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Abstract. Let K be a number field of degree d so that K/Q is a Galois

extension. The normal basis theorem states that K has a Q-basis consisting
of algebraic conjugates, in fact K contains infinitely many such bases. We

prove an effective version of this theorem, obtaining a normal basis for K/Q
of bounded Weil height with an explicit bound in terms of the degree and

discriminant of K. In the case when d is prime, we obtain a particularly good

bound using a different method.

1. Introduction and statement of results

LetK be a number field of degree d = [K : Q] ≥ 1 andOK its ring of integers. An
element θ ∈ K is called primitive if K = Q(θ). This is equivalent to the condition
that degQ(θ) = d, and hence, there are infinitely many primitive elements in K.
A conjecture of Ruppert [13] (also see [14] for the convenient formulation we are
using) asserts that there exists a primitive element θ ∈ K such that

(1) h(θ) ≤ c(d)|∆K | 1
2d ,

where h is the absolute Weil height, ∆K is the discriminant of the number field K,
and c(d) is a constant depending only on the degree d; we review all the necessary
notation in Section 2. Ruppert himself proved this conjecture for quadratic number
fields and for totally real fields of prime degree. There has been quite a bit of later
work on this conjecture; for instance, Vaaler and Widmer [14] proved the conjecture
for number fields with at least one real embedding (further results in the case of
totally complex fields were just recently obtained in [1]). More generally, a slightly
weaker bound is obtained by Pazuki and Widmer in [12, Lemma 7.1]:

(2) h(θ) ≤ |∆K | 1d ,
where θ can be taken in OK . If θ is a primitive element, then 1, θ, . . . , θd−1 is a
basis for K as a Q-vector space. Hence, Ruppert’s conjecture implies the existence
of such a basis with

(3) max
0≤k≤d−1

h(θk) ≤ c(d)d−1|∆K |
d−1
2d .

Consider the situation when K/Q is a Galois extension. In that case, there
exists a normal basis for K over Q, i.e. a basis consisting of algebraic conjugates
β1, . . . , βd; in fact, there are infinitely many such bases (this fact is known as the
normal basis theorem, usually attributed to the works of Noether and Deuring,
1932). On the other hand, if β1 is just an arbitrary primitive element for K, its
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algebraic conjugates may be linearly dependent, and so not every primitive element
gives rise to a normal basis. Indeed, it may happen for instance that the degree-d
minimal polynomial of β1 has zero coefficient in front of xd−1, which implies that

β1 + · · ·+ βd = 0.

It is then natural to ask for a normal basis of bounded height. The first simple
observation about quadratic fields follows directly from Ruppert’s bound.

Proposition 1.1. Let K/Q be a quadratic extension. Then there exists a normal
basis β1, β2 ∈ K with

h(βi) ≤ c(2)|∆K | 14 ,

for i = 1, 2, where c(2) is as in (1).

We give a quick proof of this proposition in Section 2. Our first main result produces
a general bound for any Galois extension K/Q.

Theorem 1.2. Let K/Q be a Galois extension of degree d ≥ 2. There exists a
normal basis β1, . . . , βd for K over Q so that

h(βi) ≤
d4d(d2 − d+ 2)4d−3

2

(
d− 1

[(d− 1)/2]

)2

|∆K |(d−1)(4d−3),

for all 1 ≤ i ≤ d.

Our argument for the proof of this theorem follows the standard proof of the normal
basis theorem. We are using the Pazuki and Widmer bound (2), a polynomial non-
vanishing principle (Lemma 2.4) along with some standard inequalities on height
and Mahler measure to make this argument effective. We present our proof in
Section 3. In the case when d is an odd prime, we can obtain a better bound using
a completely different approach.

Theorem 1.3. Let K/Q be a Galois extension of prime degree d ≥ 3. There exists
an integral normal basis β1, . . . , βd for K over Q so that

h(βi) ≤ |∆K |1/2,

for all 1 ≤ i ≤ d.

We prove Theorem 1.3 in Section 4. Our argument is based on a result of Du-
bickas [7] on linear independence of algebraic conjugates of prime degree and
Minkowski’s successive minima theorem.

It is worth mentioning that our approach in the proofs of Theorems 1.2 and 1.3
utilizes the Diophantine avoidance method, i.e., obtaining effective height-bounds
for points not satisfying some algebraic conditions. Such avoidance ideas are natu-
rally embedded in the proofs of some classical theorems in algebraic number theory,
such as the primitive element theorem and the normal basis theorem. While most
points do not satisfy any given polynomial equation, explicitly identifying such a
point may require some work; it is the “searching for hay in a haystack” problem.
We are ready to proceed.
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2. Notation and heights

Throughout this paper, we work over a Galois number field K of degree d ≥ 2
over Q and write OK for its ring of integers. Let σ1, . . . , σd : K ↪→ C be the
embeddings of K. Since K/Q is Galois, K is either totally real or totally imaginary,
meaning that either all of the embeddings are real or all of them are complex coming
in conjugate pairs.

We normalize absolute values and introduce the standard height function. Let
us write M(K) for the set of places of K. For each v ∈ M(K) let dv = [Kv : Qv]
be the local degree, then for each u ∈ M(Q),

∑
v|u dv = d. We select the absolute

values so that | |v extends the usual archimedean absolute value on Q when v | ∞,
or the usual p-adic absolute value on Q when v ∤ ∞. Then archimedean places are
in bijective correspondence with the embeddings so that for each v | ∞ there exists
an index 1 ≤ j ≤ d with

|α|v = |σj(α)|,
for each α ∈ K, where | | is the usual absolute value on R or C (notice that
each conjugate pair of complex embeddings induces the same place). With this
normalization choice, the product formula reads∏

v∈M(K)

|α|dv
v = 1,

for each nonzero α ∈ K. We define the multiplicative Weil height on algebraic
numbers α ∈ K as

h(α) =
∏

v∈M(K)

max{1, |α|v}dv/d,

and notice that h(α) =
∏

v|∞ max{1, |α|v}dv/d if α ∈ OK . This height is absolute,

meaning that it is the same when computed over any number field K containing α:
this is due to the normalizing exponent 1/d in the definition. Hence, we can compute
height for elements of Q.

We review some useful well-known properties of heights. The first can be found,
for instance, as Lemma 2.1 of [9].

Lemma 2.1. Let ξ1, . . . , ξm ∈ Z and α1, . . . , αm ∈ Q for m ≥ 1. Then

h

 m∑
j=1

ξjαj

 ≤ m|ξ|
m∏
j=1

h(αj),

where ξ = (ξ1, . . . , ξm) and |ξ| := max{|ξi| : 1 ≤ i ≤ m}.

Define Mahler measure of a polynomial f(x) =
∑d

k=0 akx
k ∈ C[x] of degree d

with roots α1, . . . , αd ∈ C to be

µ(f) = |ad|
d∏

k=1

max{1, |αk|}.

The next lemma is Proposition 1.6.6 of [5].

Lemma 2.2. Let α ∈ Q have degree d and let f(x) ∈ Z[x] be its minimal polyno-
mial. Then

µ(f) = h(α)d.
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Further, write |f | = max0≤n≤d |ad|, then Lemma 1.6.7 of [5] provides the following
bound.

Lemma 2.3. Write [ ] for the integer part function, then

|f | ≤
(

d

[d/2]

)
µ(f),

for any f(x) ∈ C[x].

The next lemma quantifies the basic principle that a polynomial which is not
identically zero cannot vanish “too much”. Somewhat different formulations of this
principle can be found in [6] (Lemma 1 on p. 261) as well as in the context of
N. Alon’s celebrated Combinatorial Nullstellensatz [2]. The following formulation,
which is most convenient for our purposes follows easily from Lemma 2.2 of [8].

Lemma 2.4. Let K be a number field as above and P (x) ∈ K[x1, . . . , xn] be a
polynomial of degree m in n variables which is not identically 0. There exists a
point ξ ∈ Zn such that P (ξ) ̸= 0 and

|ξ| ≤ m+ 2

2
.

In case K is totally real, we define the Minkowski embedding ΣK = (σ1, . . . , σd) :
K ↪→ Rd, then for any ideal I ⊆ OK the image ΣK(I) is a lattice of full rank in
Rd. We define the determinant of a full-rank lattice to be the absolute value of the
determinant of any basis matrix for the lattice, then

(4) det(ΣK(I)) = NK(I)|∆K |1/2,

where NK(I) := |OK/I| is the norm of I, as follows, for instance, from Corollary
2.4 of [4]. The following property is Lemma 4.1 of [10].

Lemma 2.5. For any α ∈ OK ,

1 ≤ h(α) ≤ |ΣK(α)|,

where | | stands for the sup-norm on Rd, as above.

We finish this section with a proof of Ruppert’s bound on the height of a normal
basis in the quadratic case.

Proof of Proposition 1.1. Let K = Q(
√
D) for a nonzero squarefree integer D ̸= 1.

A result of Ruppert [13] guarantees the existence of a primitive element θ ∈ K
satisfying (1), i.e.

h(θ) ≤ c(2)|∆K | 14 ,
for an absolute constant c(2). Then θ = a + b

√
D for some a, b ∈ Q. Suppose

that a = 0 and b = m/n for some relatively prime integers m,n, then the minimal
polynomial of θ is f(x) = n2x2 −Dm2 and, by Lemma 2.2, we have

h(θ) = µ(f)1/2 = |n|max{1, |m||
√
D|/|n|} ≥ |

√
D| = c|∆K |1/2,

for an absolute constant c. This implies that we must have a ̸= 0, in which case
a± b

√
D is the desired normal basis. □
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3. Proof of Theorem 1.2

We follow the standard proof of the normal basis theorem, e.g. [3, Theorem 28],
making it effective. Let G = {σ1, . . . , σd} be the Galois group of K/Q with σ1 being
the identity, where we are identifying elements of G with the embeddings of K into
C. Let α ∈ OK be a primitive element, f(x) ∈ Z[x] be the minimal polynomial of
α and define

g(x) =
f(x)

(x− α)f ′(α)
.

Let D(x) = det (σiσj(g(x))). This is a nonzero polynomial with integer coefficients
and

deg(D(x)) = d(d− 1).

We want to choose α ∈ OK so that D(α) ̸= 0. Let θ ∈ OK be a primitive element
satisfying (2), then 1, θ, . . . , θd−1 ∈ OK is a basis for K over Q with

(5) max
0≤k≤d−1

h(θk) ≤ |∆K |
d−1
d .

For a given vector ξ = (ξ0, . . . , ξd−1) ∈ Zd, define

(6) αξ =

d−1∑
k=0

ξkθ
k ∈ OK .

Then D(αξ) is a polynomial in d variables ξ0, . . . , ξd−1 of degree d(d− 1), which is
not identically zero. Then Lemma 2.4 guarantees the existence of an integer vector
ξ ∈ Zd so that D(αξ) ̸= 0 with

|ξ| ≤ d(d− 1) + 2

2
.

Combining this observation with Lemma 2.1, (5) and (6), we obtain an element
αξ ∈ K so that D(αξ) ̸= 0 with

(7) h(αξ) ≤
d(d2 − d+ 2)

2
|∆K |d−1.

For this choice of αξ, define β = g(αξ). Then, by the argument in the proof of [3,
Theorem 28],

βj = σj(β), 1 ≤ j ≤ d

is a normal basis for K.
We now want to estimate the height of β. Let us write αj

ξ = σj(αξ) and notice
that for each 1 ≤ j ≤ d,

gj(x) = σj(g(x)) =
f(x)

(x− αj
ξ)f

′(αj
ξ)

has degree d− 1, roots αi
ξ for all i ̸= j, and leading coefficient 1/f ′(αj

ξ). Then, by
Lemma 2.3,

|gj | ≤
(

d− 1

[(d− 1)/2]

)
µ(gj) =

(
d− 1

[(d− 1)/2]

)
h(αξ)

d

|f ′(αj
ξ)|max{1, |αj

ξ|}
.

Then, for each 1 ≤ j ≤ d,

|βj | ≤ d|gj |max{1, |αj
ξ|}

d−1 ≤ d

(
d− 1

[(d− 1)/2]

)
h(αξ)

d max{1, |αj
ξ|}d−2

|f ′(αj
ξ)|

.
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This implies that

max{1, |βj |} ≤ 1

|f ′(αj
ξ)|

max

{
|f ′(αj

ξ)|, d
(

d− 1

[(d− 1)/2]

)
h(αξ)

d max{1, |αj
ξ|}

d−2

}
≤ d

(
d− 1

[(d− 1)/2]

)
h(αξ)

d 1

|f ′(αj
ξ)|

max{1, |f ′(αj
ξ)|}max{1, |αj

ξ|}
d−2.(8)

Notice that the coefficients of f ′(αξ)g(x), while not necessarily rational integers,
are algebraic integers, as is αξ. Therefore, for any v ∤ ∞,

|f ′(αξ)|v|g|v ≤ 1,

where we write |g|v for the maximum of absolute values | |v of the coefficients
of g(x). This implies that for every v ∤ ∞,

max{1, |β|v} ≤ max{1, |g|v}max{1, |αξ|v}d−1

≤ 1

|f ′(αξ)|v
max{1, |f ′(αξ)|v}max{1, |αξ|v}d−1.(9)

Observe that max{1, |αξ|v} = 1 for v ∤ ∞, since αξ ∈ OK . Now, we combine (8)
and (9) and take a product. Using the product formula, we obtain a bound
(10)

h(β) =

 ∏
v∈M(K)

max{1, |β|v}dv


1
d

≤ d

(
d− 1

[(d− 1)/2]

)
h(αξ)

dh(αξ)
d−2h(f ′(αξ)).

Notice that f ′(x) is a polynomial of degree d− 1 with integer coefficients and

|f ′| ≤ d|f | ≤ d

(
d− 1

[(d− 1)/2]

)
µ(f) = d

(
d− 1

[(d− 1)/2]

)
h(αξ)

d,

by Lemmas 2.2 and 2.3, since f(x) is the minimal polynomial of αξ. This inequality
implies that

h(f ′(αξ)) =

∏
v|∞

max{1, |f ′(αξ)|v}dv ×
∏
v∤∞

max{1, |f ′(αξ)|v}dv


1
d

≤ d|f ′|h(αξ)
d−1 ≤ d2

(
d− 1

[(d− 1)/2]

)
h(αξ)

2d−1.(11)

Combining (10) with (11) and (7), we obtain

h(β) ≤ d3
(

d− 1

[(d− 1)/2]

)2

h(αξ)
4d−3

≤ d4d(d2 − d+ 2)4d−3

2

(
d− 1

[(d− 1)/2]

)2

|∆K |(d−1)(4d−3).(12)

Since h(βj) = h(β) for every 1 ≤ j ≤ d, this completes the proof.

Remark 3.1. Notice that in our proof of Theorem 1.2, we used the weaker bound (2)
instead of the conjectured bound (1), which has been established in the case of
real Galois fields. Using that stronger bound would slightly improve the constant
depending on d and divide the exponent on |∆K | by 2 in the inequality (12).
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4. Proof of Theorem 1.3

Since we are assuming that K/Q is a Galois extension of prime degree d ≥
3, K must be a totally real number field and so dv = 1 for every archimedean
place v. Let LK = ΣK(OK) be the full-rank lattice in Rd, then each element
α = (α1, . . . , αd) ∈ LK where the coordinates α1, . . . , αd are algebraic conjugates.
Since αi’s are algebraic integers, we have |αi|v ≤ 1 for every 1 ≤ i ≤ d and v ∤ ∞,
hence, by product formula, for each α ∈ LK ,

|α| = max{|α1|, . . . , |αd|} ≥

(
d∏

i=1

|αi|

) 1
d

=

∏
v|∞

|α1|v

 1
d

≥

 ∏
v∈M(K)

|α1|dv
v

 1
d

= 1.(13)

We want to find an element α ∈ LK whose coordinates are linearly independent
over Q. We will use the following special case of a result of A. Dubickas, which we
state specifically over Q.

Theorem 4.1 ([7], Theorem 1). Let d be prime and c1, . . . , cd ∈ Q. Then

c1α1 + · · ·+ cdαd ∈ Q
if and only if c1 = · · · = cd.

Hence, this theorem implies that if α = (α1, . . . , αd) ∈ LK is such that

(14) α1 + · · ·+ αd ̸= 0,

then α1, . . . , αd ∈ OK are linearly independent over Q, thus form a normal basis
for K/Q. Let

C =
{
x ∈ Rd : |x| ≤ 1

}
be the cube of side-length 2 centered at the origin in Rd, then Vold(C) = 2d. Write
λ1, . . . , λd for the successive minima of C with respect to our lattice LK , then
Minkowski’s successive minima theorem provides the bound

(15)

d∏
i=1

λi ≤
2d det(LK)

Vold(C)
=
√

|∆K |,

by (4), and

(16) 1 ≤ λ1 ≤ · · · ≤ λd,

by (13). Let α1, . . . ,αd ∈ LK be the linearly independent points corresponding to
λ1, . . . , λd, then at least one of these vectors satisfies condition (14), since

{α = (α1, . . . , αd) ∈ LK : α1 + · · ·+ αd = 0}
is a sublattice of rank d−1. Let us write β = (β1, . . . , βd) for the αi satisfying (14),
then β1, . . . , βd ∈ OK is a normal basis for K/Q and (15) combined with (16) impliy
that

(17) max{|β1|, . . . , |βd|} ≤ |∆K |1/2.
Combining (17) with Lemma 2.5, we obtain

h(βi) ≤ |∆K |1/2,



8 LENNY FUKSHANSKY AND SEHUN JEONG

for each 1 ≤ i ≤ d. This completes the proof.
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