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Abstract. A lattice Λ is said to be an extension of a sublattice L of smaller

rank if L is equal to the intersection of Λ with the subspace spanned by L.

The goal of this paper is to initiate a systematic study of the geometry of
lattice extensions. We start by proving the existence of a small-determinant

extension of a given lattice, and then look at successive minima and covering

radius. To this end, we investigate extensions (within an ambient lattice)
preserving the successive minima of the given lattice, as well as extensions

preserving the covering radius. We also exhibit some interesting arithmetic

properties of deep holes of planar lattices.

1. Introduction and statement of results

Let n ≥ m ≥ 2 be integers and let Λ be a lattice of rank m in Rn, then

Λ = AZm

for an n×m basis matrix A of rank m and determinant of Λ is

detΛ =
√
det(A⊤A),

which is its co-volume in spanR Λ: this definition is independent of the choice of
the basis matrix A for Λ. Let Bm(1) be the m-dimensional unit ball centered at 0
in spanR Λ and write ωm for the m-dimensional volume of Bm(1). Then Bm(r) is
a ball of radius r and volume ωmrm. We briefly recall the standard notation from
the geometry of numbers (see [11] for the detailed exposition of the subject). First,
the successive minima of Λ are real numbers

0 < λ1(Λ) ≤ · · · ≤ λm(Λ),

given by

λi(Λ) = min {r ∈ R : dimR spanR (Bm(r) ∩ Λ) ≥ i} .
Then 1

2λ1(Λ) is the radius of a ball in the sphere packing associated to Λ and the
product of successive minima is bounded as follows by the Minkowski’s Successive
Minima Theorem:

2m detΛ

m! ωm
≤

m∏
i=1

λi(Λ) ≤
2m detΛ

ωm
.

Additionally, the covering radius of Λ is defined as

µ(Λ) = min {r ∈ R : Λ +Bm(r) = spanR Λ} .
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The classical inequality of Jarnik asserts that

1

2
λm(Λ) ≤ µ(Λ) ≤ 1

2

m∑
i=1

λi(Λ).

Now, let L ⊂ Λ be a sublattice of rank k < m. We say that Λ is an extension
lattice of L if

Λ ∩ spanR L = L.

As a first example of lattice extensions, we demonstrate the following construction
of a small-determinant extension of a sublattice inside of the integer lattice Zn.

Theorem 1.1. Let x1, . . . ,xk be linearly independent vectors in Zn and let

Ω = spanZ {x1, . . . ,xk} ⊂ Zn

be the sublattice of rank k spanned by these vectors. Then there exists a full-rank
extension Ω′ ⊆ Zn of Ω so that

detΩ′ = gcd(x1 ∧ · · · ∧ xk).

Further, if k = n− 1 then there exists y ∈ Zn so that Ω′ = spanZ {Ω,y} and

∥y∥ ≤

{(
gcd(x1 ∧ · · · ∧ xk)

detΩ

)2

+ µ(Ω)2

}1/2

.

Throughout this paper, the wedge product of vectors, x1 ∧ · · · ∧ xk as above in
the Grassmann algebra, is identified with the corresponding vector of Grassmann-
Plücker coordinates; see Chapter 1 of [16] for details. We prove Theorem 1.1 in
Section 2, where we also explain how it can be generalized to any lattice in Rn

(Remark 2.1). Lattice extensions play an implicit important role in a variety of
contexts, for instance in lattice packing and covering constructions such as lam-
ination (see [6], [13]), in reduction theory when constructing Minkowski or HKZ
reduced bases (see [11], [13]), as well as in constructions of primitive collections
in a lattice (see [7]). Further, the idea of lattice extensions was recently used to
construct a family of counterexamples to the famous covering conjecture of Woods
(see [14]). This being said, we have not seen lattice extensions studied explicitly.
Our main goal in this note is to explore lattice extensions with control over their
geometric invariants. In particular, we say that Λ is a successive minima extension
of L if Λ is an extension of L such that

λj(Λ) = λj(L) ∀ 1 ≤ j ≤ k.

Also, we call Λ an equal covering extension of L if Λ is an extension of L such that

µ(Λ) = µ(L).

Given a lattice L of rank k < n in Rn, it is easy to construct a rank-(k+1) successive
minima extension Λ of L: we can simply take u ∈ Rn to be a vector perpendicular
to spanR L of norm > λk(L) and define Λ = spanZ{L,u}. It is a more delicate
problem to construct such an extension inside of a given full-rank lattice in Rn,
since such a perpendicular vector u may simply not exist inside of our given lattice.
Our next result addresses this problem while controlling the (k + 1)-st successive
minimum of the constructed extension.
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Theorem 1.2. Let Λ ⊂ Rn be a lattice of full rank, and let Lk ⊂ Λ be a sublattice
of rank 1 ≤ k < n. There exists a sublattice Lk+1 ⊂ Λ of rank k + 1 such that
Lk ⊂ Lk+1 is a lattice extension, λj(Lk+1) = λj(Lk) for all 1 ≤ j ≤ k and

(1) λk+1(Lk+1) ≤
λk(Lk)(v

2
∗ +

√
1− v2∗)√

1− v4∗
+ 2µ,

where µ is the covering radius of Λ and v∗ is the smallest root of the polynomial

p(v) =

(
µ2

λ2
k

(1− v4)− v2(v4 − v2 + 1)

)2

−
(
2µ2

λ2
k

v(1− v4) + 2v4
)2

(1− v2)

in the interval (0, 1): such v∗ necessarily exists.

We prove Theorem 1.2 in Section 3. We also include an alternate version of the
bound for Theorem 1.2 suggested to us by one of the referees (Remark 3.1). The
situation is more complicated with equal covering extensions: they do not neces-
sarily exist inside of a given lattice. Our next result is a full characterization of
planar lattices that are equal covering extensions of some lattice of rank one. Let

e1 =

(
1
0

)
∈ R2 and E1 = Ze1 ⊂ R2 be a lattice of rank one in the plane. Then

the covering radius of E1 is µ(E1) = 1/2. More generally, for a rank-one lattice
Zu ∈ Rn its covering radius is 1

2∥u∥.

Theorem 1.3. A lattice Λ ⊂ R2 is an equal covering extension of E1 if and only
if

(2) Λ = Λ(α) :=

(
α α− 1√

α− α2
√
α− α2

)
Z2

for some real number 0 < α < 1. More generally, a lattice Λ ⊂ Rn of rank 2 is an
equal covering extension of a rank-one lattice L ⊂ Λ if and only if it is isometric
to some lattice of the form det(L)Λ(α), where Λ(α) is as in (2).

We discuss covering radii of planar lattices and prove Theorem 1.3 with some corol-
laries in Section 5. In particular, we show that the lattice coming from the ring of
integers of a quadratic number field Q(

√
D), for a squarefree rational integer D,

via Minkowski embedding into R2 is an equal covering extension of a rank-one sub-
lattice if and only if D ̸≡ 1 (mod 4). We also construct orthogonal equal covering
extensions in any dimension, proving the following result.

Theorem 1.4. Let Λk ⊂ Rn be an orthogonal lattice of rank k < n. There exists an
orthogonal lattice Λk+1 ⊂ Rn of rank k+1 so that Λk ⊂ Λk+1 is a lattice extension
and µ(Λk+1) = µ(Λk). Further, if z is a deep hole of Λk it is also a deep hole of
Λk+1.

Recall that, given a lattice Λ ⊂ Rn a vector z ∈ spanR Λ is called a deep hole of Λ
if it is furthest from the lattice, i.e.

d(z,Λ) = max {d(y,Λ) : y ∈ spanR Λ} ,

where d(y,Λ) := min{∥x − y∥ : x ∈ Λ}. Thus the covering radius of the lattice
is the distance from the origin to the nearest deep hole. We discuss deep holes
of lattices in some detail in Section 4 with a special focus on the two-dimensional
situation. In particular, we obtain necessary and sufficient conditions for the deep
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holes of a lattice Λ ⊂ R2 to have finite order as elements of the torus quotient group
R2/Λ and give a bound on this order (Theorem 4.3).

Before we proceed, let us recall a few more standard notions of lattice theory.
The isometries of a Euclidean space are given by real orthogonal matrices, and
two lattices are isometric if there exists an isometry taking one to the other. Two
lattices are similar if their scalar multiples are isometric for some choice of scalars.
Both, isometry and similarity are equivalence relations on lattices of the same rank.
A lattice is called well-rounded (abbreviated WR) if all of its successive minima are
equal; this property is preserved under similarity.

2. Small-determinant extensions in Zn

In this section we present the first example of lattice extensions, proving Theo-
rem 1.1. Let x1, . . . ,xk be k vectors in Rn, 1 ≤ k < n. As we mentioned above, the
wedge product x1∧· · ·∧xk can be identified with the vector of Plücker coordinates

in R(
n
k), i.e. determinants of k × k submatrices of the n× k matrix (x1 . . . xk).

Proposition 2.1. Let x1, . . . ,xk be linearly independent vectors in Zn and let

Ω = spanZ {x1, . . . ,xk} ⊂ Zn

be the sublattice of rank m spanned by these vectors. Then there exists a full-rank
extension Ω′ ⊆ Zn of Ω so that

detΩ′ = gcd(x1 ∧ · · · ∧ xk).

Proof. Let Ω̄ = Zn ∩ spanR Ω, then Ω̄ ⊂ Zn is a sublattice of rank k containing
Ω such that Zn/Ω̄ is torsion free. Hence any basis of Ω̄ is extendable to Zn. Let
y1, . . . ,yk be a basis for Ω̄ extended to a basis for Zn by yk+1, . . . ,yn. Since
x1, . . . ,xk and y1, . . . ,yk are two collections of integer vectors spanning the same
subspace of Rn, the vectors of Plücker coordinates represent the same rational
projective point. Further, since the collection y1, . . . ,yk is extendable to a basis of
Zn, the Plücker coordinates of this collection must be relatively prime (Lemma 2
on p.15 of [5]). Hence

x1 ∧ · · · ∧ xk = g (y1 ∧ · · · ∧ yk)

for some integer g, and so g = gcd(x1 ∧ · · · ∧ xk). Define

Ω′ = spanZ
{
x1, . . . ,xk,yk+1, . . . ,yn

}
.

By the bi-linearity of the wedge product,

detΩ′ = x1 ∧ · · · ∧ xk ∧ yk+1 ∧ · · · ∧ yn = g
(
y1 ∧ · · · ∧ yk ∧ yk+1 ∧ · · · ∧ yn

)
,

and since y1 ∧ · · · ∧yk ∧yk+1 ∧ · · · ∧yn = detZn = 1, we have that detΩ′ = g. □

Corollary 2.2. Let the notation be as in Proposition 2.1 with k = n − 1. Then
there exists y ∈ Zn so that Ω′ = spanZ {Ω,y} and

∥y∥ ≤

{(
gcd(x1 ∧ · · · ∧ xk)

detΩ

)2

+ µ(Ω)2

}1/2

.
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Proof. Write A =
(
x1 . . . xn−1

)
for the corresponding basis matrix of Ω and

let Ω′ be as given by Proposition 2.1. This means that there exists z ∈ Zn such
that Ω′ = spanZ{Ω, z}, so detΩ′ = gcd(x1 ∧ · · · ∧xm). Let ρΩ = A(A⊤A)−1A⊤ be
the orthogonal projection onto spanR Ω. Let

P =

{
n−1∑
i=1

aixi : 0 ≤ ai < 1 ∀ 1 ≤ i ≤ n− 1

}
, P ′ = {u+ az : u ∈ P, 0 ≤ a < 1}

be fundamental parallelepipeds for Ω and Ω′, respectively. Then

gcd(x1 ∧ · · · ∧ xk) = detΩ′ = Voln(P ′)

= Voln−1(P) ∥(In − ρΩ)z∥ = detΩ ∥(In − ρΩ)z∥ ,

hence

∥(In − ρΩ)z∥ =
gcd(x1 ∧ · · · ∧ xk)

detΩ
.

On the other hand, ρΩz ∈ spanR Ω, and by definition of the covering radius µ of Ω,
there exists v ∈ Ω such that ∥ρΩz − v∥ ≤ µ. Let y = z − v, then y ∈ Zn and

ρΩy = ρΩz − ρΩv = ρΩz − v,

since v ∈ spanR Ω. Then (In − ρΩ)y = (In − ρΩ)z and

Ω′ = spanZ {Ω, z} = spanZ {Ω,y} .

Therefore, by Pythagorean theorem,

∥y∥2 = ∥(In − ρΩ)y∥2 + ∥ρΩy∥2 = ∥(In − ρΩ)z∥2 + ∥ρΩz − v∥2

≤
(
gcd(x1 ∧ · · · ∧ xk)

detΩ

)2

+ µ2.

The result follows. □

Now Theorem 1.1 follows by combining Proposition 2.1 with Corollary 2.2.

Remark 2.1. Let Λ = AZm ⊂ Rn be a lattice of rank m ≤ n and let z1, . . . ,zk,
k ≤ m, be linearly independent vectors in Λ. Then for each 1 ≤ i ≤ k, zi = Axi,
where x1, . . . ,xk ∈ Zn are also linearly independent. Let

Ω = spanZ {x1, . . . ,xk} ⊂ Zm

be the sublattice of rank k spanned by these vectors and let Ω′ be an extension of
Ω in Zn guaranteed by Proposition 2.1. Then AΩ = spanZ {z1, . . . ,zk} ⊆ Λ and
AΩ′ ⊆ Λ is an extension of AΩ with

detAΩ′ =
√
det(A⊤A) detΩ′ = detΛdetΩ′.

Further, if k = m− 1 then there exists y ∈ Zm so that AΩ′ = spanZ {AΩ, Ay} and
∥y∥ bounded as in Corollary 2.2.
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3. Successive minima extensions

In this section, we prove Theorem 1.2. We want to construct a sublattice Lk+1 ⊂
Λ of rank k + 1 such that Lk ⊂ Lk+1, λj(Lk+1) = λj(Lk) for all 1 ≤ j ≤ k and
λk+1(Lk+1) is as small as possible. To prove the theorem, we first need an auxiliary
lemma. Write λ1, . . . , λk for the successive minima of Lk and let Vk = spanR Lk,
θ ∈ (0, π/2], and

(3) Cθ(Vk) = {x ∈ Rn : a(x,y) ∈ [θ, π − θ] ∀ y ∈ Vk} ,

where a(x,y) stands for the angle between two vectors.

Lemma 3.1. If x ∈ Cθ(Vk) and

∥x∥ ≥ λk(cot θ cos θ + 1)√
1 + cos2 θ

,

then ∥x+ y∥ ≥ λk for every y ∈ Vk.

Proof. For x ∈ Cθ(Vk) and y ∈ Vk, define

f(x,y) = ∥x+ y∥2 = ∥x∥2 + ∥y∥2 + 2∥x∥∥y∥ cos a(x,y).

We want to guarantee that f(x,y) ≥ λ2
k for all y ∈ Vk. Let us write t = ∥x∥,

z = ∥y∥, and notice that

f(x,y)− λ2
k ≥ g(t, z) := t2 + z2 − 2tz cos θ − λ2

k,

thus we want to find a lower bound on t that would guarantee g(t, z) ≥ 0 for all
z > 0. In other words, we want

t ≥ h(z) := z cos θ +
√

λ2
k − z2 sin2 θ

for all z > 0. Notice that h(z) is real-valued if and only if z ≤ λk

sin θ , then let us find
the value of z that maximizes h(z). Differentiating h(z) and setting the derivative
equal to zero, we obtain

z∗ =
λk cot θ√
1 + cos2 θ

,

the point at which h(z) assumes its maximum value of

h(z∗) =
λk(cot θ cos θ + 1)√

1 + cos2 θ
.

Thus, taking t = ∥x∥ to be ≥ than this value ensures that ∥x+ y∥ ≥ λk for every
y ∈ Vk, as required. □

Proof of Theorem 1.2. Let us write Bn(r) for the ball of radius r > 0 centered at
the origin in Rn. Let θ ∈ (0, π/2] and

(4) r(θ) =
λk(cot θ cos θ + 1)√

1 + cos2 θ
.

Then Lemma 3.1 guarantees that for any vector x ∈ Λ ∩ (Cθ(Vk) \Bn(r(θ)))
the lattice M = spanZ {Lk,x} satisfies λj(M) = λj(Lk) for all 1 ≤ j ≤ k and
λk+1(M) ≤ ∥x∥. Hence we want to minimize

λk+1(θ) := min {∥x∥ : x ∈ Λ ∩ (Cθ(Vk) \Bn(r(θ))}

as a function of θ.
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Figure 1. Cone construction with the lattice point (in blue)
caught in the ball (red) of covering radius.

Let µ be the covering radius of Λ, then any translated copy of the ball of radius
µ in Rn must contain a point of Λ. Suppose that θ ∈ (0, π/2] is such that

(5) B′
n(µ) ⊂ (Cθ(Vk) ∩Bn(r(θ) + 2µ)) \Bn(r(θ)),

where B′
n(µ) is such a translated copy. Then Cθ(Vk)\Bn(r(θ)) would be guaranteed

to contain a point x of Λ with

(6) ∥x∥ ≤ r(θ) + 2µ,

so that we can take Lk+1 = spanZ {Lk,x}. Notice that θ satisfying condition (5)
exists. Indeed, for any θ the set Bn(r(θ) + 2µ) \Bn(r(θ)) contains a ball of radius
µ, and hence θ can always be chosen small enough so that the cone Cθ(Vk) is
sufficiently wide to contain this ball. In fact, we can choose θ so that the line
segment from 0 to the center of this ball B′

n(µ) has length r(θ) + µ and makes the
angle π/2− θ with any line in the boundary of Cθ(Vk) emanating from the center
and tangent to the ball B′

n(µ). These conditions result in a right triangle with legs
r(θ) + µ and µ and the angle π/2 − θ opposite to the second leg (see Figure 1 for
a graphical illustration of this argument). Hence we have the equation

tan(π/2− θ) =
µ

r(θ) + µ
.

Using (4), along with the fact that tan(π/2 − θ) = cot θ, writing v = cos θ and
simplifying, we obtain the following relation in terms of v:

µ
(√

1− v2 − v
)
=

λk

(
v2 +

√
1− v2

)
v

√
1− v4

,

which transforms into the following polynomial equation:

(7)

(
µ2

λ2
k

(1− v4)− v2(v4 − v2 + 1)

)2

=

(
2µ2

λ2
k

v(1− v4) + 2v4
)2

(1− v2).
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It follows from our construction that this equation has at least one solution v in
the interval (0, 1). Then r(θ) as a function of v becomes

r(v) =
λk(v

2 +
√
1− v2)√

1− v4
,

which is an increasing function of v in the interval (0, 1). Hence, to minimize
the bound (6), we can pick v∗ to be the smallest root of the equation (7) in the
interval (0, 1). In other words, we are maximizing our choice of the angle θ for
which the condition (5) holds. The inequality (1) follows. □

Remark 3.1. We also present here an alternate bound for the (k + 1)-st successive
minimum of an extension lattice Lk+1 of Lk in Λ with λj(Lk+1) = λj(Lk) for all
1 ≤ j ≤ k as in Theorem 1.2, as suggested to us by one of the anonymous referees:

(8) λk+1(Lk+1) ≤
(
max{λk+1(Λ), 2λk(Lk)}2 + µ(Lk)

2
)1/2

.

To prove this bound, let u1, . . . ,uk+1 be linearly independent vectors in Λ corre-
sponding to the successive minima λ1(Λ), . . . , λk+1(Λ), respectively. Since dimVk =
k, there must exist some ui among these vectors which is not in Vk. Let x be the
projection of ui into V ⊥

k , the orthogonal complement of Vk. First assume that
∥x∥ ≥ λk(Lk), then ∥x+ y∥ ≥ λk(Lk) for any y ∈ Vk. To see this, notice that

(9) ∥x+ y∥2 = ∥x∥2 + 2x⊤y + ∥y∥2 = ∥x∥2 + ∥y∥2 ≥ ∥x∥2,

since x ∈ V ⊥
K , y ∈ Vk, and so x⊤y = 0. The translated subspace x + Vk contains

an affine copy of the lattice Lk, and hence there must exist a point of the lattice Λ,
call it xk+1, in the set x + BVk

(µ(Lk)), where BVk
(µ(Lk)) is the ball of radius

µ(Lk) centered at the origin in Vk. Set Lk+1 = spanZ{Lk,xk+1}, then (9) implies
that for every z ∈ Lk+1 \ Lk, ∥z∥ ≥ ∥x∥ ≥ λk(Lk). Hence, λj(Lk+1) = λj(Lk) for
all 1 ≤ j ≤ k and

λk+1(Lk+1)
2 ≤ ∥xk+1∥2 ≤ ∥x∥2 + µ(Lk)

2 ≤ ∥ui∥2 + µ(Lk)
2 ≤ λk+1(Λ)

2 + µ(Lk)
2,

implying (8). On the other hand, suppose that ∥x∥ < λk(Lk). We can then replace
x by its integer multiple x′, chosen in such a way that λk(Lk) ≤ ∥x′∥ ≤ 2λk(Lk),
and proceed as above. We thank the referee for suggesting this elegant argument.

Remark 3.2. We also want to discuss Theorem 1.2 in the general context of reduc-
tion theory. This result can be loosely compared to the construction of a canonical
filtration of a lattice as originally defined by Grayson and Stuhler (see Casselman’s
survey paper [4] for a detailed discussion, as well as [15] for a recent application of
the canonical filtration). This is a unique flag of sublattices

{0} = Λ0 ⊂ Λ1 ⊂ · · · ⊂ Λn = Λ

in a lattice Λ such that rk(Λk) = k and det(Λn)
1/n > det(Λk)

1/k for every k < n,
where

det(Λk) = min {det(Ω) : Ω ⊂ Λ, rk(Ω) = k} .
A lattice Λ is called semi-stable if the canonical filtration is Λ0 ⊂ Λn, i.e. if for each
sublattice Ω ⊆ Λ,

(10) det(Λ)1/ rk(Λ) ≤ det(Ω)1/ rk(Ω).

This family of lattices is important in reduction theory. Y. Andre explains in [1]:
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Reduction theory aims at estimating the length of short vectors, and more gen-
erally the (co)volumes of small sublattices of lower ranks, of lattices of given rank
and (co)volume, and at combining lower and upper bounds to get finiteness results.
A better grasp on lower bounds comes from the more recent part of reduction the-
ory which deals with semistability and slope filtrations (heuristically, semistability
means that the Minkowski successive minima are not far from each other, cf. [3])

On the other hand, our Theorems 1.1 and 1.2 give constructions of lattice exten-
sions of a given sublattice within an ambient lattice with small determinant (=
(co)volume) and successive minima, respectively, while preserving the geometric
properties of the sublattice that is being extended.

Additionally, if we start with a rank-one sublattice L1 ⊂ Λ and recursively apply
the construction described in the proof of Theorem 1.2] to obtain a sublattice Ln ⊆
Λ of full rank, the collection of vectors we build to bound the successive minima
at every step will be a basis, call this basis x1, . . . ,xn. We can choose the angle
θk between xk+1 and Vk = spanR Lk = spanR{x1, . . . ,xk} for each 1 ≤ k ≤ n − 1
to be in the interval [π/3, π/2] instead of the interval (0, π/2] we used in the proof
of Theorem 1.2]: this is always possible at the expense of the (k + 1)-st successive
minimum λk+1 being larger, since the cone Cθk(Vk) eventually becomes wide enough
to contain a ball of radius µ. Then we can ensure that the resulting lattice Ln is
weakly nearly orthogonal in the sense of [2] and [10]. Specifically, a lattice is called
weakly nearly orthogonal if it contains an ordered basis with the angles between
the (k+1)-st basis vector and the subspace spanned by the previous k falling in the
interval [π/3, π/2]. Weakly nearly orthogonal lattices have applications in image
compression and digital communications.

4. Deep holes of planar lattices

We start this section with the following simple but useful technical lemma.

Lemma 4.1. Let x1, . . . ,xm be linearly independent points in Rn, m ≤ n. There
exist points z ∈ Rn so that ∥z∥ = ∥z − xi∥ for all 1 ≤ i ≤ m, and these points are
solutions to

(11)

x⊤
1
...

x⊤
m

 z =
1

2

 ∥x1∥2
...

∥xm∥2

 .

Proof. If z is equidistant from xi and 0 then z lies in the hyperplane orthogonal
to xi that passes through the point xi/2. That is

z · xi = projxi
(z) · xi =

∥xi∥2

2
.

Since this is true for each 1 ≤ i ≤ n this gives the linear system in (11). □

Our main goal here is to describe some properties of the deep holes of lattices,
focusing especially on the two-dimensional case. Our first basic observation is that
if z is a deep hole of a lattice Λ ⊂ Rn, then so is −z: this follows by the fact
that −Λ = Λ, since lattices are symmetric about the origin. Recall that every
2-dimensional lattice has a basis consisting of vectors corresponding to successive
minima, and such a basis can always be chosen so that the angle between the basis
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x1

x2

z

projx1
(z)

Figure 2. Point z, equidistant from 0,x1,x2, to illustrate the
proof of Lemma 4.1.

vectors is in the interval [π/3, π/2]; we call this basis a minimal basis for the lattice
(see, e.g., [8] for details). Then we have the following observation.

Lemma 4.2. Let Λ ⊂ R2 be a lattice of rank 2 with minimal basis x,y and angle
θ ∈ [π/3, π/2] between these basis vectors. Write λ1, λ2 for the successive minima
of Λ, so that 0 < λ1 = ∥x∥ ≤ λ2 = ∥y∥. Then the fundamental parallelogram

P = {sx+ ty : 0 ≤ s, t < 1}

contains two deep holes z1, z2 with z1+z2 ∈ Λ. If the angle θ = π/2, then z1 = z2

is the center of P, and we say that this deep hole has multiplicity 2.

Proof. Let us label the vertices of P as follows: O for the origin, X for the endpoint
of the vector x, Y for the endpoint of the vector y, and Q for the endpoint of the
vector x+y. The parallelogram P can be split into two congruent triangles: OXY
and QYX. Then the endpoints of the deep holes of Λ contained in P are the
centers of the circles circumscribed around these two triangles, call them Z1 and
Z2, respectively, and let z1, z2 be vectors with the endpoints Z1, Z2 (see [12]). The
two triangles are symmetric to each other about the center C of P, which means
that reflection with respect to C maps the line segment OZ1 onto the line segment
QZ2. This means that OZ1QZ2 is a parallelogram with OQ as its longer diagonal,
and hence the corresponding vector is the sum z1 + z2. Since its endpoint is Q,
a vertex of P, this vector is in Λ (see Figure 3 for a graphical illustration of this
argument). If θ = π/2, then the deep hole of each of the triangles is in the center
of the hypothenuse of its corresponding right triangle, i.e. at the center point C of
P; in this case, the two deep holes coincide, so Z1 = Z2 = C. □

An immediate implication of Lemma 4.2 is that deep holes z1, z2 are each other’s
inverses in the additive abelian group R2/Λ. Further, z1 is an element of order two
in this group if and only if the angle θ = π/2; in this case z1 = z2. On the other
hand, z1, z2 can be elements of finite order in other situations too. For instance,
in the hexagonal lattice

Lπ/3 =

(
1 1

2

0
√
3
2

)
Z2
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Figure 3. Fundamental parallelogram P of Λ with deep holes z1

and z2.

the deep holes are z1 = (1/2, 1/(2
√
3)), z2 = (1, 1/

√
3) have order three in the

group R2/Lπ/3, while the lattice

L′ =

(
1 1

2

0
√
3

)
Z2

has a deep hole z1 = (1/2, 11
√
3/24) satisfying the condition

48z1 = 13(1, 0) + 22(1/2,
√
3) ∈ L′,

which makes z1 an element of order dividing 48 in the group R2/L′. These obser-
vations raise a natural question: when does a deep hole of Λ ⊂ R2 have finite order
as an element of the group R2/Λ?

Theorem 4.3. Let Λ ⊂ R2 be a full-rank lattice with successive minima λ1, λ2 and
corresponding minimal basis vectors x1,x2. A deep hole z of Λ has finite order in
the group R2/Λ if and only if Λ is orthogonal or there exist rational numbers p, q
so that pλ2

1 = x1 · x2 = qλ2
2. Moreover, if λ2

1, λ
2
2,x1 · x2 ∈ Z then the order of z in

R2/Λ is ≤ 12
√
3 λ4

2.

Proof. As we discussed above, if Λ is orthogonal then the deep hole always has
order 2 in R2/Λ, hence we assume Λ is not orthogonal. As we indicated above, we
can assume that the minimal basis vectors x1,x2 are chosen so that the angle θ
between them satisfies π/3 ≤ θ ≤ π/2. If z is the equidistant from x1,x2 and the
origin then z is a deep hole of Λ and is contained in the convex hull of {0,x1,x2}.
By Lemma 4.1,

(12) z · x1 =
λ2
1

2
, z · x2 =

λ2
2

2
.

Now suppose that z has finite order in R2/Λ. Then there are integers a, b, c so that
c ̸= 0 and

ax1 + bx2 = cz.
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In fact, the pairs z,x1 and z,x2 are linearly independent so a, b, c are all nonzero.
Taking scalar products of both sides of this equation with x1 and x2, and apply-
ing (12), we obtain

aλ2
1 + bx1 · x2 =

cλ2
1

2

bλ2
2 + ax1 · x2 =

cλ2
2

2
.

Notice that since Λ is not orthogonal, x1 · x2 ̸= 0 and

x1 · x2 =
c− 2a

2b
λ2
1 =

c− 2b

2a
λ2
2.

Now suppose that there are there are rational numbers p, q so that

pλ2
1 = x1 · x2 = qλ2

2.

Then, by (12), there exist rational, and hence integer solutions a, b, c to the linear
system

(13)

{
ax1 · x1 + bx1 · x2 + cx1 · z = 0
ax1 · x2 + bx2 · x2 + cx2 · z = 0,

which factors as

(14)

(
x⊤
1

x⊤
2

)(
x1 x2 z

)a
b
c

 = 0.

Since the matrix

(
x⊤
1

x⊤
2

)
is of full rank, (a, b, c)⊤ solves (14) if and only if it solves

(15)
(
x1 x2 z

)a
b
c

 = 0.

On the other hand, z being an integer solution of (15) is equivalent to z having
finite order in R2/Λ. In fact, the order of z in R2/Λ is ≤ |c|. By combining (13)
with (12), we obtain the linear system

(16)

(
2λ2

1 2x1 · x2 λ2
1

2x1 · x2 2λ2
2 λ2

2

)a
b
c

 = 0.

If λ2
1, λ

2
2,x1 · x2 ∈ Z, then by Siegel’s lemma (see, for instance, Lemma 4D in

Chapter 1 of [16]) there exists a nontrivial integer solution to this system with

max{|a|, |b|, |c|} ≤ 3
√
3
(
max

{
2λ2

1, 2λ
2
2, |x1 · x2|

})2
= 12

√
3 λ4

2,

since λ2
1 ≤ |x1 · x2| ≤ λ2

2. □
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5. Equal covering extensions

In this section we investigate the covering radii of lattices in the plane, in par-
ticular proving Theorem 1.3 and its corollaries. Let Λ ⊂ R2 be a lattice of rank 2
with minimal basis x,y and angle θ ∈ [π/3, π/2] between these basis vectors. Then
the successive minima of Λ are

(17) 0 < λ1 = ∥x∥ ≤ λ2 = ∥y∥.
See, for instance, [8] for the details on the existence of such a minimal basis. We
will use the following result in this section.

Theorem 5.1 (Theorem 3.2 of [12]). Consider the parallelogram generated by min-
imal basis vectors of Λ, as above. Then deep holes of Λ in this parallelogram are
the circumcenters of the two acute (right) triangles comprising this parallelogram
and the covering radius of Λ is the circumradius of the triangles.

We start with the following formula for the covering radius.

Lemma 5.2. The covering radius of Λ is

(18) µ =

√
λ2
1 + λ2

2 − 2λ1λ2 cos θ

2 sin θ
.

Proof. The vectors x,y correspond to successive minima in Λ, and hence form a
reduced basis. Then Theorem 5.1 asserts that the covering radius of Λ is equal to
the circumradius of the triangle with sides corresponding to the vectors x and y.
The length of the third side of this triangle is

(19)
√

λ2
1 + λ2

2 − 2λ1λ2 cos θ,

and the area of this triangle is

(20) A =
1

2
λ1λ2 sin θ.

Now, the circumradius of a triangle with sides a, b, c and area A is given by the
formula

(21) R =
abc

4A
.

Putting together (19), (20) and (21) produces (18). □

The similarity classes of WR lattices in the plane are parameterized by the angle
θ ∈ [π/3, π/2], and each similarity class is represented by

Lθ =

(
1 cos θ
0 sin θ

)
Z2,

see [9], [8] for details. The following corollary follows immediately from Lemma 5.2
by substituting λ1 = λ2 = 1 into (18).

Corollary 5.3. The covering radius µ = µ(θ) of the lattices Lθ is a continuous
function on the interval [π/3, π/2], given by

µ(θ) =

√
1− cos θ√
2 sin θ

.

The endpoints of the interval are represented by the hexagonal lattice and the square
lattice Z2 with the covering radii 1/

√
3 and 1/

√
2, respectively.
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We are now ready to prove Theorem 1.3. We first want to build an extension
E1 ⊂ Λ ⊂ R2 with rkΛ = 2 so that µ(Λ) = µ(E1). Our argument characterizes
all possible such extensions, showing that they must be rectangular lattices, i.e.
lattices containing an orthogonal basis.

Proof of Theorem 1.3. First notice that each Λ(α) as in (2) is a rectangular lattice,
thus its successive minima are

λ1,2 =
√
α,

√
1− α,

i.e. norms of the orthogonal basis vectors given in (2). By Lemma 5.2, the covering
of Λ(α) is

µ =

√
α+ (1− α)− 2

√
α(1− α) cos(π/2)

2 sin(π/2)
=

1

2
.

In the reverse direction, assume Λ ⊂ R2 is a full rank lattice so that e1 ∈ Λ
and µ(Λ) = 1/2. The vector a := 1

2e1 is a deep hole of E1. First we show that
a is a deep hole of the lattice Λ as well. Suppose not, then there exists a point

x =

(
x1

x2

)
∈ Λ such that

∥x− a∥ < 1/2.

Then the vector z = e1 − x =

(
1− x1

−x2

)
is also in Λ, and

∥z − a∥ = ∥x− a∥ < 1/2.

Let Λ′ = spanZ{x, z} ⊆ Λ, then µ(Λ′) ≥ µ(Λ). The triangle with sides correspond-
ing to the basis vectors x, z of Λ′ is contained in the interior of the circle of radius
1/2 with center at a, thus the circumradius R of this triangle is < 1/2. On the
other hand, by Theorem 5.1 the covering radius of Λ′ is equal to the circumradius
of the triangle with sides corresponding to the shortest basis vectors, which has to
be ≤ R. Hence µ(Λ) ≤ µ(Λ′) < 1/2, which is a contradiction, so a is a deep hole
of the lattice Λ. This means that there exists a basis x, z ∈ Λ with ∥x∥ = λ1,
∥z∥ = λ2 so that the point a is the center of the circle circumscribed around the
triangle with sides x, z, meaning in particular that

(22) (1/2)2 = ∥x− a∥2 = (x1 − 1/2)2 + x2
2 = x2

1 + x2
2 − x1 + (1/2)2.

Also, 2a = e1 is a diagonal of the fundamental parallelogram of Λ spanned by x, z,
meaning that

x+ z = e1.

Hence z =

(
1− x1

−x2

)
, and

cos θ =
x · z

∥x∥∥z∥
=

x1 − x2
1 − x2

2

λ1λ2
,

where θ is the angle between x and z, which lies in the interval [π/3, π/2]. Hence
cos θ = 0 by (22). Letting x1 = α, we obtain

x2 =
√

α− α2,

and (2) follows by replacing z with −z.

Next, suppose that L ⊂ Rn be a lattice of rank 1 and let u ∈ Rn be such
that L = Zu, so the covering radius of L is µ = ∥u∥/2. Let Λ be a lattice of
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Figure 4. Similarity classes of planar lattices with Z2 represent-
ing the only equal covering extension class that is WR and semi-
stable.

rank 2 in Rn containing L and let V = spanR Λ be the 2-dimensional subspace
spanned by this lattice. Applying a suitable isometry of Rn, we can identify V with
C2 := {x ∈ Rn : xi = 0 ∀ 2 < i ≤ n}. In fact, we can choose such an isometry
τ so that u maps to βe1 for β = ∥u∥. Then Λ′ = 1

β τ(Λ) is a lattice isometric to
1
βΛ in Rn, and Λ′ contains e1. Identifying C2 with R2 we see that Theorem 1.3

implies that Λ′ is an equal covering extension of Ze1 in R2 if and only if it is of the
form (2). Finally, notice that

det(L) =
√
det(u⊤u) = ∥u∥ = β.

This completes the proof of the theorem. □

Remark 5.1. An immediate implication of Theorem 1.3 is that the only well-rounded
equal covering extension of E1 is

(23) Λ(1/2) =

(
1/2 −1/2
1/2 1/2

)
Z2,

which is a square lattice in the plane containing Z2 as a sublattice of index 2. More
generally, a rank-two equal covering extension Λ ⊂ Rn of a rank-one lattice L ⊂ Λ
is well-rounded if and only if it is isometric to det(L)Λ(1/2). Further, the set of all
similarity classes of planar lattices is parameterized by

F = {(a, b) ∈ R2 : 0 ≤ a ≤ 1/2, a2 + b2 ≥ 1},

see Figure 4. The set of semi-stable classes in R2 contains the WR classes: from (10)
its follows that a lattice Λ in R2 is semi-stable if and only if λ1(Λ) ≥ det(Λ)1/2

(see [9] for more details). Thus the only semi-stable equal covering extensions are
also those similar to Λ(1/2) as in (23), i.e. similar to Z2 as demonstrated in Figure 4.

Let D be a squarefree integer and K = Q(
√
D) be a quadratic number field with

embeddings σ1, σ2 : K → C. Let ΣK : K → R2 be the Minkowski embedding of K,
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defined for every x ∈ K as

ΣK(x) =

(
σ1(x)
σ2(x)

)
,

if D > 0 and

ΣK(x) =

(
ℜ(σ1(x))
ℑ(σ1(x))

)
,

if D < 0. We write ΩK for the planar lattice ΣK(OK), where OK is the ring of
integers of the number field K.

Corollary 5.4. Assume D ̸≡ 1 (mod 4), then ΩK is an equal covering extension

of the rank-one lattice ZΣK(1 +
√
D).

Proof. If D ̸≡ 1 (mod 4) then OK = Z[
√
D], and so

ΩK =

(
1

√
D

1 −
√
D

)
Z2 if D > 0, ΩK =

(
1 0

0
√
|D|

)
Z2 if D < 0.

In either case, the lattice ΩK is rectangular. If D > 0, then λ1 =
√
2, λ2 =

√
2D,

and so Lemma 5.2 implies that µ(ΩK) =
√
D + 1/

√
2, while

ΣK(1 +
√
D) =

(
1 +

√
D

1−
√
D

)
,

and so µ
(
ZΣK(1 +

√
D)
)
=

√
D + 1/

√
2. If D < 0, then λ1 = 1, λ2 =

√
|D|, and

so Lemma 5.2 implies that µ(ΩK) =
√
|D|+ 1/2, while

ΣK(1 +
√
D) =

(
1√
|D|

)
,

and so µ
(
ZΣK(1 +

√
D)
)
=
√
|D|+ 1/2. □

Corollary 5.5. Assume D ≡ 1 (mod 4), then ΩK is not an equal covering extension
of any rank-one lattice.

Proof. If D ≡ 1 (mod 4) then OK = Z
[
1+

√
D

2

]
, and so

ΩK =

(
1 1+

√
D

2

1 1−
√
D

2

)
Z2 if D > 0, ΩK =

(
1 1

2

0

√
|D|
2

)
Z2 if D < 0.

In both cases it is not difficult to check that ΩK does not have an orthogonal basis,
and hence cannot be similar to a lattice of the form Λ(α) as in (2). The conclusion
follows from Theorem 1.3. □

Finally, we discuss a construction of orthogonal equal covering extensions in any
dimension.

Proof of Theorem 1.4. We will argue by induction on k ≥ 1. Theorem 1.3 estab-
lishes the base of induction, so let k ≥ 2. Let {x1, . . . ,xk} ⊂ Rn be an orthogonal
basis for Λk and let ek+1 ∈ Rn be a vector orthogonal to spanR Λk. Let

Pk =

{
k∑

i=1

aixi : ai ∈ {0, 1}, 1 ≤ i ≤ k

}
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be the set of vertices of the fundamental parallelepiped spanned by x1, . . . ,xk.
The circumcenter of this orthogonal parallelepiped is the point z ∈ Rn which is
equidistant from the points of Pk by Lemma 4.1, and hence is a deep hole of Λk.
Let

Bk = {y ∈ spanR{x1, . . . ,xk} : ∥y − z∥ = µ(Λk)} .

Let Λk−1 = spanZ{x1, . . . ,xk−1} and let

Pk−1 =

{
k−1∑
i=1

aixi : ai ∈ {0, 1}, 1 ≤ i ≤ k − 1

}
.

Now define

Bk−1 = Bk ∩ spanR Λk−1

By construction, Pk−1 ⊂ Bk−1, while Bk−1 is a sphere in a (k−1)-dimensional sub-
space and the points of Pk−1 are elements of an orthogonal lattice in that subspace.
Let z′ be the orthogonal projection of z onto spanR(Λk−1). Since {x1, . . . ,xk} is an
orthogonal set, z′ = z − projxk

(z). Moreover, z is equidistant from {x1, . . . ,xk},
so by Lemma 4.1 x⊤

1
...

x⊤
k

 z =
1

2

∥x1∥
...

∥xk∥

 ,

and therefore  x⊤
1
...

x⊤
k−1

 z′ =
1

2

 ∥x1∥
...

∥xk−1∥

 .

Then z′ is equidistant from {x1, . . . ,xk−1} and Λk−1 is an orthogonal lattice con-
tained in the k-dimensional subspace V = spanR{Λk−1, ek+1}. By the induction
hypothesis, there exists a rank k orthogonal lattice Λ′

k ⊂ V so that Λk−1 ⊂ Λ′
k

and z′ is a deep hole of Λ′
k. Let y1, . . . ,yk be an orthogonal basis for Λ′

k so that
y1, . . . ,yk are equidistant from z′. Since z = z′ − projxk

(z), and xk is orthogonal
to V , y1, . . . ,yk are also equidistant from z. Let Λk+1 = spanZ{y1, . . . ,yk,xk}.
Then Λk+1 is an orthogonal lattice that contains Λk and

y⊤
1
...

y⊤
k−1

x⊤
k

 z =
1

2


∥y1∥
...

∥yk−1∥
∥xk∥

 .

Thus z is equidistant from 0,y1, . . . ,yk by Lemma 4.1, and hence a deep hole
of Λk. □
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