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Abstract. The Bateman–Horn conjecture is a far-reaching statement about

the distribution of the prime numbers. It implies many known results, such

as the prime number theorem and the Green–Tao theorem, along with many

famous conjectures, such the twin prime conjecture and Landau’s conjecture.

We discuss the Bateman–Horn conjecture, its applications, and its origins.

Contents

1. Introduction 2

2. Preliminaries 3

2.1. Asymptotic equivalence 3

2.2. Big-O and little-o notation 4

2.3. The logarithmic integral 4

2.4. Prime number theorem 5

3. A heuristic argument 5

3.1. A single polynomial 6

3.2. Effect of the degree. 7

3.3. A sanity check 7

3.4. Making a correction 8

3.5. More than one polynomial 9

3.6. The Bateman–Horn conjecture 10

4. Historical background 10

4.1. Predecessors of the conjecture 10

4.2. Bateman, Horn, and the ILLIAC 12

5. Why does the product converge? 18

5.1. Infinite products 18

5.2. Algebraic prerequisites 19

5.3. Analytic prerequisites 21

5.4. Convergence of the product 22

6. Single polynomials 24

6.1. Prime number theorem for arithmetic progressions 24

2010 Mathematics Subject Classification. 11N32, 11N05, 11N13.
Key words and phrases. prime number, polynomial, Bateman–Horn conjecture, primes in

arithmetic progressions, Landau’s conjecture, twin prime conjecture, Ulam spiral.
SRG supported by a David L. Hirsch III and Susan H. Hirsch Research Initiation Grant, the

Institute for Pure and Applied Mathematics (IPAM) Quantitative Linear Algebra program, and

NSF Grant DMS-1800123. LF supported by the Simons Foundation grant #519058.

1



2 S.L. ALETHEIA-ZOMLEFER, L. FUKSHANSKY, AND S.R. GARCIA

6.2. Landau’s conjecture and its relatives 26

6.3. Tricking Bateman–Horn? 27

6.4. Prime-generating polynomials 28

6.5. A conjecture of Hardy and Littlewood 30

6.6. Ulam’s spiral 32

7. Multiple polynomials 36

7.1. Twin prime conjecture 37

7.2. Cousin primes, sexy primes, and more 38

7.3. Sophie Germain primes 40

7.4. Cunningham chains 41

7.5. Green–Tao theorem 42

8. Limitations of the Bateman–Horn conjecture 43

References 44

1. Introduction

Given a collection of polynomials with integer coefficients, how often should

we expect their values at integer arguments to be simultaneously prime? This

general question subsumes a large number of different directions and investigations

in analytic number theory. A comprehensive answer is proposed by the famous

Bateman–Horn conjecture, first formulated by Paul T. Bateman and Roger A. Horn

in 1962 [5,6]. This conjecture is a far-reaching statement about the distribution of

the prime numbers. Many well-known theorems, such as the prime number theorem

and the Green–Tao theorem, follow from it. The conjecture also implies a variety of

unproven conjectures, such as the twin prime conjecture and Landau’s conjecture.

We hope to convince the reader that the Bateman–Horn conjecture deserves to

be ranked among the Riemann hypothesis and abc-conjecture as one of the most

important unproven conjectures in number theory.

The amount of literature related to the Bateman–Horn conjecture is large: Math-

SciNet, for example, shows over 100 citations to the original Bateman–Horn papers

in which the conjecture was formulated. Somewhat surprisingly, however, we did

not find many expository accounts besides a short note by Serge Lang [52] with just

a quick overview of the conjecture. It is a goal of this paper to provide a detailed

exposition of the conjecture and some of its ramifications. We assume no knowledge

beyond elementary undergraduate number theory. We introduce the necessary alge-

braic and analytic prerequisites as need arises. We do not attempt a comprehensive

survey of all the literature related to the Bateman–Horn conjecture. For example,

recent variations of the conjecture, say to multivariate polynomials [19, 62] or to

polynomial rings over finite fields [13,14], are not treated here.

The organization of this paper is as follows. Section 2 introduces asymptotic

equivalence, the logarithmic integral, and the prime number theorem. In Section 3,

we go through a careful heuristic argument based upon the Cramér model that ex-

plains most of the key restrictions and predictions of the Bateman–Horn conjecture.

Before proceeding to various examples and applications of the conjecture, Section 4
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revisits some of the historical background. In particular, we include many personal

recollections of Roger Horn that have never before been published.

One of the main features of the Bateman–Horn conjecture is an explicit constant

in the main term of the asymptotic formula for the number of integers below a given

threshold at which a collection of polynomials simultaneously assume prime values.

The expression for this constant, however, is complicated and involves an infinite

product. It is nontrivial to see that this product converges and we are not aware of

a detailed proof of this fact anywhere in the literature. The original Bateman–Horn

paper sketches the main idea of this proof, but omits almost all of the details. We

present this argument in detail in Section 5.

Section 6 is devoted to a number of important instances and consequences of

the single polynomial case of the conjecture, while ramifications of the multiple

polynomial case are discussed in Section 7. Finally, we discuss some limitations of

the Bateman–Horn conjecture in Section 8. With this brief introduction, we are

now ready to proceed.

Acknowledgments. We thank Keith Conrad for many technical corrections,

Harold G. Diamond for permitting us to use two photographs of Paul Bateman, Jeff

Lagarias for several suggestions about the exposition, Florian Luca for introducing

us to the Bateman–Horn conjecture, and Hugh Montgomery for his remarks about

Bateman. We especially thank Roger A. Horn for supplying us with his extensive

recollections and several photographs, and for many comments on an initial draft

of this paper. Special thanks goes to the anonymous referee for suggesting dozens

of improvements to the exposition.

Disclaimer. This paper originally appeared on the arXiv under the title “One con-

jecture to rule them all: Bateman–Horn” (https://arxiv.org/abs/1807.08899).

2. Preliminaries

We will often need to compare the rate of growth of two real-valued functions

of a real variable as their arguments tend to infinity. To this end, we require a

bit of notation. Readers familiar with asymptotic equivalence, Big-O and little-o

notation, and the prime number theorem should proceed to Section 3. A good

source of information on classical analytic number theory is [18].

2.1. Asymptotic equivalence. In what follows, we assume that f(x) and g(x)

are continuous, real-valued functions that are defined and nonzero for sufficiently

large x. We write f ∼ g to mean that

lim
x→∞

f(x)

g(x)
= 1. (2.1.1)

We say that f and g are asymptotically equivalent when this occurs. The limit laws

from calculus show that ∼ is an equivalence relation; we use this fact freely.

Two polynomials are asymptotically equivalent if and only if they have the same

degree and the same leading coefficient. For example, 2x2 ∼ 2x2 + x+ 1 since

lim
x→∞

2x2 + x+ 1

2x2
= lim
x→∞

(
1 +

1

x
+

1

x2

)
= 1.

https://arxiv.org/abs/1807.08899
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It is important to note, however, that asymptotic equivalence does not necessarily

mean that “f and g are close together” in the sense that f − g is small. Although

2x2 ∼ 2x2 + x+ 1, their difference (2x2 + x+ 1)− 2x2 = x+ 1 is unbounded.

2.2. Big-O and little-o notation. When we write f(x) = O(g(x)), we mean

that there is a constant C such that |f(x)| ≤ C|g(x)| for sufficiently large x. For

example,

4x2 + 7x log x = O(x2) and sinx = O(1).

What is the relationship between Big-O notation and asymptotic equivalence? If

f ∼ g, then f(x) = O(g(x)) and g(x) = O(f(x)). Indeed, (2.1.1) and the definition

of limits ensures that |f(x)| ≤ 2|g(x)| and |g(x)| ≤ 2|f(x)| for sufficiently large x

(the number 2 in the preceding inequalities can be replaced by any constant greater

than 1). On the other hand, 2x = O(x) and x = O(2x), although x and 2x are

not asymptotically equivalent. Hence the statement “f ∼ g” is stronger than the

statement “f(x) = O(g(x)) and g(x) = O(f(x))”, but both of these statements are

asymptotic in their nature.

We say f(x) = o(g(x)) if

lim
x→∞

f(x)

g(x)
= 0.

For instance, x = o(x2) as x→∞. Notice that if f ∼ g, then

1 = lim
x→∞

f(x)

g(x)
= lim
x→∞

f(x)− g(x) + g(x)

g(x)
= lim
x→∞

f(x)− g(x)

g(x)
+ 1,

and so limx→∞
f(x)−g(x)

g(x) = 0. Thus, the error term satisfies |f(x)−g(x)| = o(g(x)).

On the other hand, the assertion that f(x) = O(g(x)) and g(x) = O(f(x)) does

not guarantee a smaller order error term. Indeed, x = O(2x) and 2x = O(x), but

|x− 2x| = |x| is not o(x) or o(2x).

2.3. The logarithmic integral. In the theory of prime numbers the offset loga-

rithmic integral1

Li(x) =

∫ x

2

dt

log t
(2.3.1)

and its close relatives frequently arise. Here log t denotes the natural logarithm2

of t. Unfortunately, the integral (2.3.1) cannot be evaluated in closed form. As a

consequence, it is convenient to replace Li(x) and its relatives (see Figure 1) with

simpler functions that are asymptotically equivalent.

Lemma 2.3.2.

∫ x

2

dt

(log t)k
∼ x

(log x)k
for k = 1, 2, . . ..

Proof. L’Hôpital’s rule and the fundamental theorem of calculus imply that

lim
x→∞

∫ x
2

dt
(log t)k

x/(log x)k
L
= lim
x→∞

1/(log x)k

1/(log x)k − k/(log x)k+1
= lim
x→∞

1

1− k/ log x
= 1. �

1The function (2.3.1) is a close relative of the standard logarithmic integral li(x), in which the

lower limit of integration in (2.3.1) is 0 and the singularity at x = 1 is avoided by using a Cauchy

principal value. Since we are interested in large x, we use (2.3.1) instead.
2The notation ln t may be more familiar to calculus students.
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Figure 1. The functions

∫ x

2

dt

(log t)k
for k = 1, 2, 3, 4 for x ≥ 2.

One can be a little more precise than Lemma 2.3.2. Integration by parts provides:

Li(x) =
x

log x
+O

(
x

(log x)2

)
and ∫ x

2

dt

(log t)k
=

x

(log x)k
+O

(
x

(log x)k+1

)
.

2.4. Prime number theorem. The first signpost toward the Bateman–Horn con-

jecture is the prime number theorem, which describes the gross distribution of the

primes. Let π(x) denote the number of primes at most x. For example, π(10.5) = 4

since 2, 3, 5, 7 ≤ 10.5. The following result was proved independently by Hadamard

and de la Vallée Poussin in 1896; see Figure 2.

Theorem 2.4.1 (Prime Number Theorem). π(x) ∼ Li(x).

Although Li(x) ∼ x/ log x, the logarithmic integral provides a more accurate

approximation to π(x); see Table 1. For simplicity, we work now with the approx-

imation π(x) ∼ x/ log x and develop a probabilistic model of the prime numbers

that will guide our progress toward the Bateman–Horn conjecture [78].

For fixed c > 0 and large x, the prime number theorem tells us to expect about

x+ cx

log(x+ cx)
− x− cx

log(x− cx)
∼ 2cx

log x

primes in the interval [x − cx, x + cx]. Dividing by the length 2cx of the interval,

it follows that the probability that a natural number in the vicinity of x is prime

is roughly 1/ log x. We use this repeatedly as a guide in our heuristic arguments.

3. A heuristic argument

Now that we know about the gross distribution of the primes, it is natural to ask

about the distribution of primes of certain forms. For example, are there infinitely
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Figure 2. Graphs of Li(x) versus π(x) on various scales.

x π(x) Li(x) x/ log x

1000 168 177 145

10,000 1,229 1,245 1,086

100,000 9,592 9,629 8,686

1,000,000 78,498 78,627 72,382

10,000,000 664,579 664,917 620,421

100,000,000 5,761,455 5,762,208 5,428,681

1,000,000,000 50,847,534 50,849,234 48,254,942

10,000,000,000 455,052,511 455,055,614 434,294,482

100,000,000,000 4,118,054,813 4,118,066,400 3,948,131,654

1,000,000,000,000 37,607,912,018 37,607,950,280 36,191,206,825

Table 1. The logarithmic integral Li(x) is a better approximation to the

prime counting function π(x) than is x/ log x. The entries in the table have

been rounded to the nearest integer.

many primes of the form n2+1? This was asked at the 1912 International Congress

of Mathematicians by Edmund Landau (1877–1938) and remains open today.3

3.1. A single polynomial. We let Z[x] denote the set of polynomials in x with

coefficients in Z, the set of integers. We denote by N the set {1, 2, . . .} of natural

3Although commonly known as Landau’s conjecture, its first appearance is in a 1752 letter

from Leonhard Euler (1707–1783) to Christian Goldbach (1690–1764) [24, p.2-3].
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numbers. For f ∈ Z[x], we define

Q(f ;x) = #{n ≤ x : f(n) is prime},
in which #S denotes the number of elements of a set S. We investigate some

conditions that f must satisfy if it is to generate infinitely many distinct primes.

To avoid trivialities, suppose that f is nonconstant and that Q(f ;x)→∞.

• Leading coefficient. The degree of f , denoted deg f , must be at least one.

Moreover, the leading coefficient of f must be positive.

• Irreducible. We claim that f is irreducible; that is, it cannot be factored as

a product of two polynomials in Z[x], neither of which is ±1.4 Suppose that

f = gh, in which g, h ∈ Z[x]. Without loss of generality, we may assume that

the leading coefficients of g and h are positive. Then g(n) = 1 or h(n) = 1 for

infinitely many n since f assumes prime values infinitely often. Consequently,

g − 1 or h − 1 is a polynomial with infinitely many roots and hence g or h is

identically 1. Thus, f is irreducible.

• Nonvanishing modulo every prime. A nonconstant f ∈ Z[x] may be irre-

ducible, yet fail to be prime infinitely often. For example, f(x) = x2 + x + 2 is

irreducible, but f(n) is divisible by 2 for all n ∈ Z. Similarly, f(x) = x3 − x+ 3

is irreducible and

x3 − x+ 3 ≡ x3 − x ≡ x(x− 1)(x+ 1) ≡ 0 (mod 3),

so f(n) is divisible by 3 for all n ∈ Z. Thus, we must insist that f does not

vanish identically modulo any prime.

3.2. Effect of the degree. Suppose that f ∈ Z[x] is nonconstant, irreducible, and

does not vanish identically modulo any prime. Let d = deg f and suppose that f

has a positive leading coefficient, c. Then f(x) ∼ cxd and our heuristic from the

prime number theorem suggests that the probability that f(n) is prime is about

1

log f(n)
∼ 1

log(cxd)
=

1

d log x+ log c
∼ 1

d log x
. (3.2.1)

This suggests that

Q(f ;x) ∼
bxc∑
n=2

1

d log x
∼ 1

deg f

∫ x

2

dt

log t
. (3.2.2)

Is this correct? We should do some computations to see whether this pans out.

3.3. A sanity check. Consider the polynomial

f(x) = x2 + 1,

which is nonconstant, irreducible, and has a positive leading coefficient. Since

f(0) = 1, it follows that f does not vanish identically modulo any prime. Landau’s

conjecture is that f assumes infinitely many prime values; that is, Q(f ;x)→∞.

According to (3.2.2)

Q(f ;N) ∼ 1

2
Li(N). (3.3.1)

4Gauss’ lemma ensures that a primitive f ∈ Z[x] is irreducible in Z[x] if and only if it is

irreducible in Q[x], the ring of polynomials with rational coefficients [22, Prop. 5, p. 303].
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N Q(f ;N) 1
2 Li(N) Q(f ;N)/ 1

2 Li(N)

100 19 15 1.3067

1,000 112 88 1.26866

10,000 841 623 1.3509

100,000 6,656 4,814 1.38252

1,000,000 54,110 39,313 1.37638

10,000,000 456,362 332,459 1.37269

100,000,000 3,954,181 2,881,104 1.37245

1,000,000,000 34,900,213 25,424,617 1.37269

Table 2. The estimate (3.3.1) is clearly incorrect. However, the ratio between

the correct answer and our prediction appears to converge slowly to a constant

(the value of 1
2

Li(N) is rounded to the nearest integer for display purposes).

However, the numerical evidence disagrees; see Table 2. On the positive side, the

loss is not total since it appears that our estimate is only off by a constant factor.

What is this constant factor and where does it come from?

3.4. Making a correction. We were too quick to celebrate the fact that f does

not vanish identically modulo any prime. Our prediction needs to take into account

how likely it is that f(n) ≡ 0 (mod p). For example, f(n) ≡ n+1 (mod 2) and hence

f(n) is even with probability 1
2 .

If we assume for the sake of our heuristic argument that divisibility by distinct

primes p and q are independent events, then we should weight our prediction by5

∏
p

(
1− ωf (p)

p

)
, (3.4.1)

in which ωf (p) is the number of solutions to f(x) ≡ 0 (mod p).

However, there is a problem. The constant factor suggested by Table 2, approx-

imately 1.372, is greater than one, whereas (3.4.1) is not. Therefore, the preceding

analysis cannot be correct. More seriously, there are convergence issues with (3.4.1);

see Section 5.1 for information about infinite products.

We need to weight the factors in (3.4.1) against the probabilities that randomly

selected integers are not divisible by p. This suggests that we adjust (3.3.1) by

C(f) =
∏
p

(
1− 1

p

)−1(
1− ωf (p)

p

)
=
∏
p

p− ωf (p)

p− 1
. (3.4.2)

Does this agree with our numerical computations? To compute ωf (p), we need to

count the number of solutions to x2 + 1 ≡ 0 (mod p). Since −1 is a square modulo

5An important convention we adhere to throughout this paper is that the letter p always

denotes a prime number. A product or sum indexed by p indicates that that product or sum runs

over all prime numbers.
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p if and only if p = 2 or p ≡ 1 (mod 4) [63],

ωf (p) =


1 if p = 2,

2 if p ≡ 1 (mod 4),

0 if p ≡ 3 (mod 4).

The hundred millionth partial product of (3.4.2) yields

C(f) ≈ 1.37281,

which agrees with the data in Table 2. In particular, this suggests an affirmative

answer to Landau’s problem.

Let us pause to summarize the discussion so far. For a single polynomial f , we

suspect that

Q(f ;x) ∼ C(f)

deg f

∫ x

2

dt

log t
,

in which

C(f) =
∏
p

(
1− 1

p

)−1(
1− ωf (p)

p

)
. (3.4.3)

This is the Bateman–Horn conjecture for a single polynomial. What about families

of multiple polynomials?

3.5. More than one polynomial. Suppose that f1, f2, . . . , fk ∈ Z[x] are distinct

irreducible polynomials with positive leading coefficients. The same reasoning in

(3.2.1) tells us the probability that all of the fi(n) are prime is

k∏
i=1

1

log fi(n)
∼

k∏
i=1

1

di log n
=

1

(
∏k
i=1 deg fi)(log n)k

.

Thus, the expected number of n at most x for which f1(n), f2(n), . . . , fk(n) are

simultaneously prime is around∫ x

2

1

(
∏k
i=1 deg fi)(log n)k

=
1∏k

i=1 deg fi

∫ x

2

dt

(log t)k
.

As before, we must amend this with a suitable correction factor.

Although perhaps no single fi vanishes identically modulo a prime, these poly-

nomials might conspire to make

f = f1f2 · · · fk (3.5.1)

vanish identically modulo some prime. For example, neither f1(x) = x nor f2(x) =

x − 1 vanish identically modulo a prime, although their product f(x) = x(x − 1)

vanishes identically modulo 2. This “congruence obstruction” prevents n and n+ 1

from being simultaneously prime infinitely often. Consequently, we must require

that f does not vanish identically modulo any prime.

With f as in (3.5.1), one final adjustment to (3.4.3) is necessary. Instead of

dividing by 1 − 1/p in (3.4.3), we must now divide by (1 − 1/p)k, the probability

that a randomly selected k-tuple of integers has no element divisible by p.
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3.6. The Bateman–Horn conjecture. The preceding heuristic deductions make

a compelling argument in favor of the following conjecture.

Bateman–Horn Conjecture. Let f1, f2, . . . , fk ∈ Z[x] be distinct irreducible

polynomials with positive leading coefficients, and let

Q(f1, f2, . . . , fk;x) = #{n ≤ x : f1(n), f2(n), . . . , fk(n) are prime}. (3.6.1)

Suppose that f = f1f2 · · · fk does not vanish identically modulo any prime. Then

Q(f1, f2, . . . , fk;x) ∼ C(f1, f2, . . . , fk)∏k
i=1 deg fi

∫ x

2

dt

(log t)k
, (3.6.2)

in which

C(f1, f2, . . . , fk) =
∏
p

(
1− 1

p

)−k (
1− ωf (p)

p

)
(3.6.3)

and ωf (p) is the number of solutions to f(x) ≡ 0 (mod p).

Under the hypotheses of the Bateman–Horn conjecture, the infinite product

(3.6.3) always converges. However, the proof is delicate and nontrivial; see Section

5 for the details.

The only case of the Bateman–Horn conjecture that has been proven is the prime

number theorem for arithmetic progressions (Theorem 6.1.1). However, an upper

bound similar to (3.6.2) is known to be true. The Brun sieve provides a constant

B that depends only on k and the degrees of the polynomials involved such that

Q(f1, f2, . . . , fk;x) ≤ BC(f1, f2, . . . , fk)∏k
i=1 deg fi

∫ x

2

dt

(log t)k

for sufficiently large x [81, Thm. 3, Sect. I.4.2]. Thus, the prediction afforded by

the Bateman–Horn conjecture is not unreasonably large.

4. Historical background

Before proceeding to applications and examples of the Bateman–Horn conjecture,

we first discuss its historical context. In particular, we briefly examine several

important antecedents that the conjecture generalizes. We are fortunate to have

available the personal recollections of Roger A. Horn, who was kind enough to

provide his account of the events leading up to the formulation of the conjecture.

4.1. Predecessors of the conjecture. The Bateman–Horn conjecture is the cul-

mination of hundreds of years of theorems and conjectures about the large-scale

distribution of the prime numbers [34]. In Section 3 we arrived at the conjecture

from the prime number theorem and heuristic reasoning based upon the Cramér

probabilistic model of the primes (see [32] for a nice exposition of this model).

Although this is easy to do in hindsight, in reality the Bateman–Horn conjecture

evolved naturally from a family of interrelated conjectures, all of which remain open.

We state these conjectures in modern terminology and with our present notation

for the sake of uniformity and clarity.
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Bunyakovsky conjecture [10] (1854): Suppose that f ∈ Z[x] is irreducible,

deg f ≥ 1, the leading coefficient of f is positive, and the sequence f(1), f(2), . . . is

relatively prime. Then f(n) is prime infinitely often.

This conjecture, which concerns prime values assumed by a single polynomial,

was proposed by Viktor Yakovlevich Bunyakovsky (1804–1889). It implies, for

example, Landau’s conjecture on the infinitude of primes of the form n2 + 1. The

condition that f(1), f(2), . . . is relatively prime is equivalent to the assumption that

f does not vanish identically modulo any prime, which appears in the Bateman–

Horn conjecture. Dirichlet’s theorem on primes in arithmetic progressions (1837)

is the degree-one case of the Bunyakovsky conjecture.

Dickson’s conjecture [21] (1904): If f1, f2, . . . , fk ∈ Z[x] are of the form fi(x) =

aix+ bi, in which each ai is positive, and there is no congruence obstruction, then

f1(n), f2(n), . . . , fk(n) are simultaneously prime infinitely often.

This was conjectured by Leonard Eugene Dickson (1874–1954) as an extension of

Dirichlet’s theorem. By a “congruence obstruction” we mean that the f1, f2, . . . , fk
are not prevented from assuming infinitely many prime values by some combination

of congruences. For example, f1(x) = x+ 3, f2(x) = x+ 7, and f3(x) = x− 1 are

congruent modulo 3 to x, x+1, and x+2, respectively. For each n ∈ N, at least one

of f1(n), f2(n), f3(n) is divisible by three. Since these polynomials are nonconstant,

this prevents them from being simultaneously prime infinitely often.

First Hardy–Littlewood Conjecture [35] (1923): Let 0 < m1 < m2 < · · · <
mk. Unless there is a congruence obstruction, the number of primes q ≤ x such

that q + 2m1, q + 2m2, . . . , q + 2mk are prime is asymptotic to

2k
∏
p odd

(
1− 1

p

)−(k+1)(
1− w(p;m1,m2, . . . ,mk)

p

)∫ x

2

dt

(log t)k+1
,

in which w(p;m1,m2, . . . ,mk) is the number of distinct residues of 0,m1,m2, . . . ,mk

modulo p.

Unlike the conjectures of Bunyakovsky and Dickson, the first Hardy–Littlewood

conjecture provides an asymptotic expression for the number of primes of a given

form. It is a special case of the Bateman–Horn conjecture with

f1(x) = x, f2(x) = x+ 2m1, . . . , fk+1(x) = x+ 2mk.

There are k + 1 polynomials involved, which accounts for the power k + 1 that

appears in the product and the integrand.

The classic paper [35] of Hardy and Littlewood is full of conjectures, labeled

“Conjecture A” through “Conjecture P.” Most of these are subsumed under what

is now known as the First Hardy–Littlewood conjecture, which we have just stated.

Hardy and Littlewood end their paper with the remark:

We trust that it will not be supposed that we attach any exaggerated

importance to the speculations which we have set out in this last section.

We have not forgotten that in pure mathematics, and in the Theory of

Numbers in particular, ‘it is only proof that counts’. It is quite pos-

sible, in the light of the history of the subject, that the whole of our

speculations may be ill-founded. Such evidence as there is points, for
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what it is worth, in the opposite direction. In any case it may be useful

that, finding ourselves in possession of an apparently fruitful method, we

should develop some of its consequences to the full, even where accurate

investigation is beyond our powers.

At least one of their conjectures is “ill-founded.” The second Hardy–Littlewood

conjecture asserts that π(x+ y) ≤ π(x) + π(y) for x ≥ 2. In 1974, Douglas Hensley

and Ian Richards proved that the second conjecture is incompatible with the first;

see [40], as well as [39, 68]. It is not known which of the two conjectures is true,

although most number theorists favor the first.

Schinzel’s Hypothesis H [71] (1958): Let f1, f2, . . . , fk be distinct irreducible,

integer-valued polynomials that have positive leading coefficients. If for each prime

p there exists an m ∈ N such that none of the values f1(m), f2(m), . . . , fk(m) are

divisible by p, then there are infinitely many n ∈ N such that f1(n), f2(n), . . . , fk(n)

are prime.

This general qualitative predecessor of the Bateman–Horn conjecture was formu-

lated by Andrzej Schinzel (1937–) in 1958. At that time, Schinzel was a student of

Wac law Sierpiński (1882–1969) at Warsaw University, and the hypothesis was first

stated in its general form in their joint paper [71]. In fact, Schinzel wrote the re-

views of the two papers of Bateman and Horn [5,6] for Mathematical Reviews and

Zentralblatt MATH, the main reviewing services of the American and European

Mathematical Societies, respectively.

The Bateman–Horn conjecture is a quantitative version of hypothesis H. The

hypotheses of both conjectures are essentially the same. The condition that for each

prime p there exists an integerm such that none of the values f1(m), f2(m), . . . , fk(m)

are divisible by p is equivalent to the condition that the product f1f2 · · · fk does

not vanish identically modulo any prime.

The Bateman–Horn conjecture unifies all of the conjectures above in one bold

prediction. It provides an asymptotic expression for the relevant counting function

and, moreover, its predictions agree well with numerical computation. We will

chronicle many consequences of the conjecture in Sections 6 and 7.

4.2. Bateman, Horn, and the ILLIAC. Paul T. Bateman (1919–2012) earned

his Ph.D. in 1946 under Hans Rademacher (1892–1969) at the University of Pennsyl-

vania. He joined the mathematics department of the University of Illinois, Urbana-

Champaign in 1950 and stayed there until his retirement in 1989, after which he

was Professor Emeritus. He was department head from 1965 until 1980 and is

credited by many for his leadership, incredible memory, and work ethic. Harold

G. Diamond [20] tells us

Paul is perhaps best known to the number theory community for the

Bateman–Horn conjectural asymptotic formula for the number of k-

tuples of primes generated by systems of polynomials. . . Their formula ex-

tended and quantified several famous conjectures of Hardy and J.E. Lit-

tlewood, and of Andrzej Schinzel, and they illustrated its quality with

calculations. This topic has been treated in dozens of subsequent papers.

Hugh Montgomery adds
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(a) Paul and Felice Bateman in January 1980. Photo
courtesy of Harold G. Diamond.

(b) Photo courtesy of the University of Illi-
nois mathematics department

Figure 3. Paul T. Bateman (1919–2012)

Bateman not only organized an active number theory group in Urbana,

with such people as John Selfridge, Walter Philipp, Harold Diamond,

and Heini Halberstam, but he also did a lot to promote number theory

around the country, and also he did a huge amount of service to the

AMS. Later, when Batemen died, he didn’t get all the honor and credit

he deserved. He had lived so long, that the (comparatively young) editor

of the AMS Notices had no idea who Bateman had been. He insisted on

just a very short (1 page or so) obituary, so many of the reminiscences

never saw the light of day. Harold Diamond may still have drafts of what

we wanted to publish. [60]

Fortunately, it appears that Diamond was able to publish much of the desired

memorial tribute online [20].

Roger A. Horn (1942–) received his Ph.D. from Stanford in 1967, under the

direction of Donald Spencer (1912–2001) and Charles Loewner (1893–1968); see

Figure 4. He worked briefly at Santa Clara University before moving to Johns

Hopkins in 1968, where he founded the Department of Mathematical Sciences in

1972. He remained at Johns Hopkins until 1992, when he moved to the University

of Utah as Research Professor. He retired in 2015 and currently resides in Tampa.

Horn is known best for his long and storied career in matrix analysis. Among his

chief publications are the classic texts Matrix Analysis [44] and Topics in Matrix

Analysis [43], both coauthored with Charles Johnson. Of his many papers, only

two are on number theory; both of these date from the early 1960s and concern

the Bateman–Horn conjecture [5,6]. Consequently, many of his close colleagues are

unaware of his connection to a famous conjecture in number theory.6 For example,

the third named author wrote a linear algebra textbook [28] with Roger Horn before

6A common misconception is that Roger Horn is the “Horn” from the famed Horn conjecture

about the eigenvalues of a sum of two Hermitian matrices, settled in 1999 by Knutson–Tao [50]

and Klyachko [48]. That distinction belongs to Alfred Horn (1918–2001), who made the conjecture

in 1962 [41], the same year in which the Bateman–Horn conjecture appeared [5].
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(a) Roger Horn in his 1963 Cornell graduation photo,
around the time of his work under Bateman.

(b) Roger Horn on vacation in Buenos
Aires, January 2017.

Figure 4. Photographs provided courtesy of Roger A. Horn.

he learned, in the course of a number theory project [29,30], that Roger was “the”

Horn from Bateman–Horn!

How did Roger Horn co-propose an important conjecture in a field so far from

his own? We are fortunate to have access to his detailed recollections [42].

In the early 1960s, the National Science Foundation funded several sum-

mer programs intended to introduce college mathematics students to

computing. In 1962 I applied to, and was accepted into, one of those

programs, which was hosted by the Computing Center at the University

of Illinois in Urbana-Champaign.

There were about 10 participants, from all over the country. We were

housed in university dorm rooms, attended classes in the Computing

Center, and had unlimited access to the hottest computer on campus,

the ILLIAC, which later was known as the ILLIAC I when its successor,

the ILLIAC II was built.

The ILLIAC (Illinois Automatic Computer), which powered up on September

22, 1952, was the first computer to be built and owned by a United States academic

institution; see Figure 5. It was the second of two identical computers, the first of

which was the ORDVAC (Ordnance Discrete Variable Automatic Computer), built

by the University of Illinois for the government’s Ballistics Research Laboratory.

The two machines employed the architecture proposed by John von Neumann in

1945.

In those days, universities built their own computers: IBM hardware

was of the punch-card variety, for which businesses were the primary

customers; they were not well suited for scientific work. It was the size
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Figure 5. The ILLIAC I computer around 1952. Courtesy of the University

of Illinois Archives

of a small house and it consumed a prodigious amount of electric power.

It stopped working frequently when one of its thousands of vacuum tubes

died. We programmed it in hexadecimal machine code; no high-level user

language (BASIC or FORTRAN, for example) was ever written for it.

According to the archives of the University of Illinois, the ILLIAC weighed two

tons, measured 10× 2× 8.5 feet,7 and required approximately 2,800 vacuum tubes

to operate [2]. A later survey, published in 1961 and based upon observations made

in 1959, gives quite different figures: 4,427 vacuum tubes of twenty-seven different

types [83]. It is likely that the system was somewhat expanded and upgraded in

the period since its construction in 1951 and the latter figure perhaps more closely

approximates the system that Bateman and Horn used.

Some classes were organized for us. One was on Boolean logic and circuit

design, taught by one of the engineers who was working on the design

of ILLIAC II. Another was on numerical analysis, taught by Herb Wilf,

who was a young assistant professor and author (with Anthony Ralston)

of a new numerical analysis textbook [Mathematical Methods for Digital

Computers]. I first learned about interpolation and orthogonal polyno-

mials in that class.

Initially, we were given small problems to program for the ILLIAC

to develop our programming skills. Programs were typed onto paper

tape with the same Teletype machines used by Western Union. Noisy!

We submitted our tapes to the ILLIAC operator, who fed them into

the machine. We did that a lot because most of the time our programs

crashed. The ILLIAC had a small speaker hooked up to a bit in its

7Horn says “this was only the console, the big box visible in Figure 5. All this stuff, and a

huge power supply, was in a big adjoining room (the size of a small house).”
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accumulator register, and gave out a high-pitched whine when it went

into a loop. The operator had to flip a “kill” switch to stop it, and that

was embarrassing.

The ILLIAC could read punched paper tape at a rate of 300 characters per

second. Moreover, “five hole teletype tape is used. Numerical data are read with a

4-hole code. Alphanumerical data employs a 5-hole code and a special instruction”

[83]. Output appeared on paper tape at 60 characters per second, or on a page

printer at a sluggish 10 characters per second.

After a couple of weeks we started work on some projects. The organizers

had lined up some faculty who were willing to mentor us and supervise

projects. I chose two: One was as part of a team of three supervised by

Herb Wilf. We did a lot of calculations in an attempt to find a counterex-

ample to the Pólya–Schoenberg conjecture (if two normalized univalent

analytic functions on the unit disk have the property that each maps

the unit disk onto a convex domain, then their Hadamard product has

the same property). Part of the computation required testing some very

large Hermitian matrices for positive definiteness, so I learned something

about that topic. All of our runs produced negative results. . . no coun-

terexamples found. This was a good thing, because about 10 years later

the conjecture became a theorem.

The conjecture, stated in 1958 by George Pólya (1887–1985) and Isaac Schoen-

berg (1903–1990) [66], became a theorem in 1973 when it was proved by Stephan

Ruscheweyh and Terence Sheil-Small [70]. Although we do not wish to drift too

far afield, there are a few tangential remarks of mild historical interest that are

worth making. First, Herbert Saul Wilf (1931–2012) was at Illinois from 1959 to

1962, after which he moved to the University of Pennsylvania. Thus, Horn must

have worked with Wilf just before his departure. Wilf’s 1963 paper on the Pólya–

Schoenberg conjecture also mentions Horn’s contribution and identifies several other

participants of the 1962 summer research program:

The machine program was planned and executed by Messrs. Roger A.

Horn (Cornell University), Forrest R. Miller Jr. (University of Okla-

homa) and Gerald Shapiro (Massachusetts Institute of Technology) who

visited the Digital Computer Laboratory at Illinois during a summer

program for undergraduates in Applied Mathematics sponsored by the

National Science Foundation. These calculations were made possible

largely by their dedication and enthusiasm. [84]

Now back to number theory and Roger Horn’s account of the origins of the

Bateman–Horn conjecture [42].

My other project was a lone effort supervised by Paul T. Bateman, a

famous analytical number theorist; I think he was chair of the math

department at the time. His Ph.D. advisor was Hans Rademacher. He

had me read some papers that dealt with a variety of number-theoretic

conjectures (there were then, and still are now, a LOT of them!) with

the goal of choosing something that might be amenable to experimental

computation. Eventually, we settled on the problem reported on in our

1962 Math. Comp. paper. I burned up about 7 hours of ILLIAC time,

but the results were very interesting and gave increased confidence in the

conjectures.
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The UIUC mathematics department website and two short biographies of Bate-

man assert that he was department head (not chair) from 1965 until 1980 [1, 20].

Hugh Montgomery tells us that “Bateman was not the chair of the math dept when

I arrived as a freshman in 1962. The chair at that time was M.M. Day. But during

my sophomore year, Day became ill with an ulcer, and Bateman was then asked to

take over. He was probably chair first, and then head later” [60].8

Of greater interest to us are the computations mentioned above. The paper [5],

in which the Bateman–Horn conjecture is stated, says the following.

The second-named author [Roger Horn] used the ILLIAC to prepare a

list of the 776 primes of the form p2 + p + 1 with p a prime less than

113,000. (The program used was a straightforward one, and the running

time was about 400 minutes.) The first 209 of these primes are listed by

Bateman and Stemmler who considered primes of the form p2 + p+ 1 in

connection with a problem in algebraic number theory.

The “Stemmler” mentioned above is Rosemarie M.S. Stemmler, a student of

Bateman who received her Ph.D. in 1959 [7]. Bateman and Horn computedQ(f1, f2;x)

for various x ≤ 113,000 with f1(t) = t and f2(t) = t2 + t+ 1. On the third named

author’s late-2013 iMac, the same computation takes only a tenth of a second!

Although the summer drew to a close, Horn continued to work on the project:

When the summer was over, I went back to Cornell for my senior year

and found that they had taken delivery of a brand new CDC [Control

Data Corporation] 1604 computer. It took a while for folks to discover

that it was in operation and move their work to a new programming

environment, so I was able to get quite a lot of overnight time on the

machine, which was much faster than the ILLIAC and a lot more reliable.

It had FORTRAN, too! I ran a lot of additional experiments that were

reported in our 1965 Symposia in Pure Math VIII paper [6]. And then I

graduated, went to graduate school, took other directions in my research,

and haven’t thought about these number theory issues since 1963.

We wrap things up with a humorous anecdote connected to the Bateman–Horn

conjecture. Serge Lang (1927–2005), in his book Math Talks for Undergraduates

provides one of the few expositions of the conjecture [53]. In the introduction, he

claims that his tone was too conversational and informal for certain editors:

[Paul] Halmos once characterized this style as “vulgar”, and obstructed

publication of excerpts in the Math Monthly. A decade later, in the

1990s, the present talk was offered for publication again in the Math

Monthly, and was turned down by the editor (Roger Horn, this time)

because of the spoken style. Well, I like the spoken style, and I find it

effective. Go figure. [53, p.1]

There is a remarkable confluence here. Paul Halmos, the academic grandfather

of the third named author, was editor(-in-chief) of the American Mathematical

8Montgomery also remarks “I was interested in number theory already when I was in high

school. At Illinois I started taking their honors math courses. I got to know Bateman during the

second half of my sophomore year, when I took his graduate-level problem-solving class. I worked

around 40 hrs per week on that one class, while carrying a full load of other courses, but it was

worth it. During the summer after my junior year, he had me stay in Urbana and do a research

project, probably on the same grant that Horn had been on. It was sort of a precursor of REU.”
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Monthly from 1982 to 1986. Herbert S. Wilf, who we met above in connection to

the Pólya–Schoenberg conjecture, was the editor from 1987-1991. Roger Horn was

editor from 1997 to 2001!

Horn recalls that he “had a memorable bad experience once with Lang, while

I was Editor of the Monthly.” Although he has no recollection of a submission

related to the Bateman–Horn conjecture, he does remember several submissions on

other topics. He also vividly remembers a phone call in which “[Lang] shouted at

me for ten minutes or so, and then hung up.”

5. Why does the product converge?

We now discuss the convergence of the product (3.6.3) that defines the Bateman–

Horn constant C(f1, f2, . . . , fk). This is a delicate argument that requires elements

of both algebraic and analytic number theory, along with a few tricks to deal with

conditionally convergent infinite products. In [18, p. 36], the authors state:

It is not even clear that in formula (2.18) the expression C(f1, f2, . . . , fk)

represents a product which converges to a positive limit.

We wish to provide a thorough account here since most of these details are sup-

pressed in the original source [5].

5.1. Infinite products. Before we can proceed with the proof that the product

(3.6.3) that defines the Bateman–Horn constant converges, we require a few general

words about infinite products.

The only way that a zero factor can appear in the evaluation of C(f1, f2, . . . , fk)

is if ωf (p) = p for some prime p; that is, if f vanishes identically modulo p. This

is prohibited by the hypotheses of the Bateman–Horn conjecture, so we can safely

ignore this possibility. Let an be a sequence in C\{−1}. Fix a branch of log z the

logarithm with log 1 = 0 and for which log(1 + an) is defined.

• We say that
∏∞
n=1(1 + an) converges to L 6= 0 if and only if

∑∞
n=1 log(1 + an)

converges to logL. Otherwise the infinite product diverges.

• If an is a sequence of real numbers and
∑∞
n=1 log(1 + an) diverges to −∞, then

we say that
∏∞
n=1(1 + an) diverges to zero. In particular, this means that the

partial products
∏N
n=1(1 + an) tend to zero as N →∞.

It turns out that the infinite products that arise in the Bateman–Horn conjecture

are often rather finicky. To handle them, we require the following convergence

criterion. Although it is well known in analysis circles as a folk theorem, we are

unable to find a reference that contains a proof. For the sake of completeness, we

provide the proof below.

Lemma 5.1.1. Let an be a sequence in C\{−1}. If
∑∞
n=1 |an|2 < ∞, then∑∞

n=1 an and
∏∞
n=1(1 + an) converge or diverge together.

Proof. For |z| ≤ 1
2 ,

log(1+z) =

∞∑
n=1

(−1)n−1zn

n
= z+

(
−1

2
+
z

3
− z2

4
+ · · ·

)
z2 = z+z2L(z), (5.1.2)
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in which

|L(z)| ≤
∞∑
n=0

1

(n+ 2)2n
= −2 + log 16 = 0.77258 . . . < 1.

If
∑∞
n=1 |an|2 <∞, then there is an N such that |an| ≤ 1

2 for n ≥ N . Therefore,

∞∑
n=N

log(1 + an) =

∞∑
n=N

an +

∞∑
n=N

a2nL(an),

in which the second series on the right-hand side converges absolutely by the com-

parison test. Thus,
∞∑
n=1

an converges ⇐⇒
∞∑
n=1

log(1 + an) converges ⇐⇒
∞∏
n=1

(1 + an) converges. �

Example 5.1.3. The hypothesis
∑∞
n=1 |an|2 <∞ is necessary in Lemma 5.1.1. If

an =
(−1)n√
n log n

for n ≥ 2, then
∞∑
n=2

|an|2 =

∞∑
n=2

1

n log n
(5.1.4)

diverges by the integral test. However,
∑∞
n=2 an converges by the alternating series

test while the second series on the right-hand side of
∞∑
n=4

log(1 + an) =

∞∑
n=4

an +

∞∑
n=4

L(an)

n log n

diverges by the limit comparison test against (5.1.4) since L(an)→ − 1
2 by (5.1.2).9

The infinite product
∏∞
n=1(1 + an) converges absolutely if

∏∞
n=1(1 + |an|) con-

verges; this is equivalent to the convergence of
∑∞
n=1 |an|. An infinite product that

converges but does not converge absolutely is conditionally convergent.

5.2. Algebraic prerequisites. Let K be a number field; that is, a finite algebraic

extension of Q. This implies that each element of K is algebraic over Q and that

the dimension of K as a Q-vector space is finite. This dimension is called the degree

of K over Q and denoted by [K : Q].

For each α ∈ K, there is a unique irreducible polynomial mα(x) ∈ Z[x] with

relatively prime coefficients and positive leading coefficient such that mα(α) = 0.

This is the minimal polynomial of α. The degree of α, denoted by degα, is the

degree of the polynomial mα, which is at most [K : Q]. One can show that

OK := {α ∈ K : mα(x) is monic}
is a subring of K (see, for instance, Theorem 2.9 of [77] or p.16 of [55]); it is the

ring of algebraic integers of K. Since mn(x) = x− n is irreducible for each n ∈ Z,

it follows that Z ⊆ OK.

For α ∈ K, let Q(α) denote the smallest (with respect to inclusion) subfield of K
that contains Q and α. The following important theorem asserts that every number

field is generated by a single algebraic integer [77, Thm. 2.2 & Cor. 2.12].

9To use (5.1.4) we require |an| ≤ 1
2

. Note that |a3| > 1
2

and |an| ≤ 1
2

for n ≥ 4.
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Theorem 5.2.1 (Primitive Element Theorem). If K is a number field, then there

is a θ ∈ OK such that K = Q(θ).

If K = Q(θ), then we have the field isomorphism

K ∼= Q[x]/〈mθ(x)〉,

in which 〈mθ(x)〉 is the (maximal) ideal in Q[x] generated by the irreducible poly-

nomial mθ(x). In this case, [K : Q] = deg θ. Observe that Z[θ], the set of integral

linear combinations of powers of θ, is a subring of OK and hence OK is a ring ex-

tension of Z[θ]. The index of Z[θ] inside OK (as abelian groups), which is finite, is

denoted [OK : Z[θ]].

We say that p is a rational prime if it is a prime in the ring Z; that is, if p is

prime in the traditional sense. For each rational prime p, the set pOK is an ideal

in OK. Although this ideal might not be a prime ideal in OK, it can be factored

as a product of prime ideals [77, Thm. 5.6]. Thus, for each rational prime p there

exist distinct prime ideals p1, p2, . . . , pk ⊂ OK and positive integers e1, e2, . . . , ek
such that

pOK = pe11 pe22 · · · p
ek
k . (5.2.2)

This factorization is unique up to permutation of factors. Each prime ideal p ⊂ OK
can be present in the factorization for only one rational prime [77, Thm. 5.14c].

If ei > 1 for some i in (5.2.2), then p ramifies in K; the exponents e1, e2, . . . , ek
are called ramification indices. There are only finitely many rational primes p

that ramify in a given number field [55, Cor. 2, p. 73]. Since prime ideals in OK
are maximal [77, Thm. 5.3d], it follows that OK/pi is a field for each pi in the

factorization (5.2.2). In fact, it is a finite field of characteristic p [55, p. 56] and

hence its cardinality is pfi for some fi, which is called the inertia degree of p at pi
(the notation fi is standard and should not be confused with the polynomials in

the statement of the Bateman–Horn conjecture). The norm of the ideal pi is

N(pi) = |OK/pi| = pfi (5.2.3)

and there are only finitely many prime ideals inOK of a given norm [77, Thm. 5.17c].

The factorization (5.2.2) is related to the factorization of mθ(x) modulo p. This

connection is given by the Dedekind factorization criterion (see [53, Prop. 25, p. 27]).

Theorem 5.2.4 (Dedekind Factorization Criterion). Let K = Q(θ), in which θ ∈
OK, and let p a rational prime whose ideal pOK factors as in (5.2.2). If p - [OK :

Z[θ]], then there is a factorization

mθ(x) ≡ g1(x)e1g2(x)e2 · · · gk(x)ek (mod p)

into powers of irreducible polynomials gi(x) modulo p, in which deg gi(x) = fi, the

inertia degree of p at the corresponding prime ideal pi.

One immediate and important implication of this theorem is that

deg θ =

k∑
i=1

eifi.

Observe also that mθ(a) ≡ 0 (mod p) for some a ∈ Z if and only if (x− a) | mθ(x)

modulo p. This occurs if and only if gi(x) = x − a for some i, in which case
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fi = deg gi = 1 and (5.2.3) tells us that the corresponding prime ideal pi in the

factorization (5.2.2) has norm p. Since there are only finitely many primes that

divide the index [OK : Z[θ]], we have the following corollary.

Corollary 5.2.5. Let g(x) ∈ Z[x] be a monic irreducible polynomial with root θ

and let K = Q(θ). For all but finitely many rational primes p, the number ωg(p) of

solutions to g(x) ≡ 0 (mod p) equals the number of prime ideals of norm p in the

prime ideal factorization of pOK.

5.3. Analytic prerequisites. Later on we will need the following theorem of

Leonhard Euler. We present a proof due to Clarkson [12]; see [82] for a survey

of various proofs.

Theorem 5.3.1 (L. Euler, 1737).
∑
p

1

p
diverges.

Proof. Let pn denote the nth prime number and suppose toward a contradiction

that
∑∞
n=1

1
pn

converges. Since the tail end of a convergent series tends to zero, let

K be so large that
∞∑

j=K+1

1

pj
<

1

2
.

Let Q = p1p2 · · · pK and note that none of the numbers

Q+ 1, 2Q+ 1, 3Q+ 1, . . .

is divisible by any of the primes p1, p2, . . . , pK . Now observe that

N∑
n=1

1

nQ+ 1
≤

∞∑
m=1

( ∞∑
j=K+1

1

pj

)m
<

∞∑
m=1

(
1

2

)m
= 1

for N ≥ 1; the reason for the first inequality is the fact that the sum in the middle,

when expanded term-by-term, includes every term on the left-hand side (and with

a coefficient greater than or equal to 1). This is a contradiction, since
∑∞
n=1

1
nQ+1

diverges by the integral test. �

A more precise version of the preceding lemma was obtained by Franz Mertens

(1840–1927). Since the proof of Mertens’ theorem would draw us too far afield, we

refer the reader to Terence Tao’s exposition for details [79].

Theorem 5.3.2 (Mertens, 1874).∑
p≤x

1

p
= log log x+B +O

(
1

log x

)
.

in which B = 0.2614972128476 . . . is the Meissel–Mertens constant.

Much of the analytic theory of prime numbers goes through to prime ideals,

mutatis mutandis. Define

πK(x) = |{p ⊂ OK : p is a prime ideal and N(p) ≤ x}| ,

which is a generalization of the usual prime counting function π(x) = πQ(x). The

prime number theorem asserts that π(x) ∼ x/ log x. This is a special case of

Landau’s prime ideal theorem [51], [59, p. 194, p. 267].
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Theorem 5.3.3 (Prime Ideal Theorem). If K is a number field, then πK(x) ∼
Li(x).

Thus, the asymptotic distribution of prime ideals (by norm) in a number field

mirrors that of the prime numbers in the integers. Therefore, it is not surprising

to find an analogue of Mertens’ theorem (Theorem 5.3.2) that holds for prime

ideals [69, Lemma 2.4] or [54, Prop. 2].

Theorem 5.3.4 (Mertens theorem for number fields). If K is an algebraic number

field, then there is a constant C such that∑
N(p)≤x

1

N(p)
= log log x+ C +O

(
1

log x

)
,

in which the sum runs over all nonzero prime ideals p in OK of norm at most x.

We are now in a position to prove the following convergence result (recall that p

always denotes a prime number and that
∑
p means that we sum over all primes).

Lemma 5.3.5. Let g(x) ∈ Z[x] be monic irreducible. For each rational prime p,

let ω(p) denote the number of solutions to g(x) ≡ 0 (mod p). Then∑
p

ω(p)− 1

p

converges.

Proof. Let K = Q(θ), in which θ is a root of g. Then Corollary 5.2.5 implies that∑
p≤x

ω(p)

p
=

∑
N(p)≤x

1

N(p)
+A,

in which the constant A arises from the finitely many rational primes p that are

excluded from Corollary 5.2.5. Theorems 5.3.2 and 5.3.4 imply that∑
p≤x

ω(p)− 1

p
=

∑
N(p)≤x

1

N(p)
−
∑
p≤x

1

p
+A

=

[
log log x+ C +O

(
1

log x

)]
−
[
log log x+B +O

(
1

log x

)]
+A

= A−B + C +O

(
1

log x

)
converges to A−B + C as x→∞. �

5.4. Convergence of the product. We are now ready to prove the convergence

of the product (3.6.3) that defines the Bateman–Horn constant. Let f1, f2, . . . , fk ∈
Z[x] be irreducible and define f = f1f2 · · · fk. Let ωi(p) and ω(p) denote the number

of solutions in Z/pZ to fi(x) ≡ 0 (mod p) and f(x) ≡ 0 (mod p), respectively.

Lemma 5.4.1. For all but finitely many primes p,

ω(p) = ω1(p) + · · ·+ ωk(p). (5.4.2)
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Proof. Since p is prime, each zero of f in Z/pZ is a zero of some fi. Thus,

ω(p) ≤ ω1(p) + · · ·+ ωk(p).

On the other hand, every zero of each fi in Z/pZ is a zero of f . Hence it suffices

to show that fi and fj have no common zeros in Z/pZ if p is sufficiently large.

Since the polynomials fi(x) are irreducible in Z[x] they are irreducible in Q[x]. If

i 6= j then gcd(fi, fj) = 1 in Q[x], which is a Euclidean domain. Hence there exist

polynomials uij(x) and vij(x) in Q[x] such that

uij(x)fi(x) + vij(x)fj(x) = 1.

Let dij be the least common denominator of the coefficients of uij(x) and vij(x),

then gij(x) = dijuij(x) and hij(x) = dijvij(x) are in Z[x], and we have:

gij(x)fi(x) + hij(x)fj(x) = dij .

Suppose that fi(x) mod p and fj(x) mod p have a common root r ∈ Z/pZ for some

prime p. Substituting r for x in the equation above and reducing modulo p yields

dij ≡ 0 (mod p),

meaning that p divides dij , which is only possible for finitely many primes p, e.g. p

has to be smaller than dij . Hence for all sufficiently large primes p the polynomials

fi and fj have no common zeros in Z/pZ. This completes proof. �

The product that defines the Bateman–Horn constant need not converge abso-

lutely. Consequently, we must take care to justify its convergence. We are now

ready to prove the main result of this section.

Theorem 5.4.3. The product that defines C(f1, f2, . . . , fk) converges.

Proof. Lemma 5.4.1 implies that∑
p≤x

ω(p)− k
p

=

k∑
i=1

∑
p≤x

ωi(p)− 1

p
+D

for all x ≥ 0; the constant D arises because of the finitely many exceptions to

(5.4.2). The preceding lemma and Lemma 5.3.5 ensure that∑
p

k − ω(p)

p
converges. (5.4.4)

Then a binomial expansion yields(
1− 1

p

)−k (
1− ω(p)

p

)
= 1 +

k − ω(p)

p
+
B(p)

p2
,

in which

B(p) =
k(k − 1)

2
− ω(p) +O

(
1

p

)
is uniformly bounded because |ω(p)| ≤ deg f . Let

ap =
k − ω(p)

p
+
B(p)

p2
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and observe that ∑
p

ap =
∑
p

k − ω(p)

p
+
∑
p

B(p)

p2

converges by (5.4.4) and the comparison test. Since

|ap|2 =

(
k − ω(p)

p
+
B(p)

p2

)2

=
(k − ω(p))2

p2
+

2B(p)(k − ω(p))

p3
+
B(p)2

p4
,

the comparison test ensures that
∑
p |ap|2 converges. Consequently, Lemma 5.1.1

tells us that
∏
p(1 + ap), the product that defines C(f1, f2, . . . , fk), converges. �

The preceding argument, first envisioned in its general form by Bateman and

Horn (but also in some special cases by Nagell (1921), Rademacher (1924) and

Ricci (1937); see [16] for a discussion), shows that the constant C(f1, f2, . . . , fk) is

well defined. However it is still hard to compute due to the fact that the convergence

of the product in question is not necessarily absolute or rapid. This consideration

leaves an open problem: express the constant C(f1, f2, . . . , fk) in terms of an ab-

solutely convergent product. This was done in some special cases in a subsequent

paper [6] of Bateman and Horn, and then generally by Davenport and Schinzel [16].

Several methods to accelerate the convergence rate of infinite products for approx-

imation purposes use L-functions; see [45,61].

6. Single polynomials

The Bateman–Horn conjecture implies a wide range of known theorems and un-

proved conjectures. In this section we examine several such results in the case of

a single polynomial. This provides us with some practical experience computing

Bateman–Horn constants and it also highlights some delicate convergence issues.

Applications of the Bateman–Horn conjecture to families of two or more polynomi-

als are studied in Section 7.

6.1. Prime number theorem for arithmetic progressions. In 1837, Peter

Gustav Lejeune Dirichlet (1805–1859) proved that if a and b are relatively prime

natural numbers, then there are infinitely many primes of the form at+ b, in which

t ∈ N. For example, there are infinitely many primes that end in 123,456,789. To

see this, apply Dirichlet’s result with a = 10,000,000 and b = 123,456,789.10

Let πa,b(x) denote the number of primes at most x that are of the form at+b. The

complex-variables proof of the prime number theorem can be modified to provide

the following asymptotic formulation of Dirichlet’s result [80] (see [73] and the

discussion on [65, p. 236] for information about elementary approaches).

Theorem 6.1.1 (Prime Number Theorem for Arithmetic Progressions). If a and

b are relatively prime natural numbers, then

πa,b(x) ∼ 1

φ(a)
Li(x). (6.1.2)

10The values of t ≤ 100 for which at+ b is prime are 11, 29, 43, 50, 59, 64, 68, 73, 97, 98.
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Here

φ(n) = #
{
k ∈ {1, 2, . . . , n} : gcd(k, n) = 1

}
denotes the Euler totient function. Its value equals the order of the group (Z/nZ)×

of units in Z/nZ. The totient function is multiplicative, in the sense that φ(mn) =

φ(m)φ(n) whenever gcd(m,n) = 1. It enjoys the product decomposition

φ(n) = n
∏
p|n

(
1− 1

p

)
, (6.1.3)

in which the expression p|n denotes that the product is taken over all primes p that

divide n. For example, φ(6) = 2 since only 1 and 5 are in the range {1, 2, . . . , 6}
and relatively prime to 6. The product formulation (6.1.3) tells us the same thing:

φ(6) = 6(1− 1/2)(1− 1/3) = 6(1
2 )( 2

3 ) = 2.

What is the intuitive explanation behind the prime number theorem for arith-

metic progressions? If gcd(a, b) 6= 1, then a and b share a common factor and hence

at+b is prime for at most one t. Thus, gcd(a, b) = 1 is a necessary condition for the

polynomial at+ b to generate infinitely many primes. For each fixed a, this yields

exactly φ(a) admissible values of b (mod a). Since the prime number theorem tells

us that π(x) ∼ Li(x), (6.1.2) tells us that each of the φ(a) admissible congruence

classes modulo a receives an approximately equal share of primes.

The prime number theorem for arithmetic progressions (Theorem 6.1.1) is a

straightforward consequence of the Bateman–Horn conjecture. Let f(t) = at + b,

in which gcd(a, b) = 1. Then

f(t) ≡ 0 (mod p) ⇐⇒ at ≡ −b (mod p). (6.1.4)

If p - a, then a is invertible modulo p and the preceding congruence has a unique

solution. If p|a, then (6.1.4) has no solutions since gcd(a, b) = 1. Therefore,

ωf (p) =

{
1 if p - a,
0 if p|a,

and hence

C(f ; p) =
∏
p

(
1− 1

p

)−1(
1− ωf (p)

p

)
=
∏
p|a

(
1− 1

p

)−1
=

a

φ(a)

by (6.1.3). In particular, the potentially infinite product reduces to a finite product

indexed only over the prime divisors of a. Since

at+ b ≤ x ⇐⇒ t ≤ x− b
a

,

we have

πa,b(x) = Q

(
f ;
x− b
a

)
∼ a

φ(a)
· (x− b)/a

log((x− b)/a)

=
a

φ(a)
· (x/a)− (b/a)

log(x− b)− log a
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∼ a

φ(a)
· x/a

log(x− b)

∼ x

φ(a) log x
∼ 1

φ(a)
Li(x),

which is the desired result.

The weaker statement about simply the infinitude of primes in an arithmetic

progression is a special case of the Bunyakovsky conjecture and is currently the

only case of this conjecture that has been settled. The conjecture is open for

quadratic and cubic polynomials, as we discuss next.

6.2. Landau’s conjecture and its relatives. In our heuristic argument (Section

3), we explained how Landau’s conjecture (there are infinitely many primes of the

form n2 + 1) follows from the Bateman–Horn conjecture. For f(t) = t2 + 1, we

showed that

Q(f ;x) ∼ (0.68640 . . .) Li(x);

in particular, the conjecture suggests that Landau’s intuition was correct. Let

πLandau(x) denote the number of primes of the form n2 + 1 that are at most x.

Since

t2 + 1 ≤ x ⇐⇒ t ≤
√
x− 1,

it follows that

πLandau(x) = Q(f ;
√
x− 1) ∼ (0.68640 . . .) Li(

√
x− 1)

∼ (0.68640 . . .)

√
x− 1

log(
√
x− 1)

∼ (1.3728 . . .)

√
x

log x
.

Thus, πLandau(x) grows like a constant times π(x)/
√
x.

The Bateman–Horn conjecture also implies important variants of Landau’s con-

jecture. For example, Friedlander and Iwaniec proved that there are infinitely many

primes of the form x2+y4 (they also provided asymptotics for the counting function

of such primes) [26]. For each fixed y ≥ 1, the Bateman–Horn conjecture suggests

that there are infinitely many primes of the form x2 + y4. A result of Heath-

Brown [37] guarantees the existence of infinitely many primes (with an asymptotic

formula for the growth of their number) of the form x3 + 2y3, thereby confirming

the conjecture of Hardy and Littlewood on the infinitude of primes expressible as a

sum of three cubes. These are results in the interesting and promising direction of

representing primes by multivariate polynomials, see the survey [62] and the recent

preprint [19].

Let us briefly turn to cubic polynomials in one variable. A result of [25] states,

roughly speaking, that on the average polynomials of the form t3 +k for squarefree

k > 1 assume infinitely many prime values at integer points, in some well-defined

sense. We are not aware of a definitive published result on any specific example of

such a polynomial: an existence of infinitude of prime values of a cubic polynomial

is a special case of the Bunyakovsky conjecture that is sometimes called the “cubic

primes conjecture.” For example, f(t) = t3 − 2 is irreducible and does not vanish
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n
∏
p∈Pn

(
1− 1

p−1
)

10 0.210114

100 0.117208

1,000 0.0824772

10,000 0.0641136

100,000 0.0526554

1,000,000 0.044777

10,000,000 0.0390052

Table 3. The partial products
∏

p∈Pn

(
1− 1

p−1

)
appear to diverge to zero.

identically modulo any prime. The Bateman–Horn conjecture predicts that this

polynomial assumes prime values infinitely often.

6.3. Tricking Bateman–Horn? What happens if we replace n2+1 with n2−1 =

(n−1)(n+1)? The only prime of this form is 3. Of course, the polynomial in ques-

tion is reducible and hence is not even a permissible candidate for the conjecture.

Does the Bateman–Horn conjecture “detect this” attempted fraud, or does it just

plow ahead and suggest to the unwary that there are infinitely many primes of this

form? For the sake of curiosity, let us try it and see what happens.

If f(n) = n2 − 1, then f(n) ≡ 0 (mod p) becomes n2 ≡ 1 (mod p) and hence

ωf (p) =

{
1 if p = 2,

2 otherwise.

Thus,

C(f) =
∏
p≥3

p− 2

p− 1
=
∏
p≥3

(
1− 1

p− 1

)
. (6.3.1)

Let Pn denote the set of the first n odd primes. For example, P1 = {3}, P2 = {3, 5},
P3 = {3, 5, 7}, and so forth. Numerical evidence (Table 3) suggests that

lim
n→∞

∏
p∈Pn

(
1− 1

p− 1

)
= 0; (6.3.2)

that is, the product that defines C(f) diverges to zero (this is the case). If this

application of the Bateman–Horn conjecture were admissible (it is not since f is

reducible), we would expect no primes of the form n2 − 1. This is not too far from

the truth: we were off by only one. The Bateman–Horn conjecture is surprisingly

robust; in some sense, it detected our trickery and rejected it.

Why does (6.3.1) diverge to zero? Euler’s result (Theorem 5.3.1) ensures that∑
p∈Pn

1

p− 1
>
∑
p∈Pn

1

p
,

which diverges as n → ∞. An application of Lemma 5.1.1 implies that (6.3.1)

diverges (to zero); that is, C(f) = 0. Thus, the Bateman–Horn conjecture detected,

in a subtle way, the difference between the polynomials n2 + 1 (which is believed

to generate infinitely many prime values) and n2 − 1, which is prime exactly once.
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6.4. Prime-generating polynomials. Euler observed in 1772 that the polyno-

mial f(t) = t2 + t + 41 assumes prime values for t = 0, 1, . . . , 39. However,

f(40) = 1681 = 412 is composite. Is there a nonconstant polynomial that assumes

only prime values?

Theorem 6.4.1. Let f ∈ Z[x]. If f(n) is prime for all n ≥ 0, then f is constant.

Proof. Let p = f(0), which is prime by assumption. For each n ≥ 0, the prime

f(pn) is divisible by p. Then f(pn) = p for n ≥ 0 and hence f(pn)−p has infinitely

many roots and is therefore zero. Thus, f is the constant polynomial p. �

This shows that no single-variable polynomial can assume only prime values for

all natural arguments. Surprisingly, there is a polynomial of degree twenty-five

in twenty-six variables whose positive integral range is precisely the set of prime

numbers [46]. This startling fact is related to Matiyasevich’s solution to Hilbert’s

tenth problem [56] and the work of Davis–Putnam–Robinson [17]. It is not known

what is the smallest number of variables a prime-generating polynomial must have,

but it is definitely less than twenty-six: a polynomial with this property in twelve

variables is also known; see [18, Sect. 2.1].

What is so special about 41? Suppose that f(t) = t2 + t + k generates primes

for the first few nonnegative integral values of t. Then k = f(0) is prime. In 1913,

Georg Yuri Rainich (1886–1968) proved if p is prime, then n2 + n + p is prime

for n = 0, 1, . . . , p − 2 if and only if the imaginary quadratic field Q(
√

1− 4p) has

class number one [67]11; for our purposes it suffices to say that this means that

Q(
√

1− 4p) is a unique factorization domain. The Baker–Heegner–Stark theorem

ensures that there are only finitely many primes p with this property [4,38,75,76].

The largest of these, p = 41, corresponds to the quadratic field Q(
√
−163). Thus,

we cannot beat Euler at his own game.

Perhaps we can beat Euler on average. Can we find an Euler-type polynomial

that produces an asymptotically greater number of primes than Euler’s polynomial?

Let us first examine what the Bateman–Horn conjecture says about f(t) = t2+t+41.

Since f(t) is identically 1 modulo 2, ωf (2) = 0. In what follows we use the

“completing the square” identity

4a(at2 + bt+ c) = (2at+ b)2 − (b2 − 4ac). (6.4.2)

For p ≥ 3, this ensures that

t2 + t+ 41 ≡ 0 (mod p) ⇐⇒ (2t+ 1)2 ≡ −163 (mod p).

Thus, everything boils down to whether −163 is a quadratic residue or nonresidue

modulo the odd prime p:

ωf (p) = 1 +

(
−163

p

)
.

11Rainich published [67] under his original birth name, Rabinowitsch. According to [64],

“Rainich was giving a lecture in which he made use of a clever trick which he had discovered.

Someone in the audience indignantly interrupted him pointing out that this was the famous

Rabinowitsch trick and berating Rainich for claiming to have discovered it. Without a word

Rainich turned to the blackboard, picked up the chalk, and wrote ‘RABINOWITSCH.’ He then

put down the chalk, picked up an eraser and began erasing letters. When he was done what

remained was ‘RA IN I CH.’ He then went on with his lecture.”
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Here (−163p ) is a Legendre symbol, defined by

(
`

p

)
=


0 if p|`,
1 if ` is a quadratic residue modulo p,

−1 if ` is a quadratic nonresidue modulo p.

Numerical computation confirms that −163 is a quadratic nonresidue modulo

3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, (6.4.3)

the first eleven odd primes. Thus, ωf (p) = 0 for these primes and hence

C(t2 + t+ 41) =
∏
p

(
1− 1

p

)−1(
1− ωf (p)

p

)
= 2

∏
3≤p≤37

p

p− 1

∏
p≥41

(
1 +

1− ωf (p)

p− 1

)
(6.4.4)

≈ 2 · 3.31993 = 6.63985. (6.4.5)

The factors corresponding to p = 2, 3, . . . , 37 are each greater than one, which drives

C(f) up. We have little control over the second product, although we may hope

that 1−ωf (p) changes sign regularly enough to keep it in check. Although it is not

clear at first glance that the second product in (6.4.4) converges, the product that

defines the Bateman–Horn constant is guaranteed to converge (see Section 5) and

thus the second product must as well.

The Bateman–Horn conjecture suggests that

Q(t2 + t+ 41;x) ∼ (3.31993 . . .) Li(x). (6.4.6)

Can we find a second-degree polynomial f(t) for which Q(f ;x) exceeds this amount

asymptotically? To this end, we want each factor in the product (3.6.3) to be as

large as possible. Unfortunately, we cannot arrange for ωf (p) = 0 for all primes p

since the corresponding infinite product∏
p

(
1− 1

p

)−1
=
∏
p

p

p− 1
=
∏
p

(
1 +

1

p− 1

)
would diverge by Lemma 5.1.1 and Theorem 5.3.1. However, this would contradict

Theorem 5.4.3.

In fairness to Euler, we should try to beat him with a polynomial of the same

type. Thus, we search for an integer k such that the polynomial f(t) = t2 + t + k

satisfies ωf (p) = 0 for the first several dozen or so primes. We first need k ≡
1 (mod 2) such that ωf (2) = 0. The identity (6.4.2) shows that for odd p,

f(t) ≡ 0 (mod p) ⇐⇒ (2t+ 1)2 ≡ 1− 4k (mod p).

Consequently, we need to choose an odd k such that 1−4k is a quadratic nonresidue

modulo p for a long initial string of odd primes.

Let Pn denote the set of odd primes at most n. For each p ∈ Pn, let rp be a

quadratic nonresidue modulo p. The Chinese Remainder Theorem provides an odd

kn, unique modulo 2
∏
p∈Pn

p, such that kn ≡ 4−1(1− rp) (mod p) for each p ∈ Pn.
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Then 1− 4kn ≡ rp (mod p) is a quadratic nonresidue and hence ωp(f) = 0 for each

p ∈ Pn. The corresponding Bateman–Horn constant is

C(t2 + t+ kn) = 2
∏

3≤p≤n

p

p− 1

∏
p>n

p− ωf (p)

p− 1
.

If n = 547, the hundredth odd prime, and we let rp equal the least primitive root

of p, the corresponding constant

C(t2 + t+ k100) ≈ 2 · (5.4972 . . .) = 10.9945

easily beats the constant (6.4.5) corresponding to Euler’s polynomial. Unfortu-

nately, k100 is not as easily remembered as Euler’s 41:

3682528442873462645493394982418837604455310384084190749577

5453041420103519734083583186615204669729662489042369819157

7358565650719425670030967384568941667322171286195075149379

680113340447535104953498545635385597443028681.

It is conceivable that other choices of rp might lead to a smaller constant, although

we have not looked into the matter.12 The Bateman–Horn conjecture suggests that

Q(t2 + t+ k100;x) ∼ (5.4972 . . .) Li(x),

which is asymptotically larger than the corresponding prediction (6.4.6) for Euler’s

polynomial.

Before we pat ourselves on the back for beating Euler, we should point out that

the search for prime-producing polynomials using these sorts of arguments has a

long history [8, 27, 45]. Moreover, without the Bateman–Horn conjecture or one of

its weaker relatives (Section 4.1), we do not even know if any quadratic polynomial

produces infinitely many primes. Thus, this is all speculative.

6.5. A conjecture of Hardy and Littlewood. A general conjecture about the

asymptotic distribution of prime values assumed by quadratic polynomials is due

to G.H. Hardy (1877–1947) and John E. Littlewood (1885–1977) [35, p. 48] (see

also [36, p. 19]). The more convenient formulation below is from [45, p. 499].

Hardy–Littlewood Conjecture (F). If a, b, c are relatively prime integers, a is

positive, a + b and c are not both even, and b2 − 4ac is not a perfect square, then

there are infinitely many primes of the form f(t) = at2 + bt + c. The number of

such primes at most x is asymptotic to

ε
∏
p≥3

p| gcd(a,b)

p

p− 1

∏
p≥3
p-a

(
1− (∆/p)

p− 1

)
Li(x), (6.5.1)

in which

ε =

{
1
2 if 2 - (a+ b),

1 otherwise.

This is a consequence of the Bateman–Horn conjecture. Let us see why, paying

careful attention to the relevance of Hardy and Littlewood’s hypotheses. Suppose

12If we choose the least primitive roots 2, 2, 3, 2, 2, 3, 2, 5, 2, 3, 2 of the primes (6.4.3), respec-

tively, and apply the algorithm above we obtain k37 = 1,448,243,016,041.
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that f(t) = at2 + bt + c, in which a > 0. What conditions on a, b, c are necessary

for f to be prime infinitely often? Since

at2 + bt+ c ≡

{
c if t ≡ 0 (mod 2),

a+ b+ c if t ≡ 1 (mod 2),

we want either a+ b or c (or both) to be odd. Consequently,

ωf (2) =


0 if a+ b is even and c is odd,

1 if a+ b is odd and c is odd,

1 if a+ b is odd and c is even.

(6.5.2)

Suppose that p is an odd prime. There are two cases.

• If p|a, then f(t) ≡ bt+ c (mod p). Since gcd(a, b, c) = 1, we conclude that

ωf (p) =

{
0 if p|b,
1 if p - b.

• If p - a, then (6.4.2) ensures that

f(t) ≡ 0 (mod p) ⇐⇒ (2at+ b)2 ≡ ∆ (mod p),

in which ∆ = b2 − 4ac is the discriminant of f . Thus,

ωf (p) = 1 +

(
∆

p

)
.

Thus, the Bateman–Horn constant (3.6.3) is

C(f) =
(
2− ωf (2)

) ∏
p≥3, p|a
p|b

p− 0

p− 1

∏
p≥3, p|a
p-b

p− 1

p− 1

∏
p≥3
p-a

p− (1 + (∆/p))

p− 1

= 2ε
∏
p≥3

p| gcd(a,b)

p

p− 1

∏
p≥3
p-a

(
1− (∆/p)

p− 1

)
. (6.5.3)

There is a subtle point here that we wish to highlight. If ∆ is a perfect square,

then (∆/p) = 1 and the second factor in (6.5.3) diverges (to zero) by Lemma 5.1.1

and Theorem 5.3.1. This does not contradict the Bateman–Horn conjecture, since

f is not irreducible in this case. If ∆ is a perfect square, then the two roots

−b+
√

∆

2a
and

−b−
√

∆

2a

of f belong to Q. Then f would be reducible over Q and hence, by Gauss’ lemma [22,

Prop. 5, p. 303], reducible over Z. Thus, ∆ cannot be a perfect square if f is to

be prime infinitely often: this is why Hardy and Littlewood assume that b2 − 4ac

is not a perfect square. If ∆ is not a perfect square, then the prediction (3.6.1) of

the Bateman–Horn conjecture provides the asymptotic formula (6.5.1) proposed by

Hardy and Littlewood.
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Figure 6. The natural numbers spiral outward counterclockwise from the

origin. A colored box is placed over each prime.

6.6. Ulam’s spiral. In 1963, Stanis law Ulam (1909–1984) discovered a startling

pattern in the primes, allegedly while doodling at a scientific meeting; see Figure

6. The story was popularized by Martin Gardner (1914–2010) in his much-loved

Scientific American column “Mathematical Games” [31]:

Last fall Stanislaw M. Ulam of the Los Alamos Scientific Laboratory,

attended a scientific meeting at which he found himself listening to what

he describes as a “long and very boring paper.” To pass the time he

doodled a grid of horizontal and vertical lines on a sheet of paper. His

first impulse was to compose some chess problems, then he changed his

mind and began to number the intersections, starting near the center

with 1 and moving out in a counterclockwise spiral. With no special end

in view, he began circling all the prime numbers. To his surprise the

primes seemed to have an uncanny tendency to crowd into straight lines.

The patterns observed by Ulam are evident in Figure 7. There are certain

diagonals that the primes prefer and others that they eschew. Less prominent,

but still noticeable, are the scarcity or abundance of primes on some horizontal or

vertical lines. Others seem to have more than their fair share of primes. The primes,

which are often assumed to be “random” in their overall distribution (Section 2.4),

manage to conspire over great distances to form these intriguing patterns. What is

the explanation for this behavior?

In what follows, it is more fruitful to consider “rays” in the Ulam spiral instead

of “lines.” This is no loss of generality since each line is the union of two rays.

Example 6.6.1. Consider Figure 8, in which the horizontal ray

8, 9, 10, 27, 52, 85, 126, 175, 232, 297, 370, 451, 540, . . . (6.6.2)

in the Ulam spiral appears devoid of primes. Why does this occur? Let us trun-

cate our sequence slightly to avoid the short stretch of consecutive integers at the
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(a) 125× 125 (b) 250× 250

Figure 7. Plots of the Ulam spiral on grids of several sizes. There are certain

diagonals that the primes (black) prefer and others that they eschew. Less

prominent, but still noticeable, are the scarcity or abundance of primes on some

horizontal or vertical lines. The existence of these patterns is a consequence

of the Bateman–Horn conjecture.

beginning. This yields the sequence

10, 27, 52, 85, 126, 175, 232, 297, 370, 451, 540, . . . . (6.6.3)

To pass from 10 to 27, we walk around the exterior of the 3× 3 square

5 4 3

6 1 2

7 8 9

and take one more step; this requires 4 · 4 + 1 = 17 total steps. Similarly, to pass

from 27 to 52 we must traverse the exterior of a 5×5 square and take an additional

step; this requires 4 × 6 + 1 = 25 total steps. Let f(n) denote the nth number on

the list (6.6.3). Then induction confirms that

f(n)− f(n− 1) = 8n+ 1,

and hence

f(n) =

n∑
i=2

(
f(i)− f(i− 1)

)
+ f(1)

= 10 +

n∑
i=2

(8i+ 1)

= 10 + (n− 1) + 8

n∑
i=2

i

= n+ 9 + 8

(
n(n+ 1)

2
− 1

)
= 4n2 + 5n+ 1
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Figure 8. The horizontal ray depicted in yellow is prime free. If we ignore

the initial 8 and 9, and start with f(1) = 10, then the nth element on this list

is f(n) = (4n+ 1)(n+ 1), which is composite (see Example 6.6.1). Similarly,

the diagonal ray depicted in orange is prime free. The nth number on this ray

is 4n2 + 12n+ 5 = (2n+ 1)(2n+ 5) (see Example 6.6.5).

= (4n+ 1)(n+ 1). (6.6.4)

This ensures that none of the numbers on the horizontal ray (6.6.2) is prime.

Example 6.6.5. The diagonal ray 21, 45, 77, 117, 165, 221, 285, 357, 437, 525, 621, . . .

in Figure 8 is similarly devoid of primes. An argument similar to that used in Exam-

ple 6.6.1 confirms that the nth number on this list is 4n2+12n+5 = (2n+1)(2n+5).

The prime-free rays of Examples 6.6.1 and 6.6.5 (see Figure 8) are governed by

a reducible quadratic polynomial. What about prime-rich rays?

Example 6.6.6. Consider Figure 9a, in which the particularly prime-rich diagonal

that includes the primes 7, 19, 23, 47, 67, 79, 103, 167, 199, 223 stands out. As before,

it is more convenient to consider a single ray, in which the first differences increase
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(a) The diagonal ray 7, 19, 23, 47, 67, 79 . . . con-
tains an abundance of primes (red). The nth

number on the ray is f(n) = 4n2 + 4n − 1. The
Bateman–Horn constant of this polynomial is ap-
proximately 3.70.
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(b) The diagonal ray 5, 15, 33, 59, 93, . . . contains
a few primes. The nth number on the ray is
f(n) = 4n2−2n+3. The Bateman–Horn constant
of this polynomial is approximately 1.02.

Figure 9. The relative number of primes on diagonal rays is governed by the

Bateman–Horn conjecture.

monotonically. We therefore study the ray

7, 23, 47, 79, 119, 167, 223, . . . . (6.6.7)

Of these numbers only 119 is composite. If f(n) denotes the nth number on the

list (6.6.7), then an argument similar to that of the Example 6.6.1 shows that

f(n)− f(n− 1) = 8n

and hence

f(n) =
n∑
i=2

(
f(i)− f(i− 1)

)
+ f(1)

= 7 +

n∑
i=2

8i

= 8

(
n(n+ 1)

2
− 1

)
+ 7

= 4n2 + 4n− 1. (6.6.8)

Unlike (6.6.4), this polynomial is irreducible. Since it has at most two roots modulo

any prime and it does not vanish identically modulo 2, it does not vanish identically

modulo any prime. Consequently, the Bateman–Horn conjecture suggests that it

assumes infinitely many prime values. Since the discriminant of the polynomial

(6.6.8) is 32, the general computation (6.5.3) tells us that

Q(f ;x) ∼ 1

2
C(f) Li(x),
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in which

C(f) = 2
∏
p≥3

(
1− (32/p)

p− 1

)
.

Among the odd primes at most 67 we have(
32

p

)
=

{
1 if p = 7, 17, 23, 31, 41, 47,

−1 if p = 3, 5, 11, 13, 19, 29, 37, 43, 53, 59, 61, 67.

This substantial imbalance among the first few odd primes makes C(f) unusually

large and explains the particularly prime-rich diagonal that corresponds to this

polynomial. In particular, numerical computations suggest that 1
2C(f) ≈ 3.70.

Example 6.6.9. Consider the diagonal ray 5, 15, 33, 59, 93, 135, 185, . . .; see Figure

9b. Although it contains some primes, it does not appear as prime rich as the

ray from Example 6.6.6. Its values correspond to f(t) = 4t2 − 2t + 3, which has

discriminant −44. Since (−44/3) = (−44/5) = 1, the primes 3 and 5 conspire to

make C(f) smaller; see (6.5.3). The coefficient of Li(x) provided by the Bateman–

Horn conjecture is approximately 1.02. This is substantially lower than in the

previous example.

In summary, the patterns that Ulam observed can be explained as follows. If

we agree to omit the first several consecutive terms on a given ray, then there are

integers b and c such that the nth number on the ray is

f(n) = 4n2 + bn+ c.

If b is even, then the ray is diagonal. If b is odd, then the ray is horizontal or

vertical. Certain combinations of b and c yield reducible polynomials; in these cases

the ray contains at most one prime. Other combinations of b and c yield irreducible

polynomials; the Bateman–Horn conjecture predicts the relative number of primes

along each such ray.

7. Multiple polynomials

We are now ready to apply the Bateman–Horn conjecture to families of irre-

ducible polynomials f1, f2, . . . , fk ∈ Z[x] with positive leading coefficients, no two

of which are multiples of each other. Recall that the product f = f1f2 · · · fk
should not vanish modulo any prime. Then the conjecture predicts that the num-

ber Q(f1, f2, . . . , fk;x) of n ≤ x for which f1(n), f2(n), . . . , fk(n) are simultaneously

prime is asymptotic to

C(f1, f2, . . . , fk)∏k
i=1 deg fi

∫ x

2

dt

(log t)k
,

in which

C(f1, f2, . . . , fk) =
∏
p

(
1− 1

p

)−k (
1− ωf (p)

p

)
.

In particular, observe that the number k of polynomials involved appears in the

exponents that occur in the integrand and the product that defines the Bateman–

Horn constant.
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Figure 10. Graph of π2(x) (orange) versus 2C2

∫ x
2 (log t)−2 dt (blue) and

2C2x/(log x)2 (green). The more complicated integral expression apparently

provides a much better approximation than does the simpler expression.

7.1. Twin prime conjecture. If p and p+ 2 are prime, then p and p+ 2 are twin

primes. The long-standing twin prime conjecture asserts that there are infinitely

many twin primes. Although this question likely puzzled thinkers since Euclid’s

time, the earliest extant record of the conjecture (in a more general form, see

Section 7.2) is from Alphonse de Polignac (1826–63) in 1849. While it remains

unproven, recent years have seen an explosion of closely-related work [11,57,86].

In 1919, Viggo Brun (1885– 1978) proved that the sum(
1

3
+

1

5

)
+

(
1

5
+

1

7

)
+

(
1

11
+

1

13

)
+

(
1

17
+

1

19

)
+ · · · (7.1.1)

of the reciprocals of the twin primes converges. This stands in stark contrast to

Euler’s discovery that
∑
p 1/p diverges (Theorem 5.3.1). Thus, the twin primes

must be far sparser, in the sense of reciprocal sums, than the primes themselves.

The sum (7.1.1), which is now known as Brun’s constant, is greater than 1.83 and

less than 2.347 [49] (numerical evidence suggests a value of approximately 1.9).

What does the Bateman–Horn conjecture have to say about twin primes? Let

f1(t) = t and f2(t) = t + 2. Then f1(t) and f2(t) are simultaneously prime if and

only if t is the lesser element of a twin-prime pair. Let f = f1f2. Then

f(t) ≡ 0 (mod p) ⇐⇒ t(t− 2) ≡ 0 (mod p),

and hence

ωf (p) =

{
1 if p = 2,

2 if p ≥ 3.

The corresponding Bateman–Horn constant is

C(f1, f2) =
∏
p

(
1− 1

p

)−2(
1− ωf (p)

p

)

= 2
∏
p≥3

p2

(p− 1)2
· p− 2

p

= 2
∏
p≥3

p(p− 2)

(p− 1)2
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= 2C2,

in which

C2 =
∏
p≥3

p(p− 2)

(p− 1)2
≈ 0.660161815

is the twin primes constant. The Bateman–Horn conjecture predicts that

Q(f1, f2;x) ∼ 2C2

∫ x

2

dt

(log t)2
.

It is more traditional to express this in terms of the twin prime counting function.

Let π2(x) denote the number of primes p at most x for which p+ 2 is prime. Then

π2(x) = Q(f1, f2;x) and (by Lemma 2.3.2)

π2(x) ∼ 2C2

∫ x

2

dt

(log t)2
∼ 2C2x

(log x)2
;

see Figure 10. This asymptotic estimate for π2(x) was first postulated by Hardy

and Littlewood [35].

7.2. Cousin primes, sexy primes, and more. If p and p+ 4 are prime, then p

and p + 4 are cousin primes. If p and p + 6 are prime, then p and p + 6 are sexy

primes. Thankfully the nomenclature appears to expire after this point, although

it is still fruitful to consider prime pairs p, p+ k, in which k ≥ 2 is even.

Alphonse de Polignac conjectured in 1849 that for each even number k, there are

infinitely many prime pairs p, p + k. This is now known as Polignac’s conjecture.

The case k = 2 of Polignac’s conjecture is the twin prime conjecture (Section 7.1),

which remains unproven. In light of the work of Yitang Zhang (1955–) [86] and the

Polymath8b Project [11] on bounded gaps between primes, we know that there is

an even k ≤ 246 for which infinitely many prime pairs p, p+k exist. Unfortunately,

we do not know a specific value of k for which this occurs.

The Bateman–Horn conjecture goes much further than even Polignac’s conjec-

ture. It implies the existence of infinitely many pairs p, p + k of primes for each

even k and also supplies asymptotic predictions that are backed up by numerical

computations. The following calculations were worked out in [30]. Let f1(t) = t

and f2(t) = t+ k, and let f = f1f2. Then

f(t) ≡ 0 (mod p) ⇐⇒ t(t+ k) ≡ 0 (mod p),

and hence

ωf (p) =

{
1 if p|k,
2 if p - k.

The Bateman–Horn constant is

C(f1, f2;x) =
∏
p

(
1− 1

p

)−2(
1− ωf (p)

p

)

=
∏
p|k

(
1− 1

p

)−1∏
p-k

(
1− 1

p

)−2(
1− 2

p

)

=
∏
p|k

p

p− 1

∏
p-k

p(p− 2)

(p− 1)2
. (7.2.1)
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k Ck k Ck k Ck k Ck k Ck

2 0.660162 32 0.660162 62 0.682926 92 0.691598 122 0.671351

4 0.660162 34 0.704173 64 0.660162 94 0.674832 124 0.682926

6 1.32032 36 1.32032 66 1.46703 96 1.32032 126 1.58439

8 0.660162 38 0.698995 68 0.704173 98 0.792194 128 0.660162

10 0.880216 40 0.880216 70 1.05626 100 0.880216 130 0.960235

12 1.32032 42 1.58439 72 1.32032 102 1.40835 132 1.46703

14 0.792194 44 0.733513 74 0.679024 104 0.720177 134 0.670318

16 0.660162 46 0.691598 76 0.698995 106 0.673106 136 0.704173

18 1.32032 48 1.32032 78 1.44035 108 1.32032 138 1.3832

20 0.880216 50 0.880216 80 0.880216 110 0.978018 140 1.05626

22 0.733513 52 0.720177 82 0.677089 112 0.792194 142 0.669729

24 1.32032 54 1.32032 84 1.58439 114 1.39799 144 1.32032

26 0.720177 56 0.792194 86 0.676263 116 0.684612 146 0.66946

28 0.792194 58 0.684612 88 0.733513 118 0.671744 148 0.679024

30 1.76043 60 1.76043 90 1.76043 120 1.76043 150 1.76043

Table 4. Numerical approximations of the constants Ck based upon the first

1,000,000 terms of the product (7.2.1).

To highlight the dependence on k and match the historically established notation

in the twin prime setting (Section 7.1), we denote the preceding constant by 2Ck;

that is,

Ck =
∏
p|k
p≥3

p

p− 1

∏
p-k

p(p− 2)

(p− 1)2
. (7.2.2)

We do not define Ck for odd k; this would be pointless since for each odd k there

is at most one prime pair p, p + k. Since
∑
p 1/p2 converges, the infinite product

(7.2.2) that defines Ck converges absolutely since

p(p− 2)

(p− 1)2
= 1− 1

(p− 1)2
. (7.2.3)

Numerical approximations for C2, C4, . . . , C150 are given in Table 4. If πk(x) denotes

the number of primes p ≤ x for which p + k is prime, then the Bateman–Horn

conjecture predicts that

πk(x) ∼ 2Ck

∫ x

2

dt

(log t)2
∼ 2Ckx

(log x)2
.

There are several important observations to make.

• The conjectured rate of growth in πk depends only upon the constant Ck. Fur-

thermore, Ck depends only upon the primes that divide k.

• In light of (7.2.3), an examination of (7.2.1) reveals that Ck is minimized when

k is a power of two, in which case C2 = C4 = C8 = C16 = · · · ≈ 0.660162.

• limp→∞ C2p = C2. That is, Ck can be made arbitrarily close to the twin primes

constant C2 by letting k = 2p, in which p is a sufficiently large prime.
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n π2(p10n) π4(p10n) π6(p10n) π8(p10n) π10(p10n) π12(p10n) π30(p10n)

2 25 27 48 24 33 48 61

3 174 170 343 178 230 340 456

4 1,270 1,264 2,538 1,303 1,682 2,515 3,450

5 10,250 10,214 20,472 10,336 13,653 20,462 27,434

6 86,027 85,834 170,910 85,866 114,394 171,618 228,548

7 738,597 738,718 1,477,321 738,005 984,809 1,477,496 1,970,049

8 6,497,407 6,496,372 12,992,625 6,497,273 8,667,364 12,994,918 17,331,689

Table 5. Values of the counting functions πk(x) at p10n , the 10nth prime.

The asymptotic predictions of Bateman–Horn conjecture are identical for π2,

π4, and π8 (blue), and for π6 and π12 (green). The computations appear to

corroborate this.

• Ck can be made arbitrarily large by selecting k to have sufficiently many small

prime factors. The first factor in (7.2.1) is∏
p|k
p≥3

p

p− 1
=
∏
p|k
p≥3

(
1 +

1

p− 1

)
.

If k is the product of the first n primes (that is, k is the nth primorial pn#),

then the preceding diverges as n→∞.

The patterns predicted by the Bateman–Horn conjecture are evident in Table 5,

which provides the numerical values of πk(10n) for several k and n = 2, 3, . . . , 8.

For example, Table 4 suggests that primes p for which p + 30 is prime should be

about
1.76043

0.660162
≈ 2.6667

times more numerous than twin primes. Among the first 108 primes, Table 5 gives

the proportion
17,331,689

6,497,407
≈ 2.66748.

The agreement is remarkable.

7.3. Sophie Germain primes. A prime number p is a Sophie Germain prime if

2p + 1 is also a prime. Such primes were first introduced and investigated by the

legendary French mathematician, physicist and philosopher Marie-Sophie Germain

(1776–1831) in the course of her work on some early cases of Fermat’s Last Theorem;

see [74, Sect.5.5.5] for further information.

If p is a Sophie Germain prime, then 2p + 1 is the corresponding safe prime.

This terminology reflects the usefulness of such primes in cryptography. Specifi-

cally, the famous RSA (Rivest–Shamir–Adleman) cryptosystem is an asymmetric

cryptoscheme using a public key to encrypt a message and a private key to decrypt

it [47]. The public key is a product of two large prime numbers (for example, a

product of two safe primes) and the hardness of a hostile attack is based on the

difficulty of factoring such a product. Factorization is especially difficult if the

primes in question are of comparable size. Cryptographic applications provide a

strong modern motivation for studying such prime numbers, and it is conjectured
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that there are infinitely many Sophie Germain (and hence safe) primes. This con-

jecture is currently open, and the largest Sophie Germain prime known has 51780

digits [23].

The search for Sophie Germain primes can be rephrased in the language of

the Bateman–Horn conjecture. Let f1(t) = t and f2(t) = 2t + 1. Then p is a

Sophie Germain prime if and only if f1(p) and f2(p) are simultaneously prime. The

infinitude of these primes follows from the Bateman–Horn conjecture, which also

provides an asymptotic estimate on their counting function. The polynomial

f(t) = f1(t)f2(t) = t(2t+ 1)

does not vanish identically modulo any prime since f(1) ≡ 1 (mod 2) and f has

at most two roots modulo any odd prime. Since f vanishes at 0 and (p− 1)/2 for

every odd prime p, we deduce that

ωf (p) =

{
1 if p = 2,

2 if p is odd.

Thus,

C(f1, f2) = 2
∏
p 6=2

(
1− 1

p

)−2(
1− 2

p

)
= 2

∏
p 6=2

p(p− 2)

(p− 1)2
≈ 1.32032 . . . .

Since deg f1 = deg f2 = 1, we obtain the estimate

Q(f1, f1;x) ∼ (1.32032 . . .)

∫ x

2

dt

(log t)2
.

This is the same asymptotic prediction as in the twin-prime case (Section 7.1).

7.4. Cunningham chains. A sequence p1, p2, . . . , pn of primes is a Cunningham

chain of the first kind if pi+1 = 2pi + 1 for each 1 ≤ i ≤ n − 1 and of the second

kind if pi+1 = 2pi − 1. That is, every pi in a Cunningham chain of the first kind,

except for pn, is a Sophie Germain prime and every pi, except for p1, is a safe

prime. Cunningham chains are named after a British mathematician Allan Joseph

Champneys Cunningham (1842 – 1928) who first introduced and studied them [15].

Here are a few examples of Cunningham chains of the first kind

(2, 5, 11, 23, 47), (3, 7), (89, 179, 359, 719, 1439, 2879),

and of the second kind

(2, 3, 5), (7, 13), (19, 37, 73).

The longest known Cunningham chains have length 19 [3].

The existence of arbitrary long Cunningham chains follows from the first Hardy–

Littlewood conjecture, and hence from Bateman–Horn conjecture. Indeed, let

f1(t) = t, f2(t) = 2f1(t)± 1, . . . , fk(t) = 2fk−1(t)± 1,

then we need them all to be prime simultaneously. Bateman–Horn guarantees the

existence of infinitely many such k-tuples and even gives an asymptotic estimate

on the growth of their number that is analogous to the argument above for Sophie

Germain primes. On the other hand, it has been proved that a Cunningham chain of
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infinite length cannot exist. Indeed, suppose for instance that odd primes p1, p2, . . .

form a Cunningham chain of the first kind. Then

pi+1 = 2pi + 1 = 2(2pi−1 + 1) + 1 = · · · = 2ip1 +

i−1∑
j=0

2j = 2ip1 + (2i − 1)

and hence pi+1 ≡ 2i − 1 (mod p1). On the other hand, Fermat’s little theorem

implies that

2p1−1 − 1 ≡ 0 (mod p1),

meaning that pp1 would be divisible by p1, and so cannot be prime. This implies

that, in fact, a Cunningham chain starting with an odd prime p1 cannot have more

than p1 − 1 terms in it. If p1 = 2, then the same argument can be applied to the

chain p2, p3, . . . . Further information about Cunningham chains and their use in

cryptography can be found in [85].

7.5. Green–Tao theorem. One of the most spectacular results in twenty-first

century number theory is the Green–Tao theorem [33], which asserts that the primes

contain arbitrarily long arithmetic progressions. That is, given k ≥ 1 there is a k-

term arithmetic progression

b, b+ a, b+ 2a, . . . , b+ (k − 1)a

of prime numbers. For example, 5, 11, 17, 23, 29 is a 5-term arithmetic progression

of primes with b = 5 and a = 6.

Consider the k linear polynomials

f1(t) = t, f2(t) = t+ a, . . . , fk(t) = t+ (k − 1)a,

each of which is obviously irreducible. Let f = f1f2 · · · fk denote their product.

The congruence f(t) ≡ 0 (mod p) is

t(t+ a)(t+ 2a) · · ·
(
t+ (k − 1)a

)
≡ 0 (mod p).

Thus,

ωf (p) =

{
1 if p|a,
min{k, p} if p - a.

If p ≤ k and p - a, then f vanishes identically modulo p. Consequently, we require

that p|a for all primes p ≤ k. This suggests that we take a = pk#, the product of

the first k prime numbers. Then

Q(f1, f2, . . . , fk;x) ∼ C(f1, f2, . . . , fk)

∫ x

2

dt

(log t)k
,

in which

C(f1, f2, . . . , fk) =

k∏
n=1

(
1− 1

pn

)−k+1 ∞∏
n=k+1

(
1− 1

p

)−k (
1− k

p

)
is a nonzero constant. This yields the following famous result [33, Thm. 1.1].

Theorem 7.5.1 (Green–Tao, 2004). For each positive integer k, the prime numbers

contain infinitely many arithmetic progressions of length k.
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8. Limitations of the Bateman–Horn conjecture

Although we have touted the Bateman–Horn conjecture as “one conjecture to

rule them all,” it has its limitations. We briefly discuss a number of topics in

number theory that the conjecture does not appear to address.

First of all, the Bateman–Horn conjecture is a statement about the overall dis-

tribution of prime numbers. It says little about what happens on small scales. For

example, it does not appear to resolve Legendre’s conjecture (for each n there is a

prime between n2 and (n+ 1)2). Bateman–Horn also does not tell us much about

the additive properties of the prime numbers. For instance, it does not seem to

imply the Goldbach conjecture (every even number greater than 4 is the sum of

two odd prime numbers).

The Bateman–Horn conjecture does an excellent job predicting the asymptotic

distribution of primes generated by families of polynomials. However, it does not

tell us much about primes generated by non-polynomial functions. For example, it

has nothing to say about the number of primes of the form 22
n

+1 (Fermat primes)

or 2n − 1 (Mersenne primes).

The conjecture has little to say about diophantine equations, such as the Fermat

equation xn+ yn = zn [77] or the Catalan equation xn− ym = 1 [58]. For example,

the Bateman–Horn conjecture appears to have little overlap with the abc-conjecture

and its applications; see [18, Ch. 11] or [9, Ch. 12] for a detailed overview of the

far-reaching abc-conjecture and its numerous connections.

The Bateman–Horn conjecture provides asymptotics for counting functions re-

lated to primes, but does not bound the size of the error terms. For example, it

implies the prime number theorem (Theorem 2.4.1), which asserts that π(x) ∼ li(x).

However, BH does not tell us about |π(x)−li(x)|. On the other hand, Schoenfeld [72]

proved that the Riemann hypothesis yields

|π(x)− li(x)| < 1

8π

√
x log x, x ≥ 2,657.

Thus, the Riemann hypothesis implies the prime number theorem with a well-

controlled error term. Serge Lang says:

I regard it as a major problem to give an estimate for the error term in

the Bateman–Horn conjecture similar to the Riemann hypothesis. This

could possibly lead to a vast reconsideration of the context for Riemann’s

explicit formulas. [53, p.11].

Number theory is one of the central branches of mathematics and connects with

analysis, algebra, combinatorics, and many other fields. It has enjoyed a great

number of exciting advances and breakthroughs in recent years, several of which

have led to Fields medals and other prestigious awards. It also contains a great

number of difficult and deep open problems and conjectures. To a large extent

these influence the course of modern mathematics. Some problems, like the Rie-

mann hypothesis, the abc-conjecture, the twin prime conjecture, or the Goldbach

conjecture are well known and rightfully celebrated by the mathematical commu-

nity. Others, like the Bateman–Horn conjecture, although of equally great stature,

are not as well known. The goal of this paper was to present an overview of this

important problem, its connections, and its consequences. It is our hope that we
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have convinced the reader that the Bateman–Horn conjecture deserves to be ranked

among the most pivotal unproven conjectures in the theory of numbers.
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