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CHAPTER 1

Preface

1.1. What is discrete optimization?

Let f(x) be a multi-variable function defined on some domain D. An optimiza-
tion problem defined by f on D can then be formulated as:

Maximize / minimize f(x) on D.

An optimization problem like this is called discrete if the domain D is a discrete set
inside of some topological space, i.e. if every point of D is an isolated point (i.e., no
open neighborhood of a point in D contains any other points of D). The condition
of a point belonging to the domain D can often be formulated as a collection of
certain constraints or inequalities.

In these notes, we will discuss several central discrete optimization problems,
coming from different (but related) areas of discrete mathematics. Our goal will
be to describe the problems with the necessary context and background they come
from while focusing on their interpretation in the scope of discrete geometry. It is
this geometric framework that naturally connects all the problems we will discuss
and brings them together. Here are the specific problems we will be interested in:

• The Knapsack Problems: given a collection of objects with assigned
weight and cost, maximize the objective function (i.e. total cost) while
keeping the weight under the specified threshold (subject to possibly some
additional constraints). In addition to its intrinsic mathematical signifi-
cance, this problem often comes up in resource allocation.

• The Frobenius Problem: given a collection of relatively prime positive
integers, find the largest positive integer that cannot be represented as
their nonnegative integer linear combination. This problem appears in
many areas of mathematics and is related to the knapsack problems.

• The Main Problem of Coding Theory: maximize the error-correcting
capability of a linear code while keeping its codeword length bounded.
This problem is central in the study of accurate data transmission over
potentially noisy channels.

• Optimization Problems on Lattices: optimize packing density, cov-
ering thickness and kissing number of a Euclidean lattice in n dimensions.
This is the main problem of lattice theory, a branch of mathematics at
the intersection of number theory and discrete geometry. In addition to
its theoretical value, it has numerous applications, for instance in digital
and wireless communications.

• Coherence Minimization on Euclidean Frames: find frames (overde-
termined spanning sets) in Euclidean vector spaces of large cardinality and
small coherence. Such frames allow for sufficiently fast data transmission
with efficient erasure-recovery capabilities.
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ii 1. PREFACE

1.2. Asymptotic notation and computational complexity

The main measure of “hardness” of different problems that we will discuss is
given by their computational complexity. Here, we briefly and somewhat informally
recall some basic notions of computational complexity. To start with, we need some
asymptotic notation. Given two functions f, g : R→ R, we write f(x) = O(g(x)) if
there exists a real constant C so that f(x) ≤ Cg(x) as x→∞. This is called big-O
notation.

We use big-O notation to assess the running time of an algorithm. The model
computer used for algorithmic analysis is a Turing machine, as introduced by Alan
Turing in 1936. Roughly speaking, this is an abstract computational device, a
good practical model of which is a modern computer. It consists of an infinite
tape subdivided into cells which passes through a head. The head can do the
following four elementary operations: write a symbol into one cell, read a symbol
from one cell, fast forward one cell, rewind one cell. These correspond to elementary
operations on a computer, which uses symbols from a binary alphabet 0, 1. The
number of such elementary operations required for a given algorithm is referred to
as its running time. Running time is usually measured as a function of the size of
the input, that is the number of cells of the infinite tape required to store the input.
If we express this size as an integer n and the running time as a function f(n), then
an algorithm is said to run in polynomial time if f(n) = O(nk) for some constant
exponent k independent of n. We refer to the class of problems that can be solved
in polynomial time as the P class. This is our first example of a computational
complexity class.

For some problems we may not know whether it is possible to solve them in
polynomial time, but given a potential answer we can verify whether it is correct
or not in polynomial time. Such problems are said to lie in the NP computational
complexity class, where NP stands for non-deterministic polynomial. One of the
most important open problems in contemporary mathematics (and arguably the
most important problem in theoretical computer science) asks whether P = NP?
In other words, if an answer to a problem can be verified in polynomial time,
can this problem be solved by a polynomial-time algorithm? Most frequently this
question is asked about decision problem, that is problems the answer to which is
YES or NO. This problem, commonly known as P vs NP, was originally posed in
1971 independently by Stephen Cook and by Leonid Levin. It is believed by most
experts that P 6= NP, meaning that there exist problems answer to which can be
verified in polynomial time, but which cannot be solved in polynomial time.

For the purposes of thinking about the P vs NP problem, it is quite helpful
to introduce the following additional notions. A problem is called NP-hard if it is
“at least as hard as any problem in the NP class”, meaning that for each problem
in the NP class there exists a polynomial-time algorithm using which our problem
can be reduced to it. A problem is called NP-complete if it is NP-hard and is know
to lie in the NP class. Now suppose that we wanted to prove that P = NP. One
way to do this would be to find an NP-complete problem which we can show is
in the P class. Since it is NP, and is at least as hard as any NP problem, this
would mean that all NP problems are in the P class, and hence the equality would
be proved. Although this equality seems unlikely to be true, this argument still
presents serious motivation to study NP-complete problems.



CHAPTER 2

Knapsack and Frobenius problems

2.1. Complexity of knapsack problems

The problems we will discuss here fit into the general linear programming or
linear optimization paradigm. A linear program (LP) is a problem that can be
stated in the following form:

Given vectors c, b and a matrix A, find a vector x ≥ 0 that maximizes
the objective function c>x subject to the constraint Ax ≤ b.

A linear program is called an integer linear program (ILP) or simply an integer
program (IP) if the solution vector x is required to have integer coordinates.

Suppose we have a knapsack that can hold weight no more than W . We want
to pack it with objects of types 1 through n where an object of type i has weight
wi and price pi. Our objective is to maximize the value of the knapsack. If we
write xi for the number of objects of type i that we take, we have the following
optimization problem:

Maximize the objective function

n∑
i=1

pixi

under the constraint
n∑
i=1

wixi ≤W.

This is the basic prototype of a knapsack problem. Putting on additional constraints
distinguishes different types of knapsack problems, for instance:

• Binary knapsack problem (BKP): the variables xi can take values
0, 1 only

• Bounded knapsack problem (BndKP): for each i, xi is an integer
with 0 ≤ xi ≤ bi for some upper bounds bi.

• Unbounded knapsack problem (UbndKP): for each i, xi is an inte-
ger.

• Subset-sum problem (SSP): for each i, wi = pi and xi = 0, 1.

All of these problems are NP-hard. To show this, first observe that SSP is the
special case of BKP with pi = wi for each i; also, BKP is the special case of
BndKP with bi = 1 for each i. On the other hand, UbndKP is clearly at least
as hard as BndKP. Hence, NP-hardness of all of these problems follows from NP-
completeness of SSP. We will show that SSP is NP-complete, more specifically we
will deal with the the decision version of SSP:

1



2 2. KNAPSACK AND FROBENIUS PROBLEMS

Given a set of weights S = {w1, . . . , wn} and a target value t, is there a subset
S′ ⊆ S such that

∑
wi∈S′ wi = t?

We first need some notation from Boolean logic. A Boolean formula is an
expression built from Boolean variables (taking values TRUE = 1 or FALSE = 0)
and operators AND (∧), OR (∨), NOT (¬) and parentheses separating different
clauses of the formula. A Boolean formula is said to be satisfiable if it can be made
TRUE by an appropriate assignment of variables.

Example 2.1.1. The formula

x ∧ ¬y
is satisfiable: setting x = TRUE, y = FALSE makes this formula TRUE. On the
other hand, the formula

x ∧ ¬x
is not satisfiable.

The (unrestricted) Boolean satisfiability problem SAT is the problem of determining
if a given Boolean formula is satisfiable or not. It can be formally stated as the
following decision problem:

INPUT: Boolean formula

OUTPUT: YES (satisfiable) or NO (not satisfiable)

Theorem 2.1.1 (S. Cook (1971), L. Levin (1973)). SAT is NP-complete.

This was the first provable instance of an NP-complete problem – the notion did not
properly exist before the work of Cook and Levin, who independently established
this result. The fact that SAT is NP is not difficult to see: given any assignment
of the variables, it can be verified in polynomial time whether they make the given
formula TRUE or not. To show that it is NP-complete, one needs to prove that any
NP problem can be reduced to an instance of SAT by a polynomial time algorithm.
We do not prove this result here, however we will mention a (restricted) variation
of the SAT problem, called 3-SAT which is also known to be NP-complete: 3-SAT
is the Boolean satisfiability problem, where every clause consists of no more than
3 literals (a literal is either a variable x, or negation of a variable ¬x).

In fact, every instance of a SAT formula can be transformed into a 3-SAT
formula as follows. First notice that every formula can be rewritten in a way that
the clauses are joined by ∧ operator: for example, a formula like

(x1 ∧ y1) ∨ (x2 ∧ y2)

can be transformed into

(x1 ∨ x2) ∧ (y1 ∨ x2) ∧ (x1 ∨ y2) ∧ (y1 ∨ y2).

Such a form is called a generalized conjunctive normal form for a given Boolean
formula. Suppose now that there is a clause in an unrestricted SAT formula that
looks like

`1 ∨ · · · ∨ `n,
where `1, . . . , `n are literals. Introducing new variables x1, . . . , xn−2 we can rewrite
this formula as

(`1 ∨ `2 ∨ x1)∧ (¬x1 ∨ `3 ∨ x2)∧ · · · ∧ (¬xn−3 ∨ `n−2 ∨ xn−2)∧ (¬xn−2 ∨ `n−1 ∨ `n).
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This new formula is satisfiable if and only if the original is, and its length is at most
3 times longer than the original, which means that the reduction from SAT to 3-SAT
implies only polynomial growth in the length of the formula. Hence SAT and 3-SAT
have the same order of computational complexity, i.e. they are both NP-complete
by the Cook-Levin theorem. We are now ready to show (somewhat informally)
that the subset-sum problem is NP-complete by constructing a polynomial time
reduction algorithm from 3-SAT to it.

Theorem 2.1.2. The decision version of SSP is NP-complete.

Sketch of proof. Recall that the running time is measured as a function of
the input size. It is easy to see that our problem is NP. Indeed, let S = {w1, . . . , wm}
be the set of weights and T the target sum. Given a specific subset S′ ⊆ S, it is
simply a summation problem to verify whether S′ sums to T – this summation
algorithm runs in polynomial (in fact, linear) time.

Now we show that the decision version of SSP is NP-hard by constructing a
polynomial-time reduction from 3-SAT to it. Let us write n for the number of
variables and k for the number of clauses in our Boolean formula. We demonstrate
this reduction on an example. Consider the Boolean formula

(x1 ∨ x2 ∨ x3) ∧ (¬x1 ∨ ¬x2 ∨ x3) ∧ (x1 ∨ ¬x2 ∨ x3) ∧ (x1 ∨ x2 ∨ ¬x3).

There are four clauses which we label as c1, c2, c3, c4, so in this example n = 3,
k = 4. This formula is satisfied if and only if each of the clauses is TRUE. Let
us introduce two variables vi1, vi2 for each of the Boolean variables xi and two
variables wi1, wi2 for each of the clauses ci along with n − 1 auxiliary variables
si1, . . . , si(n−1) for each ci. With this notation, let us build a table consisting of
four blocks as follows:

x1 x2 x3 c1 c2 c3 c4

v11 1 0 0 1 0 1 1
v12 1 0 0 0 1 0 0
v21 0 1 0 1 0 0 1
v22 0 1 0 0 1 1 0
v31 0 0 1 1 1 1 0
v32 0 0 1 0 0 0 1

s11 0 0 0 1 0 0 0
s12 0 0 0 1 0 0 0
s21 0 0 0 0 1 0 0
s22 0 0 0 0 1 0 0
s31 0 0 0 0 0 1 0
s32 0 0 0 0 0 1 0
s41 0 0 0 0 0 0 1
s42 0 0 0 0 0 0 1

T 1 1 1 3 3 3 3

The values in the cells of the table are assigned as follows.

• The variable vi1 stands for the TRUE value of xi and vi2 stands for the
FALSE value of xi. Hence the cell corresponding to vi1, xj or vi2, xj gets
a 1 if i = j and 0 if i 6= j.



4 2. KNAPSACK AND FROBENIUS PROBLEMS

• The cell corresponding to vi1, cj gets a 1 if setting xi = TRUE makes
cj TRUE, and 0 otherwise. The cell corresponding to vi2, cj gets a 1 if
setting xi = FALSE makes cj TRUE, and 0 otherwise.

• The cell corresponding to sil, xj gets a 0 for all i, l, j.
• The cell corresponding to sil, cj gets a 1 if i = j and 0 otherwise for each

1 ≤ l ≤ n− 1.
• The cells in the row labeled T (target sum) corresponding to a variable
xi get a 1 and those corresponding to a clause ci get an n = number of
variables.

Now let S be the (multi-) set of numbers as written in rows except for the last one
and the last row be the target sum T , so in our example S =

{1001011, 1000100, 101001, 100110, 11110, 10001, 1000, 1000, 100, 100, 10, 10, 1, 1}

and T = 1113333. We claim that the Boolean formula represented by this table is
satisfiable if and only if there exists a subset S′ of S which sums up to T . Indeed,
notice that each row in the upper part of the table corresponds to a TRUE or
FALSE value of the variable xi (we would always pick precisely one of the rows vi1
and vi2, since xi must be assigned TRUE or FALSE but not both at the same time,
and hence the corresponding digit of T would always be 1). Then we pick the rows
in the bottom part of the table to compensate for those positions that are < n: the
formula is not satisfiable if and only if there is a column corresponding to some ci
whose entries add up to a number < n (this happens precisely when there is no
choice of the variables making the clause ci TRUE). In our example, the Boolean
formula is satisfiable, since for instance the rows corresponding to v11, v21, v31 and
s21, s22, s31, s41 add up to T :

1001011 + 101001 + 11110 + 100 + 100 + 10 + 1 = 1113333.

Indeed, this choice of the subset S′ corresponds to the assignment

x1 = TRUE, x2 = TRUE, x3 = TRUE,

which makes each of the clauses TRUE, hence making the formula TRUE.
Notice that each element of S has at most n + k digits in it and there are at

most 2n+ (n− 1)k elements in S. This ensures that this reduction procedure runs
in polynomial time in the size of the input, which is itself a function of n and k.
This completes the proof. �

Many of the problems mentioned in this section (e.g. ILP, 3-SAT and SSP)
are among the original Karp’s 21 NP-complete problems. In 1972, Richard Karp
published a paper [Kar72] in which he showed the NP-completeness of 21 different
natural combinatorial and graph theoretic problems. His main tool was Cook-
Levin Theorem: he constructed polynomial time reductions from SAT to several
problems and then used the Cook-Levin Theorem to establish NP-completeness of
these problems. He then used these few original problems to show NP-completeness
of the rest of his list of 21.

To close this section, let us also mention a simple but curious reformulation
of the SAT problem in terms of polynomial vanishing. For a Boolean formula in
conjunctive normal form (CNF), we construct a CNF-polynomial in the variables
x1, . . . , xn corresponding to this formula as follows:
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(1) A literal xi becomes a linear factor xi and a literal ¬xi becomes a linear
factor 1− xi.

(2) Each clause becomes a product of linear factors corresponding to its liter-
als, so disjunction becomes multiplication. We refer to such products as
literal-monomials.

(3) Conjunction becomes addition.

Let us consider the following example:

(2.1) (x1 ∨ x2 ∨ x3) ∧ (¬x1 ∨ ¬x2 ∨ x3) ∧ (x1 ∨ ¬x2 ∨ x3) ∧ (x1 ∨ x2 ∨ ¬x3),

then the formula (2.1) correspond to the CNF-polynomial

(2.2) f(x1, x2, x3) = x1x2x3 + (1− x1)(1− x2)x3 + x1(1− x2)x3 + x1x2(1− x3).

Assign the values 0 = TRUE and 1 = FALSE. A CNF formula is satisfiable if and
only if there exists a TRUE / FALSE assignment of the Boolean variables such that
each clause is TRUE. This happens if and only if there exists a 0 / 1 assignment of
the variables in the corresponding CNF-polynomial which makes every monomial 0.
This property is equivalent to the CNF-polynomial vanishing at some vertex of the
unit cube [0, 1]n in Rn. For example, the polynomial in (2.2) vanishes at (0, 1, 1);
this corresponds to the assignment of the Boolean variables

x1 = TRUE, x2 = FALSE, x3 = FALSE,

which indeed satisfies the formula (2.1). We can use this construction to prove the
following observation.

Proposition 2.1.3. The problem of determining whether a given multilinear poly-
nomial of degree k ≥ 3 in n ≥ 2 variables vanishes at a vertex of the unit cube
[0, 1]n in Rn is NP-complete.

Proof. It is clear that this problem is NP: the procedure of evaluating a poly-
nomial at a given point has polynomial complexity. The construction above shows
a polynomial-time reduction from k-SAT, the Boolean k-satisfiability problem, to
our problem for the corresponding CNF-polynomial. Since k-SAT is NP-hard for
every k ≥ 3, so must be our problem. �
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2.2. Approximating knapsack problem by relaxation

The Binary knapsack problem (BKP) can be formulated as follows:

maximize

n∑
i=1

pixi

subject to

n∑
i=1

wixi ≤W,

xi ∈ {0, 1} ∀ 1 ≤ i ≤ n.

Let us write p = (p1, . . . , pn) for the profit vector and w = (w1, . . . , wn) for the
weight vector. This is arguably the most important of the knapsack problems.
Indeed, SSP is a special case of BKP and BndKP can be reduced to BKP (in a
larger number of variables) as we now show. BndKP can be formulated as follows:

maximize

n∑
i=1

pixi

subject to

n∑
i=1

wixi ≤W,

xi ∈ Z, 0 ≤ xi ≤ bi ∀ 1 ≤ i ≤ n.

For each 1 ≤ i ≤ n, let Bi := {bi1, . . . , bili} be a minimal (with respect to size)
partition of bi so that every integer between 0 and bi is representable as a sum of
some subcollection of Bi: such a partition always exists, since in the worst case
scenario we can always take Bi = {1, . . . , 1}, but in general it will smaller. For
example, if bi = 10 we can take Bi = {1, 2, 3, 4}. Then we can introduce new
variables yik, 1 ≤ i ≤ n, 1 ≤ k ≤ li, and rewrite the BndKP above as the following
instance of BKP:

maximize

n∑
i=1

pi(bi1yi1 + · · ·+ biliyili)

subject to

n∑
i=1

wi(bi1yi1 + · · ·+ biliyili) ≤W,

yik ∈ {0, 1} ∀ 1 ≤ i ≤ n, 1 ≤ k ≤ li.

These two problems are equivalent since there is bijection between all values of xi
between 0 and bi and all values (written without repetition) of the sum

∑li
k=1 bikyik

as the variables yik assume values in the set {0, 1}.
From Section 2.1 we know that there is no known polynomial time algorithm to

solve BKP. However, we can look for an approximate solution to BKP via certain
relaxations. First such relaxation is the continuous knapsack problem (CKP):

maximize

n∑
i=1

pixi

subject to

n∑
i=1

wixi ≤W,

0 ≤ xi ≤ 1 ∀ 1 ≤ i ≤ n.
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In other words, we no longer require xi to take only integer values. Let us assume
that the items are ordered so that

(2.3)
p1

w1
≥ p2

w2
≥ · · · ≥ pn

wn
.

The following additional assumptions can be made for CKP:

(1) Every weight wi ≤ W . If this is not the case for some weight wi, this
weight (and its corresponding price pi) can be eliminated, hence reducing
the number of variables.

(2)
∑n
i=1 wi > W . If this is not the case, then taking xi = 1 for each i will

maximize the objective function.
(3) The inequalities in (2.3) are all strict. Suppose not, then there exist some

indices 1 < j < k < n such that

c :=
pj
wj

= · · · = pk
wk

,

which means that
∑k
i=j pixi = c

∑k
i=j wixi. Then set t =

∑k
i=j wi and

define a new variable y = 1
t

∑k
i=j wixi; observe that 0 < y < 1. In this

case we can restate our instance of CKP as follows:

maximize

j−1∑
i=1

pixi + cty +

n∑
i=k+1

pixi

subject to

j−1∑
i=1

wixi + ty +

n∑
i=k+1

wixi ≤W,

0 ≤ xi ≤ 1 ∀ i, 0 ≤ y ≤ 1.

To solve CKP, we define the critical index

s = min

{
j :

j∑
i=1

wi > W

}
.

Then 1 < s ≤ n and we have the following result.

Theorem 2.2.1. [Dantzig, 1957] The optimal solution x∗ to CKP is given by setting

(2.4) x∗i =

{
1 if 1 ≤ i ≤ s− 1
0 if s+ 1 ≤ i ≤ n,

and x∗s = 1
ws

(
W −

∑s−1
j=1 wj

)
.

Proof. Our proof follows [MT90]. First observe that a vector x = (x1, . . . , xn)
maximizing the objective function must satisfy the condition

(2.5)

n∑
i=1

wixi = W,

since otherwise some coordinates of x can be increased still under the weight re-
striction, which will increase the value of the objective function. Arguing towards
a contradiction, suppose the optimal solution x is not of the form x∗, say xi < 1
for some i < s. Then there must exist some index j ≥ s such that xj > x∗j . Now,
for a sufficiently small ε > 0, replace xi by xi + ε and xj by xj − εwi/wj , hence
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still preserving condition (2.5). However, this change will increase the objective
function by

ε

(
pi −

pjwi
wj

)
,

which is positive, since pi/wi > pj/wj . This contradicts the optimality of the
solution x. The assumption xj > 0 for some j > s is handled analogously, also
leading to a contradiction. Hence we must have the condition (2.4) satisfied for the
optimal solution, and the formula for x∗s follows from maximality. This completes
the proof. �

The maximal value of the objective function in CKP is then easy to compute: it is

s−1∑
i=1

pi +
ps
ws

W − s−1∑
j=1

wj

 .

This immediately implies an upper bound on the maximal value of the objective
function for the associated instance of BKP:

U :=

s−1∑
i=1

pi +

 ps
ws

W − s−1∑
j=1

wj

 .
There are other known relaxations of BKP (such as the Lagrangian relaxation,

stemming from an application of the method of Lagrange multipliers) leading to
other upper bounds on the objective function. There is also a lot of literature on the
algorithmic complexity of computing these bounds. Some of the known algorithms
rely on the greedy approach (making the locally optimal choice at each stage of
the algorithm) as well as the branch-and-bound method (recursively splitting the
search space into smaller pieces and optimizing on each of those). We do not get
into this material here, but mention a book by Martello and Toth [MT90] as a
comprehensive source of algorithmic information about knapsack problems.
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2.3. LP-polytope

Our goal in this section is to present a geometric interpretation of the knapsack
problems. First we need some geometric notation. Recall that a compact (i.e.
closed and bounded) subset X ⊂ Rn is called convex if for any pair x,y ∈ X,
tx + (1 − t)y ∈ X for any 0 ≤ t ≤ 1. An important special class of convex sets is
convex hulls: the convex hull of a set X ⊂ Rn is

Co(X) =

{∑
x∈X

txx : tx ≥ 0 ∀ x ∈ X,
∑
x∈X

tx = 1

}
.

This is the smallest convex set (with respect to inclusion) containing X, so X is
convex if and only if X = Co(X). A convex polytope is the convex hull of a finite
collection of points. There is also a related notion of a convex polyhedron. A
halfspace in Rn is a set

H =

{
x ∈ Rn :

n∑
i=1

aixi ≤ b

}
for some a1, . . . , an, b ∈ R, and the set

H =

{
x ∈ Rn :

n∑
i=1

aixi = b

}
is called a bounding hyperplane of H. A convex polyhedron is a compact intersection
of a finite collection of halfspaces. Hence P is a convex polyhedron if and only if

(2.6) P = {x ∈ Rn : Ax ≤ b}

for an m× n real matrix A and a vector b ∈ Rm such that this set is bounded.

Theorem 2.3.1 (Minkowski-Weyl). A set P ⊂ Rn is a convex polytope if and only
if it is a convex polyhedron.

While we do not prove this theorem here, we point out one of its important conse-
quence. A point v in a convex set X ⊂ Rn is called a vertex if there exists some
c ∈ Rn such that for all c>v < c>x for all x ∈ X. Then every convex polyhedron is
the convex hull of its vertices, of which there are only finitely many. More generally,
we can define a k-dimensional face of an n-dimensional polytope P , 1 ≤ k < n, to
be a k-dimensional subset F ⊂ P such that for some c ∈ Rn,

c>v = c>u ∀ v,u ∈ F and c>v < c>x ∀ v ∈ F,x ∈ P.

Here, by dimension of a subset F we mean dimR (spanR F ) − 1, so vertices are
0-dimensional faces of P and every face of P contains at least one vertex. The
polytope P can then be represented as the disjoint union of its interior P o and its
boundary ∂P , where ∂P is the union of all of the faces of P and P o = P \ ∂P .

Given a linear program

maximize p(x) =

n∑
i=1

pixi

subject to Ax ≤ b
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for an m × n matrix A and a vector b ∈ Rm we can define the corresponding
LP-polytope as in (2.6). Then the linear program can be reformulated as

maximize p(x) =

n∑
i=1

pixi on P.

In general, the polytope P can be unbounded, but we will focus specifically on the
situations when it is compact – we refer to such linear programs as bounded LPs.
Notice that our knapsack problems BKP, BndKP and SSP are all bounded LPs.
With this notation, we can prove an important theorem.

Theorem 2.3.2. The objective function p(x) is maximized at a vertex of P . In
other words, there exists a vertex v ∈ P such that p(v) ≥ p(x) for all x ∈ P .

Proof. Suppose that v ∈ P is a point such that p(v) ≥ p(x) for all x ∈ P ,
define b to be this maximal value, i.e. b = p(v). Define the hyperplane

Hp(b) = {x ∈ Rn : p(x) = b}
and two halfspaces

H1 = {x ∈ Rn : p(x) ≤ b} , H2 = {x ∈ Rn : p(x) ≥ b} .
By our assumption, we must have P ⊂ H1 and hence Hp(b) cannot intersect the
interior of P, i.e. F = P ∩Hp(b) 6= ∅ must be some (union of) face(s) of P . Then
p(x) is constant on F and F contains a vertex u of P , so p(u) = p(v) is a maximal
value of p(x) on P . �

Therefore Theorem 2.3.2 implies that to solve a given linear program we need to
find all the vertices of the corresponding LP-polytope and identify an optimal one
among them. This is done by George Dantzig’s simplex algorithm. The main idea of
the simplex algorithm is to start at a vertex of the LP-polytope and move along an
edge (1-dimensional face) to a neighboring vertex corresponding to a larger value of
the objective function. The algorithm terminates when no such vertex exists. While
we will not get into the details of the algebraic implementation of this algorithm,
we will demonstrate a geometric example with an instance of CKP.

Example 2.3.1. Consider the following instance of CKP:

maximize 3x1 + 5x2 + 2x3

subject to 2x1 + 5x2 + 7x3 ≤ 11,

x1, x2, x3 ∈ [0, 1].

Define the corresponding LP-polytope to be P =
{
x ∈ R3

≥0 : Ax ≤ b
}

, where

A =


2 5 7
1 0 0
0 1 0
0 0 1

 , b =


12
1
1
1

 .

We want to maximize the objective function p(x) = 3x1 + 5x2 + 2x3 on P . Notice
that P is the intersection of the unit cube C = [0, 1]3 with the halfspace

H = {x ∈ R3 : 2x1 + 5x2 + 7x3 ≤ 12},
and hence vertices of P lie on the edges of the unit cube C. These vertices are not
hard to find in this case – they are the origin 0, the standard basis vectors e1, e2,
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e3, their pairwise sums e1 +e2, e1 +e3, e2 +e3 (this last one lying in the bounding
hyperplane of H), as well as the two more points in the bounding hyperplane of H:

v1 = (1, 1, 5/7), v2 = (1, 3/5, 1).

We can now describe the geometric idea of the simplex algorithm in this example.

(1) Start at the vertex 0 and pick the direction towards any vertex connected
to it by an edge of P , since p(0) = 0. Say, we pick e1.

(2) Move to e1, where p(e1) = 3. Pick a neighboring vertex with a larger
value of p, say e1 + e2.

(3) Move to e1 +e2, where p(e1 +e2) = 8 > p(e1). Pick a neighboring vertex
with a larger value of p, which is v1.

(4) Move to v1, where p(v1) = 66/7 > p(e1 + e2). No neighboring vertex of
v1 gives a larger value of p, thus we stop.

(5) Return the maximum value of p on P , which is p(v1) = 66/7.

Let us compare this result to the result yielded by Dantzig’s Theorem 2.2.1 (the
assumptions for this theorem are satisfied here). Ordering the items in our instance
of CKP so that (2.3) is satisfied, we have:

p1

w1
=

3

2
>
p2

w2
=

5

5
>
p3

w3
=

2

7
.

Then the critical index is s = 3. Hence the theorem guarantees that the optimal
solution is (

1, 1,
1

7
(12− (2 + 5))

)
= (1, 1, 5/7),

as expected.

This example demonstrates that in case the case our linear program is an in-
stance of CKP the simplex algorithm essentially reduces to Theorem 2.2.1, however
it applies far more generally than just CKP which is a big advantage. This being
said, it still only applies to instance of LP, not ILP, and hence it does not directly
help us with the knapsack problems. On the other hand, a knapsack problem can
be formulated as maximization problem for an objective function on the set of in-
teger lattice points (i.e. points of Zn) inside of the specific compact LP-polytope
defined by the corresponding constraints. Such a set is finite, so if we could find all
these integer lattice points, we could simply evaluate our objective function at all
of them and pick the largest value. While not necessarily efficient, this would lead
to a solution. The problem is that integer lattice points in polytope are difficult
not only to find, but even to count. We will discuss such a counting problem in
more details in the next section.
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2.4. Integer knapsack and counting integer lattice points in polytopes

Let us start by defining a certain variation of the knapsack problems that is
somewhat different from the previous versions we were discussing. This is a decision
problem known as the integer knapsack problem (IKP):

Given a set of weights S = {w1, . . . , wn} and the target value t, do there
exist x1, . . . , xn ∈ Z≥0 such that

∑n
i=1 wixi = t?

Notice that this is a generalization of the decision version of SSP, where the variables
x1, . . . , xn were only allowed to take on values 0 or 1. Thus this problem is NP-
hard. We can reformulate this problem geometrically by introducing the knapsack
polytope

P (S, t) :=

{
x ∈ Rn≥0 :

n∑
i=1

wixi = t

}
.

The problem then is to determine whether P (S, t) ∩ Zn = ∅. In other words, we
can ask whether the counting function |P (S, t) ∩ Zn| > 0, which naturally leads to
the question of counting integer lattice points in polytopes. This is the main focus
of this section.

We discuss the following general question: given a compact convex polytope
P ⊂ Rn, what is the number of integer lattice points in it? In other words, we want
to find the quantity |P ∩Zn|. Let us start with the two-dimensional situation, where
we can prove a beautiful formula for even a somewhat more general situation. Let
P be a simple polygon (with no holes or self-intersections) in R2, not necessarily
convex, with integer vertices. Let us write A(P ) for the area of P , I(P ) for the
number of integer lattice points in the interior of P and B(P ) for the number of
integer lattice points on the boundary of P . The following famous theorem was
proved by Georg Alexander Pick in 1899.

Theorem 2.4.1 (Pick’s Theorem).

A(P ) = I(P ) +
1

2
B(P )− 1.

Sketch of Proof. Let x ∈ P ∩Z2 and define αP (x) to be the visibility angle
of P from x, i.e. it is the angle of the cone C(x) ∩ P where C(x) is a unit circle
centered at x. Notice that

αP (x) =

{
2π if x is an interior point of P ,
π if x is on the boundary of P but not a vertex,

and αP (x) is the corresponding interior angle of P if x is a vertex. Define the
weight enumerator

W (P ) =
∑

x∈P∩Z2

αP (x)

2π
.

We will now sketch a proof of the formula A(P ) = W (P ). First observe that W (P )
is additive, i.e. if P = P1 ∪ P2 where P1 and P2 are polytopes sharing a piece of
boundary then

(2.7) W (P ) = W (P1) +W (P2).

To see this, notice that interior points of P1, P2 remain interior points of P , bound-
ary points on non-overlapping parts of the boundary remain boundary points,
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whereas a boundary point on the common part of the boundary of P1 and P2

is either a vertex or becomes an interior point. If such a point x is a vertex, then
αP (x) = αP1(x) + αP2(x); if x was on the joint boundary and became an interior
point then it was counted with αP1

(x) = π in W (P1), αP2
(x) = π in W (P2) and

will now be counted with αP (x) = 2π in W (P ).
The verification of the formula A(P ) = W (P ) for rectangles and triangles is

done in Problem 2.3. Now notice that any polygon P can be split into a union of
triangles with non-overlapping interiors but possibly joint boundaries. This obser-
vation together with Problem 2.3 and (2.7) implies A(P ) = W (P ) for all polygons.

Now let n = number of vertices of P , m = B(P ) − n = number of boundary
integer lattice points that are not vertices, and k = I(P ) = number of internal
integer lattice points. Let

{x1, . . . ,xn}, {y1, . . . ,ym}, {z1, . . . ,zk}

be these sets of points, respectively. Recall that the sum of internal angles of P is
(n− 2)π – this formula holds in general whether P is convex or not. Then

W (P ) =
1

2π

(
n∑
i=1

αP (xi) +

m∑
i=1

αP (yi) +

k∑
i=1

αP (zi)

)

=
n− 2

2
+
m

2
+ k = k +

n+m

2
− 1 = I(P ) +

1

2
B(P )− 1.

This completes the proof. �

Next we discuss the problem of counting integer lattice points in convex poly-
topes in dimensions ≥ 3. Specifically, we address the following question: how can
we count the number of integer lattice points in homogeneous expansions of poly-
topes? An area of mathematics that aims to answer this question is called Ehrhart
theory. Let P ⊆ Rn be a convex polytope such that Vol(P ) > 0, and vertices of P
are points of Zn: such P is called a lattice polytope. Write

GP (t) = |tP ∩ Zn| .

We want to understand the behavior of GP (t) for all t ∈ Z>0; specifically, we will
prove a famous theorem of Ehrhart, which states that GP (t) is a polynomial in
t. Our presentation closely follows [Ewa96]. First we consider a special case of
polytopes, namely simplices.

Lemma 2.4.2. Let a1, . . . ,an ∈ Zn be linearly independent, and define the simplex

S = Co(0,a1, . . . ,an) =

{
n∑
i=1

tiai : ti ≥ 0 ∀ 1 ≤ i ≤ n,
n∑
i=1

ti ≤ 1

}
.

Then there exist β1, . . . , βn ∈ Z≥0 such that for every t ∈ Z>0, we have

G(tS) = |tS ∩ Zn| =
(
n+ t

n

)
+

n∑
i=1

(
n+ t− i

n

)
βi.

Proof. LetA be the half-open parallelotope spanned by the vectors a1, . . . ,an,
i.e.

A =

{
n∑
i=1

tiai : 0 ≤ ti < 1 ∀ 1 ≤ i ≤ n

}
.
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For every y ∈ tS ∩ Zn there exists a unique representation of y of the form

(2.8) y = x +

n∑
i=1

αiai,

where x ∈ A ∩ Zn and α1, . . . , αn ∈ Z≥0. For each 0 ≤ j ≤ t, let Hj be the
hyperplane which passes through the points ja1, . . . , jan. We will determine the
number of points of Zn in Hj ∩ tS, and the number of points of Zn∩ tS in the strips
of space bounded by Hj−1 and Hj for each 1 ≤ j ≤ t; notice that H0 = {0}.

First, let x = 0 in (2.8). Then y as in (2.8) lies in Hj if and only if

(2.9)

n∑
i=1

αi = j, 0 ≤ αi ≤ j ∀ 1 ≤ i ≤ n.

We will prove now that there are precisely
(
n+j−1
n−1

)
possibilities for α1, . . . , αn sat-

isfying (2.9) for each j. We argue by induction on n. If n = 1, then there is only

1 =
(
j
0

)
possibility. Suppose the claim is true for n−1. Then there are

(
n+(j−αn)−2

n−2

)
possibilities for α1, . . . , αn−1 such that

n−1∑
i=1

αi = j − αn

for each value of 0 ≤ αn ≤ j. Then the number of possibilities for α1, . . . , αn
satisfying (2.9) is

(2.10)

j∑
αn=0

(
n+ (j − αn)− 2

n− 2

)
=

j∑
i=0

(
n+ i− 2

n− 2

)
.

Then our claim follows by combining (2.10) with the result of Problem 2.6:

j∑
i=0

(
n+ i− 2

n− 2

)
=

(
n+ j − 1

n− 1

)
.

Now to find the number of points y as in (2.8) with x = 0 on
⋃t
j=0Hj , we sum

over j, using the result of Excercise 2.6 once again:

t∑
j=0

(
n+ j − 1

n− 1

)
=

(
n+ t

n

)
.

If x in (2.8) lies properly between H0 and H1, then the number of possible y as

given by (2.8) that lie in
⋃t
j=0Hj reduces to

(
n+t−1
n

)
. Similarly, the number of

possibilities for y as in (2.8) with x lying properly between Hi−1 and Hi or on Hi

is
(
n+t−i
n

)
for each 1 ≤ i ≤ n. Therefore, if βi is the number of points x ∈ A ∩ Zn

which lie properly between Hi−1 and Hi or on Hi, then the number of corresponding
points y as in (2.8) is (

n+ t− i
n

)
βi.

Finally, in the case t < n, we let βi = 0 for each t + 1 ≤ i ≤ n. The statement of
the lemma follows.

�
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Let a1, . . . ,an ∈ Zn be linearly independent, and let

S = Co(0,a1, . . . ,an)

be the simplex as in Lemma 2.4.2. Define the pseudo-simplex associated with S

S0 = S \ (Co(0,a1, . . . ,an−1) ∪ . . . ∪ Co(0,a2, . . . ,an)) .

Lemma 2.4.3. G(tS0) is a polynomial in t ∈ Z≥0.

Proof. We argue by induction on dimension of S0. If dim(S0) = 0, there is
nothing to prove, so assume the lemma is true for pseudo-simplices of dimension
< n. Let F (1), . . . , F (s) be proper faces of S which contain 0 and satisfy

0 < dim(F (i)) < n, ∀ 1 ≤ i ≤ s.

Then

S \ S0 = {0} ∪ F (1)
0 ∪ . . . ∪ F

(s)
0

is a disjoint union. By induction hypothesis,

G(t(S \ S0)) = 1 +G(tF
(1)
0 ) + · · ·+G(tF

(s)
0 )

is a polynomial in t. Hence, by Lemma 2.4.2,

G(tS0) = G(tS)−G(t(S \ S0)) = G(tS)− 1−G(tF
(1)
0 )− · · · −G(tF

(s)
0 )

is a polynomial in t. �

We are now ready to prove a theorem of Eugene Ehrhart’s from the 1960s.

Theorem 2.4.4 (Ehrhart). Let P be a lattice polytope in Rn. Then GP (t) is a
polynomial in t ∈ Z≥0.

Proof. We can assume 0 to be a vertex of P , since such translation would not
change the number of integer lattice points. Notice that each (n − 1)-dimensional
face of P which does not contain 0 can be given a decomposition as a simplicial
complex whose 0-cells are the vertices of this face. We can then join each simplex,
obtained in this manner, to 0 resulting in a decomposition of P into a simplicial
complex whose 0-cells are precisely the vertices of P . Then P can be represented
as a disjoint union

P = {0} ∪ S(1)
0 ∪ . . . ∪ S

(r)
0 ,

where S
(1)
0 , . . . , S

(r)
0 are precisely the cells of this simplicial complex which contain

0, but are not equal to {0}. The theorem follows by Lemma 2.4.3. �

GP (t) as in Theorem 2.4.4 is called Ehrhart polynomial of P . An excellent ref-
erence on Ehrhart polynomials, their many fascinating properties, and connections
to other important mathematical objects is [BR06]. For a general lattice polytope
P very little is known about the coefficients of its Ehrhart polynomial GP (t). Let

GP (t) =

n∑
i=0

ci(P )ti,

then it is known that the leading coefficient cn(P ) is equal to Vol(P ), and cn−1(P )
is (n − 1)-dimensional volume of the boundary ∂P , which is normalized by the
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determinants of the sublattices induced by the corresponding faces of P . Also,
c0(P ) is the combinatorial Euler characteristic χ(P ):

χ(P ) =

n∑
i=0

(−1)i(number of i− dimensional faces of P ).

The rest of the coefficients of GP (t) are in general unknown, however there are
known relations and identities that they satisfy; see [BR06] for further details.

Let us present the first simple example of Ehrhart polynomial. Consider the
n-dimensional cube of sidelength 2 centered at the origin:

(2.11) Cn = {x ∈ Rn : |x| ≤ 1},
then for each t ∈ Z>0

|tCn ∩ Zn| = (2t+ 1)n =
n∑
i=0

2i
(
n

k

)
ti

is the corresponding Ehrhart polynomial. We will give two more explicit examples
of Ehrhart polynomial. The first one is for an open simplex, which is precisely the
interior of the simplex S of Lemma 2.4.2 with ai = ei for each 1 ≤ i ≤ n; the
following observation along with the proof is due to S. I. Sobolev.

Proposition 2.4.5. Define an open simplex

S◦ =

{
x ∈ Rn : xi > 0 ∀ 1 ≤ i ≤ n,

n∑
i=1

xi < 1

}
.

Then GS◦(t) = 0 if t ≤ n, and for every t ∈ Z>n,

(2.12) GS◦(t) =

(
t− 1

n

)
.

Proof. Let t > n, and notice that the simplex tS◦ can be mapped by an affine
transformation to the simplex

tS◦1 = {x ∈ Rn : 0 < x1 < · · · < xk < t} .
This transformation is volume-preserving and maps Zn to itself. Integral points of
tS◦1 correspond to increasing sequences of integers 0 < y1 < · · · < yn < t. The
number of such sequences is precisely

(
t−1
n

)
, which is the number of all possible

n-element subsets of the set {1, ..., t− 1}. �

Notice that (2.12) can be thought of as a geometric interpretation of binomial
coefficients. The next example is closely related to the one in Proposition 2.4.5: it
has been established in [BCKV00].

Proposition 2.4.6. Let

Sn =

{
x ∈ Rn :

n∑
i=1

|xi| ≤ 1

}
.

Then for every t ∈ Z>0

(2.13) GSn(t) =

min{t,n}∑
i=0

2i
(
n

i

)(
t

i

)
.
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Proof. Notice that for each 0 ≤ i ≤ min{t, n} the number of points in tSn∩Zn
with precisely i nonzero coordinates is

2i
(
n

i

)(
t

i

)
.

Indeed, the number of choices of which coordinates are nonzero is
(
n
i

)
; for each such

choice there are 2i choices of ± signs, and
(
t
i

)
choices of absolute values. Summing

over all 0 ≤ i ≤ min{t, n} completes the proof. �

Remark 2.4.1. A remarkable property of the polynomial in Proposition 2.4.6 is
that the right hand side (2.13) is symmetric in t and n. This means that

|tSn ∩ Zn| = |nSt ∩ Zt|.
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2.5. Frobenius problem

In this section we introduce a problem closely related to the IKP. For n ≥ 2,
consider integers

(2.14) 1 < a1 < · · · < an such that gcd(a1, . . . , an) = 1,

and define

S(a1, . . . , an) :=

{
n∑
i=1

aixi : x1, . . . , xn ∈ Z≥0

}
.

This is an example of a numerical semigroup, i.e. a subset of Z≥0 containing 0
which is closed under addition. The set N \ S(a1, . . . , an) is called the set of gaps
of S(a1, . . . , an).

Theorem 2.5.1. The set of gaps of the numerical semigroup S(a1, . . . , an) under
the condition (2.14) is finite.

Proof. Since the n-tuple a1, . . . , an is relatively prime, there exist integers
m1, . . . ,mn such that

a1m1 + · · ·+ anmn = 1.

This sum has some positive and some negative terms, hence it can be written
A − B = 1, where A and B are both nonnegative integer linear combinations of
a1, . . . , an. Therefore A,B ∈ S(a1, . . . , an). Now, let z be any positive integer, then
Euclid’s division lemma implies that

z = qa1 + r, q, r ∈ Z≥0, 0 ≤ r < a1.

On the other hand, r = r × 1 = r(A − B). Notice that qa1 ∈ S(a1, . . . , an), and
hence

z+(a1−1)B = qa1+r(A−B)+(a1−1)B = qa1+rA+(a1−r−1)B ∈ S(a1, . . . , an),

since a1−r−1 ≥ 0. This implies that every integer ≥ (a1−1)B is in S(a1, . . . , an),
and hence the number of gaps at most (a1 − 1)B − 1. �

Remark 2.5.1. The presentation of the above argument closely followed [Ram05].

The Frobenius number g(a1, . . . , an) is defined to be the largest gap of S(a1, . . . , an),
i.e. the largest integer t that cannot be expressed in the form t =

∑n
i=1 aixi for

some nonnegative integers x1, . . . , xn. With this notation, we can formulate the
Frobenius Problem (FP):

Given an n-tuple a1, . . . , an satisfying (2.14) find g(a1, . . . , an).

Notice that FP can be stated in terms of the knapsack polytopes as follows: writing
a = (a1, . . . , an), find the smallest positive integer g so that P (a, t) ∩ Zn 6= ∅ for
every t > g. Alternatively, we can write it as follows:

Find min{g ∈ Z>0 : |P (a, t) ∩ Zn| > 0 ∀ b > t}.
Notice also that

n∑
i=1

aixi = t ⇐⇒
n∑
i=1

ai

(xi
t

)
= 1,

i.e. x ∈ P (a, t) if and only if 1
tx ∈ P (a, 1), meaning that P (a, t) = tP (a, 1) is

a homogeneous expansion of a polytope that we discussed in the previous section.
This, however, does not necessarily apply directly to the integer lattice points, since
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for x ∈ Zn the rescaled points 1
tx may no longer be in Zn. Due to this knapsack

connection, it is not surprising that FP is known to be NP-hard (specifically, there
a polynomial-time algorithm that reduces IKP to FP). We begin our discussion of
FP with the simplest case n = 2.

Let us start with a simple binary linear Diophantine equation of the form

(2.15) ax+ by = c,

in which a, b, c are nonzero integers. There are always rational solutions to (2.15).
For which values of a, b, c does it have solutions in integers x, y? The greatest
common divisor provides a criterion for the existence of solutions.

Lemma 2.5.2. Let a, b, c be nonzero integers. Then (2.15) has a solution in integers
x, y if and only if gcd(a, b)|c.

Proof. (⇒) Suppose that ax + by = c for some x, y ∈ Z. Since gcd(a, b)
divides a and b, it divides ax+ by = c.
(⇐) If gcd(a, b)|c, write c = d gcd(a, b), in which d ∈ Z. By Euclid’s Division
Lemma, there exist x′, y′ ∈ Z such that ax′+by′ = gcd(a, b). Thus, a(dx′)+b(dy′) =
d(ax′ + by′) = d gcd(a, b) = c and hence (2.15) has integer solutions x = dx′ and
y = dy′. �

In fact, we can classify all integer solutions to (2.15).

Theorem 2.5.3. Let a, b, c be nonzero integers, and let d = gcd(a, b). Assume d|c.
Then the equation ax + by = c has infinitely many integer solutions. In fact, if
x0, y0 is one such solution pair, then all solutions are given by

(2.16) xt = x0 − t
b

d
, yt = y0 + t

a

d
as t ranges over all the integers.

Proof. First let t ∈ Z and xt, yt be as in (2.16). Then

axt + byt = a

(
x0 − t

b

d

)
+ b

(
y0 + t

a

d

)
= (ax0 + by0) + t

(
ab

d
− ab

d

)
= c,

hence our pair x, y is a solution to (2.15) for any t ∈ Z.
We now show that any solution is of this form. Indeed, suppose x, y is a solution

pair, then
ax0 + by0 = c = ax+ by,

and so
a(x0 − x) = b(y − y0).

Let us divide both sides of the above equation by d and write a′ = a/d, b′ = b/d,
then gcd(a′, b′) = 1 and

a′(x0 − x) = b′(y − y0).

Then Euclid’s Lemma implies that a′|y − y0 and b′|x0 − x, say a′ = y−y0
t and

b′ = x0−x
s for some integers t and s. Then we have

(y − y0)(x0 − x)

t
=

(x0 − x)(y − y0)

s
,

and so s = t. Therefore we obtain

y = y0 + a′t, x = x0 − b′t,
which is precisely what we wanted. �
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Corollary 2.5.4. If gcd(a, b) = 1, then for any c the equation ax + by = c has
infinitely many solutions. Furthermore, if x0, y0 is one such solution pair, then all
solutions are of the form

xt = x0 − tb, yt = y0 + ta

for t ∈ Z.

Example 2.5.1. Let a = 4, b = 6, c = 9. Since gcd(a, b) = 2 - 9, the equations
4x+6y = 9 has no integer solutions. On the other hand, if c = 10, then gcd(a, b)|c,
and so the equation 4x+6y = 10 has infinitely many integer solutions. Since x = 1,
y = 1 is one such solution, all solutions are of the form

xt = 1− 3t, yt = 1 + 2t

as t ranges over all the integers.

These observations also have a simple geometric interpretation. Notice that
the set of integer solution pairs to (2.15){

(x, y) ∈ Z2 : ax+ by = c
}

is the set of all integer lattice points on the line given by the equation (2.15) in
the Euclidean plane. For instance, the set of all such points in the case a = 4, b =
6, c = 10 of Example 2.5.1 is {(1− 6t, 1 + 4t) : t ∈ Z}.

Assume now that c > 0 and gcd(a, b) divides c, so the line ax+ by = c contains
infinitely many integer lattice points, but does it necessarily contain any such points
with nonnegative coordinates? Upon a quick inspection, we can see for instance
that the line

(2.17) 3x+ 5y = c

contains integer lattice points for any c, but no such points with x, y ≥ 0 when
c = 1, 2, 4. For which values of c is our line guaranteed to have nonnegative integer
lattice points?

Here is an initial observation, which follows from Theorem 2.5.3 via a geometric
argument.
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Corollary 2.5.5. Let a, b, c be positive integers with d := gcd(a, b) dividing c. If
c ≥ ab/d, then the equation (2.15) has integer solution pairs x, y ≥ 0.

Proof. Let t, s ∈ Z and consider the solution pairs (xt, yt) and (xs, ys), as
in (2.16), where (x0, y0) is some fixed solution pair. Notice that the Euclidean
distance between the points (xt, yt) and (xs, ys) is√

(xt − xs)2 + (yt − ys)2 =

√
b2

d2
(t− s)2 +

a2

d2
(t− s)2 =

|t− s|
√
a2 + b2

d
,

which is minimized when |t − s| = 1. Let `a,b(c) be the line ax + by = c in the
Euclidean plane, then the minimal distance between two integer lattice points on

`a,b(c) is
√
a2+b2

d , which is assumed for any neighboring pair of integer lattice points
(xt, yt) and (xt+1, yt+1). Notice that the intersection of the line `a,b(c) with the
positive quadrant

{(x, y) ∈ R2 : x, y ≥ 0}
is a line segment with endpoints (c/a, 0) and (0, c/b), so the length of this line
segment is √

c2

a2
+
c2

b2
=
c
√
a2 + b2

ab
.

If the length of this line segment is no less than the distance between the neighboring
integer lattice points, then the line segment must contain at least one integer lattice
point. This means that when

c
√
a2 + b2

ab
≥
√
a2 + b2

d
,

the equation (2.15) has integer solution pairs x, y ≥ 0. This happens when c ≥
ab/d. �

Going back to the example of equation (2.17) and applying Corollary 2.5.5, we
are guaranteed that there are nonnegative solutions at least for all c ≥ 15. Checking
by hand, we quickly see that in fact there are nonnegative solutions already for all
c ≥ 8, suggesting that the bound of Corollary 2.5.5 may not be very good. Indeed,
we can obtain more precise results.

Let a, b be relatively prime positive integers, and suppose that we have un-
limited supply of coins of denominations a and b. What is the maximal amount
of change which we cannot give with such coins? This is precisely the Frobenius
number g(a, b) and we know from Corollary 2.5.5 that

g(a, b) < ab.

But is there an exact formula? This problem, although possibly in different terms
was mentioned in the lectures of a famous German mathematician Ferdinand Georg
Frobenius in the late 1800s, although Frobenius himself never published anything in
these regards. Nonetheless, this problem became known as the (binary) Frobenius
coin exchange problem with the maximal impossible amount of change g(a, b) being
the Frobenius number of a and b. Interestingly, closely related problems also ap-
pear in recreational mathematical literature under different names, such as postage
stamp problem or the chicken McNugget problem. The origins of the latter name
are curious: apparently, in the 1980s chicken McNuggets were sold by McDonalds in
the UK in boxes of 3, 6 and 20 pieces, prompting a mathematician Henri Picciotto
to ask what is the maximal number of nuggets that cannot be purchased (and then
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answering his own question – it is 43). Let us now derive a formula for the binary
Frobenius number.

Theorem 2.5.6. Let gcd(a, b) = 1, then

g(a, b) = (a− 1)(b− 1)− 1.

In other words, this is the largest number that cannot be represented as ax+by with
x, y nonnegative integers.

Proof. Since a and b are relatively prime, for every c ∈ Z there exist x, y ∈ Z
such that

c = ax+ by.

We will say that c is representable in terms of a and b if there exist such x, y ≥ 0.
Notice in fact that we can assume without loss of generality that 0 ≤ x < b: if
x ≥ b, then x = nb+ x′ for some n, x′ ∈ Z with 0 ≤ x′ < b, and so

c = a(nb+ x′) + by = ax′ + b(an+ y),

meaning that we can replace x with x′ by replacing y with an+ y, if necessary.
Now, if 0 ≤ x < b, then for every c there is a unique pair (x, y) such that

c = ax + by, and so c is representable if and only if y ≥ 0. Notice then that the
largest non-representable c corresponds to the largest choice of x (namely, x = b−1)
and the largest negative choice of y (namely, y = −1). This means that the largest
non-representable integer is

g(a, b) = a(b− 1) + b(−1) = ab− a− b = (a− 1)(b− 1)− 1.

�

Theorem 2.5.6 therefore guarantees that for every c > ab − a − b the line
ax+ by = c contains a nonnegative integer lattice point, however for c < ab− a− b
such a point may or may not exist. Revisiting for instance our example (2.17), we
see that while g(3, 5) = 7, the equation 3x+5y = c has nonnegative integer solutions
for c = 3, 5, 6, but does not for c = 1, 2, 4, 7, i.e. these are gaps of S(3, 5). Given a
and b, we can ask how many gaps are there? This natural question was asked as a
challenge problem in a journal called Educational Times by James Joseph Sylvester
in 1884. Specifically, Sylvester, who has already obtained and published the answer
himself in 1882, asked for a proof that this number is equal to 1

2 (a − 1)(b − 1); in
other words, out of (a− 1)(b− 1)− 1 integers between 1 and the Frobenius number
g(a, b) about half are non-representable. A clever solution was produced by W. J.
Curran Sharp. We prove this result here.

Theorem 2.5.7. The number of gaps with respect to a relatively prime pair of
positive integers a and b is

1

2
(a− 1)(b− 1).

Proof. Let 0 ≤ c ≤ g(a, b), and define

c′ = g(a, b)− c = ab− a− b− c.

By our argument in the proof of Theorem 2.5.6, there must exist the unique integers
x, y with 0 ≤ x < b such that c = ax+ by, then

c′ = ab− a− b− c = ab− a− b− ax− by = ax′ + by′,
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where x′ = b − x − 1 and y′ = −y − 1. Since 0 ≤ x′ < b, we see that y′ must also
be unique.

Suppose that c is representable by a and b (including c = 0), then y ≥ 0, and
y′ < 0, hence c′ is not representable. On the other hand, assume that c is not
representable, then y < 0, and so y′ ≥ 0, meaning that c′ is representable. It is
clear that c and c′ are in a bijection with each other, and c = c′ if and only if

c =
1

2
(ab− a− b),

but this cannot be an integer, since a and b cannot both be even. Hence precisely
a half of g(a, b) + 1 integers between 0 and g(a, b) are representable and the rest
are gaps, meaning that there are

1

2
(g(a, b) + 1) =

1

2
(a− 1)(b− 1)

gaps. �

The Frobenius number has also been defined more generally. Let n ≥ 2 be an
integer and let

(2.18) 1 < a1 < · · · < an

be relatively prime integers. We say that a positive integer t is representable by the
n-tuple a := (a1, . . . , an) if

(2.19) t = a1x1 + · · ·+ anxn

for some nonnegative integers x1, . . . , xn, and we call each such solution x :=
(x1, . . . , xn) of (2.19) a representation for t in terms of a. Let s ≥ 0 be an in-
teger, then the s-Frobenius number of this n-tuple, gs(a), as defined by Beck and
Robins in [BR04], is the largest positive integer that has at most s distinct repre-
sentations in terms of a. In the binary case (n = 2), Beck and Robins proved the
following natural generalization of Theorem 2.5.6.

Theorem 2.5.8. Let gcd(a, b) = 1 and s ≥ 0, then

gs(a, b) = (s+ 1)ab− (a+ b).

In the case s = 0, the formula of Theorem 2.5.6 is recovered.

This is a generalization of the classical Frobenius number g0(a), i.e., the largest
positive integer that has no such representations. The Frobenius number has been
studied extensively by a variety of authors, starting as early as late 19th century;
see [Ram05] for a detailed account and bibliography. Generalizing Theorem 2.5.1,
the condition

(2.20) gcd(a1, . . . , an) = 1

implies that gs(a) exists for every s, but the NP-hardness of FP (and the fact
that P vs NP is an open problem) in particular implies that no general closed
form formulas for the Frobenius numbers is known, sparking interest in upper and
lower bounds. Frobenius numbers and their various generalizations tend to play an
important role in several areas of mathematics, including theory of numerical semi-
groups, commutative algebra, algebraic geometry, number theory, combinatorics,
operations research, and theoretical computer science, to name a few. The liter-
ature on this subject is vast with a large number of relevant references available
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in the bibliography to the book [Ram05]. We will talk more about the Frobenius
number and its beautiful geometric connections in Section 4.5.
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2.6. Problems

Problem 2.1. Consider the Boolean formula

B = (x ∧ y) ∨ (¬x ∧ ¬y) ∨ (¬x ∧ z) ∨ (y ∧ ¬z).
Part a. Rewrite B in generalized conjunctive normal form.
Part b. Rewrite the formula you obtained in part a in the form with clauses con-
sisting of three literals each.
Part c. Construct the table to reduce your formula from part b to an instance of
SSP, as in the proof of Theorem 2.1.2.
Part d. Decide if the instance of SSP you obtained is solvable or not. If so, what
values of the Boolean variables make the formula from part b satisfiable? How about
the original formula B?

Problem 2.2. Consider the following instance of BKP:

maximize 4x1 + 5x2 + 7x3

subject to 6x1 + 3x2 + 5x3 ≤ 12,

x1, x2, x3 ∈ {0, 1}.
Part a. Use Theorem 2.2.1 to solve the CKP relaxation of this problem.
Part b. Define the corresponding LP-polytope for the CKP problem in part a and
find its vertices.
Part c. Use the geometric description of the simplex method as in Example 2.3.1 to
find the solution. Make sure it is consistent with part a.
Part d. List all the integer lattice points in the LP-polytope from part b and solve
BKP by evaluating the objective function at each one of them and comparing. Was
the solution to CKP that you found a good approximation to the BKP solution?

Problem 2.3. Prove the formula A(P ) = W (P ) as in the proof of Pick’s Theorem
(Theorem 2.4.1) for rectangles and triangles.

Hint: First prove it for a rectangle, then for a right triangle – splitting rectangle
into two of them and applying additivity, and then for an arbitrary triangle by
embedding it into a rectangle and applying additivity.

Problem 2.4. Suppose P is a polygon with integer vertices and h simple polygonal
holes, each also with integer vertices. Can you generalize Pick’s theorem to P?

Problem 2.5. Let n be a positive integer. The Farey series Fn of order n is the
set of all reduced nonnegative rationals in the interval [0, 1] with denominators no
bigger than n written in increasing order, e.g.

F5 =

{
0

1
,

1

5
,

1

4
,

1

3
,

2

5
,

1

2
,

3

5
,

2

3
,

3

4
,

4

5
,

1

1

}
.

Let a
b ,

c
d ∈ Fn, where n = max{b, d}. Let P be the parallelogram with vertices

(0, 0), (a, b), (c, d), (a+ c, b+ d).

Use Pick’s theorem to prove that a
b ,

c
d are neighbors in Fn if and only if the area of

P is equal to 1.
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Problem 2.6. Prove that
j∑
i=0

(
n+ i− 2

n− 2

)
=

(
n+ j − 1

n− 1

)
.

Problem 2.7. Compute Ehrhart polynomials of a rectangle, a right triangle, and
a right trapezoid.

Problem 2.8. Let a, b be positive relatively prime integers. Express the Frobenius
number g(a, b) in terms of areas of parallelograms with a side of length

√
a2 + b2.

Problem 2.9. Let a1, . . . , an be positive relatively prime integers.

Part a. Express the s-Frobenius number gs(a1, . . . , an) in terms of the restricted
partition function

pa1,...,an(t) = #

{
(x1, . . . , xn) ∈ Zn≥0 :

∑
i=1

aixi = t

}
.

Part b. Prove the recursive formula

pa1,...,an(t) =
∑
m≥0

pa1,...,an−1
(t−man).

Part c. Interpret the recursive formula from part b in terms of the s-Frobenius
numbers.

Problem 2.10. Let a1, . . . , an be positive relatively prime integers. For each s ≥ 0,
define Ss(a1, . . . , an) to be the set of all integers that have more than s representa-
tions in the form

∑n
i=1 aixi with n-tuple of nonnegative integers x1, . . . , xn ∈ Z≥0.

Prove that

· · · ⊆ Ss(a1, . . . , an) ⊆ Ss−1(a1, . . . , an) ⊆ · · · ⊆ S0(a1, . . . , an) = S(a1, . . . , an)

is a sequence of numerical semigroups.

Problem 2.11. Let a, b and c, d be two pairs of positive relatively prime integers.
Suppose

g(a, b) ≥ g(c, d).

Does this mean that g1(a, b) ≥ g1(c, d)? Prove or give a counterexample.



CHAPTER 3

Geometry of Numbers

3.1. Lattices

We start with an algebraic definition of lattices. Let a1, . . . ,ar be a collection
of linearly independent vectors in Rn.

Definition 3.1.1. A lattice Λ of rank r, 1 ≤ r ≤ n, spanned by a1, . . . ,ar in Rn
is the set of all possible linear combinations of the vectors a1, . . . ,ar with integer
coefficients. In other words,

Λ = spanZ {a1, . . . ,ar} :=

{
r∑
i=1

niai : ni ∈ Z for all 1 ≤ i ≤ r

}
.

The set a1, . . . ,ar is called a basis for Λ. There are usually infinitely many different
bases for a given lattice.

Notice that in general a lattice in Rn can have any rank 1 ≤ r ≤ n. We will often
however talk specifically about lattices of rank n, that is of full rank. The most
obvious example of a lattice is the set of all points with integer coordinates in Rn:

Zn = {x = (x1, . . . , xn) : xi ∈ Z for all 1 ≤ i ≤ n}.

Notice that the set of standard basis vectors e1, . . . , en, where

ei = (0, . . . , 0, 1, 0, . . . , 0),

with 1 in i-th position is a basis for Zn. Another basis is the set of all vectors

ei + ei+1, 1 ≤ i ≤ n− 1.

If Λ is a lattice of rank r in Rn with a basis a1, . . . ,ar and y ∈ Λ, then there
exist m1, . . . ,mr ∈ Z such that

y =

r∑
i=1

miai = Am,

where

m =

m1

...
mr

 ∈ Zr,

and A is an n× r basis matrix for Λ of the form A = (a1 . . . ar), which has rank r.
In other words, a lattice Λ of rank r in Rn can always be described as Λ = AZr,
where A is its m×r basis matrix with real entries of rank r. As we remarked above,
bases are not unique; as we will see later, each lattice has bases with particularly
nice properties.

27
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An important property of lattices is discreteness. To explain what we mean
more notation is needed. First notice that Euclidean space Rn is clearly not com-
pact, since it is not bounded. It is however locally compact: this means that for
every point x ∈ Rn there exists an open set containing x whose closure is compact,
for instance take an open unit ball centered at x. More generally, every subspace
V of Rn is also locally compact. A subset Γ of V is called discrete if for each
x ∈ Γ there exists an open set S ⊆ V such that S ∩ Γ = {x}. For instance Zn is a
discrete subset of Rn: for each point x ∈ Zn the open ball of radius 1/2 centered
at x contains no other points of Zn. We say that a discrete subset Γ is co-compact
in V if there exists a compact 0-symmetric subset U of V such that the union of
translations of U by the points of Γ covers the entire space V , i.e. if

V =
⋃
{U + x : x ∈ Γ}.

Here U + x = {u + x : u ∈ U}.
Recall that a subset G is a subgroup of the additive abelian group Rn if it

satisfies the following conditions:

(1) Identity: 0 ∈ G,
(2) Closure: For every x,y ∈ G, x + y ∈ G,
(3) Inverses: For every x ∈ G, −x ∈ G.

By Problems 3.3 and 3.4 a lattice Λ of rank r in Rn is a discrete co-compact
subgroup of V = spanR Λ. In fact, the converse is also true.

Theorem 3.1.1. Let V be an r-dimensional subspace of Rn, and let Γ be a discrete
co-compact subgroup of V . Then Γ is a lattice of rank r in Rn.

Proof. In other words, we want to prove that Γ has a basis, i.e. that there
exists a collection of linearly independent vectors a1, . . . ,ar in Γ such that Γ =
spanZ{a1, . . . ,ar}. We start by inductively constructing a collection of vectors
a1, . . . ,ar, and then show that it has the required properties.

Let a1 6= 0 be a point in Γ such that the line segment connecting 0 and a1

contains no other points of Γ. Now assume a1, . . . ,ai−1, 2 ≤ i ≤ r, have been
selected; we want to select ai. Let

Hi−1 = spanR{a1, . . . ,ai−1},
and pick any c ∈ Γ \Hi−1: such c exists, since Γ 6⊆ Hi−1 (otherwise Γ would not
be co-compact in V ). Let Pi be the closed parallelotope spanned by the vectors
a1, . . . ,ai−1, c. Notice that since Γ is discrete in V , Γ∩Pi is a finite set. Moreover,
since c ∈ Pi, Γ ∩ Pi 6⊆ Hi−1. Then select ai such that

d(ai, Hi−1) = min
y∈(Pi∩Γ)\Hi−1

{d(y, Hi−1)},

where for any point y ∈ Rn,

d(y, Hi−1) = inf
x∈Hi−1

{d(y,x)}.

Let a1, . . . ,ar be the collection of points chosen in this manner. Then we have

a1 6= 0, ai /∈ spanZ{a1, . . . ,ai−1} ∀ 2 ≤ i ≤ r,
which means that a1, . . . ,ar are linearly independent. Clearly,

spanZ{a1, . . . ,ar} ⊆ Γ.
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We will now show that

Γ ⊆ spanZ{a1, . . . ,ar}.
First of all notice that a1, . . . ,ar is certainly a basis for V , and so if x ∈ Γ ⊆ V ,
then there exist c1, . . . , cr ∈ R such that

x =

r∑
i=1

ciai.

Notice that

x′ =

r∑
i=1

[ci]ai ∈ spanZ{a1, . . . ,ar} ⊆ Γ,

where [ ] stands for the integer part function (i.e. [ci] is the largest integer which is
no larger than ci). Since Γ is a group, we must have

z = x− x′ =

r∑
i=1

(ci − [ci])ai ∈ Γ.

Then notice that

d(z, Hr−1) = (cr − [cr]) d(ar, Hr−1) < d(ar, Hr−1),

but by construction we must have either z ∈ Hr−1, or

d(ar, Hr−1) ≤ d(z, Hr−1),

since z lies in the parallelotope spanned by a1, . . . ,ar, and hence in Pr as in our
construction above. Therefore cr = [cr]. We proceed in the same manner to
conclude that ci = [ci] for each 1 ≤ i ≤ r, and hence x ∈ spanZ{a1, . . . ,ar}. Since
this is true for every x ∈ Γ, we are done. �

From now on, until further notice, our lattices will be of full rank in Rn, that
is of rank n. In other words, a lattice Λ ⊂ Rn will be of the form Λ = AZn, where
A is a non-singular n× n basis matrix for Λ.

Theorem 3.1.2. Let Λ be a lattice of rank n in Rn, and let A be a basis matrix
for Λ. Then B is another basis matrix for Λ if and only if there exists an n × n
integral matrix U with determinant ±1 such that

B = AU.

Proof. First suppose that B is a basis matrix. Notice that, since A is a basis
matrix, for every 1 ≤ i ≤ n the i-th column vector bi of B can be expressed as

bi =

n∑
j=1

uijaj ,

where a1, . . . ,an are column vectors of A, and uij ’s are integers for all 1 ≤ j ≤ n.
This means that B = AU , where U = (uij)1≤i,j≤n is an n× n matrix with integer
entries. On the other hand, since B is also a basis matrix, we also have for every
1 ≤ i ≤ n

ai =

n∑
j=1

wijbj ,
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where wij ’s are also integers for all 1 ≤ j ≤ N . Hence A = BW , where W =
(wij)1≤i,j≤n is also an n× n matrix with integer entries. Then

B = AU = BWU,

which means that WU = In, the n× n identity matrix. Therefore

det(WU) = det(W ) det(U) = det(In) = 1,

but det(U),det(W ) ∈ Z since U and W are integral matrices. This means that

det(U) = det(W ) = ±1.

Next assume that B = UA for some integral n×n matrix U with det(U) = ±1.
This means that det(B) = ±det(A) 6= 0, hence column vectors of B are linearly
independent. Also, U is invertible over Z, meaning that U−1 = (wij)1≤i,j≤n is also
an integral matrix, hence A = U−1B. This means that column vectors of A are in
the span of the column vectors of B, and so

Λ ⊆ spanZ{b1, . . . , bn}.

On the other hand, bi ∈ Λ for each 1 ≤ i ≤ n. Thus B is a basis matrix for Λ. �

Corollary 3.1.3. If A and B are two basis matrices for the same lattice Λ, then

|det(A)| = |det(B)|.

Definition 3.1.2. The common determinant value of Corollary 3.1.3 is called the
determinant of the lattice Λ, and is denoted by det(Λ).

We now talk about sublattices of a lattice. Let us start with a definition.

Definition 3.1.3. If Λ and Ω are both lattices in Rn, and Ω ⊆ Λ, then we say that
Ω is a sublattice of Λ.

There are a few basic properties of sublattices of a lattice which we outline here –
their proofs are left to exercises.

(1) A subset Ω of the lattice Λ is a sublattice if and only if it is a subgroup
of the abelian group Λ.

(2) For a sublattice Ω of Λ two cosets x + Ω and y + Ω are equal if and only
if x− y ∈ Ω. In particular, x + Ω = Ω if and only if x ∈ Ω.

(3) If Λ is a lattice and µ a real number, then the set

µΛ := {µx : x ∈ Λ}

is also a lattice. Further, if µ is an integer then µΛ is a sublattice of Λ.

From here on, unless stated otherwise, when we say Ω ⊆ Λ is a sublattice, we always
assume that it has the same full rank in Rn as Λ.

Lemma 3.1.4. Let Ω be a subattice of Λ. There exists a positive integer D such that
DΛ ⊆ Ω.

Proof. Recall that Λ and Ω are both lattices of rank n in Rn. Let a1, . . . ,an
be a basis for Ω and b1, . . . , bn be a basis for Λ. Then

spanR{a1, . . . ,an} = spanR{b1, . . . , bn} = Rn.
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Since Ω ⊆ Λ, there exist integers u11, . . . , unn such that
a1 = u11b1 + · · ·+ u1nbn
...

...
...

an = un1b1 + · · ·+ unnbn.

Solving this linear system for b1, . . . , bn in terms of a1, . . . ,an, we easily see that
there must exist rational numbers p11

q11
, . . . , pnn

qnn
such that

b1 = p11
q11

a1 + · · ·+ p1n
q1n

an
...

...
...

bn = pn1

qn1
a1 + · · ·+ pnn

qnn
an.

Let D = q11×· · ·×qnn, then D/qij ∈ Z for each 1 ≤ i, j,≤ n, and so all the vectors
Db1 = Dp11

q11
a1 + · · ·+ Dp1n

q1n
an

...
...

...

Dbn = Dpn1

qn1
a1 + · · ·+ Dpnn

qnn
an

are in Ω. Therefore spanZ{Db1, . . . , Dbn} ⊆ Ω. On the other hand,

spanZ{Db1, . . . , Dbn} = D spanZ{b1, . . . , bn} = DΛ,

which completes the proof. �

We can now prove that a lattice always has a basis with “nice” properties with
respect to any given basis of a given sublattice, and vice versa.

Theorem 3.1.5. Let Λ be a lattice, and Ω a sublattice of Λ. For each basis
b1, . . . , bn of Λ, there exists a basis a1, . . . ,an of Ω of the form

a1 = v11b1

a2 = v21b1 + v22b2

. . . . . . . . . . . . . . . . . . . . . . . .
an = vn1b1 + · · ·+ vnnbn,

where all vij ∈ Z and vii 6= 0 for all 1 ≤ i ≤ n. Conversely, for every basis
a1, . . . ,an of Ω there exists a basis b1, . . . , bn of Λ such that the relations as above
hold.

Proof. Let b1, . . . , bn be a basis for Λ. We will first prove the existence of
a basis a1, . . . ,an for Ω as claimed by the theorem. By Lemma 3.1.4, there exist
integer multiples of b1, . . . , bn in Ω, hence it is possible to choose a collection of
vectors a1, . . . ,an ∈ Ω of the form

ai =

i∑
j=1

vijbj ,

for each 1 ≤ i ≤ n with vii 6= 0. Clearly, by construction, such a collection of
vectors will be linearly independent. In fact, let us pick each ai so that |vii| is as
small as possible, but not 0. We will now show that a1, . . . ,an is a basis for Ω.
Clearly,

spanZ{a1, . . . ,an} ⊆ Ω.
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We want to prove the inclusion in the other direction, i.e. that

(3.1) Ω ⊆ spanZ{a1, . . . ,an}.

Suppose (3.1) is not true, then there exists c ∈ Ω which is not in spanZ{a1, . . . ,an}.
Since c ∈ Λ, we can write

c =

k∑
j=1

tjbj ,

for some integers 1 ≤ k ≤ n and t1, . . . , tk. In fact, let us select a c like this with
minimal possible k. Since vkk 6= 0, we can choose an integer s such that

(3.2) |tk − svkk| < |vkk|.

Then we clearly have

c− sak ∈ Ω \ spanZ{a1, . . . ,an}.

Therefore we must have tk−svkk 6= 0 by minimality of k. But then (3.2) contradicts
the minimality of |vkk|: we could take c−sak instead of ak, since it satisfies all the
conditions that ak was chosen to satisfy, and then |vkk| is replaced by the smaller
nonzero number |tk − svkk|. This proves that c like this cannot exist, and so (3.1)
is true, hence finishing one direction of the theorem.

Now suppose that we are given a basis a1, . . . ,an for Ω. We want to prove
that there exists a basis b1, . . . , bn for Λ such that relations in the statement of the
theorem hold. This is a direct consequence of the argument in the proof of Theorem
3.1.1. Indeed, at i-th step of the basis construction in the proof of Theorem 3.1.1,
we can choose i-th vector, call it bi, so that it lies in the span of the previous
i − 1 vectors and the vector ai. Since b1, . . . , bn constructed this way are linearly
independent (in fact, they form a basis for Λ by the construction), we obtain that

ai ∈ spanZ{b1, . . . , bi} \ spanZ{b1, . . . , bi−1},

for each 1 ≤ i ≤ n. This proves the second half of our theorem. �

In fact, it is possible to select the coefficients vij in Theorem 3.1.5 so that the
matrix (vij)1≤i,j≤n is upper (or lower) triangular with non-negative entries, and
the largest entry of each row (or column) is on the diagonal: we leave the proof of
this to Problem 3.9.

Remark 3.1.1. Let the notation be as in Theorem 3.1.5. Notice that if A is any
basis matrix for Ω and B is any basis for Λ, then there exists an integral matrix V
such that A = BV . Then Theorem 3.1.5 implies that for a given B there exists an A
such that V is lower triangular, and for for a given A exists a B such that V is lower
triangular. Since two different basis matrices of the same lattice are always related
by multiplication by an integral matrix with determinant equal to ±1, Theorem
3.1.5 can be thought of as the construction of Hermite normal form for an integral
matrix. Problem 3.9 places additional restrictions that make Hermite normal form
unique.

Here is an important implication of Theorem 3.1.5.
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Theorem 3.1.6. Let Ω ⊆ Λ be a sublattice. Then det(Ω)
det(Λ) is an integer; moreover,

the number of cosets of Ω in Λ, i.e. the index of Ω as a subgroup of Λ is

[Λ : Ω] =
det(Ω)

det(Λ)
.

Proof. Let b1, . . . , bn be a basis for Λ, and a1, . . . ,an be a basis for Ω, so
that these two bases satisfy the conditions of Theorem 3.1.5, and write A and B
for the corresponding basis matrices. Then notice that

B = AV,

where V = (vij)1≤i,j≤n is an n × n triangular matix with entries as described in
Theorem 3.1.5; in particular det(V ) =

∏n
i=1 |vii|. Hence

det(Ω) = |det(A)| = |det(B)||det(V )| = det(Λ)

n∏
i=1

|vii|,

which proves the first part of the theorem.
Moreover, notice that each vector c ∈ Λ is contained in the same coset of Ω in

Λ as precisely one of the vectors

q1b1 + · · ·+ qnbn, 0 ≤ qi < vii ∀ 1 ≤ i ≤ n,
in other words there are precisely

∏n
i=1 |vii| cosets of Ω in Λ. This completes the

proof. �

There is yet another, more analytic interpretation of the determinant of a
lattice.

Definition 3.1.4. A fundamental domain of a lattice Λ of full rank in Rn is a
convex set F ⊆ Rn containing 0, so that

Rn =
⋃
x∈Λ

(F + x),

and for every x 6= y ∈ Λ, (F + x) ∩ (F + y) = ∅.

In other words, a fundamental domain of a lattice Λ ⊂ Rn is a full set of coset
representatives of Λ in Rn (see Problem 3.10). Although each lattice has infinitely
many different fundamental domains, they all have the same volume, which is equal
to the determinant of the lattice. This fact can be easily proved for a special class
of fundamental domains (see Problem 3.11).

Definition 3.1.5. Let Λ be a lattice, and a1, . . . ,an be a basis for Λ. Then the
set

F =

{
n∑
i=1

tiai : 0 ≤ ti < 1, ∀ 1 ≤ i ≤ n

}
,

is called a fundamental parallelotope of Λ with respect to the basis a1, . . . ,an. It is
easy to see that this is an example of a fundamental domain for a lattice.

Fundamental parallelotopes form the most important class of fundamental domains,
which we will work with most often. Notice that they are not closed sets; we will
often write F for the closure of a fundamental parallelotope, and call them closed
fundamental domains. Another important convex set associated to a lattice is its
Voronoi cell, which is the closure of a fundamental domain; by a certain abuse of
notation we will often refer to it also as a fundamental domain.



34 3. GEOMETRY OF NUMBERS

Definition 3.1.6. The Voronoi cell of a lattice Λ is the set

V(Λ) = {x ∈ Rn : ‖x‖ ≤ ‖x− y‖ ∀ y ∈ Λ}.

It is easy to see that V(Λ) is (the closure of) a fundamental domain for Λ: two
translates of a Voronoi cell by points of the lattice intersect only in the boundary.
The advantage of the Voronoi cell is that it is the most “round” fundamental domain
for a lattice; we will see that it comes up very naturally in the context of sphere
packing and covering problems.

Notice that everything we discussed so far also has analogues for lattices of not
necessarily full rank. We mention this here briefly without proofs. Let Λ be a lattice
in Rn of rank 1 ≤ r ≤ n, and let a1, . . . ,ar be a basis for it. Write A = (a1 . . . ar)
for the corresponding n× r basis matrix of Λ, then A has rank r since its column
vectors are linearly independent. For any r× r integral matrix U with determinant
±1, AU is another basis matrix for Λ; moreover, if B is any other basis matrix for
Λ, there exists such a U so that B = AU . For each basis matrix A of Λ, we define
the corresponding Gram matrix to be M = A>A, so it is a square r×r nonsingular
matrix. Notice that if A and B are two basis matrices so that B = UA for some U
as above, then

det(B>B) = det((AU)>(AU)) = det(U>(A>A)U)

= det(U)2 det(A>A) = det(A>A).

This observation calls for the following general definition of the determinant of a
lattice. Notice that this definition coincides with the previously given one in case
r = n.

Definition 3.1.7. Let Λ be a lattice of rank 1 ≤ r ≤ n in Rn, and let A be an
n× r basis matrix for Λ. The determinant of Λ is defined to be

det(Λ) =
√

det(A>A),

that is the determinant of the corresponding Gram matrix. By the discussion above,
this is well defined, i.e. does not depend on the choice of the basis.

With this notation, all results and definitions of this section can be restated for
a lattice Λ of not necessarily full rank. For instance, in order to define fundamental
domains we can view Λ as a lattice inside of the vector space spanR(Λ). The rest
works essentially verbatim, keeping in mind that if Ω ⊆ Λ is a sublattice, then
index [Λ : Ω] is only defined if rk(Ω) = rk(Λ).
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3.2. Theorems of Blichfeldt and Minkowski

In this section we will discuss some of the famous theorems related to the
following very classical problem in the geometry of numbers: given a set M and a
lattice Λ in Rn, how can we tell if M contains any points of Λ?

Theorem 3.2.1 (Blichfeldt, 1914). Let M be a compact convex set in Rn. Suppose
that Vol(M) ≥ 1. Then there exist x,y ∈M such that 0 6= x− y ∈ Zn.

Proof. First suppose that Vol(M) > 1. Let

P = {x ∈ Rn : 0 ≤ xi < 1 ∀ 1 ≤ i ≤ n},
and let

S = {u ∈ Zn : M ∩ (P + u) 6= ∅}.
Since M is bounded, S is a finite set, say S = {u1, . . . ,ur0}. Write Mr = M ∩ (P +
ur) for each 1 ≤ r ≤ r0. Also, for each 1 ≤ r ≤ r0, define

M ′r = Mr − ur,

so that M ′1, . . . ,M
′
r0 ⊆ P . On the other hand,

⋃r0
r=1Mr = M , and Mr ∩Ms = ∅ for

all 1 ≤ r 6= s ≤ r0, since Mr ⊆ P +ur, Ms ⊆ P +us, and (P +ur)∩ (P +us) = ∅.
This means that

1 < Vol(M) =

r0∑
r=1

Vol(Mr).

However, Vol(M ′r) = Vol(Mr) for each 1 ≤ r ≤ r0,
r0∑
r=1

Vol(M ′r) > 1,

but
⋃r0
r=1M

′
r ⊆ P , and so

Vol

(
r0⋃
r=1

M ′r

)
≤ Vol(P ) = 1.

Hence the sets M ′1, . . . ,M
′
r0 are not mutually disjoined, meaning that there exist

indices 1 ≤ r 6= s ≤ r0 such that there exists x ∈ M ′r ∩ M ′s. Then we have
x + ur,x + us ∈M , and

(x + ur)− (x + us) = ur − us ∈ Zn.

Now supposeM is closed, bounded, and Vol(M) = 1. Let {sr}∞r=1 be a sequence
of numbers all greater than 1, such that

lim
r→∞

sr = 1.

By the argument above we know that for each r there exist

xr 6= yr ∈ srM
such that xr − yr ∈ Zn. Then there are subsequences {xrk} and {yrk} converging
to points x,y ∈ M , respectively. Since for each rk, xrk − yrk is a nonzero lattice
point, it must be true that x 6= y, and x− y ∈ Zn. This completes the proof. �

As a corollary of Theorem 3.2.1 we can prove the following version of Minkowski
Convex Body Theorem.
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Theorem 3.2.2 (Minkowski). Let M ⊂ Rn be a compact convex 0-symmetric set
with Vol(M) ≥ 2n. Then there exists 0 6= x ∈M ∩ Zn.

Proof. Notice that the set

1

2
M =

{
1

2
x : x ∈M

}
=


1/2 0 . . . 0
0 1/2 . . . 0
...

...
. . .

...
0 0 . . . 1/2

M

is also convex, 0-symmetric, and by Problem 3.12 its volume is

det


1/2 0 . . . 0
0 1/2 . . . 0
...

...
. . .

...
0 0 . . . 1/2

Vol(M) = 2−n Vol(M) ≥ 1.

Thererfore, by Theorem 3.2.1, there exist 1
2x 6=

1
2y ∈

1
2M such that

1

2
x− 1

2
y ∈ Zn.

But, by symmetry, since y ∈M , −y ∈M , and by convexity, since x,−y ∈M ,

1

2
x− 1

2
y =

1

2
x +

1

2
(−y) ∈M.

This completes the proof. �

Remark 3.2.1. This result is sharp: for any ε > 0, the cube

C =

{
x ∈ Rn : max

1≤i≤n
|xi| ≤ 1− ε

2

}
is a convex 0-symmetric set of volume (2− ε)n, which contains no nonzero integer
lattice points.

Problem 3.13 extends Blichfeldt and Minkowski theorems to arbitrary lattices as
follows:

• If Λ ⊂ Rn is a lattice of full rank and M ⊂ Rn is a compact convex set
with Vol(M) ≥ det Λ, then there exist x,y ∈M such that 0 6= x−y ∈ Λ.

• If Λ ⊂ Rn is a lattice of full rank and M ⊂ Rn is a compact convex 0-
symmetric set with Vol(M) ≥ 2n det Λ, then there exists 0 6= x ∈M ∩ Λ.

As a first application of these results, we now prove Minkowski’s Linear Forms
Theorem.

Theorem 3.2.3. Let B = (bij)1≤i,j≤n ∈ GLn(R), and for each 1 ≤ i ≤ n define a
linear form with coefficients bi1, . . . , bin by

Li(X) =

n∑
j=1

bijXj .

Let c1, . . . , cn ∈ R>0 be such that

c1 . . . cn = |det(B)|.
Then there exists 0 6= x ∈ Zn such that

|Li(x)| ≤ ci,
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for each 1 ≤ i ≤ n.

Proof. Let us write b1, . . . , bn for the row vectors of B, then

Li(x) = bix,

for each x ∈ Rn. Consider parallelepiped

P = {x ∈ Rn : |Li(x)| ≤ ci ∀ 1 ≤ i ≤ n} = B−1R,

where R = {x ∈ Rn : |xi| ≤ ci ∀ 1 ≤ i ≤ n} is the rectangular box with sides of
length 2c1, . . . , 2cn centered at the origin in Rn. Then by Problem 3.12,

Vol(P ) = |det(B)|−1 Vol(R) = |det(B)|−12nc1 . . . cn = 2n,

and so by Theorem 3.2.2 there exists 0 6= x ∈ P ∩ Zn. �
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3.3. Successive minima

Let us start with a certain restatement of Minkowski’s Convex Body theorem.

Corollary 3.3.1. Let M ⊂ Rn be a compact convex 0-symmetric and Λ ⊂ Rn a
lattice of full rank. Define the first successive minimum of M with respect to Λ to
be

λ1 = inf {λ ∈ R>0 : λM ∩ Λ contains a nonzero point } .
Then

0 < λ1 ≤ 2

(
det Λ

Vol(M)

)1/n

.

Proof. The fact that λ1 has to be positive readily follows from Λ being a
discrete set. Hence we only have to prove the upper bound. By Theorem 3.2.2 for
a general lattice Λ (Problem 3.13), if

Vol(λM) ≥ 2n det(Λ),

then λM contains a nonzero point of Λ. On the other hand, by Problem 3.12,

Vol(λM) = λn Vol(M).

Hence as long as

λn Vol(M) ≥ 2n det(Λ),

the expanded set λM is guaranteed to contain a nonzero point of Λ. The conclusion
of the corollary follows. �

The above corollary thus provides an estimate as to how much should the set
M be expanded to contain a nonzero point of the lattice Λ: this is the meaning
of λ1, it is precisely this expansion factor. A natural next question to ask is how
much should we expand M to contain 2 linearly independent points of Λ, 3 linearly
independent points of Λ, etc. To answer this question is the main objective of this
section. We start with a definition.

Definition 3.3.1. Let M be a convex, 0-symmetric set M ⊂ Rn of non-zero volume
and Λ ⊆ Rn a lattice of full rank. For each 1 ≤ i ≤ n define the i-th succesive
minimum of M with respect to Λ, λi, to be the infimum of all positive real numbers
λ such that the set λM contains at least i linearly independent points of Λ. In other
words,

λi = inf {λ ∈ R>0 : dim (spanR{λM ∩ Λ})} ≥ i.
Since Λ is discrete in Rn, the infimum in this definition is always achieved, i.e. it
is actually a minimum.

Remark 3.3.1. Notice that the n linearly independent vectors u1, . . . ,un corre-
sponding to successive minima λ1, . . . , λn, respectively, do not necessarily form a
basis. It was already known to Minkowski that they do in dimensions n = 1, . . . , 4,
but when n = 5 there is a well known counterexample. Let

Λ =


1 0 0 0 1

2
0 1 0 0 1

2
0 0 1 0 1

2
0 0 0 1 1

2
0 0 0 0 1

2

Z5,
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and let M = B5, the closed unit ball centered at 0 in Rn. Then the successive
minima of B5 with respect to Λ is

λ1 = · · · = λ5 = 1,

since e1, . . . , e5 ∈ B5 ∩ Λ, and

x =

(
1

2
,

1

2
,

1

2
,

1

2
,

1

2

)>
/∈ B5.

On the other hand, x cannot be expressed as a linear combination of e1, . . . , e5

with integer coefficients, hence

spanZ{e1, . . . , e5} ⊂ Λ.

An immediate observation is that

0 < λ1 ≤ λ2 ≤ · · · ≤ λn
and Corollary 3.3.1 gives an upper bound on λ1. Can we produce bounds on all
the successive minima in terms of Vol(M) and det(Λ)? This question is answered
by Minkowski’s Successive Minima Theorem.

Theorem 3.3.2. With notation as above,

2n det(Λ)

n! Vol(M)
≤ λ1 . . . λn ≤

2n det(Λ)

Vol(M)
.

Proof. We present the proof in case Λ = Zn, leaving generalization of the
given argument to arbitrary lattices as an excercise. We start with a proof of the
lower bound following [GL87], which is considerably easier than the upper bound.
Let u1, . . . ,un be the n linearly independent vectors corresponding to the respective
successive minima λ1, . . . , λn, and let

U = (u1 . . .un) =

u11 . . . un1

...
. . .

...
u1n . . . unn

 .

Then U = UZn is a full rank sublattice of Zn with index |det(U)|. Notice that the
2n points

±u1

λ1
, . . . ,±un

λn
lie in M , hence M contains the convex hull P of these points, which is a generalized
octahedron. Any polyhedron in Rn can be decomposed as a union of simplices that
pairwise intersect only in the boundary. A standard simplex in Rn is the convex
hull of n points, so that no 3 of them are co-linear, no 4 of them are co-planar,
etc., no k of them lie in a (k − 1)-dimensional subspace of Rn, and so that their
convex hull does not contain any integer lattice points in its interior. The volume
of a standard simplex in Rn is 1/n! (Problem 3.14).

Our generalized octahedron P can be decomposed into 2n simplices, which are
obtained from the standard simplex by multiplication by the matrix

u11

λ1
. . . un1

λn

...
. . .

...
u1n

λ1
. . . unn

λn

 ,
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therefore its volume is

(3.3) Vol(P ) =
2n

n!

∣∣∣∣∣∣∣det


u11

λ1
. . . un1

λn

...
. . .

...
u1n

λ1
. . . unn

λn


∣∣∣∣∣∣∣ =

2n|det(U)|
n! λ1 . . . λN

≥ 2n

n! λ1 . . . λn
,

since det(U) is an integer. Since P ⊆ M , Vol(M) ≥ Vol(P ). Combining this last
observation with (3.3) yields the lower bound of the theorem.

Next we prove the upper bound. The argument we present is due to M. Henk
[Hen02], and is at least partially based on Minkowski’s original geometric ideas.
For each 1 ≤ i ≤ n, let

Ei = spanR{e1, . . . , ei},
the i-th coordinate subspace of Rn, and define

Mi =
λi
2
M.

As in the proof of the lower bound, we take u1, . . . ,un to be the n linearly inde-
pendent vectors corresponding to the respective successive minima λ1, . . . , λn. In
fact, notice that there exists a matrix A ∈ GLn(Z) such that

A spanR{u1, . . . ,ui} ⊆ Ei,

for each 1 ≤ i ≤ n, i.e. we can rotate each spanR{u1, . . . ,ui} so that it is contained
in Ei. Moreover, volume of AM is the same as volume of M , since det(A) = 1 (i.e.
rotation does not change volumes), and

Aui ∈ λ′iAM ∩ Ei, ∀ 1 ≤ i ≤ n,

where λ′1, . . . λ
′
n is the successive minima of AM with respect to Zn. Hence we can

assume without loss of generality that

spanR{u1, . . . ,ui} ⊆ Ei,

for each 1 ≤ i ≤ n.

For an integer q ∈ Z>0, define the integral cube of sidelength 2q centered at 0
in Rn

Cnq = {z ∈ Zn : |z| ≤ q},
and for each 1 ≤ i ≤ n define the section of Cnq by Ei

Ciq = Cnq ∩ Ei.

Notice that Cnq is contained in real cube of volume (2q)n, and so the volume of all
translates of M by the points of Cnq can be bounded

(3.4) Vol(Cnq +Mn) ≤ (2q + γ)n,

where γ is a constant that depends on M only. Also notice that if x 6= y ∈ Zn,
then

int(x +M1) ∩ int(y +M1) = ∅,
where int stands for interior of a set: suppose not, then there exists

z ∈ int(x +M1) ∩ int(y +M1),
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and so

(z − x)− (z − y) = y − x ∈ int(M1)− int(M1)

= {z1 − z2 : z1, z2 ∈M1} = int(λ1M),(3.5)

which would contradict minimality of λ1. Therefore

(3.6) Vol(Cnq +M1) = (2q + 1)n Vol(M1) = (2q + 1)n
(
λ1

2

)n
Vol(M).

To finish the proof, we need the following lemma.

Lemma 3.3.3. For each 1 ≤ i ≤ n− 1,

(3.7) Vol(Cnq +Mi+1) ≥
(
λi+1

λi

)n−i
Vol(Cnq +Mi).

Proof. If λi+1 = λi the statement is obvious, so assume λi+1 > λi. Let
x,y ∈ Zn be such that

(xi+1, . . . , xn) 6= (yi+1, . . . , yn).

Then

(3.8) (x + int(Mi+1)) ∩ (y + int(Mi+1)) = ∅.
Indeed, suppose (3.8) is not true, i.e. there exists z ∈ (x + int(Mi+1)) ∩ (y +
int(Mi+1)). Then, as in (3.5) above, x− y ∈ int(λi+1M). But we also have

u1, . . . ,ui ∈ int(λi+1M),

since λi+1 > λi, and so λiM ⊆ int(λi+1M). Moreover, u1, . . . ,ui ∈ Ei, meaning
that

ujk = 0 ∀ 1 ≤ j ≤ i, i+ 1 ≤ k ≤ n.
On the other hand, at least one of

xk − yk, i+ 1 ≤ k ≤ n,
is not equal to 0. Hence x− y,u1, . . . ,ui are linearly independent, but this means
that int(λi+1M) contains i+1 linearly independent points, contradicting minimality
of λi+1. This proves (3.8). Notice that (3.8) implies

Vol(Cnq +Mi+1) = (2q + 1)n−i Vol(Ciq +Mi+1),

and
Vol(Cnq +Mi) = (2q + 1)n−i Vol(Ciq +Mi),

since Mi ⊆Mi+1. Hence, in order to prove the lemma it is sufficient to prove that

(3.9) Vol(Ciq +Mi+1) ≥
(
λi+1

λi

)n−i
Vol(Ciq +Mi).

Define two linear maps f1, f2 : Rn → Rn, given by

f1(x) =

(
λi+1

λi
x1, . . . ,

λi+1

λi
xi, xi+1, . . . , xn

)
,

f2(x) =

(
x1, . . . , xi,

λi+1

λi
xi+1, . . . ,

λi+1

λi
xn

)
,

and notice that f2(f1(Mi)) = Mi+1, f2(Ciq) = Ciq. Therefore

f2(Ciq + f1(Mi)) = Ciq +Mi+1.
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This implies that

Vol(Ciq +Mi+1) =

(
λi+1

λi

)n−i
Vol(Ciq + f1(Mi)),

and so to establish (3.9) it is sufficient to show that

(3.10) Vol(Ciq + f1(Mi)) ≥ Vol(Ciq +Mi).

Let
E⊥i = spanR{ei+1, . . . , en},

i.e. E⊥i is the orthogonal complement of Ei, and so has dimension n − i. Notice
that for every x ∈ E⊥i there exists t(x) ∈ Ei such that

Mi ∩ (x + Ei) ⊆ (f1(Mi) ∩ (x + Ei)) + t(x),

in other words, although it is not necessarily true that Mi ⊆ f1(Mi), each section
of Mi by a translate of Ei is contained in a translate of some such section of f1(Mi).
Therefore

(Ciq +Mi) ∩ (x + Ei) ⊆ (Ciq + f1(Mi)) ∩ (x + Ei)) + t(x),

and hence

Vol(Ciq +Mi) =

∫
x∈E⊥i

Voli((C
i
q +Mi) ∩ (x + Ei)) dx

≤
∫
x∈E⊥i

Voli((C
i
q + f1(Mi)) ∩ (x + Ei)) dx

= Vol(Ciq + f1(Mi)),

where Voli stands for the i-dimensional volume. This completes the proof of (3.10),
and hence of the lemma. �

Now, combining (3.4), (3.6), and (3.7), we obtain:

(2q + γ)n ≥ Vol(Cnq +Mn) ≥
(

λn
λn−1

)
Vol(Cnq +Mn−1) ≥ . . .

≥
(

λn
λn−1

)(
λn−1

λn−2

)2

. . .

(
λ2

λ1

)n−1

Vol(Cnq +M1)

= λn . . . λ1
Vol(M)

2n
(2q + 1)n,

hence

λ1 . . . λn ≤
2n

Vol(M)

(
2q + γ

2q + 1

)n
→ 2n

Vol(M)
,

as q →∞, since q ∈ Z>0 is arbitrary. This completes the proof. �

We can talk about successive minima of any convex 0-symmetric set in Rn with
respect to the lattice Λ. Perhaps the most frequently encountered such set is the
closed unit ball Bn in Rn centered at 0. We define the successive minima of Λ to
be the successive minima of Bn with respect to Λ. Notice that successive minima
are invariants of the lattice.
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3.4. Inhomogeneous minimum

Here we exhibit one important application of Minkowski’s successive minima
theorem. As before, let Λ ⊆ Rn be a lattice of full rank, and let M ⊆ Rn be a
convex 0-symmetric set of nonzero volume. Throughout this section, we let

λ1 ≤ · · · ≤ λn
to be the successive minima of M with respect to Λ. We define the inhomogeneous
minimum of M with respect to Λ to be

µ = inf{λ ∈ R>0 : λM + Λ = Rn}.
The main objective of this section is to obtain some basic bounds on µ. We start
with the following result of Jarnik [Jar41].

Lemma 3.4.1.

µ ≤ 1

2

n∑
i=1

λi.

Proof. Let us define a function

F (x) = inf{a ∈ R>0 : x ∈ aM},
for every x ∈ Rn. This function is a norm (Problem 3.15). Then

M = {x ∈ Rn : F (x) ≤ 1}
can be thought of as the unit ball with respect to this norm. We will say that F
is the norm of M . Let z ∈ Rn be an arbitrary point. We want to prove that there
exists a point v ∈ Λ such that

F (z − v) ≤ 1

2

n∑
i=1

λi.

This would imply that z ∈
(

1
2

∑n
i=1 λi

)
M + v, and hence settle the lemma, since

z is arbitrary. Let u1, . . . ,un be the linearly independent vectors corresponding to
successive minima λ1, . . . , λn, respectively. Then

F (ui) = λi, ∀ 1 ≤ i ≤ n.
Since u1, . . . ,un form a basis for Rn, there exist a1, . . . , an ∈ R such that

z =

n∑
i=1

aiui.

We can also choose integer v1, . . . , vn such that

|ai − vi| ≤
1

2
, ∀ 1 ≤ i ≤ n,

and define v =
∑n
i=1 viui, hence v ∈ Λ. Now notice that

F (z − v) = F

(
n∑
i=1

(ai − vi)ui

)

≤
n∑
i=1

|ai − vi|F (ui) ≤
1

2

n∑
i=1

λi,

since F is a norm. This completes the proof. �
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Using Lemma 3.4.1 along with Minkowski’s successive minima theorem, we can
obtain some bounds on µ in terms of the determinant of Λ and volume of M . A
nice bound can be easily obtained in an important special case.

Corollary 3.4.2. If λ1 ≥ 1, then

µ ≤ 2n−1n det(Λ)

Vol(M)
.

Proof. Since

1 ≤ λ1 ≤ · · · ≤ λn,
Theorem 3.3.2 implies

λn ≤ λ1 . . . λn ≤
2n det(Λ)

Vol(M)
,

and by Lemma 3.4.1,

µ ≤ 1

2

n∑
i=1

λi ≤
n

2
λn.

The result follows by combining these two inequalities. �

A general bound depending also on λ1 was obtained by Scherk [Sch50], once
again using Minkowski’s successive minima theorem (Theorem 3.3.2) and Jarnik’s
inequality (Lemma 3.4.1) He observed that if λ1 is fixed and λ2, . . . , λn are subject
to the conditions

λ1 ≤ · · · ≤ λn, λ1 . . . λn ≤
2n det(Λ)

Vol(M)
,

then the maximum of the sum

λ1 + · · ·+ λn

is attained when

λ1 = λ2 = · · · = λn−1, λn =
2n det(Λ)

λn−1
1 Vol(M)

.

Hence we obtain Scherk’s inequality for µ.

Corollary 3.4.3.

µ ≤ n− 1

2
λ1 +

2n−1 det(Λ)

λn−1
1 Vol(M)

.

One can also obtain lower bounds for µ. First notice that for every σ > µ, then
the bodies σM + x cover Rn as x ranges through Λ. This means that µM must
contain a fundamental domain F of Λ, and so

Vol(µM) = µn Vol(M) ≥ Vol(F) = det(Λ),

hence

(3.11) µ ≥
(

det(Λ)

Vol(M)

)1/n

.

In fact, by Theorem 3.3.2,(
det(Λ)

Vol(M)

)1/n

≥ (λ1 . . . λn)1/n

2
≥ λ1

2
,
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and combining this with (3.11), we obtain

(3.12) µ ≥ λ1

2
.

Jarnik obtained a considerably better lower bound for µ in [Jar41].

Lemma 3.4.4.

µ ≥ λn
2
.

Proof. Let u1, . . . ,un be the linearly independent points of Λ corresponding
to the successive minima λ1, . . . , λn of M with respect to Λ. Let F be the norm of
M , then

F (ui) = λi, ∀ 1 ≤ i ≤ n.
We will first prove that for every x ∈ Λ,

(3.13) F

(
x− 1

2
un

)
≥ 1

2
λn.

Suppose not, then there exists some x ∈ Λ such that F
(
x− 1

2un
)
< 1

2λn. Since F
is a norm, we have

F (x) ≤ F
(
x− 1

2
un

)
+ F

(
1

2
un

)
<

1

2
λn +

1

2
λn = λn,

and similarly

F (un − x) ≤ F
(

1

2
un − x

)
+ F

(
1

2
un

)
< λn.

Therefore, by definition of λn,

x,un − x ∈ spanR{u1, . . . ,un−1},
and so un = x+ (un−x) ∈ spanR{u1, . . . ,un−1}, which is a contradiction. Hence
we proved (3.13) for all x ∈ Λ. Further, by Problem 3.16,

µ = max
z∈Rn

min
x∈Λ

F (x− z).

Then lemma follows by combining this observation with (3.13). �

We define the inhomogeneous minimum of Λ to be the inhomogeneous minimum
of the closed unit ball Bn with respect to Λ, since it will occur quite often. This is
another invariant of the lattice.
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3.5. Problems

Problem 3.1. Let a1, . . . ,ar ∈ Rn be linearly independent points. Prove that
r ≤ n.

Problem 3.2. Prove that if Λ is a lattice of rank r in Rn, 1 ≤ r ≤ n, then spanR Λ
is a subspace of Rn of dimension r (by spanR Λ we mean the set of all finite real
linear combinations of vectors from Λ).

Problem 3.3. Let Λ be a lattice of rank r in Rn. By Problem 3.2, V = spanR Λ
is an r-dimensional subspace of Rn. Prove that Λ is a discrete co-compact subset
of V .

Problem 3.4. Let Λ be a lattice of rank r in Rn, and let V = spanR Λ be an r-
dimensional subspace of Rn, as in Problem 3.3 above. Prove that Λ and V are both
additive groups, and Λ is a subgroup of V .

Problem 3.5. Let Λ be a lattice and Ω a subset of Λ. Prove that Ω is a sublattice
of Λ if and only if it is a subgroup of the abelian group Λ.

Problem 3.6. Let Λ be a lattice and Ω a sublattice of Λ of the same rank. Prove
that two cosets x + Ω and y + Ω of Ω in Λ are equal if and only if x − y ∈ Ω.
Conclude that a coset x + Ω is equal to Ω if and only if x ∈ Ω.

Problem 3.7. Let Λ be a lattice and Ω ⊆ Λ a sublattice. Suppose that the quotient
group Λ/Ω is finite. Prove that rank of Ω is the same as rank of Λ.

Problem 3.8. Given a lattice Λ and a real number µ, define

µΛ = {µx : x ∈ Λ}.
Prove that µΛ is a lattice. Prove that if µ is an integer, then µΛ is a sublattice
of Λ.

Problem 3.9. Prove that it is possible to select the coefficients vij in Theorem
3.1.5 so that the matrix (vij)1≤i,j≤n is upper (or lower) triangular with non-negative
entries, and the largest entry of each row (or column) is on the diagonal.

Problem 3.10. Prove that for every point x ∈ Rn there exists uniquely a point
y ∈ F such that

x− y ∈ Λ,

i.e. x lies in the coset y + Λ of Λ in Rn. This means that F is a full set of coset
representatives of Λ in Rn.

Problem 3.11. Prove that volume of a fundamental parallelotope is equal to the
determinant of the lattice.
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Problem 3.12. Let S be a compact convex set in Rn, A ∈ GLn(R), and define

T = AS = {Ax : x ∈ S}.
Prove that Vol(T ) = |det(A)|Vol(S).

Hint: If we treat multiplication by A as coordinate transformation, prove that its
Jacobian is equal to det(A). Now use it in the integral for the volume of T to relate
it to the volume of S.

Problem 3.13. Prove versions of Theorems 3.2.1 - 3.2.2 where Zn is replaced by
an arbitrary lattice Λ ⊆ Rn or rank n and the lower bounds on volume of M are
multiplied by det(Λ).

Hint: Let Λ = AZn for some A ∈ GLn(R). Then a point x ∈ A−1M ∩ Zn if and
only if Ax ∈ M ∩ Λ. Now use Problem 3.12 to relate the volume of A−1M to the
volume of M .

Problem 3.14. Prove that a standard simplex in Rn has volume 1/n!.

Problem 3.15. Let M ⊂ Rn be a compact convex 0-symmetric set. Define a
function F : Rn → R, given by

F (x) = inf{a ∈ R>0 : x ∈ aM},
for each x ∈ Rn. Prove that this is a norm, i.e. it satisfies the three conditions:

(1) F (x) = 0 if and only if x = 0,
(2) F (ax) = |a|F (x) for every a ∈ R and x ∈ Rn,
(3) F (x + y) ≤ F (x) + F (y) for all x,y ∈ Rn.

Problem 3.16. Let F be a norm like in Problem 3.15. Prove that the inhomo-
geneous minimum of the corresponding set M with respect to the full-rank lat-
tice Λ ⊂ Rn satisfies

µ = max
z∈Rn

min
x∈Λ

F (x− z).



CHAPTER 4

Lattice Problems, Connections and Applications

4.1. Sphere packing, covering and kissing number problems

Lattices play an important role in discrete optimization from classical problems
to the modern day applications, such as theoretical computer science, digital com-
munications, coding theory and cryptography, to name a few. We start with an
overview of three old and celebrated problems that are closely related to the tech-
niques in the geometry of numbers that we have so far developed, namely sphere
packing, sphere covering and kissing number problems. An excellent comprehen-
sive, although slightly outdated, reference on this subject is the well-known book
by Conway and Sloane [CS99].

Let n ≥ 2. Throughout this section by a sphere in Rn we will always mean a
closed ball whose boundary is this sphere. We will say that a collection of spheres
{Bi} of radius r is packed in Rn if

int(Bi) ∩ int(Bj) = ∅, ∀ i 6= j,

and there exist indices i 6= j such that

int(B′i) ∩ int(B′j) 6= ∅,

whenever B′i and B′j are spheres of radius larger than r such that Bi ⊂ B′i, Bj ⊂ B′j .
The sphere packing problem in dimension n is to find how densely identical spheres
can be packed in Rn. Loosely speaking, the density of a packing is the proportion of
the space occupied by the spheres. It is easy to see that the problem really reduces
to finding the strategy of positioning centers of the spheres in a way that maximizes
density. One possibility is to position sphere centers at the points of some lattice
Λ of full rank in Rn; such packings are called lattice packings. Alhtough clearly
most packings are not lattices, it is not unreasonable to expect that best results
may come from lattice packings; we will mostly be concerned with them.

Definition 4.1.1. Let Λ ⊆ Rn be a lattice of full rank. The density of correspond-
ing sphere packing is defined to be

∆ = ∆(Λ) := proportion of the space occupied by spheres

=
volume of one sphere

volume of a fundamental domain of Λ

=
rnωn

det(Λ)
,

48
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where r is the packing radius, i.e. radius of each sphere in this lattice packing, and
ωn is the volume of a unit ball in Rn, given by

(4.1) ωn =

{
πk

k! if n = 2k for some k ∈ Z
22k+1k!πk

(2k+1)! if n = 2k + 1 for some k ∈ Z.

Hence the volume of a ball of radius r in Rn is ωnr
n. It is easy to see that the

packing radius r is precisely the radius of the largest ball inscribed into the Voronoi
cell V of Λ, i.e. the inradius of V. Clearly ∆ ≤ 1.

The first observation we can make is that the packing radius r must depend on the
lattice. In fact, it is easy to see that r is precisely one half of the length of the
shortest non-zero vector in Λ, in other words r = λ1

2 , where λ1 is the first successive
minimum of Λ. Therefore

∆ =
λn1ωn

2n det(Λ)
.

It is not known whether the packings of largest density in each dimension are
necessarily lattice packings, however we do have the following celebrated result
of Minkowski (1905) generalized by Hlawka in (1944), which is usually known as
Minkowski-Hlawka theorem.

Theorem 4.1.1. In each dimension n there exist lattice packings with density

(4.2) ∆ ≥ ζ(n)

2n−1
,

where ζ(s) =
∑∞
k=1

1
ks is the Riemann zeta-function.

All known proofs of Theorem 4.1.1 are nonconstructive, so it is not generally known
how to construct lattice packings with density as good as (4.2); in particular, in
dimensions above 1000 the lattices whose existence is guaranteed by Theorem 4.1.1
are denser than all the presently known ones. We refer to [GL87] and [Cas59] for
many further details on this famous theorem. Here we present a very brief outline
of its proof, following [Cas53]. The first observation is that this theorem readily
follows from the following result.

Theorem 4.1.2. Let M be a convex bounded 0-symmetric set in Rn with volume
< 2ζ(n). Then there exists a lattice Λ in Rn of determinant 1 such that M contains
no points of Λ except for 0.

Now, to prove Theorem 4.1.2, we can argue as follows. Let χM be the characteristic
function of the set M , i.e.

χM (x) =

{
1 if x ∈M
0 if x 6∈M

for every x ∈ Rn. For parameters T , ξ1, . . . , ξn−1 to be specified, let us define a
lattice Λ = ΛT (ξ1, . . . , xn−1) :={(

T (a1 + ξ1b), . . . , T (an−1 + ξn−1b), T
−(n−1)b

)
: a1, . . . , an−1, b ∈ Z

}
,
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in other words

(4.3) Λ =


T 0 . . . 0 ξ1
0 T . . . 0 ξ2
...

...
. . .

...
...

0 0 . . . T ξn−1

0 0 . . . 0 T−(n−1)

Zn.

Hence determinant of this lattice is 1 independent of the values of the parameters.
Points of Λ with b = 0 are of the form

(Ta1, . . . , Tan−1, 0),

and so taking T to be sufficiently large we can ensure that none of them are in M ,
since M is bounded. Thus assume that T is large enough so that the only points
of Λ in M have b 6= 0. Notice that M contains a nonzero point of Λ if and only if it
contains a primitive point of Λ, where we say that x ∈ Λ is primitive if it is not a
scalar multiple of another point in Λ. The number of symmetric pairs of primitive
points of Λ in M is given by the counting function ηT (ξ1, . . . , ξn−1) =∑

b>0

∑
a1,...,an−1

gcd(a1,...,an−1,b)=1

χM

(
T (a1 + ξ1b), . . . , T (an−1 + ξn−1b), T

−(n−1)b
)
.

The argument of [Cas53] then proceeds to integrate this expression over all 0 ≤
ξi ≤ 1, 1 ≤ i ≤ n− 1, obtaining an expression in terms of the volume of M . Taking
a limit as T → ∞, it is then concluded that since this volume is < 2ζ(n), the
average of the counting function ηT (ξ1, . . . , ξn−1) is less than 1. Hence there must
exist some lattice of the form (4.3) which contains no nonzero points in M .

In general, it is not known whether lattice packings are the best sphere packings
in each dimension. In fact, the only dimensions in which optimal packings are
currently known are n = 2, 3, 8, 24. In case n = 2, Gauss has proved that the best
possible lattice packing is given by the hexagonal lattice

(4.4) Λh :=

(
1 1

2

0
√

3
2

)
Z2,

and in 1940 L. Fejes Tóth proved that this indeed is the optimal packing (a previous

proof by Axel Thue. Its density is π
√

3
6 ≈ 0.9068996821.

In case n = 3, it was conjectured by Kepler that the optimal packing is given
by the face-centered cubic lattice−1 −1 0

1 −1 0
0 1 −1

Z3.

The density of this packing is ≈ 0.74048. Once again, it has been shown by Gauss
in 1831 that this is the densest lattice packing, however until recently it was still
not proved that this is the optimal packing. The famous Kepler’s conjecture has
been settled by Thomas Hales in 1998. Theoretical part of this proof is published
only in 2005 [Hal05], and the lengthy computational part was published in a series
of papers in the journal of Discrete and Computational Geometry (vol. 36, no. 1
(2006)).
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Dimensions n = 8 and n = 24 were settled in 2016, a week apart from
each other. Maryna Viazovska [Via17], building on previous work of Cohn and
Elkies [CE03], discovered a “magic” function that implied optimality of the ex-
ceptional root lattice E8 for packing density in R8. Working jointly with Cohn,
Kumar, Miller and Radchenko [CKM+17], she then immediately extended her
method to dimension 24, where the optimal packing density is given by the famous
Leech lattice. Detailed constructions of these remarkable lattices can be found in
Conway and Sloane’s book [CS99]. This outlines the currently known results for
optimal sphere packing configurations in general. On the other hand, best lattice
packings are known in dimensions n ≤ 8, as well as n = 24. There are dimensions
in which the best known packings are not lattice packings, for instance n = 11.

Next we give a very brief introduction to sphere covering. The problem of
sphere covering is to cover Rn with spheres such that these spheres have the least
possible overlap, i.e. the covering has smallest possible thickness. Once again, we
will be most interested in lattice coverings, that is in coverings for which the centers
of spheres are positioned at the points of some lattice.

Definition 4.1.2. Let Λ ⊆ Rn be a lattice of full rank. The thickness Θ of
corresponding sphere covering is defined to be

Θ(Λ) = average number of spheres containing a point of the space

=
volume of one sphere

volume of a fundamental domain of Λ

=
Rnωn
det(Λ)

,

where ωn is the volume of a unit ball in Rn, given by (4.1), and R is the covering
radius, i.e. radius of each sphere in this lattice covering. It is easy to see that R is
precisely the radius of the smallest ball circumscribed around the Voronoi cell V of
Λ, i.e. the circumradius of V. Clearly Θ ≥ 1.

Notice that the covering radius R is precisely µ, the inhomogeneous minimum of
the lattice Λ. Hence combining Lemmas 3.4.1 and 3.4.4 we obtain the following
bounds on the covering radius in terms of successive minima of Λ:

λn
2
≤ µ = R ≤ 1

2

n∑
i=1

λi ≤
nλn

2
.

The optimal sphere covering is only known in dimension n = 2, in which case it is
given by the same hexagonal lattice (4.4), and is equal to ≈ 1.209199. Best possible
lattice coverings are currently known only in dimensions n ≤ 5, and it is not known
in general whether optimal coverings in each dimension are necessarily given by
lattices. Once again, there are dimensions in which the best known coverings are
not lattice coverings.

In summary, notice that both, packing and covering properties of a lattice Λ are
very much dependent on its Voronoi cell V. Moreover, to simultaneously optimize
packing and covering properties of Λ we want to ensure that the inradius r of V is
largest possible and circumradius R is smallest possible. This means that we want
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to take lattices with the “roundest” possible Voronoi cell. This property can be
expressed in terms of the successive minima of Λ: we want

λ1 = · · · = λn.

Lattices with these property are called well-rounded lattices, abbreviated WR; an-
other term ESM lattices (equal successive minima) is also sometimes used. Notice
that if Λ is WR, then by Lemma 3.4.4 we have

r =
λ1

2
=
λn
2
≤ R,

although it is clearly impossible for equality to hold in this inequality. Sphere
packing and covering results have numerous engineering applications, among which
there are applications to coding theory, telecommunications, and image processing.
WR lattices play an especially important role in these fields of study.

Another closely related classical question is known as the kissing number prob-
lem: given a sphere in Rn how many other non-overlapping spheres of the same
radius can touch it? In other words, if we take the ball centered at the origin in a
sphere packing, how many other balls are adjacent to it? Unlike the packing and
covering problems, the answer here is easy to obtain in dimension 2: it is 6, and
we leave it as an exercise for the reader (Problem 4.2). Although the term “kissing
number” is contemporary (with an allusion to billiards, where the balls are said to
kiss when they bounce), the 3-dimensional version of this problem was the subject
of a famous dispute between Isaac Newton and David Gregory in 1694. It was
known at that time how to place 12 unit balls around a central unit ball, however
the gaps between the neighboring balls in this arrangement were large enough for
Gregory to conjecture that perhaps a 13-th ball can some how be fit in. Newton
thought that it was not possible. The problem was finally solved by Schütte and
van der Waerden in 1953 [SvdW53] (see also [Lee56] by J. Leech, 1956), con-
firming that the kissing number in R3 is equal to 12. The only other dimensions
where the maximal kissing number is known are n = 4, 8, 24. More specifically, if
we write τ(n) for the maximal possible kissing number in dimension n, then it is
known that

τ(2) = 6, τ(3) = 12, τ(4) = 24, τ(8) = 240, τ(24) = 196560.

In many other dimensions there are good upper and lower bounds available, and
the general bounds of the form

20.2075...n(1+o(1)) ≤ τ(n) ≤ 20.401n(1+o(1))

are due to Wyner, Kabatianski and Levenshtein; see [CS99] for detailed references
and many further details.

A more specialized question is concerned with the maximal possible kissing
number of lattices in a given dimension, i.e. we consider just the lattice packings
instead of general sphere packing configurations. Here the optimal results are known
in all dimensions n ≤ 8 and dimension 24: al of the optimal lattices here are also
known to be optimal for lattice packing. Further, in all dimensions where the overall
maximal kissing numbers are known, they are achieved by lattices.

Let Λ ⊂ Rn be a lattice, then its minimal norm |Λ| is simply its first successive
minimum, i.e.

|Λ| = min {‖x‖ : x ∈ Λ \ {0}} .
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The set of minimal vectors of Λ is then defined as

S(Λ) = {x ∈ Λ : ‖x‖ = |Λ|} .
These minimal vectors are the centers of spheres of radius |Λ|/2 in the sphere
packing associated to Λ which touch the ball centered at the origin. Hence the
number of these vectors, |S(Λ)| is precisely the kissing number of Λ. One immediate
observation then is that to maximize the kissing number, same as to maximize the
packing density, we want to focus our attention on WR lattices: they will have at
least 2n minimal vectors.

A matrix U ∈ GLn(R) is called orthogonal if U−1 = U>, and the subset of all
such matrices in GLn(R) is

On(R) = {U ∈ GLn(R) : U−1 = U>}.
This is a subgroup of GLn(R) (Problem 4.5). Discrete optimization problems on
the space of lattices in a given dimension, as those discussed above, are usually
considered up to the equivalence relation of similarity: two lattices L and M of
full rank in Rn are called similar, denoted L ∼ M , if there exists α ∈ R and
an orthogonal matrix U ∈ On(R) such that L = αUM . This is an equivalence
relation on the space of all full-rank lattices in Rn (Problem 4.3), and we refer to
the equivalence classes under this relation as similarity classes. If lattices L and
M are similar, then they have the same packing density, covering thickness, and
kissing number (Problem 4.4). We use the perspective of similarity classes in the
next section when considering lattice packing density in the plane.
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Figure 1. Hexagonal lattice with Voronoi cell translates and as-
sociated circle packing

4.2. Lattice packings in dimension 2

Our goal here is to prove that the best lattice packing in R2 is achieved by the
hexagonal lattice Λh as defined in (4.4) above (see Figure 1). Specifically, we will
prove the following theorem.

Theorem 4.2.1. Let L be a lattice of rank 2 in R2. Then

∆(L) ≤ ∆(Λh) =
π

2
√

3
= 0.906899 . . . ,

and the equality holds if any only if L ∼ Λh.

This result was first obtain by Lagrange in 1773, however we provide a more con-
temporary proof here following [Fuk11]. Our strategy is to show that the problem
of finding the lattice with the highest packing density in the plane can be restricted
to the well-rounded lattices without any loss of generality, where the problem be-
comes very simple. We start by proving that vectors corresponding to successive
minima in a lattice in R2 form a basis.

Lemma 4.2.2. Let Λ be a lattice in R2 with successive minima λ1 ≤ λ2 and let
x1,x2 be the vectors in Λ corresponding to λ1, λ2, respectively. Then x1,x2 form
a basis for Λ.

Proof. Let y1 ∈ Λ be a shortest vector extendable to a basis in Λ, and let
y2 ∈ Λ be a shortest vector such that y1,y2 is a basis of Λ. By picking ±y1,±y2 if
necessary we can ensure that the angle between these vectors is no greater than π/2.
Then

0 < ‖y1‖ ≤ ‖y2‖,
and for any vector z ∈ Λ with ‖z‖ < ‖y2‖ the pair y1, z is not a basis for Λ. Since
x1,x2 ∈ Λ, there must exist integers a1, a2, b1, b2 such that

(4.5) (x1 x2) = (y1 y2)

(
a1 b1
a2 b2

)
.

Let θx be the angle between x1,x2, and θy be the angle between y1,y2, then
π/3 ≤ θx ≤ π/2 by Problem 4.7. Moreover, π/3 ≤ θy ≤ π/2: indeed, suppose
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θy < π/3, then by Problem 4.6,

‖y1 − y2‖ < ‖y2‖,
however y1,y1−y2 is a basis for Λ since y1,y2 is; this contradicts the choice of y2.
Define

D =

∣∣∣∣det

(
a1 b1
a2 b2

)∣∣∣∣ ,
then D is a positive integer, and taking determinants of both sides of (4.5), we
obtain

(4.6) ‖x1‖‖x2‖ sin θx = D‖y1‖‖y2‖ sin θy.

Notice that by definition of successive minima, ‖x1‖‖x2‖ ≤ ‖y1‖‖y2‖, and hence
(4.6) implies that

D =
‖x1‖‖x2‖
‖y1‖‖y2‖

sin θx
sin θy

≤ 2√
3
< 2,

meaning that D = 1. Combining this observation with (4.5), we see that

(x1 x2)

(
a1 b1
a2 b2

)−1

= (y1 y2) ,

where the matrix

(
a1 b1
a2 b2

)−1

has integer entries. Therefore x1,x2 is also a basis

for Λ, completing the proof. �

As we know from Remark 3.3.1 in Section 3.3, the statement of Lemma 4.2.2
does not generally hold for d ≥ 5. We will call a basis for a lattice as in Lemma 4.2.2
a minimal basis. The goal of the next three lemmas is to show that the lattice
packing density function ∆ attains its maximum in R2 on the set of well-rounded
lattices.

Lemma 4.2.3. Let Λ and Ω be lattices of full rank in R2 with successive minima
λ1(Λ), λ2(Λ) and λ1(Ω), λ2(Ω) respectively. Let x1,x2 and y1,y2 be vectors in Λ
and Ω, respectively, corresponding to successive minima. Suppose that x1 = y1,
and angles between the vectors x1,x2 and y1,y2 are equal, call this common value
θ. Suppose also that

λ1(Λ) = λ2(Λ).

Then
∆(Λ) ≥ ∆(Ω).

Proof. By Lemma 4.2.2, x1,x2 and y1,y2 are minimal bases for Λ and Ω,
respectively. Notice that

λ1(Λ) = λ2(Λ) = ‖x1‖ = ‖x2‖
= ‖y1‖ = λ1(Ω) ≤ ‖y2‖ = λ2(Ω).

Then

∆(Λ) =
πλ1(Λ)2

4 det(Λ)
=

λ1(Λ)2π

4‖x1‖‖x2‖ sin θ
=

π

4 sin θ

≥ λ1(Ω)2π

4‖y1‖‖y2‖ sin θ
=
λ1(Ω)2π

4 det(Ω)
= ∆(Ω).(4.7)

�
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The following lemma is a converse to Problem 4.7.

Lemma 4.2.4. Let Λ ⊂ R2 be a lattice of full rank, and let x1,x2 be a basis for Λ
such that

‖x1‖ = ‖x2‖,
and the angle θ between these vectors lies in the interval [π/3, π/2]. Then x1,x2 is
a minimal basis for Λ. In particular, this implies that Λ is WR.

Proof. Let z ∈ Λ, then z = ax1 + bx2 for some a, b ∈ Z. Then

‖z‖2 = a2‖x1‖2 + b2‖x2‖2 + 2abx>1 x2 = (a2 + b2 + 2ab cos θ)‖x1‖2.

If ab ≥ 0, then clearly ‖z‖2 ≥ ‖x1‖2. Now suppose ab < 0, then again

‖z‖2 ≥ (a2 + b2 − |ab|)‖x1‖2 ≥ ‖x1‖2,

since cos θ ≤ 1/2. Therefore x1,x2 are shortest nonzero vectors in Λ, hence they
correspond to successive minima, and so form a minimal basis. Thus Λ is WR, and
this completes the proof. �

Lemma 4.2.5. Let Λ be a lattice in R2 with successive minima λ1, λ2 and corre-
sponding basis vectors x1,x2, respectively. Then the lattice

ΛWR =

(
x1

λ1

λ2
x2

)
Z2

is WR with successive minima equal to λ1.

Proof. By Problem 4.7, the angle θ between x1 and x2 is in the interval
[π/3, π/2], and clearly this is the same as the angle between the vectors x1 and
λ1

λ2
x2. Then by Lemma 4.2.4, ΛWR is WR with successive minima equal to λ1. �

Now combining Lemma 4.2.3 with Lemma 4.2.5 implies that

(4.8) ∆(ΛWR) ≥ ∆(Λ)

for any lattice Λ ⊂ R2, and (4.7) readily implies that the equality in (4.8) occurs
if and only if Λ = ΛWR, which happens if and only if Λ is well-rounded. Therefore
the maximum packing density among lattices in R2 must occur at a WR lattice,
and so for the rest of this section we talk about WR lattices only. Next observation
is that for any WR lattice Λ in R2, (4.7) implies:

sin θ =
π

4∆(Λ)
,

meaning that sin θ is an invariant of Λ, and does not depend on the specific choice
of the minimal basis. Since by our conventional choice of the minimal basis and
Problem 4.7, this angle θ is in the interval [π/3, π/2], it is also an invariant of the
lattice, and we call it the angle of Λ, denoted by θ(Λ).

Lemma 4.2.6. Let Λ be a WR lattice in R2. A lattice Ω ⊂ R2 is similar to Λ if and
only if Ω is also WR and θ(Λ) = θ(Ω).

Proof. First suppose that Λ and Ω are similar. Let x1,x2 be the minimal
basis for Λ. There exist a real constant α and a real orthogonal 2 × 2 matrix U
such that Ω = αUΛ. Let y1,y2 be a basis for Ω such that

(y1 y2) = αU(x1 x2).
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Then ‖y1‖ = ‖y2‖, and the angle between y1 and y2 is θ(Λ) ∈ [π/3, π/2]. By
Lemma 4.2.4 it follows that y1,y2 is a minimal basis for Ω, and so Ω is WR and
θ(Ω) = θ(Λ).

Next assume that Ω is WR and θ(Ω) = θ(Λ). Let λ(Λ) and λ(Ω) be the
respective values of successive minima of Λ and Ω. Let x1,x2 and y1,y2 be the
minimal bases for Λ and Ω, respectively. Define

z1 =
λ(Λ)

λ(Ω)
y1, z2 =

λ(Λ)

λ(Ω)
y2.

Then x1,x2 and z1, z2 are pairs of points on the circle of radius λ(Λ) centered at
the origin in R2 with equal angles between them. Therefore, there exists a 2 × 2
real orthogonal matrix U such that

(y1 y2) =
λ(Λ)

λ(Ω)
(z1 z2) =

λ(Λ)

λ(Ω)
U(x1 x2),

and so Λ and Ω are similar lattices. This completes the proof. �

We are now ready to prove the main result of this section.

Proof of Theorem 4.2.1. The density inequality (4.8) says that the largest
lattice packing density in R2 is achieved by some WR lattice Λ, and (4.7) implies
that

(4.9) ∆(Λ) =
π

4 sin θ(Λ)
,

meaning that a smaller sin θ(Λ) corresponds to a larger ∆(Λ). Problem 4.7 implies

that θ(Λ) ≥ π/3, meaning that sin θ(Λ) ≥
√

3/2. Notice that if Λ is the hexagonal
lattice

Λh =

(
1 1

2

0
√

3
2

)
Z2,

then sin θ(Λ) =
√

3/2, meaning that the angle between the basis vectors (1, 0)

and (1/2,
√

3/2) is θ = π/3, and so by Lemma 4.2.4 this is a minimal basis and
θ(Λ) = π/3. Hence the largest lattice packing density in R2 is achieved by the
hexagonal lattice. This value now follows from (4.9).

Now suppose that for some lattice Λ, ∆(Λ) = ∆(Λh), then by (4.8) and a short
argument after it Λ must be WR, and so

∆(Λ) =
π

4 sin θ(Λ)
= ∆(Λh) =

π

4 sinπ/3
.

Then θ(Λ) = π/3, and so Λ is similar to Λh by Lemma 4.2.6. This completes the
proof. �

While we have only settled the question of best lattice packing in dimension
two, we saw that well-roundedness is an essential property for a lattice to be a
good contender for optimal packing density. There are, however, infinitely many
WR lattices in the plane, even up to similarity, and only one of them worked well.
One can then ask what properties must a lattice have to maximize packing density?
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A full-rank lattice Λ in Rn with minimal vectors x1, . . . ,xm is called eutactic
if there exist positive real numbers c1, . . . , cm such that

(4.10) ‖v‖2 =

m∑
i=1

ci(v
>xi)

2

for every vector v ∈ spanR Λ. If c1 = · · · = cn, Λ is called strongly eutactic. A
lattice is called perfect if the set of symmetric matrices

{xix>i : 1 ≤ i ≤ m}
spans the real vector space of n × n symmetric matrices. These properties are
preserved on similarity classes (Problem 4.8), and up to similarity there are only
finitely many perfect or eutactic lattices in every dimension. For instance, up to
similarity, the hexagonal lattice is the only one in the plane that is both, perfect
and eutactic (Problem 4.9).

Suppose that Λ = AZn is a lattice with basis matrix A, then, as we know,
B is another basis matrix for Λ if and only if B = AU for some U ∈ GLn(Z).
In this way, the space of full-rank lattices in Rn can be identified with the set of
orbits of GLn(R) under the action by GLn(Z) by right multiplication. The packing
density ∆ is a continuous function on this space, and hence we can talk about its
local extremum points. A famous theorem of Georgy Voronoi (1908) states that
a lattice is a local maximum of the packing density function in its dimension if
and only if it is perfect and eutactic. Hence, combining Problem 4.9 with Voronoi’s
theorem gives another proof of unique optimality of the hexagonal lattice for lattice
packing in the plane. Further, Voronoi’s theorem suggests a way of looking for the
maximizer of the lattice packing density in every dimension: identify the finite set of
perfect and eutactic lattices, compute their packing density and choose the largest.
Unfortunately, this approach is not very practical, since already in dimension 9 the
number of perfect lattices is over 9 million.
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4.3. Algorithmic problems on lattices

There is a class of algorithmic problems studied in computational number the-
ory, discrete geometry and theoretical computer science, which are commonly re-
ferred to as the lattice problems. One of their distinguishing features is that they are
provably known to be very hard to solve in the sense of computational complexity
of algorithms involved. As usual, we write Λ ⊂ Rn for a lattice of full rank and

0 < λ1 ≤ · · · ≤ λn
for its successive minima. A lattice can be given in the form its basis matrix, i.e. a
matrix A ∈ GLn(R) such that Λ = AZn. There are several questions that can be
asked about this setup. We formulate them in algorithmic form.

Shortest Vector Problem (SVP).
Input: A matrix A ∈ GLn(R).
Output: A vector x1 ∈ Λ = AZn such that ‖x1‖ = λ1.

Shortest Independent Vector Problem (SIVP).
Input: A matrix A ∈ GLn(R).
Output: Linearly independent vectors x1, . . . ,xn ∈ Λ = AZn such that

‖xi‖ = λ1 ∀ 1 ≤ i ≤ n.

Closest Vector Problem (CVP).
Input: A matrix A ∈ GLn(R) and a vector y ∈ Rn.
Output: A vector x ∈ Λ = AZn such that

‖x− y‖ ≤ ‖z − y‖ ∀ z ∈ Λ.

Shortest Basis Problem (SBP).
Input: A matrix A ∈ GLn(R).
Output: A basis b1, . . . , bn for Λ = Zn such that ‖bi‖ =

min{‖x‖ : x ∈ Λ is such that b1, . . . , bi−1,x is extendable to a basis}

for all 1 ≤ i ≤ n.

Notice that SVP is a special case of CVP where the input vector y is taken to be 0:
indeed, a vector corresponding to the first successive minimum is precisely a vector
that is closer to the origin than any other point of Λ. On the other hand, SIVP
and SBP are different problems: as we know, lattices in dimensions 5 higher may
not have a basis of vectors corresponding to successive minima.

All of these algorithmic problems are all known to be NP-hard. In fact, even
the problem of determining the first successive minimum of the lattice is already
NP-hard. We can also ask for γ-approximate versions of these problems for some
approximation factor γ. In other words, for the same input we want to return an
answer that is bigger than the optimal by a factor of no more than γ. For instance,
the γ-SVP would ask for a vector x ∈ Λ such that

‖x‖ ≤ γλ1.

It is an open problem to decide whether the γ-approximate versions of these prob-
lems are in the P class for any values of γ polynomial in the dimension n.
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On the other hand, γ-approximate versions of these problems for γ exponential
in n are known to be polynomial. The most famous such approximation algo-
rithm is LLL, which was discovered by A. Lenstra, H. Lenstra and L. Lovasz in
1982 [LLL82]. LLL is a polynomial time reduction algorithm that, given a lattice
Λ, produces a basis b1, . . . , bn for Λ such that

min
1≤i≤n

‖bi‖ ≤ 2
n−1
2 λ1,

and

(4.11)

n∏
i=1

‖bi‖ ≤ 2
n(n−1)

4 det(Λ).

We can compare this to the upper bound given by Minkowski’s Successive Minima
Theorem (Theorem 3.3.2):

(4.12)

n∏
i=1

λi ≤
2n

ωn
det(Λ).

For instance, when n = 2k the bound (4.11) gives

n∏
i=1

‖bi‖ ≤ 2
k(2k−1)

2 det(Λ),

while (4.12) gives
n∏
i=1

λi ≤
4kk!

πk
det(Λ).

Let us briefly describe the main idea behind LLL. The first observation is that
an orthogonal basis, if one exists in a lattice, is always the shortest one. Indeed,
suppose u1, . . . ,un is such a basis, then for any a1, . . . , an ∈ Z,∥∥∥∥∥

n∑
i=1

aiui

∥∥∥∥∥
2

=

n∑
i=1

a2
i ‖ui‖2,

which implies that the shortest basis vectors can only be obtained by taking one
of the coefficients ai = ±1 and the rest 0. Of course, most lattices do not have
orthogonal bases, in which case finding a short basis is much harder. Still, the basic
principle of constructing a short basis is based on looking for vectors that would be
“close to orthogonal”.

We observed in Section 4.2 (in particular, see Problems 4.6, 4.7, Lemma 4.2.4)
that the angle between a pair of shortest vectors must be between [π/3, 2π/3],
i.e. these vectors are “near-orthogonal”: in fact, these vectors have to be as close
to orthogonal as possible within the lattice. This is the underlying idea behind
the classical Lagrange-Gauss Algorithm for finding a shortest basis for a lattice
in R2. Specifically, an ordered basis b1, b2 for a planar lattice Λ consists of vectors
corresponding to successive minima λ1, λ2 of Λ, respectively, if and only if

µ :=
b>1 b2

‖b1‖2
≤ 1

2
.

On the other hand, if |µ| > 1/2, then replacing b2 with

b2 − bµe b1,
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where bµe stands for the nearest integer to µ, produces a shorter second basis
vector. We leave the proof of this as an exercise (Problem 4.10). Hence we can
formulate the Gauss-Lagrange Algorithm:

Input: b1, b2 ∈ R2 such that ‖b1‖ ≤ ‖b2‖

Compute µ: µ =
b>1 b2

‖b1‖2

Check µ: if |µ| ≤ 1/2, output b1, b2; else set b2 ← b2 − bµe b1 and repeat the
algorithm (swapping b1, b2, if necessary, to ensure ‖b1‖ ≤ ‖b2‖)
This algorithm terminates in a finite number of steps (Problem 4.11).

Let us demonstrate this algorithm on an example. Suppose Λ = spanZ{b1, b2},
where

b1 =

(
1
5

)
, b2 =

(
1
0

)
.

We notice that ‖b1‖ > ‖b2‖, so we swap the vectors: b1 ↔ b2. We then compute

µ =
b>1 b2

‖b1‖2
= 1 > 1/2.

The nearest integer to µ is 1, so we set

b2 ← b2 − b1 =

(
0
5

)
.

We still have ‖b1‖ < ‖b2‖, so no need to swap the vectors. With the new basis
b1, b2 we again compute µ, which is now equal to 0 < 1/2. Hence we found a
shortest basis for Λ: (

1
0

)
,

(
0
5

)
.

LLL is based on a generalization of this idea. We can start with a basis
b1, . . . , bn for a lattice Λ in Rn and use the Gram-Schmidt orthogonalization proce-
dure to compute a corresponding orthogonal (but not normalized) basis b′1, . . . , b

′
n

for Rn. For any pair of indices i, j with 1 ≤ j < i ≤ i, let us compute the Gram-
Schmidt coefficient

µij =
b>i b

′
j

‖b′j‖2
.

If this coefficient is > 1/2 in absolute value, we swap bi ← bi−bµe bj : this ensures
the length reduction, but one other condition is also needed. Formally speaking, a
resulting basis b1, . . . , bn is called LLL reduced if the following two conditions are
satisfied:

(1) For all 1 ≤ j < i ≤ n, |µij | ≤ 1/2
(2) For some parameter δ ∈ [1/4, 1), for all 1 ≤ k ≤ n,

δ‖b′k−1‖2 ≤ ‖b
′
k‖+ µ2

k,(k−1)‖b
′
k−1‖2.

Traditionally, δ is taken to be 3/4. While we will not go into further details about
the LLL, some good more detailed references on this subject include the original
paper [LLL82], as well as more recent books [Coh00], [Bor02], and [HPS08].
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4.4. CVP is NP-hard

In this section we discuss the complexity of the decision version of the CVP
for sublattices of the integer lattice Zn. Specifically, here is the problem we are
considering:

Given an n×m integer basis matrix B, m ≤ n, a target vector t ∈ Zn
and a (usually rational) number r > 0, does there exist a vector

x ∈ BZm such that ‖x− t‖ ≤ r?

We will now explicitly show that this problem is NP-hard.

Theorem 4.4.1. The decision version of CVP is NP-complete.

Proof. First notice that, given a vector x ∈ BZm, checking whether ‖x−t‖ ≤
r is a polynomial problem: it comes down to computing the difference vector,
evaluating its Euclidean norm, and comparing it to r. Hence our problem is NP.

To show that it is NP-hard, we will construct a polynomial-time reduction
algorithm from SSP (the subset sum problem) to decision CVP. Since we know
that SSP is NP-hard (Theorem 2.1.2), the result will follow. Let

(4.13) a = (a1, . . . , an), s

be an instance of SSP, i.e. a is the n-tuple of weights and s is the target sum.
Define the (n+ 1)× n basis matrix B for a lattice BZn ⊂ Zn+1 by

B =

(
a

2In

)
=


a1 a2 . . . an
2 0 . . . 0
0 2 . . . 0
...

...
. . .

...
0 0 . . . 2

 ,

and let t = (s, 1, . . . , 1)> ∈ Zn+1 be the target vector. The we can consider the
instance of decision CVP with B, t and r =

√
n, i.e.

(4.14) does there exist a vector x ∈ BZn so that ‖x− t‖ ≤
√
n?

Assume (4.13) is a YES instance of SSP, i.e.
∑n
i=1 aixi = s for some choice of

coefficients x1, . . . , xn ∈ {0, 1}, then

Bx− t =


∑n
i=1 aixi − s
2x1 − 1

...
2xn − 1

 ,

and so ‖Bx− t‖2 =
∑n
i=1 |2xi − 1|2 = n, since 2xi − 1 = ±1 for every i, and thus

the answer to (4.14) is also YES. Conversely, a YES instance of (4.14) with B and
t as above gives a vector y = Bx ∈ BZn such that

‖Bx− t‖2 =

∣∣∣∣∣
n∑
i=1

aixi − s

∣∣∣∣∣
2

+

n∑
i=1

|2xi − 1|2 ≤ n,

which can only be true if
∑n
i=1 aixi − s = 0, since again 2xi − 1 = ±1 for every i.

Thus we obtain a YES instance of (4.13).
Hence we have a reduction from SSP to decision CVP, which is polynomial-time

by construction. �
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4.5. Geometry of the Frobenius problem

In this section we will apply the newly-acquired knowledge of lattices and their
geometric invariants to the Frobenius problem. A geometric approach to the clas-
sical Frobenius problem has been pioneered in the influential paper of R. Kan-
nan [Kan92], leading to a polynomial-time algorithm to find the Frobenius number
for each fixed n. Bounds on the classical Frobenius number stemming from fur-
ther geometry of numbers applications have been obtained in [FR07] and [AG07].
These ideas have also been extended to the more general s-Frobenius problem
in [FS11] and [AFH12]. A higher-dimensional analogue of the Frobenius problem
has also been considered in the recent years by several authors, notably in [AH10],
[AHL13], and [ALL16]. A generalization of this problem to certain number fields
has been studied in [FS20].

Let us briefly describe Kannan’s approach to the Frobenius problem. Let

La =

{
x ∈ Zn−1 :

n−1∑
i=1

aixi ≡ 0 (mod an)

}
,

then La is a sublattice of Zn−1 of full rank. Define also a simplex

Sa =

{
x ∈ Rn−1

≥0 :

n−1∑
i=1

aixi ≤ 1

}
.

With this notation, Kannan proved the following remarkable identity.

Theorem 4.5.1.

(4.15) g0(a) = µ(Sa, La)−
n∑
i=1

ai.

where µ(Sa, La) is the inhomogeneous minimum (also known as the covering radius)
of Sa with respect to L, namely

(4.16) µ(Sa, La) = inf
{
t ∈ R>0 : tSa + La = Rn−1

}
.

Proof. Kannan’s argument consists of an upper and a lower bound on the
inhomogeneous minimum. First we show that

(4.17) µ(Sa, La) ≤ g0(a) +

n∑
i=1

ai.

Assume that y ∈ Zn−1 is such that
∑n−1
i=1 aiyi ≡ m (mod an). Let tm be the smallest

positive integer congruent to m modulo an that is representable as a nonnegative
integer linear combination of a1, . . . , an−1. Then there exist coefficients x1, . . . , xn ∈
Z≥0 such that

tm = a1x1 + · · ·+ an−1xn−1 + anxn = m+ anxn.

Let x′ = (x1, . . . , xn−1) for this choice of the coefficients, and observe that y−x′ ∈
La. Further, x′ ∈ mSa ⊆ tmSa and so y = (y − x′) + x′ ∈ La + tmSa. Since the
choice of y ∈ Zn−1 was arbitrary, we conclude that Zn−1 ⊆ La+tmSa. Additionally,
tm ≤ g0(a) + an, and thus

Zn−1 ⊆ La + (g0(a) + an)Sa.
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Also notice that for any point z ∈ Rn−1, the integer part [z] = ([z1], . . . , [zn−1]) ∈
Zn−1 and the point z′ = z − [z] has each coordinate ≤ 1, and so satisfies the
inequality

n−1∑
i=1

aiz
′
i ≤

n−1∑
i=1

ai.

This means that

z = [z] + z′ ∈ Zn−1 +

(
n−1∑
i=1

ai

)
Sa.

Thus

Rn−1 ⊆ Zn−1 +

(
n−1∑
i=1

ai

)
Sa ⊆ La +

(
g0(a) +

n∑
i=1

ai

)
Sa,

which implies (4.17).
Next we establish that

(4.18) µ(Sa, La) ≥ g0(a) +

n∑
i=1

ai.

For this, we first need an auxiliary lemma.

Lemma 4.5.2. g0(a) = max1≤m≤an−1 tm − an.

Proof. If a positive integer T is congruent to 0 modulo an, then T is just a
multiple of an. Otherwise, T ≡ m (mod an) for some 1 ≤ m ≤ an − 1 and thus it
is representable as a nonnegative linear combination of a1, . . . , an if and only if it
is ≥ tm. �

Back to the proof of (4.18), let us consider the set (g0(a)+an)Sa+La. We will
show that g0(a)+an is the smallest positive real value of t so that tSa+La contains
Zn−1. Suppose not, then there exists some t′ < g0(a)+an so that Zn−1 ⊂ t′Sa+La.
Pick any 1 ≤ m ≤ an − 1 and take y ∈ Zn−1 be such that

n−1∑
i=1

aiyi ≡ m (mod an).

Since y ∈ t′Sba + x for some x ∈ La, we must have y − x ∈ t′Sa. However,

n−1∑
i=1

ai(yi − xi) ≡ m (mod an) and yi − zi ≥ 0 ∀ 1 ≤ i ≤ n

implies that tm ≤ t′. This is true for any choice of m, Lemma 4.5.2 implies

g0(a) = max
1≤m≤an−1

tm − an ≤ t′ − an < g0(a)

by our assumption on t′. This is a contradiction, hence

g0(a) + an = min
{
t > 0 : Zn−1 ⊂ tSa + La

}
.

Therefore there must exist y ∈ Zn−1 such that for any x ∈ La with yi − xi ≥ 0 for
all i, we have

(4.19)

n−1∑
i=1

ai(yi − xi) ≥ g0(a) + an.
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Let ε ∈ (0, 1) and define the point p ∈ Rn−1 by pi = yi+(1−ε) for every i. Suppose
x ∈ La is such that xi ≥ pi for every i. Since all xi’s are integers, we must have
xi ≤ yi for every i, and so

n−1∑
i=1

ai(pi − xi) = (1− ε)
n−1∑
i=1

ai +

n−1∑
i=1

ai(yi − xi) ≥ (1− ε)
n−1∑
i=1

ai + (g0(a) + an),

by (4.19). Now, µ(Sa, Lba) is ≥ than the left hand side of this inequality, which
holds for any ε ∈ (0, 1). Thus we must have

µ(Sa, La) ≥
n−1∑
i=1

ai + (g0(a) + an) = g0(a) +

n∑
i=1

ai.

This completes the proof. �

On the other hand, Kannan showed that in every fixed dimension n there is a
polynomial-time algorithm to find the covering radius, given Sa and La (which is to
say, given a). This result, along with his identity (4.15) implies a polynomial-time
algorithm for the Frobenius number in fixed dimension. Kannan’s Theorem 4.5.1
has been extended to the s-Frobenius numbers in [AFH12]. For integer s ≥ 1,
define

(4.20) µs(Sa, La) = min{t > 0 : ∀ x ∈ Rn ∃ b1, . . . , bs ∈ La s.t. x ∈ bi + tSa}
be the smallest positive number t such that any x ∈ Rn is covered by at least s
lattice translates of tSa: this µs(Sa, La) is called the s-covering radius of Sa with
respect to La. If s = 1, this is precisely the classical covering radius as in (4.16).
With this notation, the following theorem is established in [AFH12].

Theorem 4.5.3.

gs(a) = µs+1(Sa, La)−
n∑
i=1

ai.

Such geometric ideas have also been used by different authors to give expected val-
ues of Frobenius numbers with respect to the uniform probability distribution on
ensembles of vectors in Zn defined with respect to different norms; see [Arn99],
[Arn06], [AH09], [AHH11], [BS07], [Li15], [Mar10], [Str12], [SSU09], [Ust10],
and [AFH12] for results on average behavior of Frobenius numbers.
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4.6. Lattice point counting

All of the lattice point counting results in the previous chapters were specifically
for integer lattice points in polytopes, which is a rather special class of convex
bodies in Rn and only one lattice. What can be said for more general convex
bodies and lattices? Let M ⊆ Rn be closed, bounded, and Jordan measurable with
Vol(M) > 0, and let Λ ⊆ Rn be a lattice of full rank. Suppose we homogeneously
expand M by a positive real parameter t, i.e. for each positive real value of t we
will consider the set tM . How many points of Λ are there in tM as t grows? To
partially answer this question, we will be interested in the asymptotic behavior of
the function

GM,Λ(t) = |tM ∩ Λ|
as t→∞. In general, this is a very difficult question. We will need to make some
additional assumptions on M in order to study GM,Λ(t).

Definition 4.6.1. Let S be a subset of some Eucildean space. A map

ϕ : S → Rn

is called a Lipschitz map if there exists C ∈ R>0 such that for all x,y ∈ S

‖ϕ(x)− ϕ(y)‖2 ≤ C‖x− y‖2.

We say that C is the corresponding Lipschitz constant.

Let Cn be the cube as in (2.11). We say that a set S ⊆ Rn is Lipschitz
parametrizable if there exists a finite number of Lipschitz maps

ϕj : Cn → S,

such that S =
⋃
j ϕj(Cn).

Definition 4.6.2. Let f(t) and g(t) be two functions defined on R. We will say
that

f(t) = O(g(t)) as t→∞
if there exists a positive real number B and a real number t0 such that for all t ≥ t0,

|f(t)| ≤ B|g(t)|.

We usually use the O-notation to emphasize the fact that f(t) behaves similar to
g(t) when t is large. This is quite useful if g(t) is a simpler function than f(t); in
this case, such a statement helps us to understand the asymptotic behavior of f(t),
namely its behavior as t→∞.

Let ∂M be the boundary of M , and assume that ∂M is (n−1)-Lipschitz parametriz-
able. Notice that for t ∈ R>0, ∂(tM) = t∂M . The following result is Theorem 2
on p. 128 of [Lan94].

Theorem 4.6.1. Let t ∈ R>0, then

GM,Λ(t) =
Vol(M)

det(Λ)
tn +O(tn−1),

where the constant in O-notation depends on Λ, n, and Lipschitz constants.
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Proof. Let x1, . . . ,xn be a basis for Λ, and let F be the corresponding fun-
damental parallelotope, i.e.

F =

{
n∑
i=1

tixi : 0 ≤ ti < 1, ∀ 1 ≤ i ≤ n

}
.

For each point x ∈ Λ we will write Fx for the translate of F by x:

Fx = F + x.

Notice that if x ∈ tM ∩ Λ, then Fx ∩ tM 6= ∅. Moreover, either

Fx ⊆ int(tM),

or

Fx ∩ ∂(tM) 6= ∅.
Let

m(t) = |{x ∈ Λ : Fx ⊆ int(tM)}| ,

b(t) = |{x ∈ Λ : Fx ∩ ∂(tM) 6= ∅}| .
Then clearly

m(t) ≤ GM,Λ(t) ≤ m(t) + b(t).

Moreover, since Vol(F) = det(Λ)

m(t) det(Λ) ≤ Vol(tM) = tn Vol(M) ≤ (m(t) + b(t)) det(Λ),

hence

m(t) ≤ Vol(M)

det(Λ)
tn ≤ m(t) + b(t).

Therefore to conclude the proof we only need to estimate b(t). Let

ϕ : Cn−1 → ∂M

be one of the Lipschitz paramterizing maps for a piece of the boundary of M , and
let C be the maximum of all Lipschitz constants corresponding to these maps. Then
tϕ parametrizes a corresponding piece of ∂(tM) = t∂M . Cut up each side of Cn−1

into segments of length 1/[2t], then we can represent Cn−1 as a union of [t]n−1

small cubes with sidelength 1/[2t] each, call them C1, . . . , C [t]n−1

. For each such
Ci, we have

‖ϕ(x)− ϕ(y)‖2 ≤ C‖x− y‖2 ≤
C
√
n− 1

[2t]
,

for each x,y ∈ Ci, i.e. the image of each such Ci under ϕ has diameter at most
C
√
n−1

[2t] . Hence image of each such Ci under the map tϕ has diameter at most

C
√
n− 1

t

[2t]
≤ 2 C

√
n− 1.

Clearly therefore the number of x ∈ Λ such that the corresponding translate Fx

has nonempty intersection with tϕ(Ci), for each 1 ≤ i ≤ [t]n−1, is bounded by some
constant C′ that depends only on Λ, C, and n. Hence

b(t) ≤ C′[t]n−1.

This completes the proof. �
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Theorem 4.6.1 provides an asymptotic formula for GM,Λ(t), demonstrating an

important general principle, namely that as t → ∞, GM,Λ(t) grows like Vol(M)
det(Λ) t

n,

which is what one would expect. However, it does not give any explicit information
about the constant in the error term O(tn−1). Can this constant be somehow
bounded, i.e. what can be said about the quantity∣∣∣∣GM,Λ(t)− Vol(M)

det(Λ)
tn
∣∣∣∣ ?

A large amount of work has been done in this direction (see for instance pp. 140
- 147 of [GL87] for an overview of results and bibliography). This subject essen-
tially originated in a paper of Davenport [Dav51], who used a principle of Lipschitz
[Lip65]; also see [Thu93] for a nice overview of Davenport’s result and its gener-
alizations and [Wid12] for further recent results. We present here without proof
a result of P. G. Spain [Spa95], which is a refinement of Davenport’s bound, and
can be thought of as a continuation of Theorem 4.6.1.

Theorem 4.6.2. Let the notation be as in Theorem 4.6.1, and let C be the maximal
Lipschitz constant corresponding to parametrization of ∂M . Then for each t ∈ R>0,∣∣∣∣GM,Λ(t)− Vol(M)

det(Λ)
tn
∣∣∣∣ ≤ 2n(Ct+ 1)n−1.

Finally, for very explicit inequalities in the case of counting lattice points in rect-
angular boxes see [Fuk06a], [Fuk06b] and [FH13].
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4.7. Applications of lattices in coding theory and cryptography

Here we very briefly mention two applications of lattices in digital communi-
cations. First of this is to coding theory. The theory of error correcting codes
assumes transmission of a signal from transmitter to receiver over a potentially
noisy channel. There is a possibility of two types of errors in the channel:

(1) Erasure: a character in the signal codeword was erased in transmission.
(2) Alteration: a character in the signal codeword was alterated in transmis-

sion.

We will briefly talk about erasures in the next section. Here, we will say a few
words about how lattices can be used to deal with alterations. The main idea of
constructing good error correcting codes is to ensure large distance between the
codewords (here distance can be defined in different ways, most commonly the
Hamming distance, which we do not discuss here). Imagine, for instance, that we
use points of a full-rank lattice L ⊂ Rn as our codewords. Specifically, let r be a
sufficiently large integer and let

Lr = {x ∈ L : ‖x‖ ≤ r} .

We can use Lr as our code-space for transmission of information, i.e. signals are
converted to points of Lr for transmission. If a codeword x ∈ Lr is transmitted,
an error due to alteration in a noisy channel may result in the introduction of a
sufficiently small error vector ε so that the received codeword is

x + ε.

The correction mechanism then needs to strip-off the error and return x. Write λ1

for the first successive minimum of L. Assuming that ‖ε‖ < λ1/2, we see that x
is the solution of CVP on L with the input point x + ε, i.e. the error correction
comes down to solving an instance of CVP. While CVP is hard in general, it can
be made much easier provided we know a shortest basis for our lattice L: in that
case, it can be solved by Babai’s nearest hyperplane algorithm (see [MG02]) for
details).

Another use of lattices in coding theory comes from design of transmitter net-
works. Given a lattice Λ ∈ Rn, we can regard its nonzero points as transmitters
which interfere with the transmitter at the origin, and then a standard measure of
the total interference of Λ is given by EΛ(2), where

(4.21) EΛ(s) =
∑

x∈Λ\{0}

1

‖x‖2s

is the Epstein zeta-function of Λ, and the signal-to-noise ratio of Λ is defined by

(4.22) SNR(Λ) = 10 log10

1

9EΛ(2)
,

as in [BSW97]. Suppose that we have a network of transmitters positioned at the
points of a planar lattice Λ. The plane is tiled with translates of the Voronoi cell of
Λ, which are the cells serviced by the corresponding transmitters at their centers.
The packing density of Λ is precisely the proportion of the plane covered by the
transmitter network. WR lattices allow for transmitters of the same power. To
maximize SNR(Λ) on the set of all planar WR lattices of a fixed determinant ∆ is
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the same as to minimize EΛ(2) on this set. This optimization problem is discussed
in [BSW97] and [FHL+12].

Another application of lattices comes from cryptography, resulting in a sub-
area knows as lattice cryptography. The book [MG02] is an excellent introduction
to this exciting and active area of research. Here we only mention a basic connec-
tion. Cryptography assumes transmission of information over an unsecured channel,
which allows for for intruders to intercept the message. The goal is to encode a
message in a way that allows the intended receiver to easily decode it, but makes
decoding very hard for intruders. Asymmetric cryptography then recognizes that
the transmitter does not need to be able to decode the message, only the receiver
needs to be able to do this. Encoding is done with use of a public key, i.e. a piece
of publicly available information, while the decoding requires a private key known
only to the receiver. The security of such a scheme is based on the assumption that
decoding without the private key is a computationally hard problem. We describe
one example of a lattice crypto-system based on CVP: this is the GGH encryption
scheme, named after its creators O. Goldreich, S. Goldwasser and S. Halevi. Let L
be a lattice in Rn, and define:

• Private key: a shortest basis B for L and a matrix U ∈ GLn(Z),
• Public key: a basis B′ = BU for L.

Let m ∈ Zn be message text and let ε be a small error vector. To encrypt m, take

m′ = B′m + ε.

If we know the private key B and U , we can compute B−1 and U−1 and decrypt
as follows:

B−1m′ = B−1BUm +B−1ε = Um +B−1ε

then use Babai’s nearest hyperplane algorithm to solve the corresponding instance
of CVP retrieving Um and compute m multiplying by U−1. On the other hand,
the intruders possessing only the public key would attempt to do the same and
receive:

(B′)−1m′ = m + (B′)−1ε = m + (B′)−1ε,

where ‖(B′)−1ε‖ can be sufficiently big to produce an incorrect CVP solution, i.e.
the resulting lattice vector would be different from the message text m. Unfortu-
nately, this algorithm does have some security issues as demonstrated by P. Nguyen
in 1999. This being said, it still serves as a good illustration of the lattice encryp-
tion idea. There is also a good number of other more secure encryption schemes
based on lattices and high complexity of lattice problems.
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4.8. Euclidean frames

An (n, k)-frame in a Euclidean space Rk is a set {x1, . . . ,xn}, n ≥ k, that
satisfies the following property: there exist positive real constants γ1, γ2 such that
for every vector v ∈ Rk,

γ1‖v‖2 ≤
n∑
i=1

〈v,xi〉2 ≤ γ2‖v‖2,

where 〈 , 〉 denotes the usual Euclidean inner product. It is not difficult to see
(Problem 4.12) that a frame is a spanning set for Rk. In this section we will discuss
some particular types of frames, their properties and their connections to lattices. In
particular, we will be interested in uniform frames, meaning that ‖x1‖ = · · · = ‖xn‖
(if this common value is 1, we call such a frame unit). Further, we will say that a
uniform (n, k)-frame {x1, . . . ,xn} is tight if γ1 = γ2, i.e. if there exists a positive
real constant c such that for every vector v ∈ Rk,

(4.23) ‖v‖2 = c

n∑
i=1

〈v,xi〉2 .

Compare (4.23) to (4.10) and observe the following fact: a full-rank lattice Λ ⊂ Rk
with the set of minimal vectors

S(Λ) = {x1, . . . ,xn}

is strongly eutactic if and only if S(Λ) forms a uniform tight (n, k)-frame in Rk.
Problem 4.12 implies that such a lattice must also be WR (a fact that we mentioned
before, as it is true for eutactic and for perfect lattices too).

We will be especially interested in a more specialized class of tight frames. A
uniform tight (n, k)-frame {x1, . . . ,xn} is called equiangular (abbreviated ETF =
equiangular tight frame) if there exists a real constant α such that

α =
| 〈xi,xj〉 |
‖xi‖‖xj‖

∀ i 6= j,

in other words if absolute value of the cosine of the angle between any distinct pair
of frame vectors xi,xj is the same. By a certain abuse of notation, we will refer
to α as the angle of this ETF. ETF’s are a generalization of an orthonormal basis:
indeed, an orthonormal basis for Rk is a unit (k, k)-ETF of angle 0. The first non-
trivial example of an ETF is the Mercedes-Benz frame of three equiangular unit
vectors in R2: (

1
0

)
,

(
1/2√
3/2

)
,

(
−1/2√

3/2

)
.

The angle of this (3, 2)-ETF is 1/2, and it is equal to S′(Λh) where Λh is the
hexagonal lattice and S′(Λh) is the subset of the set of minimal vectors S(Λh)
obtained by choosing one vector from each ± pair. More generally, we can ask how
large can an ETF in Rk be? To this end, there is the following bound.

Theorem 4.8.1 (Gerzon). If X = {x1, . . . ,xn} is an ETF in Rk, then

n ≤ k(k + 1)

2
.
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Proof. Normalizing, if necessary, we can assume that X is a unit frame of
angle α, then

α = | 〈xi,xj〉 | ∀ i 6= j, | 〈xi,xi〉 | = 1 ∀ 1 ≤ i ≤ n.

For each 1 ≤ i ≤ n, consider the k × k symmetric matrix xix
>
i as a vector in Rk2 ,

then we can compute the inner products〈
xix

>
i ,xjx

>
j

〉
= 〈xi,xj〉2 =

{
α2 if i 6= j,
1 if i = j.

Consider a symmetric k × k matrix

A =

n∑
i=1

aixix
>
i ,

then the squared norm of A is

〈A,A〉 =

n∑
i=1

n∑
j=1

aiaj
〈
xix

>
i ,xjx

>
j

〉
=

n∑
i=1

n∑
j=1

〈xi,xj〉2 aiaj

=

n∑
i=1

a2
i + 2α2

n∑
i=1

n∑
j=i+1

aiaj ,

which is a positive definite quadratic form in the variables a1, . . . , an. Hence A = 0
if and only if 〈A,A〉 = 0, which happens if and only if a1 = · · · = an = 0. Thus the
set

X∗ =
{
xix

>
i : 1 ≤ i ≤ n

}
is linearly independent, meaning that its cardinality n cannot be larger than the

dimension of the space of all real symmetric k × k matrices, which is k(k+1)
2 . �

Notice that Gerzon’s bound is sharp, as demonstrated by the Mercedes-Benz

example: 2(2+1)
2 = 3. ETF’s achieving Gerzon’s bound are called maximal. One

can ask in which dimensions do maximal ETFs occur? In fact, only four examples
are known: (3, 2), (6, 3), (28, 7) and (276, 23). Out of these examples, besides the
hexagonal lattice, the (28, 7)-ETF is S′(Λ) of a certain perfect strongly eutactic
lattice in R7 and the (276, 23)-ETF appears among the set of minimal vectors
of the famous 24-dimensional Leech lattice. There are many other examples of
ETFs (although not maximal) appearing as sets of minimal vectors of strongly
eutactic lattices, however these lattices are not perfect: perfection would require

|S′(Λ)| ≥ k(k+1)
2 , which implies maximal ETF; see [BFG+16], [BF17] for details.

Frames have applications in information transmission, for instance in recov-
ering erasures (as defined in Section 4.7 above) in signal transmission. If X =
{x1, . . . ,xn} ⊂ Rk is an (n, k)-frame, then an arbitrary vector v ∈ Rk can be
written in these frame coordinates as

v(X) = (v1(X), . . . , vn(X)),

where vi(X) = 〈v,xi〉 for each 1 ≤ i ≤ n. This generalizes the notion of coordinates
of a vector with respect to a basis. We can now transmit the message encoded by v
by instead transmitting its vector of coordinates v(X). The advantage of using an
overdetermined frame is that the vector v can be reconstructed with a certain degree
of accuracy even if some of the coordinates were lost in transmission, i.e. if erasures
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occurred (see [HP04] for more information on this). Hence, ideally we want the
cardinality n of the frame to be large as compared to the dimension k: this gives
more coordinates, an so a better potential chance at accurate reconstruction of a
signal in the presence of erasures. On the other hand, the accuracy of reconstruction
is increased if the frame vectors are not “aligned” with each other, i.e. if the angles
between them are large. To this end, let us define the frame coherence.

Given an arbitrary (n, k)-frame X = {x1, . . . ,xn} ⊂ Rk, we define its coherence
to be

C(X) = max
1≤i 6=j≤n

| 〈xi,xj〉 |
‖xi‖|xj‖

,

i.e. maximal absolute value of cosines of the angles between pairs of frame vectors.
This is a measure of how aligned with each other frame vectors are. For instance,
coherence of an orthogonal basis is 0 and coherence of an ETF is its angle. Thinking
of frame vectors as frequencies encoding a signal, coherence represents the measure
of interference between different frequencies used in transmission: the lower this
interference is the better it is for accurate transmission. Notice, however, that the
larger is the cardinality of a frame the more aligned its vectors would have to be,
and so the higher would be its coherence. Hence we have the following optimization
problem.

Problem 4.1. Construct (n, k)-frame X ⊂ Rk with large cardinality n as compared
to the dimension k and low coherence C(X).

The first question to ask then is how small can coherence be? To this end, we
have the following inequality.

Theorem 4.8.2. (Welch) Given an (n, k)-frame X = {x1, . . . ,xn} ⊂ Rk,

C(X) ≥

√
n− k
k(n− 1)

.

The equality is achieved if and only if X is an ETF.

Proof. Rescaling the vectors, if necessary, we can assume that X is a unit
frame: rescaling does not change coherence. Let us write

A = (x1 . . . xn)

for the k×n matrix whose columns are the frame vectors. Define the corresponding
n× n Gram matrix to be

G = A>A,

then the ij-entry of G is equal to 〈xi,xj〉. In particular, all the diagonal entries of
G are equal to 1, and so its trace Tr(G) = n. On the other hand, trace of G is equal
to the sum of its eigenvalues λ1, . . . , λn. Notice that G is a positive semi-definite
matrix of rank k, so we can assume that

λ1, . . . , λk > 0, λk+1 = · · · = λn = 0.

Then

(4.24) n2 = Tr(G)2 =

(
k∑
i=1

λi

)2

≤ k
k∑
i=1

λ2
i = k

n∑
i=1

λ2
i .
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by Cauchy-Schwartz inequality. Recall that the Frobenius norm of this Gram matrix

is simply its Euclidean norms viewed as a vector in Rn2

, i.e.

‖G‖2 =

n∑
i=1

n∑
j=1

| 〈xi,xj〉 |2.

The symmetric matrix G is diagonalizable by some orthogonal matrix U , i.e.

UGU> =

λ1 . . . 0
...

. . .
...

0 . . . λn

 ,

and the Frobenius norm is invariant under such diagonalization, i.e.

(4.25) ‖G‖2 =
n∑
i=1

n∑
j=1

| 〈xi,xj〉 |2 =
n∑
i=1

λ2
i .

Combining (4.24) and (4.25), we obtain

(4.26)

n∑
i=1

n∑
j=1

| 〈xi,xj〉 |2 ≥
n2

k
.

On the other hand, notice that | 〈xi,xj〉 | ≤ C(X) (with equality if an only if X is
an ETF) for i 6= j and | 〈xi,xi〉 | = 1, hence

n2

k
≤ n+

∑
i6=j

| 〈xi,xj〉 |2 ≤ n+ (n2 − n)C(X)2,

with the last inequality being equality if and only if X is an ETF, therefore

C(X)2 ≥ 1

n2 − n

(
n2

k
− n

)
=

n− k
k(n− 1)

,

which establishes the Welch bound. Further, if X is an ETF all nonzero eigenvalues
of G are the same, and so

n = Tr(G) = kλ1,

meaning that
n∑
i=1

λ2
i = kλ2

1 = k

(
n2

k2

)
=
n2

k
,

in other words there is an equality in (4.26). This establishes equality in the Welch
bound if and only if X is an ETF. �

We then have an immediate consequence of Welch’s bound for ETFs.

Corollary 4.8.3. If X is an (n, k) ETF of angle α, then

α =

√
n− k
k(n− 1)

.

In fact, there are some additional remarkable properties an (n, k) ETF of angle α
must possess.

• (Neumann) If n > 2k, then 1/α is an odd integer.
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• (Sustik, Tropp, Dhillon, Heath) Let 1 < k < n− 1. Suppose n 6= 2k, then
1/α is an odd integer and the quantity√

(n− k)(n− 1)

k

is also an odd integer. If n = 2k, then k must be an odd integer and n−1
the sum of two squares.

These and related properties are used to eliminate the pairs (n, k) for which ETFs
cannot exist. One of the main goals here is to find more maximal ETFs beyond the
four mentioned above.
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4.9. Problems

Problem 4.2. Prove that the optimal kissing number in R2 is equal to 6.

Problem 4.3. Prove that similarity is an equivalence relation on the set of all
lattices of full rank in Rn.

Problem 4.4. Assume two full-rank lattices L and M in Rn are similar. Prove
that they have the same packing density, covering thickness and kissing number.

Problem 4.5. Prove that the set of all real orthogonal n× n matrices On(R) is a
subgroup of GLn(R).

Problem 4.6. Let x1 and x2 be nonzero vectors in R2 so that the angle θ between
them satisfies 0 < θ < π

3 . Prove that

‖x1 − x2‖ < max{‖x1‖, ‖x2‖}.

Problem 4.7. Let Λ ⊂ R2 be a lattice of full rank with successive minima λ1 ≤ λ2,
and let x1,x2 be the vectors in Λ corresponding to λ1, λ2, respectively. Let θ ∈
[0, π/2] be the angle between x1 and x2. Prove that

π/3 ≤ θ ≤ π/2.

Problem 4.8. Let L and M be two similar lattices. Prove that if L is eutactic
(respectively, strongly eutactic, perfect), then so is M .

Problem 4.9. Prove that the hexagonal lattice Λh is both, perfect and eutactic.
Further, prove that if L is a perfect lattice in R2, then L ∼ Λh.

Problem 4.10. Prove that an ordered basis b1, b2 for a planar lattice Λ consists of
vectors corresponding to successive minima λ1, λ2, respectively, if and only if

µ :=
b>1 b2

‖b1‖2
≤ 1

2
.

On the other hand, if |µ| > 1/2, then replacing b2 with

b2 − bµe b1,

where bµe stands for the nearest integer to µ, produces a shorter second basis vector.

Problem 4.11. Prove that the Gauss-Lagrange Algorithm as discussed in Sec-
tion 4.3 terminates in a finite number of steps.

Problem 4.12. Let {x1, . . . ,xn} be an (n, k)-frame in Rk, n ≥ k. Prove that
Rk = spanR{x1, . . . ,xn}.
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