1, . . . , [c/2] + 1}, where [ ]

stands for integer part. Then |T1| ≥ c+1 and for every ξ ∈ T := Tm
1 , |ξ| ≤ c/2+1.

Lemma 2.4 guarantees that there exists ξ ∈ T such that the polynomial PS does
not vanish at the point

v(ξ) :=

m∑
j=1

ξjvj ∈ LK(I, V ).

Notice that

(9) |v(ξ)| ≤ m

(
max

1≤j≤m
|ξj |
)(

max
1≤j≤m

|vj |
)

≤
(
d(d− 3) + 2m+ 4

4

) d∏
j=1

|vj |,

by (8). Let α ∈ I be such that ΣK(α) = v(ξ). Then, combining (9) with (7) and
Lemma 2.3 yields Theorem 1.1.

4. Quadratic fields

In this section we review the necessary notation and prove Theorem 1.3. First
notice that for any number field K and α ∈ OK ,

h(α) =
∏
v|∞

max{1, |α|v}
dv
d ≥

∏
v|∞

|α|dv
v

 1
d

=

 d∏
j=1

|σj(α)|

 1
d

= NK(α)
1
d .

Now let D be a squarefree integer and K = Q(
√
D) be a quadratic field. Let

I ⊆ OK be an ideal. Then there exists a unique integral basis a, b+ gδ for I, called
the canonical basis, where

(10) δ =

{
−
√
D if K = Q(

√
D), D ̸≡ 1(mod 4)

1−
√
D

2 if K = Q(
√
D), D ≡ 1(mod 4),

and a, b, g ∈ Z≥0 such that

(11) b < a, g | a, b, and ag | NK(b+ gδ),

see Section 6.3 of [3] for further details. The embeddings σ1, σ2 : K → C are given
by

σ1(x+ y
√
D) = x+ y

√
D, σ2(x+ y

√
D) = x− y

√
D

for each x+y
√
D ∈ K, where D being positive or negative is determined by whether

K is a real or an imaginary quadratic field, respectively. The number field norm
on K is given by

NK(x+ y
√
D) = σ1(x+ y

√
D)σ2(x+ y

√
D) =

(
x+ y

√
D
)(

x− y
√
D
)
.

The discriminant of K is

(12) ∆K =

{
4D if K = Q(

√
D), D ̸≡ 1(mod 4)

D if K = Q(
√
D), D ≡ 1(mod 4),

and the norm of the ideal I as above is

(13) NK(I) =

{
ag if D ̸≡ 1(mod 4),
ag/2 if D ≡ 1(mod 4).

Observe that an ideal I as above can be written as I = gJ for the corresponding
ideal J = 1

g I ⊆ OK , since g | a, b. Hence we start by restricting our consideration
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to ideals with g = 1. Then the bound of Corollary 1.2 in the case of a quadratic
field can be written as

(14)
√
NK(α) ≤ h(α) ≪d a

√
|D|.

We will show that in this case the power on
√
D cannot in general be reduced. First

observe that an element α ∈ I is primitive if and only if it is of the form

α = xa+ y(b+ δ)

with x, y ∈ Z and y ̸= 0.

Case 1: Suppose D ∈ Z is squarefree, D ̸≡ 1 (mod 4) and K = Q(
√
D). Then

K is a real quadratic if D > 0 and K is an imaginary quadratic if D < 0. Take an
ideal

I = spanZ{a, b−
√
D} ⊂ OK

with a | NK(b−
√
D) = |b2 −D|. Then

NK(α) =
∣∣∣(xa+ y(b−

√
D)
)(

xa+ y(b+
√
D)
)∣∣∣

=
∣∣x2a2 + 2xyab+ y2(b2 −D)

∣∣ = a

∣∣∣∣x2a+ 2xyb+ y2
(
b2 −D

a

)∣∣∣∣ > a,(15)

where (b2 −D)/a ∈ Z. Further,

(16) NK(α) =
∣∣x2a2 + 2xyab+ y2(b2 −D)

∣∣ = ∣∣(xa+ yb)2 − y2D
∣∣ > |D|,

if D < 0. On the other hand,

h(α) =
∏

v∈M(K)

max{1, |α|v}
dv
2 =

∏
v|∞

max{1, |α|v}
dv
2 =

 2∏
j=1

max{1, |σi(α)|}

 1
2

≤ 1

2
(max{1, |σ1(α)|}+max{1, |σ2(α)|) ≤

1

2
(2 ·max{|σ1(α)|, |σ2(α)|})

= max{|σ1(α)|, |σ2(α)|} = max
{∣∣∣(xa+ yb)− y

√
D
∣∣∣ , ∣∣∣(xa+ yb) + y

√
D
∣∣∣}

≤ |x|a+ |y|b+ |y|
√
|D|.

Taking the minimum over all primitive elements α ∈ I, we see that

min{h(α) : α ∈ I,K = Q(α)} ≤ min{|x|a+ |y|b+ |y|
√
|D| : x, y ∈ Z, y ̸= 0}

≤ b+
√

|D|,(17)

where the last inequality is obtained by taking x = 0, y = 1. Putting together (14),
(15), (16) and (17), we obtain the D ̸≡ 1(mod 4) case of Theorem 1.3 in case g = 1.

Case 2: Suppose D ∈ Z is squarefree, D ≡ 1 (mod 4) and K = Q(
√
D). Again,

K is a real quadratic if D > 0 and K is an imaginary quadratic if D < 0. Take an
ideal

I = spanZ

{
a, b+

1−
√
D

2

}
⊂ OK
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with a | NK

(
(2b+1)−

√
D

2

)
= |(2b+1)2−D|

4 =
∣∣b2 + b− D−1

4

∣∣. Then
NK(α) =

∣∣∣∣∣
(
xa+ y

(
b+

1−
√
D

2

))(
xa+ y

(
b+

1 +
√
D

2

))∣∣∣∣∣
=

∣∣∣∣x2a2 + (2b+ 1)axy + y2
(
b2 + b− D − 1

4

)∣∣∣∣
= a

∣∣∣∣x2a+ (2b+ 1)xy +
y2

a

(
b2 + b− D − 1

4

)∣∣∣∣ > a,(18)

where 1
a

(
b2 + b− D−1

4

)
∈ Z. Further,

(19) NK(α) =
∣∣x2a2 + (2b+ 1)axy + y2(b2 + b+ 1/4)− y2D/4

∣∣ > |D|/4,

if D < 0. On the other hand,

h(α) ≤ max{|σ1(α)|, |σ2(α)|}

= max

{∣∣∣∣∣xa+ y

(
b+

1−
√
D

2

)∣∣∣∣∣ ,
∣∣∣∣∣xa+ y

(
b+

1 +
√
D

2

)∣∣∣∣∣
}

≤ |x|a+
|y|(2b+ 1)

2
+

|y|
√

|D|
2

.

Taking the minimum over all primitive elements α ∈ I, we see that

(20) min{h(α) : α ∈ I,K = Q(α)} ≤
(2b+ 1) +

√
|D|

2
,

where the inequality is obtained by taking x = 0, y = 1. Putting together (14),
(18), (19) and (20), we obtain the D ≡ 1(mod 4) case of Theorem 1.3 in case g = 1.

Proof of Theorem 1.3. Let I be an ideal with the canonical basis {a, b + gδ} and
J = 1

g I. Then for any α ∈ J and the corresponding gα ∈ I,

h(gα) =

 2∏
j=1

max{1, |σi(gα)|}

 1
2

≤ g

 2∏
j=1

max{1, |σi(α)|}

 1
2

= gh(α).

Further, NK(I) = gNK(J). Take α ∈ J be a primitive element of bounded height
as obtained above in Cases 1 and 2, then gα ∈ I is also a primitive element and
the result follows. □

5. Proof of Theorem 1.4

The argument here is similar to the proof of Theorem 1.1 in Section 3 above,
however instead of the Successive Minima Theorem we use a result from [5]. Specif-
ically, Theorem 1.3 of [5] asserts that there exist Q-linearly independent elements
β1, . . . , βd ∈ I+ such that

(21)

d∏
j=1

h(βj) ≤
(
3d

√
d
)d (

NK(I)
√
|∆K |

)d+1

.



10 LENNY FUKSHANSKY AND SEHUN JEONG

Notice that for any integers ξ1, . . . , ξd ≥ 0, we have

α(ξ) :=

d∑
j=1

ξjβj ∈ I+,

where ξ = (ξ1, . . . , ξd). As in Section 3, let m = d(d−1)
2 and define the set T1 :=

{0, . . . ,m}, so that |T1| = m + 1 and for each ξ ∈ T := T d
1 , |ξ| ≤ m. Again,

Lemma 2.4 guarantees that there exists ξ∗ ∈ T such that the polynomial

P (x1, . . . , xd) =
∏
j ̸=k

(xj − xk) ∈ K[x1, . . . , xd]

of degree
(
d
2

)
= d(d−1)

2 does not vanish at the point

ΣK (α(ξ∗)) =

 d∑
j=1

ξ∗j σ1(βj), . . . ,

d∑
j=1

ξ∗j σd(βj)

 .

This means that α(ξ∗) ∈ I+ is a primitive element. Now, combining Lemma 2.2
with (21), we obtain:

h(α(ξ∗)) = h

 d∑
j=1

ξ∗j βj

 ≤ dh(ξ∗)

d∏
j=1

h(βj)

≤ 3dd
3d+2

2
d(d− 1)

2

(
NK(I)

√
|∆K |

)d+1

,(22)

since ξ∗ ∈ Zd, and so h(x∗) ≤ |ξ∗| ≤ d(d−1)
2 . This yields Theorem 1.4.

References

[1] N. Alon. Combinatorial Nullstellensatz. Combin. Probab. Comput., 8 (1999), no. 1-2, pp.

7–29.
[2] E. Bayer Fluckiger. Upper bounds for Euclidean minima of algebraic number fields. J. Number

Theory, 121 (2006), no. 2, pp. 305–323.
[3] D. A. Buell. Binary Quadratic Forms. Springer-Verlag, 1989.

[4] L. Fukshansky. Algebraic points of small height missing a union of varieties. J. Number

Theory, 130 (2010), no. 10, pp. 2099–2118.
[5] L. Fukshansky and S. Wang. Positive semigroups in lattices and totally real number fields.

Adv. Geom., 22 (2022), no. 4, pp. 503–512.

[6] P. M. Gruber and C. G. Lekkerkerker. Geometry of Numbers. North-Holland Publishing Co.,
1987.

[7] W. M. Ruppert. Small generators of number fields. Manuscripta Math., 96 (1998), no. 1, pp.

17–22.
[8] W. M. Schmidt. Diophantine approximations and Diophantine equations. Lecture Notes in

Mathematics, 1467. Springer-Verlag, Berlin, 1991.

[9] J. D. Vaaler and M. Widmer. A note on generators of number fields. Diophantine methods,
lattices, and arithmetic theory of quadratic forms, Contemp. Math., 587 (2013), Amer. Math.

Soc., Providence, RI, pp. 201–211.

Department of Mathematics, 850 Columbia Avenue, Claremont McKenna College,
Claremont, CA 91711

Email address: lenny@cmc.edu

Institute of Mathematical Sciences, Claremont Graduate University, Claremont,
CA 91711

Email address: sehun.jeong@cgu.edu


	1. Introduction and statement of results
	2. Notation and heights
	3. Proof of Theorem 1.1
	4. Quadratic fields
	5. Proof of Theorem 1.4
	References

