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CHAPTER 1

Geometry of Numbers

1.1. Introduction

The foundations of the Geometry of Numbers were laid down by Hermann
Minkowski in his monograph “Geometrie der Zahlen”, which was published in 1910,
a year after his death. This subject is concerned with the interplay of compact
convex 0-symmetric sets and lattices in Euclidean spaces. A set K ⊂ Rn is compact
if it is closed and bounded, and it is convex if for any pair of points x,y ∈ K the
line segment connecting them is entirely contained in K, i.e. for any 0 ≤ t ≤ 1,
tx+ (1− t)y ∈ K. Further, K is called 0-symmetric if for any x ∈ K, −x ∈ K.

Given such a set K in Rn, one can ask for an easy criterion to determine if K
contains any nonzero points with integer coordinates. While for an arbitrary set K
such a criterion can be rather difficult, in case of K as above a criterion purely in
terms of its volume is provided by Minkowski’s fundamental theorem.

It is not difficult to see that K must in fact be convex and 0-symmetric for a
criterion like this purely in terms of the volume of K to be possible. Indeed, the
rectangle

R =
{
(x, y) ∈ R2 : 1/3 ≤ x ≤ 2/3,−t ≤ y ≤ t

}
is convex for every t, but not 0-symmetric, and its area is 2t/3, which can be
arbitrarily large depending on t while it still contains no integer points at all. On
the other hand, the set R+ ∪ −R+ where

R+ = {(x, y) ∈ R : y ≥ 0}
and −R+ = {(−x,−y) : (x, y) ∈ R+} is 0-symmetric, but not convex, and again
can have arbitrarily large area while containing no integer points.

Minkowski’s theory applies not only to the integer lattice, but also to more
general lattices. Our goal in this chapter is to introduce Minkowski’s powerful
theory, starting with the basic notions of lattices.
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2 1. GEOMETRY OF NUMBERS

1.2. Norms, sets, and volumes

Throughout this section we will work in the real vector space Rn, where n ≥ 1.

Definition 1.2.1. A function F : Rn → R is called a norm if

(1) F (x) ≥ 0 with equality if and only if x = 0,
(2) F (ax) = |a|F (x) for each a ∈ R, x ∈ Rn,
(3) Triangle inequality: F (x+ y) ≤ F (x) + F (y) for all x,y ∈ Rn.

For each positive integer p, we can introduce the Lp-norm ∥ ∥p on Rn defined by

∥x∥p =

(
n∑

i=1

|xi|p
)1/p

,

for each x = (x1, . . . , xn) ∈ Rn. We also define the sup-norm, given by

|x| = max
1≤i≤n

|xi|.

These indeed are norms on Rn (Problem 1.1).
Unless stated otherwise, we will regard Rn as a normed linear space (i.e. a

vector space equipped with a norm) with respect to the Euclidean norm ∥ ∥2: from
now on we will refer to it simply as ∥ ∥. Recall that for every two points x,y ∈ Rn,
Euclidean distance between them is given by

d(x,y) = ∥x− y∥.

We start with definitions and examples of a few different types of subsets of Rn

that we will often encounter.

Definition 1.2.2. A subset X ⊆ Rn is called compact if it is closed and bounded.

Recall that a set is closed if it contains all of its limit points, and it is bounded if
there exists M ∈ R>0 such that for every two points x,y in this set d(x,y) ≤ M .
For instance, the closed unit ball centered at the origin in Rn

Bn = {x ∈ Rn : ∥x∥ ≤ 1}

is a compact set, but its interior, the open ball

Bo
n = {x ∈ Rn : ∥x∥ < 1}

is not a compact set. If we now write

Sn−1 = {x ∈ Rn : ∥x∥ = 1}

for the unit sphere centered at the origin in Rn, then it is easy to see that Bn =
Sn−1 ∪ Bo

n, and we refer to Sn−1 as the boundary of Bn (sometimes we will write
Sn−1 = ∂Bn) and to Bo

n as the interior of Bn.
From here on we will also assume that all our compact sets have no isolated

points. Then we can say more generally that every compact set X ⊂ Rn has
boundary ∂X and interior Xo, and can be represented as X = ∂X ∪Xo. To make
this notation precise, we say that a point x ∈ X is a boundary point of X if every
open neighborhood U of x contains points in X and points not in X; we write ∂X
for the set of all boundary points of X. All points x ∈ X that are not in ∂X are
called interior points of X, and we write Xo for the set of all interior points of X.
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Definition 1.2.3. A compact subsetX ⊆ Rn is called convex if whenever x,y ∈ X,
then any point of the form

tx+ (1− t)y,

where t ∈ [0, 1], is also in X; i.e. whenever x,y ∈ X, then the entire line segment
from x to y lies in X.

We now briefly mention a special class of convex sets. Given a set X in Rn, we
define the convex hull of X to be the set

Co(X) =

{∑
x∈X

txx : tx ≥ 0 ∀ x ∈ X,
∑
x∈X

tx = 1

}
.

It is easy to notice that whenever a convex set contains X, it must also contain
Co(X). Hence convex hull of a collection of points should be thought of as the
smallest convex set containing all of them. If the set X is finite, then its convex
hull is called a convex polytope. Most of the times we will be interested in convex
polytopes, but occasionally we will also need convex hulls of infinite sets.

There is an alternative way of describing convex polytopes. Recall that a
hyperplane in Rn is a translate of a co-dimension one subspace, i.e. a subset H in
Rn is called a hyperplane if

(1.1) H =

{
x ∈ Rn :

n∑
i=1

aixi = b

}
,

for some a1, . . . , an, b ∈ R. Notice that each hyperplane divides Rn into two halfs-
paces. More precisely, a closed halfspace H in Rn is a set of all x ∈ Rn such that
either

∑n
i=1 aixi ≥ b or

∑n
i=1 aixi ≤ b for some a1, . . . , an, b ∈ R. Minkowski-Weyl

theorem (Problem 1.4) asserts that a set is a convex polytope in Rn if and only if
it is a bounded intersection of finitely many halfspaces. Polytopes form a very nice
class of convex sets in Rn, and we will talk more about them later.

There is, of course, a large variety of sets that are not necessarily convex.
Among these, ray sets and star bodies form a particularly nice class. In fact, they
are among the not-so-many non-convex sets for which many of the methods we
develop in this chapter still work, as we will see later.

Definition 1.2.4. A set X ⊆ Rn is called a ray set if for every x ∈ X, tx ∈ X for
all t ∈ [0, 1].

Clearly every ray set must contain 0. Moreover, ray sets can be bounded or un-
bounded. Perhaps the simplest examples of bounded ray sets are convex sets that
contain 0. Star bodies form a special class of ray sets.

Definition 1.2.5. A set X ⊆ Rn is called a star body if for every x ∈ Rn either
tx ∈ X for all t ∈ R, or there exists t0(x) ∈ R>0 such that tx ∈ X for all t ∈ R
with |t| ≤ t0(x), and tx /∈ X for all |t| > t0(x).

Remark 1.2.1. We will also require all our star bodies to have boundary which is
locally homeomorphic to Rn−1. Loosely speaking, this means that the boundary of
a star body can be subdivided into small patches, each of which looks like a ball
in Rn−1. More precisely, suppose X is a closed star body and ∂X is its boundary.
We say that ∂X is locally homeomorphic to Rn−1 if for every point x ∈ ∂X there
exists an open neighborhood U ⊆ ∂X of x such that U is homeomorphic to Rn−1.
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See Remark 1.2.2 below for the definition of what it means for two sets to be
homeomorphic. Unless explicitly stated otherwise, all star bodies will be assumed
to have this property.

Here is an example of a collection of unbounded star bodies:

Stn =

{
(x, y) ∈ R2 : − 1

xn
≤ y ≤ 1

xn

}
,

where n ≥ 1 is an integer. There is also an alternative description of star bodies.
For this we need to introduce an additional piece of notation.

Definition 1.2.6. A function F : Rn → R is called a distance function if

(1) F (x) ≥ 0 for all x ∈ Rn,
(2) F is continuous,
(3) Homogeneity: F (ax) = |a|F (x) for all x ∈ Rn, a ∈ R.

Let f(X1, . . . , Xn) be a polynomial in n variables with real coefficients. We say that
f is homogeneous if every monomial in f has the same degree. For instance, x2+xy−
y2 is a homogeneous polynomial of degree 2, while x2−y+xy is an inhomogeneous
polynomial of degree 2. If f(X1, . . . , Xn) be a homogeneous polynomial of degree
d with real coefficients, then

F (x) = |f(x)|1/d

is a distance function (Problem 1.5). As expected, distance functions are closely
related to star bodies: for a distance function F the set

X = {x ∈ Rn : F (x) ≤ 1}
is a bounded star body (Problem 1.6). In fact, a converse is also true.

Theorem 1.2.1. Let X be a star body in Rn. Then there exists a distance function
F such that

X = {x ∈ Rn : F (x) ≤ 1}.

Proof. Define F in the following way. For every x ∈ Rn such that tx ∈ X for
all t ≥ 0, let F (x) = 0. Suppose that x ∈ Rn is such that there exists t0(x) > 0
with the property that tx ∈ X for all t ≤ t0(x), and tx /∈ X for all t > t0(x); for
such x define F (x) = 1

t0(x)
. It is now easy to verify that F is a distance function;

this is left as an exercise, or see Theorem I on p. 105 of [Cas59]. □

Notice that all our notation above for convex sets, polytopes, and bounded
ray sets and star bodies will usually pertain to closed sets; sometimes we will use
the terms like “open polytope” or “open star body” to refer to the interiors of the
closed sets.

Definition 1.2.7. A subset X ⊆ Rn which contains 0 is called 0-symmetric if
whenever x is in X, then so is −x.

It is easy to see that every set An(C) of Problem 1.2, as well as every star
body, is 0-symmetric, although ray sets in general are not. In fact, star bodies are
precisely the 0-symmetric ray sets. Here is an example of a collection of asymmetric
unbounded ray sets:

Rn =

{
(x, y) ∈ R2 : 0 ≤ y ≤ 1

xn

}
,
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where n ≥ 1 is an integer. An example of a bounded asymmetric ray set is a cone
on L points x1, . . . ,xL ∈ Rn, i.e. Co(0,x1, . . . ,xL). If X is a star body and F its
distance function, i.e. X = {x ∈ Rn : F (x) ≤ 1}, then X is convex if and only if

F (x+ y) ≤ F (x) + F (y),

for all x,y ∈ X (Problem 1.7). Next we want to introduce the notion of volume
for bounded sets in Rn.

Definition 1.2.8. Characteristic function of a set X is defined by

χX(x) =

{
1 if x ∈ X
0 if x /∈ X

Definition 1.2.9. A bounded set X is said to have Jordan volume if its character-
istic function is Riemann integrable, and then we define Vol(X) to be the value of
this integral. A set that has Jordan volume is called Jordan measurable.

Definition 1.2.10. Let X and Y be two sets. A function f : X → Y is called
injective (or one-to-one) if whenever f(x1) = f(x2) for some x1, x2 ∈ X, then
x1 = x2; f is called surjective (or onto) if for every y ∈ Y there exists x ∈ X such
that f(x) = y; f is called a bijection if it is injective and surjective.

Remark 1.2.2. In fact, it is also not difficult to prove that f : X → Y has an
inverse if and only if it is a bijection, in which case this inverse is unique. If such a
function f between two sets X and Y exists, we say that X and Y are in bijective
correspondence. Furthermore, if f and f−1 are both continuous, then they are
called homeomorphisms and we say that X and Y are homeomorphic to each other.
If f and f−1 are also differentiable, then they are called diffeomorphisms, and X
and Y are said to be diffeomorphic.

Theorem 1.2.2. All convex sets and bounded ray sets have Jordan volume.

Sketch of proof. We will prove this theorem for convex sets; for bounded
ray sets the proof is similar. Let X be a convex set. Write ∂X for the boundary of
X and notice that X = ∂X if and only if X is a straight line segment: otherwise
it would not be convex. Since it is clear that a straight line segment has Jordan
volume (it is just its length), we can assume that X ̸= ∂X, then X has nonempty
interior, denote it by Xo, so X = Xo ∪ ∂X. We can assume that 0 ∈ Xo; if
not, we can just translate X so that it contains 0 - translation does not change
measurability properties. Write Sn−1 for the unit sphere centered at the origin in
Rn, i.e. Sn−1 = ∂Bn. Define a map φ : ∂X → Sn−1, given by

φ(x) =
x

∥x∥
.

SinceX is a bounded convex set, it is not difficult to see that φ is a homeomorphism.
For each ε > 0 there exists a finite collection of points x1, . . . ,xk(ε) ∈ Sn−1 such
that if we let Cxi

(ε) be an (n− 1)-dimensional cap centered at xi in Sn−1 of radius
ε, i.e.

Cxi
(ε) = {y ∈ Sn−1 : ∥y − xi∥2 ≤ ε},

then Sn−1 =
⋃k(ε)

i=1 Cxi(ε), and so ∂X =
⋃k(ε)

i=1 φ−1 (Cxi(ε)). For each 1 ≤ i ≤ k(ε),
let yi, zi ∈ φ−1 (Cxi

(ε)) be such that

∥yi∥ = max{∥x∥ : x ∈ φ−1 (Cxi
(ε))},
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and
∥zi∥ = min{∥x∥ : x ∈ φ−1 (Cxi(ε))}.

Let δ1(ε) and δ2(ε) be minimal positive real numbers such that the spheres centered
at the origin of radii ∥yi∥ and ∥zi∥ are covered by caps of radii δ1(ε) and δ2(ε),
Cxi

(yi, ε) and Cxi
(zi, ε), centered at xi. Define cones

(1.2) C1
i = Co(0, Cxi

(yi, ε)), C2
i = Co(0, Cxi

(zi, ε)),

for each 1 ≤ i ≤ k(ε). Now notice that

k(ε)⋃
i=1

C2
i ⊆ X ⊆

k(ε)⋃
i=1

C1
i .

Since the cones C1
i , C

2
i have Jordan volume (Problem 1.10), the same is true about

their finite unions. Moreover,

Vol

k(ε)⋃
i=1

C1
i

−Vol

k(ε)⋃
i=1

C2
i

→ 0,

as ε→ 0. Hence X has Jordan volume, which is equal to the common value of

lim
ε→0

Vol

k(ε)⋃
i=1

C1
i

 = lim
ε→0

Vol

k(ε)⋃
i=1

C2
i

 .

□

This is Theorem 5 on p. 9 of [GL87], and the proof is also very similar.
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1.3. Lattices

We start with an algebraic definition of lattices. Let a1, . . . ,ar be a collection
of linearly independent vectors in Rn.

Definition 1.3.1. A lattice Λ of rank r, 1 ≤ r ≤ n, spanned by a1, . . . ,ar in Rn

is the set of all possible linear combinations of the vectors a1, . . . ,ar with integer
coefficients. In other words,

Λ = spanZ {a1, . . . ,ar} :=

{
r∑

i=1

niai : ni ∈ Z for all 1 ≤ i ≤ r

}
.

The set a1, . . . ,ar is called a basis for Λ. There are usually infinitely many different
bases for a given lattice.

Notice that in general a lattice in Rn can have any rank 1 ≤ r ≤ n. We will often
however talk specifically about lattices of rank n, that is of full rank. The most
obvious example of a lattice is the set of all points with integer coordinates in Rn:

Zn = {x = (x1, . . . , xn) : xi ∈ Z for all 1 ≤ i ≤ n}.

Notice that the set of standard basis vectors e1, . . . , en, where

ei = (0, . . . , 0, 1, 0, . . . , 0),

with 1 in i-th position is a basis for Zn. Another basis is the set of all vectors

ei + ei+1, 1 ≤ i ≤ n− 1.

If Λ is a lattice of rank r in Rn with a basis a1, . . . ,ar and y ∈ Λ, then there
exist m1, . . . ,mr ∈ Z such that

y =

r∑
i=1

miai = Am,

where

m =

m1

...
mr

 ∈ Zr,

and A is an n× r basis matrix for Λ of the form A = (a1 . . . ar), which has rank r.
In other words, a lattice Λ of rank r in Rn can always be described as Λ = AZr,
where A is its m×r basis matrix with real entries of rank r. As we remarked above,
bases are not unique; as we will see later, each lattice has bases with particularly
nice properties.

An important property of lattices is discreteness. To explain what we mean
more notation is needed. First notice that Euclidean space Rn is clearly not com-
pact, since it is not bounded. It is however locally compact: this means that for
every point x ∈ Rn there exists an open set containing x whose closure is compact,
for instance take an open unit ball centered at x. More generally, every subspace
V of Rn is also locally compact. A subset Γ of V is called discrete if for each
x ∈ Γ there exists an open set S ⊆ V such that S ∩ Γ = {x}. For instance Zn is a
discrete subset of Rn: for each point x ∈ Zn the open ball of radius 1/2 centered
at x contains no other points of Zn. We say that a discrete subset Γ is co-compact
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in V if there exists a compact 0-symmetric subset U of V such that the union of
translations of U by the points of Γ covers the entire space V , i.e. if

V =
⋃
{U + x : x ∈ Γ}.

Here U + x = {u+ x : u ∈ U}.
Recall that a subset G is a subgroup of the additive abelian group Rn if it

satisfies the following conditions:

(1) Identity: 0 ∈ G,
(2) Closure: For every x,y ∈ G, x+ y ∈ G,
(3) Inverses: For every x ∈ G, −x ∈ G.

By Problems 1.13 and 1.14 a lattice Λ of rank r in Rn is a discrete co-compact
subgroup of V = spanR Λ. In fact, the converse is also true.

Theorem 1.3.1. Let V be an r-dimensional subspace of Rn, and let Γ be a discrete
co-compact subgroup of V . Then Γ is a lattice of rank r in Rn.

Proof. In other words, we want to prove that Γ has a basis, i.e. that there
exists a collection of linearly independent vectors a1, . . . ,ar in Γ such that Γ =
spanZ{a1, . . . ,ar}. We start by inductively constructing a collection of vectors
a1, . . . ,ar, and then show that it has the required properties.

Let a1 ̸= 0 be a point in Γ such that the line segment connecting 0 and a1

contains no other points of Γ. Now assume a1, . . . ,ai−1, 2 ≤ i ≤ r, have been
selected; we want to select ai. Let

Hi−1 = spanR{a1, . . . ,ai−1},

and pick any c ∈ Γ \Hi−1: such c exists, since Γ ̸⊆ Hi−1 (otherwise Γ would not
be co-compact in V ). Let Pi be the closed parallelotope spanned by the vectors
a1, . . . ,ai−1, c. Notice that since Γ is discrete in V , Γ∩Pi is a finite set. Moreover,
since c ∈ Pi, Γ ∩ Pi ̸⊆ Hi−1. Then select ai such that

d(ai, Hi−1) = min
y∈(Pi∩Γ)\Hi−1

{d(y, Hi−1)},

where for any point y ∈ Rn,

d(y, Hi−1) = inf
x∈Hi−1

{d(y,x)}.

Let a1, . . . ,ar be the collection of points chosen in this manner. Then we have

a1 ̸= 0, ai /∈ spanZ{a1, . . . ,ai−1} ∀ 2 ≤ i ≤ r,

which means that a1, . . . ,ar are linearly independent. Clearly,

spanZ{a1, . . . ,ar} ⊆ Γ.

We will now show that

Γ ⊆ spanZ{a1, . . . ,ar}.
First of all notice that a1, . . . ,ar is certainly a basis for V , and so if x ∈ Γ ⊆ V ,
then there exist c1, . . . , cr ∈ R such that

x =

r∑
i=1

ciai.
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Notice that

x′ =

r∑
i=1

[ci]ai ∈ spanZ{a1, . . . ,ar} ⊆ Γ,

where [ ] stands for the integer part function (i.e. [ci] is the largest integer which is
no larger than ci). Since Γ is a group, we must have

z = x− x′ =

r∑
i=1

(ci − [ci])ai ∈ Γ.

Then notice that

d(z, Hr−1) = (cr − [cr]) d(ar, Hr−1) < d(ar, Hr−1),

but by construction we must have either z ∈ Hr−1, or

d(ar, Hr−1) ≤ d(z, Hr−1),

since z lies in the parallelotope spanned by a1, . . . ,ar, and hence in Pr as in our
construction above. Therefore cr = [cr]. We proceed in the same manner to
conclude that ci = [ci] for each 1 ≤ i ≤ r, and hence x ∈ spanZ{a1, . . . ,ar}. Since
this is true for every x ∈ Γ, we are done. □

From now on, until further notice, our lattices will be of full rank in Rn, that
is of rank n. In other words, a lattice Λ ⊂ Rn will be of the form Λ = AZn, where
A is a non-singular n× n basis matrix for Λ.

Theorem 1.3.2. Let Λ be a lattice of rank n in Rn, and let A be a basis matrix
for Λ. Then B is another basis matrix for Λ if and only if there exists an n × n
integral matrix U with determinant ±1 such that

B = AU.

Proof. First suppose that B is a basis matrix. Notice that, since A is a basis
matrix, for every 1 ≤ i ≤ n the i-th column vector bi of B can be expressed as

bi =

n∑
j=1

uijaj ,

where a1, . . . ,an are column vectors of A, and uij ’s are integers for all 1 ≤ j ≤ n.
This means that B = AU , where U = (uij)1≤i,j≤n is an n× n matrix with integer
entries. On the other hand, since B is also a basis matrix, we also have for every
1 ≤ i ≤ n

ai =

n∑
j=1

wijbj ,

where wij ’s are also integers for all 1 ≤ j ≤ N . Hence A = BW , where W =
(wij)1≤i,j≤n is also an n× n matrix with integer entries. Then

B = AU = BWU,

which means that WU = In, the n× n identity matrix. Therefore

det(WU) = det(W ) det(U) = det(In) = 1,

but det(U),det(W ) ∈ Z since U and W are integral matrices. This means that

det(U) = det(W ) = ±1.
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Next assume that B = UA for some integral n×n matrix U with det(U) = ±1.
This means that det(B) = ±det(A) ̸= 0, hence column vectors of B are linearly
independent. Also, U is invertible over Z, meaning that U−1 = (wij)1≤i,j≤n is also
an integral matrix, hence A = U−1B. This means that column vectors of A are in
the span of the column vectors of B, and so

Λ ⊆ spanZ{b1, . . . , bn}.
On the other hand, bi ∈ Λ for each 1 ≤ i ≤ n. Thus B is a basis matrix for Λ. □

Corollary 1.3.3. If A and B are two basis matrices for the same lattice Λ, then

|det(A)| = |det(B)|.
Definition 1.3.2. The common determinant value of Corollary 1.3.3 is called the
determinant of the lattice Λ, and is denoted by det(Λ).

We now talk about sublattices of a lattice. Let us start with a definition.

Definition 1.3.3. If Λ and Ω are both lattices in Rn, and Ω ⊆ Λ, then we say that
Ω is a sublattice of Λ.

There are a few basic properties of sublattices of a lattice which we outline here –
their proofs are left to exercises.

(1) A subset Ω of the lattice Λ is a sublattice if and only if it is a subgroup
of the abelian group Λ.

(2) For a sublattice Ω of Λ two cosets x+Ω and y +Ω are equal if and only
if x− y ∈ Ω. In particular, x+Ω = Ω if and only if x ∈ Ω.

(3) If Λ is a lattice and µ a real number, then the set

µΛ := {µx : x ∈ Λ}
is also a lattice. Further, if µ is an integer then µΛ is a sublattice of Λ.

From here on, unless stated otherwise, when we say Ω ⊆ Λ is a sublattice, we always
assume that it has the same full rank in Rn as Λ.

Lemma 1.3.4. Let Ω be a subattice of Λ. There exists a positive integer D such that
DΛ ⊆ Ω.

Proof. Recall that Λ and Ω are both lattices of rank n in Rn. Let a1, . . . ,an

be a basis for Ω and b1, . . . , bn be a basis for Λ. Then

spanR{a1, . . . ,an} = spanR{b1, . . . , bn} = Rn.

Since Ω ⊆ Λ, there exist integers u11, . . . , unn such that
a1 = u11b1 + · · ·+ u1nbn
...

...
...

an = un1b1 + · · ·+ unnbn.

Solving this linear system for b1, . . . , bn in terms of a1, . . . ,an, we easily see that
there must exist rational numbers p11

q11
, . . . , pnn

qnn
such that

b1 = p11

q11
a1 + · · ·+ p1n

q1n
an

...
...

...
bn = pn1

qn1
a1 + · · ·+ pnn

qnn
an.
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Let D = q11×· · ·×qnn, then D/qij ∈ Z for each 1 ≤ i, j,≤ n, and so all the vectors
Db1 = Dp11

q11
a1 + · · ·+ Dp1n

q1n
an

...
...

...

Dbn = Dpn1

qn1
a1 + · · ·+ Dpnn

qnn
an

are in Ω. Therefore spanZ{Db1, . . . , Dbn} ⊆ Ω. On the other hand,

spanZ{Db1, . . . , Dbn} = D spanZ{b1, . . . , bn} = DΛ,

which completes the proof. □

We can now prove that a lattice always has a basis with “nice” properties with
respect to any given basis of a given sublattice, and vice versa.

Theorem 1.3.5. Let Λ be a lattice, and Ω a sublattice of Λ. For each basis
b1, . . . , bn of Λ, there exists a basis a1, . . . ,an of Ω of the form

a1 = v11b1
a2 = v21b1 + v22b2
. . . . . . . . . . . . . . . . . . . . . . . .
an = vn1b1 + · · ·+ vnnbn,

where all vij ∈ Z and vii ̸= 0 for all 1 ≤ i ≤ n. Conversely, for every basis
a1, . . . ,an of Ω there exists a basis b1, . . . , bn of Λ such that the relations as above
hold.

Proof. Let b1, . . . , bn be a basis for Λ. We will first prove the existence of
a basis a1, . . . ,an for Ω as claimed by the theorem. By Lemma 1.3.4, there exist
integer multiples of b1, . . . , bn in Ω, hence it is possible to choose a collection of
vectors a1, . . . ,an ∈ Ω of the form

ai =

i∑
j=1

vijbj ,

for each 1 ≤ i ≤ n with vii ̸= 0. Clearly, by construction, such a collection of
vectors will be linearly independent. In fact, let us pick each ai so that |vii| is as
small as possible, but not 0. We will now show that a1, . . . ,an is a basis for Ω.
Clearly,

spanZ{a1, . . . ,an} ⊆ Ω.

We want to prove the inclusion in the other direction, i.e. that

(1.3) Ω ⊆ spanZ{a1, . . . ,an}.
Suppose (1.3) is not true, then there exists c ∈ Ω which is not in spanZ{a1, . . . ,an}.
Since c ∈ Λ, we can write

c =

k∑
j=1

tjbj ,

for some integers 1 ≤ k ≤ n and t1, . . . , tk. In fact, let us select a c like this with
minimal possible k. Since vkk ̸= 0, we can choose an integer s such that

(1.4) |tk − svkk| < |vkk|.
Then we clearly have

c− sak ∈ Ω \ spanZ{a1, . . . ,an}.



12 1. GEOMETRY OF NUMBERS

Therefore we must have tk−svkk ̸= 0 by minimality of k. But then (1.4) contradicts
the minimality of |vkk|: we could take c−sak instead of ak, since it satisfies all the
conditions that ak was chosen to satisfy, and then |vkk| is replaced by the smaller
nonzero number |tk − svkk|. This proves that c like this cannot exist, and so (1.3)
is true, hence finishing one direction of the theorem.

Now suppose that we are given a basis a1, . . . ,an for Ω. We want to prove
that there exists a basis b1, . . . , bn for Λ such that relations in the statement of the
theorem hold. This is a direct consequence of the argument in the proof of Theorem
1.3.1. Indeed, at i-th step of the basis construction in the proof of Theorem 1.3.1,
we can choose i-th vector, call it bi, so that it lies in the span of the previous
i − 1 vectors and the vector ai. Since b1, . . . , bn constructed this way are linearly
independent (in fact, they form a basis for Λ by the construction), we obtain that

ai ∈ spanZ{b1, . . . , bi} \ spanZ{b1, . . . , bi−1},

for each 1 ≤ i ≤ n. This proves the second half of our theorem. □

In fact, it is possible to select the coefficients vij in Theorem 1.3.5 so that the
matrix (vij)1≤i,j≤n is upper (or lower) triangular with non-negative entries, and
the largest entry of each row (or column) is on the diagonal: we leave the proof of
this to Problem 1.19.

Remark 1.3.1. Let the notation be as in Theorem 1.3.5. Notice that if A is any
basis matrix for Ω and B is any basis for Λ, then there exists an integral matrix V
such that A = BV . Then Theorem 1.3.5 implies that for a given B there exists an A
such that V is lower triangular, and for for a given A exists a B such that V is lower
triangular. Since two different basis matrices of the same lattice are always related
by multiplication by an integral matrix with determinant equal to ±1, Theorem
1.3.5 can be thought of as the construction of Hermite normal form for an integral
matrix. Problem 1.19 places additional restrictions that make Hermite normal form
unique.

Here is an important implication of Theorem 1.3.5.

Theorem 1.3.6. Let Ω ⊆ Λ be a sublattice. Then det(Ω)
det(Λ) is an integer; moreover,

the number of cosets of Ω in Λ, i.e. the index of Ω as a subgroup of Λ is

[Λ : Ω] =
det(Ω)

det(Λ)
.

Proof. Let b1, . . . , bn be a basis for Λ, and a1, . . . ,an be a basis for Ω, so
that these two bases satisfy the conditions of Theorem 1.3.5, and write A and B
for the corresponding basis matrices. Then notice that

B = AV,

where V = (vij)1≤i,j≤n is an n × n triangular matix with entries as described in
Theorem 1.3.5; in particular det(V ) =

∏n
i=1 |vii|. Hence

det(Ω) = |det(A)| = |det(B)||det(V )| = det(Λ)

n∏
i=1

|vii|,

which proves the first part of the theorem.
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Moreover, notice that each vector c ∈ Λ is contained in the same coset of Ω in
Λ as precisely one of the vectors

q1b1 + · · ·+ qnbn, 0 ≤ qi < vii ∀ 1 ≤ i ≤ n,

in other words there are precisely
∏n

i=1 |vii| cosets of Ω in Λ. This completes the
proof. □

There is yet another, more analytic interpretation of the determinant of a
lattice.

Definition 1.3.4. A fundamental domain of a lattice Λ of full rank in Rn is a
convex set F ⊆ Rn containing 0, so that

Rn =
⋃
x∈Λ

(F + x),

and for every x ̸= y ∈ Λ, (F + x) ∩ (F + y) = ∅.

In other words, a fundamental domain of a lattice Λ ⊂ Rn is a full set of coset
representatives of Λ in Rn (see Problem 1.20). Although each lattice has infinitely
many different fundamental domains, they all have the same volume, which is equal
to the determinant of the lattice. This fact can be easily proved for a special class
of fundamental domains (see Problem 1.21).

Definition 1.3.5. Let Λ be a lattice, and a1, . . . ,an be a basis for Λ. Then the
set

F =

{
n∑

i=1

tiai : 0 ≤ ti < 1, ∀ 1 ≤ i ≤ n

}
,

is called a fundamental parallelotope of Λ with respect to the basis a1, . . . ,an. It is
easy to see that this is an example of a fundamental domain for a lattice.

Fundamental parallelotopes form the most important class of fundamental domains,
which we will work with most often. Notice that they are not closed sets; we will
often write F for the closure of a fundamental parallelotope, and call them closed
fundamental domains. Another important convex set associated to a lattice is its
Voronoi cell, which is the closure of a fundamental domain; by a certain abuse of
notation we will often refer to it also as a fundamental domain.

Definition 1.3.6. The Voronoi cell of a lattice Λ is the set

V(Λ) = {x ∈ Rn : ∥x∥ ≤ ∥x− y∥ ∀ y ∈ Λ}.

It is easy to see that V(Λ) is (the closure of) a fundamental domain for Λ: two
translates of a Voronoi cell by points of the lattice intersect only in the boundary.
The advantage of the Voronoi cell is that it is the most “round” fundamental domain
for a lattice; we will see that it comes up very naturally in the context of sphere
packing and covering problems.

Notice that everything we discussed so far also has analogues for lattices of not
necessarily full rank. We mention this here briefly without proofs. Let Λ be a lattice
in Rn of rank 1 ≤ r ≤ n, and let a1, . . . ,ar be a basis for it. Write A = (a1 . . . ar)
for the corresponding n× r basis matrix of Λ, then A has rank r since its column
vectors are linearly independent. For any r× r integral matrix U with determinant
±1, AU is another basis matrix for Λ; moreover, if B is any other basis matrix for
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Λ, there exists such a U so that B = AU . For each basis matrix A of Λ, we define
the corresponding Gram matrix to be M = A⊤A, so it is a square r×r nonsingular
matrix. Notice that if A and B are two basis matrices so that B = UA for some U
as above, then

det(B⊤B) = det((AU)⊤(AU)) = det(U⊤(A⊤A)U)

= det(U)2 det(A⊤A) = det(A⊤A).

This observation calls for the following general definition of the determinant of a
lattice. Notice that this definition coincides with the previously given one in case
r = n.

Definition 1.3.7. Let Λ be a lattice of rank 1 ≤ r ≤ n in Rn, and let A be an
n× r basis matrix for Λ. The determinant of Λ is defined to be

det(Λ) =
√

det(A⊤A),

that is the determinant of the corresponding Gram matrix. By the discussion above,
this is well defined, i.e. does not depend on the choice of the basis.

With this notation, all results and definitions of this section can be restated for
a lattice Λ of not necessarily full rank. For instance, in order to define fundamental
domains we can view Λ as a lattice inside of the vector space spanR(Λ). The rest
works essentially verbatim, keeping in mind that if Ω ⊆ Λ is a sublattice, then
index [Λ : Ω], which is the number of cosets of Ω in Λ, is finite (and hence given by
the formula of Theorem 1.3.6) if and only if rk(Ω) = rk(Λ).
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1.4. Theorems of Blichfeldt and Minkowski

In this section we will discuss some of the famous theorems related to the
following very classical problem in the geometry of numbers: given a set M and a
lattice Λ in Rn, how can we tell if M contains any points of Λ?

Theorem 1.4.1 (Blichfeldt, 1914). Let M be a Jordan measurable set in Rn. Sup-
pose that Vol(M) > 1, or that M is closed, bounded and Vol(M) ≥ 1. Then there
exist x,y ∈M such that 0 ̸= x− y ∈ Zn.

Proof. First suppose that Vol(M) > 1. Let

P = {x ∈ Rn : 0 ≤ xi < 1 ∀ 1 ≤ i ≤ n},
and let

S = {u ∈ Zn : M ∩ (P + u) ̸= ∅}.
Since M is bounded, S is a finite set, say S = {u1, . . . ,ur0}. Write Mr = M ∩ (P +
ur) for each 1 ≤ r ≤ r0. Also, for each 1 ≤ r ≤ r0, define

M ′
r = Mr − ur,

so that M ′
1, . . . ,M

′
r0 ⊆ P . On the other hand,

⋃r0
r=1 Mr = M , and Mr ∩Ms = ∅ for

all 1 ≤ r ̸= s ≤ r0, since Mr ⊆ P +ur, Ms ⊆ P +us, and (P +ur)∩ (P +us) = ∅.
This means that

1 < Vol(M) =

r0∑
r=1

Vol(Mr).

However, Vol(M ′
r) = Vol(Mr) for each 1 ≤ r ≤ r0,

r0∑
r=1

Vol(M ′
r) > 1,

but
⋃r0

r=1 M
′
r ⊆ P , and so

Vol

(
r0⋃
r=1

M ′
r

)
≤ Vol(P ) = 1.

Hence the sets M ′
1, . . . ,M

′
r0 are not mutually disjoined, meaning that there exist

indices 1 ≤ r ̸= s ≤ r0 such that there exists x ∈ M ′
r ∩ M ′

s. Then we have
x+ ur,x+ us ∈M , and

(x+ ur)− (x+ us) = ur − us ∈ Zn.

Now supposeM is closed, bounded, and Vol(M) = 1. Let {sr}∞r=1 be a sequence
of numbers all greater than 1, such that

lim
r→∞

sr = 1.

By the argument above we know that for each r there exist

xr ̸= yr ∈ srM

such that xr − yr ∈ Zn. Then there are subsequences {xrk} and {yrk
} converging

to points x,y ∈ M , respectively. Since for each rk, xrk − yrk
is a nonzero lattice

point, it must be true that x ̸= y, and x− y ∈ Zn. This completes the proof. □

As a corollary of Theorem 1.4.1 we can prove the following version of Minkowski
Convex Body Theorem.
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Theorem 1.4.2 (Minkowski). Let M ⊂ Rn be a compact convex 0-symmetric set
with Vol(M) ≥ 2n. Then there exists 0 ̸= x ∈M ∩ Zn.

Proof. Notice that the set

1

2
M =

{
1

2
x : x ∈M

}
=


1/2 0 . . . 0
0 1/2 . . . 0
...

...
. . .

...
0 0 . . . 1/2

M

is also convex, 0-symmetric, and by Problem 1.22 its volume is

det


1/2 0 . . . 0
0 1/2 . . . 0
...

...
. . .

...
0 0 . . . 1/2

Vol(M) = 2−n Vol(M) ≥ 1.

Thererfore, by Theorem 1.4.1, there exist 1
2x ̸=

1
2y ∈

1
2M such that

1

2
x− 1

2
y ∈ Zn.

But, by symmetry, since y ∈M , −y ∈M , and by convexity, since x,−y ∈M ,

1

2
x− 1

2
y =

1

2
x+

1

2
(−y) ∈M.

This completes the proof. □

Remark 1.4.1. This result is sharp: for any ε > 0, the cube

C =

{
x ∈ Rn : max

1≤i≤n
|xi| ≤ 1− ε

2

}
is a convex 0-symmetric set of volume (2− ε)n, which contains no nonzero integer
lattice points.

Problem 1.23 extends Blichfeldt and Minkowski theorems to arbitrary lattices as
follows:

• If Λ ⊂ Rn is a lattice of full rank and M ⊂ Rn is a compact convex set
with Vol(M) ≥ detΛ, then there exist x,y ∈M such that 0 ̸= x−y ∈ Λ.

• If Λ ⊂ Rn is a lattice of full rank and M ⊂ Rn is a compact convex 0-
symmetric set with Vol(M) ≥ 2n detΛ, then there exists 0 ̸= x ∈M ∩ Λ.

As a first application of these results, we now prove Minkowski’s Linear Forms
Theorem.

Theorem 1.4.3. Let B = (bij)1≤i,j≤n ∈ GLn(R), and for each 1 ≤ i ≤ n define a
linear form with coefficients bi1, . . . , bin by

Li(X) =

n∑
j=1

bijXj .

Let c1, . . . , cn ∈ R>0 be such that

c1 . . . cn = |det(B)|.
Then there exists 0 ̸= x ∈ Zn such that

|Li(x)| ≤ ci,
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for each 1 ≤ i ≤ n.

Proof. Let us write b1, . . . , bn for the row vectors of B, then

Li(x) = bix,

for each x ∈ Rn. Consider parallelepiped

P = {x ∈ Rn : |Li(x)| ≤ ci ∀ 1 ≤ i ≤ n} = B−1R,

where R = {x ∈ Rn : |xi| ≤ ci ∀ 1 ≤ i ≤ n} is the rectangular box with sides of
length 2c1, . . . , 2cn centered at the origin in Rn. Then by Problem 1.22,

Vol(P ) = |det(B)|−1 Vol(R) = |det(B)|−12nc1 . . . cn = 2n,

and so by Theorem 1.4.2 there exists 0 ̸= x ∈ P ∩ Zn. □
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1.5. Successive minima

Let us start with a certain restatement of Minkowski’s Convex Body theorem.

Corollary 1.5.1. Let M ⊂ Rn be a compact convex 0-symmetric and Λ ⊂ Rn a
lattice of full rank. Define the first successive minimum of M with respect to Λ to
be

λ1 = inf {λ ∈ R>0 : λM ∩ Λ contains a nonzero point } .
Then

0 < λ1 ≤ 2

(
detΛ

Vol(M)

)1/n

.

Proof. The fact that λ1 has to be positive readily follows from Λ being a
discrete set. Hence we only have to prove the upper bound. By Theorem 1.4.2 for
a general lattice Λ (Problem 1.23), if

Vol(λM) ≥ 2n det(Λ),

then λM contains a nonzero point of Λ. On the other hand, by Problem 1.22,

Vol(λM) = λn Vol(M).

Hence as long as
λn Vol(M) ≥ 2n det(Λ),

the expanded set λM is guaranteed to contain a nonzero point of Λ. The conclusion
of the corollary follows. □

The above corollary thus provides an estimate as to how much should the set
M be expanded to contain a nonzero point of the lattice Λ: this is the meaning
of λ1, it is precisely this expansion factor. A natural next question to ask is how
much should we expand M to contain 2 linearly independent points of Λ, 3 linearly
independent points of Λ, etc. To answer this question is the main objective of this
section. We start with a definition.

Definition 1.5.1. Let M be a convex, 0-symmetric set M ⊂ Rn of nonzero volume
and Λ ⊆ Rn a lattice of full rank. For each 1 ≤ i ≤ n define the i-th succesive
minimum of M with respect to Λ, λi, to be the infimum of all positive real numbers
λ such that the set λM contains at least i linearly independent points of Λ. In other
words,

λi = inf {λ ∈ R>0 : dim (spanR{λM ∩ Λ})} ≥ i.

Since Λ is discrete in Rn, the infimum in this definition is always achieved, i.e. it
is actually a minimum.

Remark 1.5.1. Notice that the n linearly independent vectors u1, . . . ,un corre-
sponding to successive minima λ1, . . . , λn, respectively, do not necessarily form a
basis. It was already known to Minkowski that they do in dimensions n = 1, 2, 3,
and in dimension n = 4 there always exists a basis consisting of vectors correspond-
ing to successive minima, but when n = 5 there is a well known counterexample.
Let

Λ =


1 0 0 0 1

2
0 1 0 0 1

2
0 0 1 0 1

2
0 0 0 1 1

2
0 0 0 0 1

2

Z5,
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and let M = B5, the closed unit ball centered at 0 in Rn. Then the successive
minima of B5 with respect to Λ is

λ1 = · · · = λ5 = 1,

since e1, . . . , e5 ∈ B5 ∩ Λ, and

x =

(
1

2
,
1

2
,
1

2
,
1

2
,
1

2

)⊤

/∈ B5.

On the other hand, x cannot be expressed as a linear combination of e1, . . . , e5
with integer coefficients, hence

spanZ{e1, . . . , e5} ⊂ Λ.

An immediate observation is that

0 < λ1 ≤ λ2 ≤ · · · ≤ λn

and Corollary 1.5.1 gives an upper bound on λ1. Can we produce bounds on all
the successive minima in terms of Vol(M) and det(Λ)? This question is answered
by Minkowski’s Successive Minima Theorem.

Theorem 1.5.2. With notation as above,

2n det(Λ)

n! Vol(M)
≤ λ1 . . . λn ≤

2n det(Λ)

Vol(M)
.

Proof. We present the proof in case Λ = Zn, leaving generalization of the
given argument to arbitrary lattices as an excercise. We start with a proof of the
lower bound following [GL87], which is considerably easier than the upper bound.
Let u1, . . . ,un be the n linearly independent vectors corresponding to the respective
successive minima λ1, . . . , λn, and let

U = (u1 . . .un) =

u11 . . . un1

...
. . .

...
u1n . . . unn

 .

Then U = UZn is a full rank sublattice of Zn with index |det(U)|. Notice that the
2n points

±u1

λ1
, . . . ,±un

λn

lie in M , hence M contains the convex hull P of these points, which is a generalized
octahedron. Any polyhedron in Rn can be decomposed as a union of simplices that
pairwise intersect only in the boundary. A standard simplex in Rn is the convex
hull of n points, so that no 3 of them are co-linear, no 4 of them are co-planar,
etc., no k of them lie in a (k − 1)-dimensional subspace of Rn, and so that their
convex hull does not contain any integer lattice points in its interior. The volume
of a standard simplex in Rn is 1/n! (Problem 1.24).

Our generalized octahedron P can be decomposed into 2n simplices, which are
obtained from the standard simplex by multiplication by the matrix

u11

λ1
. . . un1

λn

...
. . .

...
u1n

λ1
. . . unn

λn

 ,
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therefore its volume is

(1.5) Vol(P ) =
2n

n!

∣∣∣∣∣∣∣det


u11

λ1
. . . un1

λn

...
. . .

...
u1n

λ1
. . . unn

λn


∣∣∣∣∣∣∣ =

2n|det(U)|
n! λ1 . . . λN

≥ 2n

n! λ1 . . . λn
,

since det(U) is an integer. Since P ⊆ M , Vol(M) ≥ Vol(P ). Combining this last
observation with (1.5) yields the lower bound of the theorem.

Next we prove the upper bound. The argument we present is due to M. Henk
[Hen02], and is at least partially based on Minkowski’s original geometric ideas.
For each 1 ≤ i ≤ n, let

Ei = spanR{e1, . . . , ei},
the i-th coordinate subspace of Rn, and define

Mi =
λi

2
M.

As in the proof of the lower bound, we take u1, . . . ,un to be the n linearly inde-
pendent vectors corresponding to the respective successive minima λ1, . . . , λn. In
fact, notice that there exists a matrix A ∈ GLn(Z) such that

A spanR{u1, . . . ,ui} ⊆ Ei,

for each 1 ≤ i ≤ n, i.e. we can rotate each spanR{u1, . . . ,ui} so that it is contained
in Ei. Moreover, volume of AM is the same as volume of M , since det(A) = 1 (i.e.
rotation does not change volumes), and

Aui ∈ λ′
iAM ∩ Ei, ∀ 1 ≤ i ≤ n,

where λ′
1, . . . λ

′
n is the successive minima of AM with respect to Zn. Hence we can

assume without loss of generality that

spanR{u1, . . . ,ui} ⊆ Ei,

for each 1 ≤ i ≤ n.

For an integer q ∈ Z>0, define the integral cube of sidelength 2q centered at 0
in Rn

Cn
q = {z ∈ Zn : |z| ≤ q},

and for each 1 ≤ i ≤ n define the section of Cn
q by Ei

Ci
q = Cn

q ∩ Ei.

Notice that Cn
q is contained in real cube of volume (2q)n, and so the volume of all

translates of M by the points of Cn
q can be bounded

(1.6) Vol(Cn
q +Mn) ≤ (2q + γ)n,

where γ is a constant that depends on M only. Also notice that if x ̸= y ∈ Zn,
then

int(x+M1) ∩ int(y +M1) = ∅,
where int stands for interior of a set: suppose not, then there exists

z ∈ int(x+M1) ∩ int(y +M1),
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and so

(z − x)− (z − y) = y − x ∈ int(M1)− int(M1)

= {z1 − z2 : z1, z2 ∈M1} = int(λ1M),(1.7)

which would contradict minimality of λ1. Therefore

(1.8) Vol(Cn
q +M1) = (2q + 1)n Vol(M1) = (2q + 1)n

(
λ1

2

)n

Vol(M).

To finish the proof, we need the following lemma.

Lemma 1.5.3. For each 1 ≤ i ≤ n− 1,

(1.9) Vol(Cn
q +Mi+1) ≥

(
λi+1

λi

)n−i

Vol(Cn
q +Mi).

Proof. If λi+1 = λi the statement is obvious, so assume λi+1 > λi. Let
x,y ∈ Zn be such that

(xi+1, . . . , xn) ̸= (yi+1, . . . , yn).

Then

(1.10) (x+ int(Mi+1)) ∩ (y + int(Mi+1)) = ∅.
Indeed, suppose (1.10) is not true, i.e. there exists z ∈ (x + int(Mi+1)) ∩ (y +
int(Mi+1)). Then, as in (1.7) above, x− y ∈ int(λi+1M). But we also have

u1, . . . ,ui ∈ int(λi+1M),

since λi+1 > λi, and so λiM ⊆ int(λi+1M). Moreover, u1, . . . ,ui ∈ Ei, meaning
that

ujk = 0 ∀ 1 ≤ j ≤ i, i+ 1 ≤ k ≤ n.

On the other hand, at least one of

xk − yk, i+ 1 ≤ k ≤ n,

is not equal to 0. Hence x− y,u1, . . . ,ui are linearly independent, but this means
that int(λi+1M) contains i+1 linearly independent points, contradicting minimality
of λi+1. This proves (1.10). Notice that (1.10) implies

Vol(Cn
q +Mi+1) = (2q + 1)n−i Vol(Ci

q +Mi+1),

and
Vol(Cn

q +Mi) = (2q + 1)n−i Vol(Ci
q +Mi),

since Mi ⊆Mi+1. Hence, in order to prove the lemma it is sufficient to prove that

(1.11) Vol(Ci
q +Mi+1) ≥

(
λi+1

λi

)n−i

Vol(Ci
q +Mi).

Define two linear maps f1, f2 : Rn → Rn, given by

f1(x) =

(
λi+1

λi
x1, . . . ,

λi+1

λi
xi, xi+1, . . . , xn

)
,

f2(x) =

(
x1, . . . , xi,

λi+1

λi
xi+1, . . . ,

λi+1

λi
xn

)
,

and notice that f2(f1(Mi)) = Mi+1, f2(C
i
q) = Ci

q. Therefore

f2(C
i
q + f1(Mi)) = Ci

q +Mi+1.
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This implies that

Vol(Ci
q +Mi+1) =

(
λi+1

λi

)n−i

Vol(Ci
q + f1(Mi)),

and so to establish (1.11) it is sufficient to show that

(1.12) Vol(Ci
q + f1(Mi)) ≥ Vol(Ci

q +Mi).

Let
E⊥

i = spanR{ei+1, . . . , en},
i.e. E⊥

i is the orthogonal complement of Ei, and so has dimension n − i. Notice
that for every x ∈ E⊥

i there exists t(x) ∈ Ei such that

Mi ∩ (x+ Ei) ⊆ (f1(Mi) ∩ (x+ Ei)) + t(x),

in other words, although it is not necessarily true that Mi ⊆ f1(Mi), each section
of Mi by a translate of Ei is contained in a translate of some such section of f1(Mi).
Therefore

(Ci
q +Mi) ∩ (x+ Ei) ⊆ (Ci

q + f1(Mi)) ∩ (x+ Ei)) + t(x),

and hence

Vol(Ci
q +Mi) =

∫
x∈E⊥

i

Voli((C
i
q +Mi) ∩ (x+ Ei)) dx

≤
∫
x∈E⊥

i

Voli((C
i
q + f1(Mi)) ∩ (x+ Ei)) dx

= Vol(Ci
q + f1(Mi)),

where Voli stands for the i-dimensional volume. This completes the proof of (1.12),
and hence of the lemma. □

Now, combining (1.6), (1.8), and (1.9), we obtain:

(2q + γ)n ≥ Vol(Cn
q +Mn) ≥

(
λn

λn−1

)
Vol(Cn

q +Mn−1) ≥ . . .

≥
(

λn

λn−1

)(
λn−1

λn−2

)2

. . .

(
λ2

λ1

)n−1

Vol(Cn
q +M1)

= λn . . . λ1
Vol(M)

2n
(2q + 1)n,

hence

λ1 . . . λn ≤
2n

Vol(M)

(
2q + γ

2q + 1

)n

→ 2n

Vol(M)
,

as q →∞, since q ∈ Z>0 is arbitrary. This completes the proof. □

We can talk about successive minima of any convex 0-symmetric set in Rn with
respect to the lattice Λ. Perhaps the most frequently encountered such set is the
closed unit ball Bn in Rn centered at 0. We define the successive minima of Λ to
be the successive minima of Bn with respect to Λ. Notice that successive minima
are invariants of the lattice.
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1.6. Inhomogeneous minimum

Here we exhibit one important application of Minkowski’s successive minima
theorem. As before, let Λ ⊆ Rn be a lattice of full rank, and let M ⊆ Rn be a
convex 0-symmetric set of nonzero volume. Throughout this section, we let

λ1 ≤ · · · ≤ λn

to be the successive minima of M with respect to Λ. We define the inhomogeneous
minimum of M with respect to Λ to be

µ = inf{λ ∈ R>0 : λM + Λ = Rn}.
The main objective of this section is to obtain some basic bounds on µ. We start
with the following result of Jarnik [Jar41].

Lemma 1.6.1.

µ ≤ 1

2

n∑
i=1

λi.

Proof. Let us define a function

F (x) = inf{a ∈ R>0 : x ∈ aM},
for every x ∈ Rn. This function is a norm (Problem 1.25). Then

M = {x ∈ Rn : F (x) ≤ 1}
can be thought of as the unit ball with respect to this norm. We will say that F
is the norm of M . Let z ∈ Rn be an arbitrary point. We want to prove that there
exists a point v ∈ Λ such that

F (z − v) ≤ 1

2

n∑
i=1

λi.

This would imply that z ∈
(
1
2

∑n
i=1 λi

)
M + v, and hence settle the lemma, since

z is arbitrary. Let u1, . . . ,un be the linearly independent vectors corresponding to
successive minima λ1, . . . , λn, respectively. Then

F (ui) = λi, ∀ 1 ≤ i ≤ n.

Since u1, . . . ,un form a basis for Rn, there exist a1, . . . , an ∈ R such that

z =

n∑
i=1

aiui.

We can also choose integer v1, . . . , vn such that

|ai − vi| ≤
1

2
, ∀ 1 ≤ i ≤ n,

and define v =
∑n

i=1 viui, hence v ∈ Λ. Now notice that

F (z − v) = F

(
n∑

i=1

(ai − vi)ui

)

≤
n∑

i=1

|ai − vi|F (ui) ≤
1

2

n∑
i=1

λi,

since F is a norm. This completes the proof. □
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Using Lemma 1.6.1 along with Minkowski’s successive minima theorem, we can
obtain some bounds on µ in terms of the determinant of Λ and volume of M . A
nice bound can be easily obtained in an important special case.

Corollary 1.6.2. If λ1 ≥ 1, then

µ ≤ 2n−1n det(Λ)

Vol(M)
.

Proof. Since

1 ≤ λ1 ≤ · · · ≤ λn,

Theorem 1.5.2 implies

λn ≤ λ1 . . . λn ≤
2n det(Λ)

Vol(M)
,

and by Lemma 1.6.1,

µ ≤ 1

2

n∑
i=1

λi ≤
n

2
λn.

The result follows by combining these two inequalities. □

A general bound depending also on λ1 was obtained by Scherk [Sch50], once
again using Minkowski’s successive minima theorem (Theorem 1.5.2) and Jarnik’s
inequality (Lemma 1.6.1) He observed that if λ1 is fixed and λ2, . . . , λn are subject
to the conditions

λ1 ≤ · · · ≤ λn, λ1 . . . λn ≤
2n det(Λ)

Vol(M)
,

then the maximum of the sum

λ1 + · · ·+ λn

is attained when

λ1 = λ2 = · · · = λn−1, λn =
2n det(Λ)

λn−1
1 Vol(M)

.

Hence we obtain Scherk’s inequality for µ.

Corollary 1.6.3.

µ ≤ n− 1

2
λ1 +

2n−1 det(Λ)

λn−1
1 Vol(M)

.

One can also obtain lower bounds for µ. First notice that for every σ > µ, then
the bodies σM + x cover Rn as x ranges through Λ. This means that µM must
contain a fundamental domain F of Λ, and so

Vol(µM) = µn Vol(M) ≥ Vol(F) = det(Λ),

hence

(1.13) µ ≥
(

det(Λ)

Vol(M)

)1/n

.

In fact, by Theorem 1.5.2,(
det(Λ)

Vol(M)

)1/n

≥ (λ1 . . . λn)
1/n

2
≥ λ1

2
,
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and combining this with (1.13), we obtain

(1.14) µ ≥ λ1

2
.

Jarnik obtained a considerably better lower bound for µ in [Jar41].

Lemma 1.6.4.

µ ≥ λn

2
.

Proof. Let u1, . . . ,un be the linearly independent points of Λ corresponding
to the successive minima λ1, . . . , λn of M with respect to Λ. Let F be the norm of
M , then

F (ui) = λi, ∀ 1 ≤ i ≤ n.

We will first prove that for every x ∈ Λ,

(1.15) F

(
x− 1

2
un

)
≥ 1

2
λn.

Suppose not, then there exists some x ∈ Λ such that F
(
x− 1

2un

)
< 1

2λn. Since F
is a norm, we have

F (x) ≤ F

(
x− 1

2
un

)
+ F

(
1

2
un

)
<

1

2
λn +

1

2
λn = λn,

and similarly

F (un − x) ≤ F

(
1

2
un − x

)
+ F

(
1

2
un

)
< λn.

Therefore, by definition of λn,

x,un − x ∈ spanR{u1, . . . ,un−1},
and so un = x+ (un−x) ∈ spanR{u1, . . . ,un−1}, which is a contradiction. Hence
we proved (1.15) for all x ∈ Λ. Further, by Problem 1.26,

µ = max
z∈Rn

min
x∈Λ

F (x− z).

Then lemma follows by combining this observation with (1.15). □

We define the inhomogeneous minimum of Λ to be the inhomogeneous minimum
of the closed unit ball Bn with respect to Λ, since it will occur quite often. This is
another invariant of the lattice.
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1.7. Problems

Problem 1.1. Prove that ∥ ∥p for each p ∈ Z>0 and | |, as defined in Section 1.2
are indeed norms on Rn.

Problem 1.2. Let F be a norm on Rn, and let C ∈ R be a positive number. Define

An(C) = {x ∈ Rn : F (x) ≤ C}.
Prove that An(C) is a convex set. What is An(C) when F = ∥ ∥1?

Problem 1.3. Prove that a hyperplane H as defined in (1.1) is a subspace of Rn

if and only if b = 0. Prove that in this case dimension of H is n − 1 (we define
co-dimension of an ℓ-dimensional subspace of an n-dimensional vector space, where
1 ≤ ℓ ≤ n, to be n− ℓ; thus co-dimension of H here is 1, as indicated above).

Problem 1.4. Prove that each convex polytope in Rn can be described as a bounded
intersection of finitely many halfspaces, and vice versa.

Problem 1.5. Let f(X1, . . . , Xn) be a homogeneous polynomial of degree d with
real coefficients. Prove that

F (x) = |f(x)|1/d

is a distance function.

Problem 1.6. If F is a distance function on Rn, prove that the set

X = {x ∈ Rn : F (x) ≤ 1}
is a bounded star body.

Problem 1.7. Let X be a star body, and let F be its distance function, i.e. X =
{x ∈ Rn : F (x) ≤ 1}. Prove that

F (x+ y) ≤ F (x) + F (y),

for all x,y ∈ X if and only if X is a convex set.

Problem 1.8. Let f : X → Y be a bijection. Prove that f has an inverse f−1. In
other words, prove that there exists a function f−1 : Y → X such that for every
x ∈ X and y ∈ Y ,

f−1(f(x)) = x, f(f−1(y)) = y.

Problem 1.9. Let R be the set of all real numbers, and define sets

L1 = {(x, x) : x ∈ R},
L2 = {(x, x) : x ∈ R, x ≥ 0} ∪ {(x,−x) : x ∈ R, x < 0}.

(1) Prove that L1 is diffeomorphic to R.
(2) Prove that L2 is homeomorphic to R by explicitly constructing a homeo-

morphism.
(3) Is the homeomorphism you constructed in part (2) a diffeomorphism?
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Problem 1.10. Prove that cones like C1
i and C2

i defined in (1.2) have Jordan
volume.

Problem 1.11. Let a1, . . . ,ar ∈ Rn be linearly independent points. Prove that
r ≤ n.

Problem 1.12. Prove that if Λ is a lattice of rank r in Rn, 1 ≤ r ≤ n, then spanR Λ
is a subspace of Rn of dimension r (by spanR Λ we mean the set of all finite real
linear combinations of vectors from Λ).

Problem 1.13. Let Λ be a lattice of rank r in Rn. By Problem 1.12, V = spanR Λ
is an r-dimensional subspace of Rn. Prove that Λ is a discrete co-compact subset
of V .

Problem 1.14. Let Λ be a lattice of rank r in Rn, and let V = spanR Λ be an
r-dimensional subspace of Rn, as in Problem 1.13 above. Prove that Λ and V are
both additive groups, and Λ is a subgroup of V .

Problem 1.15. Let Λ be a lattice and Ω a subset of Λ. Prove that Ω is a sublattice
of Λ if and only if it is a subgroup of the abelian group Λ.

Problem 1.16. Let Λ be a lattice and Ω a sublattice of Λ of the same rank. Prove
that two cosets x + Ω and y + Ω of Ω in Λ are equal if and only if x − y ∈ Ω.
Conclude that a coset x+Ω is equal to Ω if and only if x ∈ Ω.

Problem 1.17. Let Λ be a lattice and Ω ⊆ Λ a sublattice. Suppose that the quotient
group Λ/Ω is finite. Prove that rank of Ω is the same as rank of Λ.

Problem 1.18. Given a lattice Λ and a real number µ, define

µΛ = {µx : x ∈ Λ}.
Prove that µΛ is a lattice. Prove that if µ is an integer, then µΛ is a sublattice
of Λ.

Problem 1.19. Prove that it is possible to select the coefficients vij in Theorem
1.3.5 so that the matrix (vij)1≤i,j≤n is upper (or lower) triangular with non-negative
entries, and the largest entry of each row (or column) is on the diagonal.

Problem 1.20. Prove that for every point x ∈ Rn there exists uniquely a point
y ∈ F such that

x− y ∈ Λ,

i.e. x lies in the coset y + Λ of Λ in Rn. This means that F is a full set of coset
representatives of Λ in Rn.
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Problem 1.21. Prove that volume of a fundamental parallelotope is equal to the
determinant of the lattice.

Problem 1.22. Let S be a compact convex set in Rn, A ∈ GLn(R), and define

T = AS = {Ax : x ∈ S}.
Prove that Vol(T ) = |det(A)|Vol(S).
Hint: If we treat multiplication by A as coordinate transformation, prove that its
Jacobian is equal to det(A). Now use it in the integral for the volume of T to relate
it to the volume of S.

Problem 1.23. Prove versions of Theorems 1.4.1 - 1.4.2 where Zn is replaced by
an arbitrary lattice Λ ⊆ Rn or rank n and the lower bounds on volume of M are
multiplied by det(Λ).

Hint: Let Λ = AZn for some A ∈ GLn(R). Then a point x ∈ A−1M ∩ Zn if and
only if Ax ∈ M ∩ Λ. Now use Problem 1.22 to relate the volume of A−1M to the
volume of M .

Problem 1.24. Prove that a standard simplex in Rn has volume 1/n!.

Problem 1.25. Let M ⊂ Rn be a compact convex 0-symmetric set. Define a
function F : Rn → R, given by

F (x) = inf{a ∈ R>0 : x ∈ aM},
for each x ∈ Rn. Prove that this is a norm, i.e. it satisfies the three conditions:

(1) F (x) = 0 if and only if x = 0,
(2) F (ax) = |a|F (x) for every a ∈ R and x ∈ Rn,
(3) F (x+ y) ≤ F (x) + F (y) for all x,y ∈ Rn.

Problem 1.26. Let F be a norm like in Problem 1.25. Prove that the inhomo-
geneous minimum of the corresponding set M with respect to the full-rank lat-
tice Λ ⊂ Rn satisfies

µ = max
z∈Rn

min
x∈Λ

F (x− z).

Problem 1.27. Let n ≥ 2, and let F : Rn → R be a continuous function such that

(1) F (x) ≥ 0 for all x ∈ Rn,
(2) F (ax) = |a|F (x) for all a ∈ R and x ∈ Rn.

Let
X = {x ∈ Rn : F (x) ≤ 1}.

Assume additionally that F satisfies the triangle inequality:

(1.16) F (x+ y) ≤ F (x) + F (y),

for all x,y ∈ Rn. Let Λ be a lattice of full rank in Rn. Prove that for every real
number

µ ≥ 2

(
det(Λ)

Vol(X)

)1/n
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the intersection µX ∩Λ contains a nonzero vector. Is this statement still true if F
does not satisfy the triangle inequality (4.11)? Either prove your answer or give a
counter-example.

Problem 1.28. Let Λ be a lattice of full rank in Rn, and let M ⊂ Rn be a compact
convex set such that Vol(M) < det(Λ). Prove that there exists a point x ∈ Rn such
that the intersection M ∩ (Λ + x) is empty.

Problem 1.29. Let a, b be positive real numbers, and suppose that

Λ =


a b 0 0
0 1 a b
0 0 1 1
1 0 0 1

Z4

is a full-rank sublattice of Z4.

(1) What are all the possible values of a and b?
(2) Suppose that a = b and Ω is a full-rank sublattice of Λ, such that the

volume of a fundamental domain of Ω in R4 is equal to 20. What are all
the possible values of a?

(3) Assuming part b, can Λ be a sublattice of any of the following two lattices:

L1 =


1 0 0 0
0 1 0 1
0 0 1 1
1 0 0 2

Z4, L2 =


1 0 0 0
0 1 0 1
0 0 1 1
1 0 0 3

Z4,

and if so, which one(s)? What are all the possible values of a in each
case?



CHAPTER 2

Discrete Optimization Problems

2.1. Sphere packing, covering and kissing number problems

Lattices play an important role in discrete optimization from classical problems
to the modern day applications, such as theoretical computer science, digital com-
munications, coding theory and cryptography, to name a few. We start with an
overview of three old and celebrated problems that are closely related to the tech-
niques in the geometry of numbers that we have so far developed, namely sphere
packing, sphere covering and kissing number problems. An excellent comprehen-
sive, although slightly outdated, reference on this subject is the well-known book
by Conway and Sloane [CS99].

Let n ≥ 2. Throughout this section by a sphere in Rn we will always mean a
closed ball whose boundary is this sphere. We will say that a collection of spheres
{Bi} of radius r is packed in Rn if

int(Bi) ∩ int(Bj) = ∅, ∀ i ̸= j,

and there exist indices i ̸= j such that

int(B′
i) ∩ int(B′

j) ̸= ∅,

whenever B′
i and B′

j are spheres of radius larger than r such that Bi ⊂ B′
i, Bj ⊂ B′

j .
The sphere packing problem in dimension n is to find how densely identical spheres
can be packed in Rn. Loosely speaking, the density of a packing is the proportion of
the space occupied by the spheres. It is easy to see that the problem really reduces
to finding the strategy of positioning centers of the spheres in a way that maximizes
density. One possibility is to position sphere centers at the points of some lattice
Λ of full rank in Rn; such packings are called lattice packings. Alhtough clearly
most packings are not lattices, it is not unreasonable to expect that best results
may come from lattice packings; we will mostly be concerned with them.

Definition 2.1.1. Let Λ ⊆ Rn be a lattice of full rank. The density of correspond-
ing sphere packing is defined to be

∆ = ∆(Λ) := proportion of the space occupied by spheres

=
volume of one sphere

volume of a fundamental domain of Λ

=
rnωn

det(Λ)
,

30
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where r is the packing radius, i.e. radius of each sphere in this lattice packing, and
ωn is the volume of a unit ball in Rn, given by

(2.1) ωn =

{
πk

k! if n = 2k for some k ∈ Z
22k+1k!πk

(2k+1)! if n = 2k + 1 for some k ∈ Z.

Hence the volume of a ball of radius r in Rn is ωnr
n. It is easy to see that the

packing radius r is precisely the radius of the largest ball inscribed into the Voronoi
cell V of Λ, i.e. the inradius of V. Clearly ∆ ≤ 1.

The first observation we can make is that the packing radius r must depend on the
lattice. In fact, it is easy to see that r is precisely one half of the length of the
shortest nonzero vector in Λ, in other words r = λ1

2 , where λ1 is the first successive
minimum of Λ. Therefore

∆ =
λn
1ωn

2n det(Λ)
.

It is not known whether the packings of largest density in each dimension are
necessarily lattice packings, however we do have the following celebrated result
of Minkowski (1905) generalized by Hlawka in (1944), which is usually known as
Minkowski-Hlawka theorem.

Theorem 2.1.1. In each dimension n there exist lattice packings with density

(2.2) ∆ ≥ ζ(n)

2n−1
,

where ζ(s) =
∑∞

k=1
1
ks is the Riemann zeta-function.

All known proofs of Theorem 7.3.3 are nonconstructive, so it is not generally known
how to construct lattice packings with density as good as (2.2); in particular, in
dimensions above 1000 the lattices whose existence is guaranteed by Theorem 7.3.3
are denser than all the presently known ones. We refer to [GL87] and [Cas59] for
many further details on this famous theorem. Here we present a very brief outline
of its proof, following [Cas53]. The first observation is that this theorem readily
follows from the following result.

Theorem 2.1.2. Let M be a convex bounded 0-symmetric set in Rn with volume
< 2ζ(n). Then there exists a lattice Λ in Rn of determinant 1 such that M contains
no points of Λ except for 0.

Now, to prove Theorem 2.1.2, we can argue as follows. Let χM be the characteristic
function of the set M , i.e.

χM (x) =

{
1 if x ∈M
0 if x ̸∈M

for every x ∈ Rn. For parameters T , ξ1, . . . , ξn−1 to be specified, let us define a
lattice Λ = ΛT (ξ1, . . . , xn−1) :={(

T (a1 + ξ1b), . . . , T (an−1 + ξn−1b), T
−(n−1)b

)
: a1, . . . , an−1, b ∈ Z

}
,
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in other words

(2.3) Λ =


T 0 . . . 0 ξ1
0 T . . . 0 ξ2
...

...
. . .

...
...

0 0 . . . T ξn−1

0 0 . . . 0 T−(n−1)

Zn.

Hence determinant of this lattice is 1 independent of the values of the parameters.
Points of Λ with b = 0 are of the form

(Ta1, . . . , Tan−1, 0),

and so taking T to be sufficiently large we can ensure that none of them are in M ,
since M is bounded. Thus assume that T is large enough so that the only points
of Λ in M have b ̸= 0. Notice that M contains a nonzero point of Λ if and only if it
contains a primitive point of Λ, where we say that x ∈ Λ is primitive if it is not a
scalar multiple of another point in Λ. The number of symmetric pairs of primitive
points of Λ in M is given by the counting function ηT (ξ1, . . . , ξn−1) =∑

b>0

∑
a1,...,an−1

gcd(a1,...,an−1,b)=1

χM

(
T (a1 + ξ1b), . . . , T (an−1 + ξn−1b), T

−(n−1)b
)
.

The argument of [Cas53] then proceeds to integrate this expression over all 0 ≤
ξi ≤ 1, 1 ≤ i ≤ n− 1, obtaining an expression in terms of the volume of M . Taking
a limit as T → ∞, it is then concluded that since this volume is < 2ζ(n), the
average of the counting function ηT (ξ1, . . . , ξn−1) is less than 1. Hence there must
exist some lattice of the form (2.3) which contains no nonzero points in M .

In general, it is not known whether lattice packings are the best sphere packings
in each dimension. In fact, the only dimensions in which optimal packings are
currently known are n = 2, 3, 8, 24. In case n = 2, Gauss has proved that the best
possible lattice packing is given by the hexagonal lattice

(2.4) Λh :=

(
1 1

2

0
√
3
2

)
Z2,

and in 1940 L. Fejes Tóth proved that this indeed is the optimal packing (a previous

proof by Axel Thue. Its density is π
√
3

6 ≈ 0.9068996821.
In case n = 3, it was conjectured by Kepler that the optimal packing is given

by the face-centered cubic lattice−1 −1 0
1 −1 0
0 1 −1

Z3.

The density of this packing is ≈ 0.74048. Once again, it has been shown by Gauss
in 1831 that this is the densest lattice packing, however until recently it was still
not proved that this is the optimal packing. The famous Kepler’s conjecture has
been settled by Thomas Hales in 1998. Theoretical part of this proof is published
only in 2005 [Hal05], and the lengthy computational part was published in a series
of papers in the journal of Discrete and Computational Geometry (vol. 36, no. 1
(2006)).
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Dimensions n = 8 and n = 24 were settled in 2016, a week apart from
each other. Maryna Viazovska [Via17], building on previous work of Cohn and
Elkies [CE03], discovered a “magic” function that implied optimality of the ex-
ceptional root lattice E8 for packing density in R8. Working jointly with Cohn,
Kumar, Miller and Radchenko [CKM+17], she then immediately extended her
method to dimension 24, where the optimal packing density is given by the famous
Leech lattice. Detailed constructions of these remarkable lattices can be found in
Conway and Sloane’s book [CS99]. This outlines the currently known results for
optimal sphere packing configurations in general. On the other hand, best lattice
packings are known in dimensions n ≤ 8, as well as n = 24. There are dimensions
in which the best known packings are not lattice packings, for instance n = 11.

Next we give a very brief introduction to sphere covering. The problem of
sphere covering is to cover Rn with spheres such that these spheres have the least
possible overlap, i.e. the covering has smallest possible thickness. Once again, we
will be most interested in lattice coverings, that is in coverings for which the centers
of spheres are positioned at the points of some lattice.

Definition 2.1.2. Let Λ ⊆ Rn be a lattice of full rank. The thickness Θ of
corresponding sphere covering is defined to be

Θ(Λ) = average number of spheres containing a point of the space

=
volume of one sphere

volume of a fundamental domain of Λ

=
Rnωn

det(Λ)
,

where ωn is the volume of a unit ball in Rn, given by (2.1), and R is the covering
radius, i.e. radius of each sphere in this lattice covering. It is easy to see that R is
precisely the radius of the smallest ball circumscribed around the Voronoi cell V of
Λ, i.e. the circumradius of V. Clearly Θ ≥ 1.

Notice that the covering radius R is precisely µ, the inhomogeneous minimum of
the lattice Λ. Hence combining Lemmas 1.6.1 and 1.6.4 we obtain the following
bounds on the covering radius in terms of successive minima of Λ:

λn

2
≤ µ = R ≤ 1

2

n∑
i=1

λi ≤
nλn

2
.

The optimal sphere covering is only known in dimension n = 2, in which case it is
given by the same hexagonal lattice (2.4), and is equal to ≈ 1.209199. Best possible
lattice coverings are currently known only in dimensions n ≤ 5, and it is not known
in general whether optimal coverings in each dimension are necessarily given by
lattices. Once again, there are dimensions in which the best known coverings are
not lattice coverings.

In summary, notice that both, packing and covering properties of a lattice Λ are
very much dependent on its Voronoi cell V. Moreover, to simultaneously optimize
packing and covering properties of Λ we want to ensure that the inradius r of V is
largest possible and circumradius R is smallest possible. This means that we want
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to take lattices with the “roundest” possible Voronoi cell. This property can be
expressed in terms of the successive minima of Λ: we want

λ1 = · · · = λn.

Lattices with these property are called well-rounded lattices, abbreviated WR; an-
other term ESM lattices (equal successive minima) is also sometimes used. Notice
that if Λ is WR, then by Lemma 1.6.4 we have

r =
λ1

2
=

λn

2
≤ R,

although it is clearly impossible for equality to hold in this inequality. Sphere
packing and covering results have numerous engineering applications, among which
there are applications to coding theory, telecommunications, and image processing.
WR lattices play an especially important role in these fields of study.

Another closely related classical question is known as the kissing number prob-
lem: given a sphere in Rn how many other non-overlapping spheres of the same
radius can touch it? In other words, if we take the ball centered at the origin in a
sphere packing, how many other balls are adjacent to it? Unlike the packing and
covering problems, the answer here is easy to obtain in dimension 2: it is 6, and
we leave it as an exercise for the reader (Problem 2.1). Although the term “kissing
number” is contemporary (with an allusion to billiards, where the balls are said to
kiss when they bounce), the 3-dimensional version of this problem was the subject
of a famous dispute between Isaac Newton and David Gregory in 1694. It was
known at that time how to place 12 unit balls around a central unit ball, however
the gaps between the neighboring balls in this arrangement were large enough for
Gregory to conjecture that perhaps a 13-th ball can some how be fit in. Newton
thought that it was not possible. The problem was finally solved by Schütte and
van der Waerden in 1953 [SvdW53] (see also [Lee56] by J. Leech, 1956), con-
firming that the kissing number in R3 is equal to 12. The only other dimensions
where the maximal kissing number is known are n = 4, 8, 24. More specifically, if
we write τ(n) for the maximal possible kissing number in dimension n, then it is
known that

τ(2) = 6, τ(3) = 12, τ(4) = 24, τ(8) = 240, τ(24) = 196560.

In many other dimensions there are good upper and lower bounds available, and
the general bounds of the form

20.2075...n(1+o(1)) ≤ τ(n) ≤ 20.401n(1+o(1))

are due to Wyner, Kabatianski and Levenshtein; see [CS99] for detailed references
and many further details.

A more specialized question is concerned with the maximal possible kissing
number of lattices in a given dimension, i.e. we consider just the lattice packings
instead of general sphere packing configurations. Here the optimal results are known
in all dimensions n ≤ 8 and dimension 24: al of the optimal lattices here are also
known to be optimal for lattice packing. Further, in all dimensions where the overall
maximal kissing numbers are known, they are achieved by lattices.

Let Λ ⊂ Rn be a lattice, then its minimal norm |Λ| is simply its first successive
minimum, i.e.

|Λ| = min {∥x∥ : x ∈ Λ \ {0}} .
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The set of minimal vectors of Λ is then defined as

S(Λ) = {x ∈ Λ : ∥x∥ = |Λ|} .
These minimal vectors are the centers of spheres of radius |Λ|/2 in the sphere
packing associated to Λ which touch the ball centered at the origin. Hence the
number of these vectors, |S(Λ)| is precisely the kissing number of Λ. One immediate
observation then is that to maximize the kissing number, same as to maximize the
packing density, we want to focus our attention on WR lattices: they will have at
least 2n minimal vectors.

A matrix U ∈ GLn(R) is called orthogonal if U−1 = U⊤, and the subset of all
such matrices in GLn(R) is

On(R) = {U ∈ GLn(R) : U−1 = U⊤}.
This is a subgroup of GLn(R) (Problem 2.4). Discrete optimization problems on
the space of lattices in a given dimension, as those discussed above, are usually
considered up to the equivalence relation of similarity: two lattices L and M of
full rank in Rn are called similar, denoted L ∼ M , if there exists α ∈ R and
an orthogonal matrix U ∈ On(R) such that L = αUM . This is an equivalence
relation on the space of all full-rank lattices in Rn (Problem 2.2), and we refer to
the equivalence classes under this relation as similarity classes. If lattices L and
M are similar, then they have the same packing density, covering thickness, and
kissing number (Problem 2.3). We use the perspective of similarity classes in the
next section when considering lattice packing density in the plane.
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Figure 1. Hexagonal lattice with Voronoi cell translates and as-
sociated circle packing

2.2. Lattice packings in dimension 2

Our goal here is to prove that the best lattice packing in R2 is achieved by the
hexagonal lattice Λh as defined in (2.4) above (see Figure 1). Specifically, we will
prove the following theorem.

Theorem 2.2.1. Let L be a lattice of rank 2 in R2. Then

∆(L) ≤ ∆(Λh) =
π

2
√
3
= 0.906899 . . . ,

and the equality holds if any only if L ∼ Λh.

This result was first obtain by Lagrange in 1773, however we provide a more con-
temporary proof here following [Fuk11]. Our strategy is to show that the problem
of finding the lattice with the highest packing density in the plane can be restricted
to the well-rounded lattices without any loss of generality, where the problem be-
comes very simple. We start by proving that vectors corresponding to successive
minima in a lattice in R2 form a basis.

Lemma 2.2.2. Let Λ be a lattice in R2 with successive minima λ1 ≤ λ2 and let
x1,x2 be the vectors in Λ corresponding to λ1, λ2, respectively. Then x1,x2 form
a basis for Λ.

Proof. Let y1 ∈ Λ be a shortest vector extendable to a basis in Λ, and let
y2 ∈ Λ be a shortest vector such that y1,y2 is a basis of Λ. By picking ±y1,±y2 if
necessary we can ensure that the angle between these vectors is no greater than π/2.
Then

0 < ∥y1∥ ≤ ∥y2∥,
and for any vector z ∈ Λ with ∥z∥ < ∥y2∥ the pair y1, z is not a basis for Λ. Since
x1,x2 ∈ Λ, there must exist integers a1, a2, b1, b2 such that

(2.5) (x1 x2) = (y1 y2)

(
a1 b1
a2 b2

)
.

Let θx be the angle between x1,x2, and θy be the angle between y1,y2, then
π/3 ≤ θx ≤ π/2 by Problem 2.6. Moreover, π/3 ≤ θy ≤ π/2: indeed, suppose
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θy < π/3, then by Problem 2.5,

∥y1 − y2∥ < ∥y2∥,
however y1,y1−y2 is a basis for Λ since y1,y2 is; this contradicts the choice of y2.
Define

D =

∣∣∣∣det(a1 b1
a2 b2

)∣∣∣∣ ,
then D is a positive integer, and taking determinants of both sides of (2.5), we
obtain

(2.6) ∥x1∥∥x2∥ sin θx = D∥y1∥∥y2∥ sin θy.
Notice that by definition of successive minima, ∥x1∥∥x2∥ ≤ ∥y1∥∥y2∥, and hence
(2.6) implies that

D =
∥x1∥∥x2∥
∥y1∥∥y2∥

sin θx
sin θy

≤ 2√
3
< 2,

meaning that D = 1. Combining this observation with (2.5), we see that

(x1 x2)

(
a1 b1
a2 b2

)−1

= (y1 y2) ,

where the matrix

(
a1 b1
a2 b2

)−1

has integer entries. Therefore x1,x2 is also a basis

for Λ, completing the proof. □

As we know from Remark 1.5.1 in Section 1.5, the statement of Lemma 2.2.2
does not generally hold for d ≥ 5. We will call a basis for a lattice as in Lemma 2.2.2
a minimal basis. The goal of the next three lemmas is to show that the lattice
packing density function ∆ attains its maximum in R2 on the set of well-rounded
lattices.

Lemma 2.2.3. Let Λ and Ω be lattices of full rank in R2 with successive minima
λ1(Λ), λ2(Λ) and λ1(Ω), λ2(Ω) respectively. Let x1,x2 and y1,y2 be vectors in Λ
and Ω, respectively, corresponding to successive minima. Suppose that x1 = y1,
and angles between the vectors x1,x2 and y1,y2 are equal, call this common value
θ. Suppose also that

λ1(Λ) = λ2(Λ).

Then
∆(Λ) ≥ ∆(Ω).

Proof. By Lemma 2.2.2, x1,x2 and y1,y2 are minimal bases for Λ and Ω,
respectively. Notice that

λ1(Λ) = λ2(Λ) = ∥x1∥ = ∥x2∥
= ∥y1∥ = λ1(Ω) ≤ ∥y2∥ = λ2(Ω).

Then

∆(Λ) =
πλ1(Λ)

2

4 det(Λ)
=

λ1(Λ)
2π

4∥x1∥∥x2∥ sin θ
=

π

4 sin θ

≥ λ1(Ω)
2π

4∥y1∥∥y2∥ sin θ
=

λ1(Ω)
2π

4 det(Ω)
= ∆(Ω).(2.7)

□
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The following lemma is a converse to Problem 2.6.

Lemma 2.2.4. Let Λ ⊂ R2 be a lattice of full rank, and let x1,x2 be a basis for Λ
such that

∥x1∥ = ∥x2∥,
and the angle θ between these vectors lies in the interval [π/3, π/2]. Then x1,x2 is
a minimal basis for Λ. In particular, this implies that Λ is WR.

Proof. Let z ∈ Λ, then z = ax1 + bx2 for some a, b ∈ Z. Then

∥z∥2 = a2∥x1∥2 + b2∥x2∥2 + 2abx⊤
1 x2 = (a2 + b2 + 2ab cos θ)∥x1∥2.

If ab ≥ 0, then clearly ∥z∥2 ≥ ∥x1∥2. Now suppose ab < 0, then again

∥z∥2 ≥ (a2 + b2 − |ab|)∥x1∥2 ≥ ∥x1∥2,

since cos θ ≤ 1/2. Therefore x1,x2 are shortest nonzero vectors in Λ, hence they
correspond to successive minima, and so form a minimal basis. Thus Λ is WR, and
this completes the proof. □

Lemma 2.2.5. Let Λ be a lattice in R2 with successive minima λ1, λ2 and corre-
sponding basis vectors x1,x2, respectively. Then the lattice

ΛWR =

(
x1

λ1

λ2
x2

)
Z2

is WR with successive minima equal to λ1.

Proof. By Problem 2.6, the angle θ between x1 and x2 is in the interval
[π/3, π/2], and clearly this is the same as the angle between the vectors x1 and
λ1

λ2
x2. Then by Lemma 2.2.4, ΛWR is WR with successive minima equal to λ1. □

Now combining Lemma 2.2.3 with Lemma 2.2.5 implies that

(2.8) ∆(ΛWR) ≥ ∆(Λ)

for any lattice Λ ⊂ R2, and (2.7) readily implies that the equality in (2.8) occurs
if and only if Λ = ΛWR, which happens if and only if Λ is well-rounded. Therefore
the maximum packing density among lattices in R2 must occur at a WR lattice,
and so for the rest of this section we talk about WR lattices only. Next observation
is that for any WR lattice Λ in R2, (2.7) implies:

sin θ =
π

4∆(Λ)
,

meaning that sin θ is an invariant of Λ, and does not depend on the specific choice
of the minimal basis. Since by our conventional choice of the minimal basis and
Problem 2.6, this angle θ is in the interval [π/3, π/2], it is also an invariant of the
lattice, and we call it the angle of Λ, denoted by θ(Λ).

Lemma 2.2.6. Let Λ be a WR lattice in R2. A lattice Ω ⊂ R2 is similar to Λ if and
only if Ω is also WR and θ(Λ) = θ(Ω).

Proof. First suppose that Λ and Ω are similar. Let x1,x2 be the minimal
basis for Λ. There exist a real constant α and a real orthogonal 2 × 2 matrix U
such that Ω = αUΛ. Let y1,y2 be a basis for Ω such that

(y1 y2) = αU(x1 x2).
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Then ∥y1∥ = ∥y2∥, and the angle between y1 and y2 is θ(Λ) ∈ [π/3, π/2]. By
Lemma 2.2.4 it follows that y1,y2 is a minimal basis for Ω, and so Ω is WR and
θ(Ω) = θ(Λ).

Next assume that Ω is WR and θ(Ω) = θ(Λ). Let λ(Λ) and λ(Ω) be the
respective values of successive minima of Λ and Ω. Let x1,x2 and y1,y2 be the
minimal bases for Λ and Ω, respectively. Define

z1 =
λ(Λ)

λ(Ω)
y1, z2 =

λ(Λ)

λ(Ω)
y2.

Then x1,x2 and z1, z2 are pairs of points on the circle of radius λ(Λ) centered at
the origin in R2 with equal angles between them. Therefore, there exists a 2 × 2
real orthogonal matrix U such that

(y1 y2) =
λ(Λ)

λ(Ω)
(z1 z2) =

λ(Λ)

λ(Ω)
U(x1 x2),

and so Λ and Ω are similar lattices. This completes the proof. □

We are now ready to prove the main result of this section.

Proof of Theorem 2.2.1. The density inequality (2.8) says that the largest
lattice packing density in R2 is achieved by some WR lattice Λ, and (2.7) implies
that

(2.9) ∆(Λ) =
π

4 sin θ(Λ)
,

meaning that a smaller sin θ(Λ) corresponds to a larger ∆(Λ). Problem 2.6 implies

that θ(Λ) ≥ π/3, meaning that sin θ(Λ) ≥
√
3/2. Notice that if Λ is the hexagonal

lattice

Λh =

(
1 1

2

0
√
3
2

)
Z2,

then sin θ(Λ) =
√
3/2, meaning that the angle between the basis vectors (1, 0)

and (1/2,
√
3/2) is θ = π/3, and so by Lemma 2.2.4 this is a minimal basis and

θ(Λ) = π/3. Hence the largest lattice packing density in R2 is achieved by the
hexagonal lattice. This value now follows from (2.9).

Now suppose that for some lattice Λ, ∆(Λ) = ∆(Λh), then by (2.8) and a short
argument after it Λ must be WR, and so

∆(Λ) =
π

4 sin θ(Λ)
= ∆(Λh) =

π

4 sinπ/3
.

Then θ(Λ) = π/3, and so Λ is similar to Λh by Lemma 2.2.6. This completes the
proof. □

While we have only settled the question of best lattice packing in dimension
two, we saw that well-roundedness is an essential property for a lattice to be a
good contender for optimal packing density. There are, however, infinitely many
WR lattices in the plane, even up to similarity, and only one of them worked well.
One can then ask what properties must a lattice have to maximize packing density?
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A full-rank lattice Λ in Rn with minimal vectors x1, . . . ,xm is called eutactic
if there exist positive real numbers c1, . . . , cm such that

∥v∥2 =

m∑
i=1

ci(v
⊤xi)

2

for every vector v ∈ spanR Λ. If c1 = · · · = cn, Λ is called strongly eutactic. A
lattice is called perfect if the set of symmetric matrices

{xix
⊤
i : 1 ≤ i ≤ m}

spans the real vector space of n × n symmetric matrices. These properties are
preserved on similarity classes (Problem 2.7), and up to similarity there are only
finitely many perfect or eutactic lattices in every dimension. For instance, up to
similarity, the hexagonal lattice is the only one in the plane that is both, perfect
and eutactic (Problem 2.8).

Suppose that Λ = AZn is a lattice with basis matrix A, then, as we know, B is
another basis matrix for Λ if and only if B = AU for some U ∈ GLn(Z). In this way,
the space of full-rank lattices in Rn can be identified with the set of orbits of GLn(R)
under the action by GLn(Z) by right multiplication. The packing density ∆ is a
continuous function on this space, and hence we can talk about its local extremum
points. A famous theorem of Georgy Voronoi (1908) states that a lattice is a local
maximum of the packing density function in its dimension if and only if it is perfect
and eutactic (such lattices are called extreme). Hence, combining Problem 2.8
with Voronoi’s theorem gives another proof of unique optimality of the hexagonal
lattice for lattice packing in the plane. Further, Voronoi’s theorem suggests a way
of looking for the maximizer of the lattice packing density in every dimension:
identify the finite set of perfect and eutactic lattices, compute their packing density
and choose the largest. Unfortunately, this approach is not very practical, since
already in dimension 9 the number of perfect lattices is over 9 million (see [Bac18]
for more general estimates on the number of perfect lattices in a given dimension).
Explicit constructions of lattices with good properties, such as perfection or eutaxy
often come from various algebraic and combinatorial settings. We refer the reader to
the classical books [CS99], [Mar03], [TV91] for some standard constructions, as
well as the more recent ones detailed in [BFE+19], [Lad19], [BFG+16], [BF17],
[FNPX19].
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2.3. Algorithmic problems on lattices

There is a class of algorithmic problems studied in computational number the-
ory, discrete geometry and theoretical computer science, which are commonly re-
ferred to as the lattice problems. One of their distinguishing features is that they
are provably known to be very hard to solve in the sense of computational com-
plexity of algorithms involved. Before we discuss them, let us briefly and somewhat
informally recall some basic notions of computational complexity.

A key notion in theoretical computer science is that of a Turing machine as
introduced by Alan Turing in 1936. Roughly speaking, this is an abstract compu-
tational device, a good practical model of which is a modern computer. It consists
of an infinite tape subdivided into cells which passes through a head. The head can
do the following four elementary operations: write a symbol into one cell, read a
symbol from one cell, fast forward one cell, rewind one cell. These correspond to
elementary operations on a computer, which uses symbols from a binary alphabet
0, 1. The number of such elementary operations required for a given algorithm is
referred to as its running time. Running time is usually measured as a function
of the size of the input, that is the number of cells of the infinite tape required to
store the input. If we express this size as an integer n and the running time as a
function f(n), then an algorithm is said to run in polynomial time if f(n) can be
bounded from above by a polynomial in n. We will refer to the class of problems
that can be solved in polynomial time as the P class. This is our first example of
a computational complexity class.

For some problems we may not know whether it is possible to solve them in
polynomial time, but given a potential answer we can verify whether it is correct
or not in polynomial time. Such problems are said to lie in the NP computational
complexity class, where NP stands for non-deterministic polynomial. One of the
most important open problems in contemporary mathematics (and arguably the
most important problem in theoretical computer science) asks whether P = NP?
In other words, if an answer to a problem can be verified in polynomial time,
can this problem be solved by a polynomial-time algorithm? Most frequently this
question is asked about decision problem, that is problems the answer to which is
YES or NO. This problem, commonly known as P vs NP, was originally posed in
1971 independently by Stephen Cook and by Leonid Levin. It is believed by most
experts that P ̸= NP, meaning that there exist problems answer to which can be
verified in polynomial time, but which cannot be solved in polynomial time.

For the purposes of thinking about the P vs NP problem, it is quite helpful
to introduce the following additional notions. A problem is called NP-hard if it is
“at least as hard as any problem in the NP class”, meaning that for each problem
in the NP class there exists a polynomial-time algorithm using which our problem
can be reduced to it. A problem is called NP-complete if it is NP-hard and is know
to lie in the NP class. Now suppose that we wanted to prove that P = NP. One
way to do this would be to find an NP-complete problem which we can show is
in the P class. Since it is NP, and is at least as hard as any NP problem, this
would mean that all NP problems are in the P class, and hence the equality would
be proved. Although this equality seems unlikely to be true, this argument still
presents serious motivation to study NP-complete problems.
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As usual, we write Λ ⊂ Rn for a lattice of full rank and

0 < λ1 ≤ · · · ≤ λn

for its successive minima. A lattice can be given in the form its basis matrix, i.e. a
matrix A ∈ GLn(R) such that Λ = AZn. There are several questions that can be
asked about this setup. We formulate them in algorithmic form.

Shortest Vector Problem (SVP).
Input: A matrix A ∈ GLn(R).
Output: A vector x1 ∈ Λ = AZn such that ∥x1∥ = λ1.

Shortest Independent Vector Problem (SIVP).
Input: A matrix A ∈ GLn(R).
Output: Linearly independent vectors x1, . . . ,xn ∈ Λ = AZn such that

∥xi∥ = λ1 ∀ 1 ≤ i ≤ n.

Closest Vector Problem (CVP).
Input: A matrix A ∈ GLn(R) and a vector y ∈ Rn.
Output: A vector x ∈ Λ = AZn such that

∥x− y∥ ≤ ∥z − y∥ ∀ z ∈ Λ.

Shortest Basis Problem (SBP).
Input: A matrix A ∈ GLn(R).
Output: A basis b1, . . . , bn for Λ = Zn such that ∥bi∥ =

min{∥x∥ : x ∈ Λ is such that b1, . . . , bi−1,x is extendable to a basis}
for all 1 ≤ i ≤ n.

Notice that SVP is a special case of CVP where the input vector y is taken to be 0:
indeed, a vector corresponding to the first successive minimum is precisely a vector
that is closer to the origin than any other point of Λ. On the other hand, SIVP
and SBP are different problems: as we know, lattices in dimensions 5 higher may
not have a basis of vectors corresponding to successive minima.

All of these algorithmic problems are all known to be NP-complete. In fact, even
the problem of determining the first successive minimum of the lattice is already
NP-complete. We can also ask for γ-approximate versions of these problems for
some approximation factor γ. In other words, for the same input we want to return
an answer that is bigger than the optimal by a factor of no more than γ. For
instance, the γ-SVP would ask for a vector x ∈ Λ such that

∥x∥ ≤ γλ1.

It is an open problem to decide whether the γ-approximate versions of these prob-
lems are in the P class for any values of γ polynomial in the dimension n.

On the other hand, γ-approximate versions of these problems for γ exponential
in n are known to be polynomial. The most famous such approximation algo-
rithm is LLL, which was discovered by A. Lenstra, H. Lenstra and L. Lovasz in
1982 [LLL82]. LLL is a polynomial time reduction algorithm that, given a lattice
Λ, produces a basis b1, . . . , bn for Λ such that

min
1≤i≤n

∥bi∥ ≤ 2
n−1
2 λ1,
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and

(2.10)

n∏
i=1

∥bi∥ ≤ 2
n(n−1)

4 det(Λ).

We can compare this to the upper bound given by Minkowski’s Successive Minima
Theorem (Theorem 1.5.2):

(2.11)

n∏
i=1

λi ≤
2n

ωn
det(Λ).

For instance, when n = 2k the bound (2.10) gives
n∏

i=1

∥bi∥ ≤ 2
k(2k−1)

2 det(Λ),

while (2.11) gives
n∏

i=1

λi ≤
4kk!

πk
det(Λ).

Let us briefly describe the main idea behind LLL. The first observation is that
an orthogonal basis, if one exists in a lattice, is always the shortest one. Indeed,
suppose u1, . . . ,un is such a basis, then for any a1, . . . , an ∈ Z,∥∥∥∥∥

n∑
i=1

aiui

∥∥∥∥∥
2

=

n∑
i=1

a2i ∥ui∥2,

which implies that the shortest basis vectors can only be obtained by taking one
of the coefficients ai = ±1 and the rest 0. Of course, most lattices do not have
orthogonal bases, in which case finding a short basis is much harder. Still, the basic
principle of constructing a short basis is based on looking for vectors that would be
“close to orthogonal”.

We observed in Section 2.2 (in particular, see Problems 2.5, 2.6, Lemma 2.2.4)
that the angle between a pair of shortest vectors must be between [π/3, 2π/3],
i.e. these vectors are “near-orthogonal”: in fact, these vectors have to be as close
to orthogonal as possible within the lattice. This is the underlying idea behind
the classical Lagrange-Gauss Algorithm for finding a shortest basis for a lattice
in R2. Specifically, an ordered basis b1, b2 for a planar lattice Λ consists of vectors
corresponding to successive minima λ1, λ2 of Λ, respectively, if and only if

µ :=
b⊤1 b2
∥b1∥2

≤ 1

2
.

On the other hand, if |µ| > 1/2, then replacing b2 with

b2 − ⌊µ⌉ b1,
where ⌊µ⌉ stands for the nearest integer to µ, produces a shorter second basis vector.
We leave the proof of this as an exercise (Problem 2.9). Hence we can formulate
the Gauss-Lagrange Algorithm:

Input: b1, b2 ∈ R2 such that ∥b1∥ ≤ ∥b2∥

Compute µ: µ =
b⊤
1 b2

∥b1∥2

Check µ: if |µ| ≤ 1/2, output b1, b2; else set b2 ← b2 − ⌊µ⌉ b1 and repeat the
algorithm (swapping b1, b2, if necessary, to ensure ∥b1∥ ≤ ∥b2∥)
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This algorithm terminates in a finite number of steps (Problem 2.10).
Let us demonstrate this algorithm on an example. Suppose Λ = spanZ{b1, b2},

where

b1 =

(
1
5

)
, b2 =

(
1
0

)
.

We notice that ∥b1∥ > ∥b2∥, so we swap the vectors: b1 ↔ b2. We then compute

µ =
b⊤1 b2
∥b1∥2

= 1 > 1/2.

The nearest integer to µ is 1, so we set

b2 ← b2 − b1 =

(
0
5

)
.

We still have ∥b1∥ < ∥b2∥, so no need to swap the vectors. With the new basis
b1, b2 we again compute µ, which is now equal to 0 < 1/2. Hence we found a
shortest basis for Λ: (

1
0

)
,

(
0
5

)
.

LLL is based on a generalization of this idea. We can start with a basis
b1, . . . , bn for a lattice Λ in Rn and use the Gram-Schmidt orthogonalization proce-
dure to compute a corresponding orthogonal (but not normalized) basis b′1, . . . , b

′
n

for Rn. For any pair of indices i, j with 1 ≤ j < i ≤ i, let us compute the Gram-
Schmidt coefficient

µij =
b⊤i b

′
j

∥b′j∥2
.

If this coefficient is > 1/2 in absolute value, we swap bi ← bi−⌊µ⌉ bj : this ensures
the length reduction, but one other condition is also needed. Formally speaking, a
resulting basis b1, . . . , bn is called LLL reduced if the following two conditions are
satisfied:

(1) For all 1 ≤ j < i ≤ n, |µij | ≤ 1/2
(2) For some parameter δ ∈ [1/4, 1), for all 1 ≤ k ≤ n,

δ∥b′k−1∥2 ≤ ∥b
′
k∥+ µ2

k,(k−1)∥b
′
k−1∥2.

Traditionally, δ is taken to be 3/4. While we will not go into further details about
the LLL, some good more detailed references on this subject include the original
paper [LLL82], as well as more recent books [Coh00], [Bor02], and [HPS08].
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2.4. Problems

Problem 2.1. Prove that the optimal kissing number in R2 is equal to 6.

Problem 2.2. Prove that similarity is an equivalence relation on the set of all
lattices of full rank in Rn.

Problem 2.3. Assume two full-rank lattices L and M in Rn are similar. Prove
that they have the same packing density, covering thickness and kissing number.

Problem 2.4. Prove that the set of all real orthogonal n× n matrices On(R) is a
subgroup of GLn(R).

Problem 2.5. Let x1 and x2 be nonzero vectors in R2 so that the angle θ between
them satisfies 0 < θ < π

3 . Prove that

∥x1 − x2∥ < max{∥x1∥, ∥x2∥}.

Problem 2.6. Let Λ ⊂ R2 be a lattice of full rank with successive minima λ1 ≤ λ2,
and let x1,x2 be the vectors in Λ corresponding to λ1, λ2, respectively. Let θ ∈
[0, π/2] be the angle between x1 and x2. Prove that

π/3 ≤ θ ≤ π/2.

Problem 2.7. Let L and M be two similar lattices. Prove that if L is eutactic
(respectively, strongly eutactic, perfect), then so is M .

Problem 2.8. Prove that the hexagonal lattice Λh is both, perfect and eutactic.
Further, prove that if L is a perfect lattice in R2, then L ∼ Λh.

Problem 2.9. Prove that an ordered basis b1, b2 for a planar lattice Λ consists of
vectors corresponding to successive minima λ1, λ2, respectively, if and only if

µ :=
b⊤1 b2
∥b1∥2

≤ 1

2
.

On the other hand, if |µ| > 1/2, then replacing b2 with

b2 − ⌊µ⌉ b1,
where ⌊µ⌉ stands for the nearest integer to µ, produces a shorter second basis vector.

Problem 2.10. Prove that the Gauss-Lagrange Algorithm as discussed in Sec-
tion 2.3 terminates in a finite number of steps.

Problem 2.11. Let

Λ =

(
1 1
2 3

)
Z2, Ω =

(
1 −2
3 1

)
Z2

be two full rank lattice in the plane. Which one of them has higher packing density?
Prove your answer.



CHAPTER 3

Quadratic Forms

3.1. Introduction to quadratic forms

The theory of lattices that we introduced in the previous chapters can be viewed
from a somewhat different angle, namely from the point of view of positive definite
quadratic forms. In this chapter we study some basic properties of quadratic forms
and then emphasize the connection to lattices.

A quadratic form is a homogeneous polynomial of degree 2; unless explicitly
stated otherwise, we consider quadratic forms with real coefficients. More generally,
we can talk about a symmetric bilinear form, that is a polynomial

B(X,Y ) =

n∑
i=1

n∑
j=1

bijXiYj ,

in 2n variables X1, . . . , Xn, Y1, . . . , Yn so that bij = bji for all 1 ≤ i, j ≤ n. Such a
polynomial B is called bilinear because although it is not linear, it is linear in each
set of variables, X1, . . . , Xn and Y1, . . . , Yn. It is easy to see that a bilinear form
B(X,Y ) can also be written as

B(X,Y ) = X⊤BY ,

where

B =


b11 b12 . . . b1n
b12 b22 . . . b2n
...

...
. . .

...
b1n b2n . . . bnn

 ,

is the corresponding n×n symmetric coefficient matrix, called the Gram matrix of
the form, and

X =

X1

...
Xn

 , Y =

Y1

...
Yn

 ,

are the variable vectors. Hence symmetric bilinear forms are in bijective correspon-
dence with symmetric n× n matrices. It is also easy to notice that

(3.1) B(X,Y ) = X⊤BY = (X⊤BY )⊤ = Y ⊤B⊤X = Y ⊤BX = B(Y ,X),

since B is symmetric. We can also define the corresponding quadratic form

Q(X) = B(X,X) =

n∑
i=1

n∑
j=1

bijXiXj = X⊤BX.

Hence to each bilinear symmetric form in 2n variables there corresponds a quadratic
form in n variables. The converse is also true (Problem 3.1).

46
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Definition 3.1.1. We define the determinant or discriminant of a symmetric bi-
linear form B and of its associated quadratic form Q to be the determinant of the
coefficient matrix B, and will denote it by det(B) or det(Q).

Many properties of bilinear and corresponding quadratic forms can be deduced
from the properties of their matrices. Hence we start by recalling some properties
of symmetric matrices.

Lemma 3.1.1. A real symmetric matrix has all real eigenvalues.

Proof. Let B be a real symmetric matrix, and let λ be an eigenvalue of B with
a corresponding eigenvector x. Write λ for the complex conjugate of λ, and B and
x for the matrix and vector correspondingly whose entries are complex conjugates
of respective entries of B and x. Then Bx = λx, and so

Bx = Bx = Bx = λx = λx,

since B is a real matrix, meaning that B = B. Then, by (3.1)

λ(x⊤x) = (λx)⊤x = (Bx)⊤x = x⊤Bx = x⊤(λx) = λ(x⊤x),

meaning that λ = λ, since x⊤x ̸= 0. Therefore λ ∈ R. □

Remark 3.1.1. Since eigenvectors corresponding to real eigenvalues of a matrix
must be real, Lemma 3.1.1 implies that a real symmetric matrix has all real eigen-
vectors as well. In fact, even more is true.

Lemma 3.1.2. Let B be a real symmetric matrix. Then there exists an orthonormal
basis for Rn consisting of eigenvectors of B.

Proof. We argue by induction on n. If n = 1, the result is trivial. Hence
assume n > 1, and the statement of the lemma is true for n − 1. Let x1 be an
eigenvector of B with the corresponding eigenvalue λ1. We can assume that ∥x1∥ =
1. Use Gram-Schmidt orthogonalization process to extend x1 to an orthonormal
basis for Rn, and write U for the corresponding basis matrix such that x1 is the
first column. Then it is easy to notice that U−1 = U⊤. By Problem 3.2,

U⊤BU =


λ1 0 . . . 0
0 a11 . . . a1(n−1)

...
...

. . .
...

0 a(n−1)1 . . . a(n−1)(n−1)

 ,

where the (n− 1)× (n− 1) matrix

A =

 a11 . . . a1(n−1)

...
. . .

...
a(n−1)1 . . . a(n−1)(n−1)


is also symmetric. Now we can apply induction hypothesis to the matrix A, thus
obtaining an orthonormal basis for Rn−1, consisting of eigenvectors of A, call them
y2, . . . ,yn. For each 2 ≤ i ≤ n, define

y′
i =

(
0
yi

)
∈ Rn,



48 3. QUADRATIC FORMS

and let xi = Uy′
i. There exist λ2, . . . , λn such that Ayi = λiyi for each 2 ≤ i ≤ n,

hence

U⊤BUy′
i = λiy

′
i,

and so Bxi = λixi. Moreover, for each 2 ≤ i ≤ n,

x⊤
1 xi = (x⊤

1 U)

(
0
yi

)
= 0,

by construction of U . Finally notice that for each 2 ≤ i ≤ n,

∥xi∥ =
(
U

(
0
yi

))⊤

U

(
0
yi

)
= (0,y⊤

i )U
⊤U

(
0
yi

)
= ∥yi∥ = 1,

meaning that x1,x2, . . . ,xn is precisely the basis we are looking for. □

Remark 3.1.2. An immediate implication of Lemma 3.1.2 is that a real symmet-
ric matrix has n linearly independent eigenvectors, hence is diagonalizable; we will
prove an even stronger statement below. In particular, this means that for each
eigenvalue, its algebraic multiplicity (i.e. multiplicity as a root of the characteristic
polynomial) is equal to its geometric multiplicity (i.e. dimension of the correspond-
ing eigenspace).

Lemma 3.1.3. Every real symmetric matrix B is diagonalizable by an orthogonal
matrix, i.e. there exists a matrix U ∈ On(R) such that U⊤BU is a diagonal matrix.

Proof. By Lemma 3.1.2, we can pick an orthonormal basis u1, . . . ,un for Rn

consisting of eigenvectors of B. Let
U = (u1 . . . un),

be the corresponding orthogonal matrix. Then for each 1 ≤ i ≤ n,

u⊤
i Bui = u⊤

i (λiui) = λi(u
⊤
i ui) = λi,

where λi is the corresponding eigenvalue, since

1 = ∥ui∥2 = u⊤
i ui.

Also, for each 1 ≤ i ̸= j ≤ n,

u⊤
i Buj = u⊤

i (λjuj) = λj(u
⊤
i uj) = 0.

Therefore, U⊤BU is a diagonal matrix whose diagonal entries are precisely the
eigenvalues of B. □

Remark 3.1.3. Lemma 3.1.3 is often referred to as the Principal Axis Theorem.
The statements of Lemmas 3.1.1, 3.1.2, and 3.1.3 together are usually called the
Spectral Theorem for symmetric matrices; it has many important applications in
various areas of mathematics, especially in Functional Analysis, where it is usually
interpreted as a statement about self-adjoint (or hermitian) linear operators. A
more general version of Lemma 3.1.3, asserting that any matrix is unitary-similar
to an upper triangular matrix over an algebraically closed field, is usually called
Schur’s theorem.

We now discuss the implications of these results for quadratic forms. A linear
transformation σ : Rn → Rn is a homomorphism of additive groups, which is an
isomorphism if and only if its matrix is nonsingular (Problem 3.3). We will call such
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homomorphisms (respectively, isomorphisms) linear. Then GLn(R) is precisely the
group of all linear isomorphisms Rn → Rn.

Remark 3.1.4. Interestingly, not all homomorphisms Rn → Rn are linear: in fact,
in a certain sense most of them are not linear. Nonlinear homomorphisms from Rn

to Rn, however, cannot be explicitly constructed. This has to do with the fact that
a basis for R as Q-vector space (called the Hamel basis), while has to exist by the
Axiom of Choice, cannot be explicitly constructed (see [Kuc09] for details).

Definition 3.1.2. Two real symmetric bilinear forms B1 and B2 in 2n variables
are called isomorphic if there exists an isomorphism σ : Rn → Rn such that

B1(σx, σy) = B2(x,y),

for all x,y ∈ Rn. Their associated quadratic forms Q1 and Q2 are also said to be
isomorphic in this case and σ is called an isomorphism of these bilinear (respectively,
quadratic) forms.

Isomorphism is easily seen to be an equivalence relation on real symmetric
bilinear (respectively quadratic) forms, so we can talk about isomorphism classes of
real symmetric bilinear (respectively quadratic) forms. The set of all isomorphisms
from a bilinear form B to itself forms a group under matrix multiplication, which is a
subgroup of GLn(R) (Problem 3.4): these are precisely the linear maps σ : Rn → Rn

such that

B(σX, σY ) = B(X,Y ),

and so the same is true for the associated quadratic form Q.

Definition 3.1.3. A symmetric bilinear form B and its associated quadratic form
Q are called diagonal if their coefficient matrix B is diagonal. In this case we can
write

B(X,Y ) =

n∑
i=1

biXiYi, Q(X) =

n∑
i=1

biX
2
i ,

where b1, . . . , bn are precisely the diagonal entries of the matrix B.

With this notation we readily obtain the following result.

Theorem 3.1.4. Every real symmetric bilinear form, as well as its associated qua-
dratic form, is isomorphic to a real diagonal form. In fact, there exists such an
isomorphism σ whose matrix is in On(R): in this case we call σ an isometry.

Proof. This is an immediate consequence of Lemma 3.1.3. □

Remark 3.1.5. Notice that this diagonalization is not unique, i.e. it is possible for
a bilinear or quadratic form to be isomorphic to more than one diagonal form (no-
tice that an isomorphism can come from the whole group GLn(R), not necessarily
from On(R)). This procedure does however yield an invariant for nonsingular real
quadratic forms, called signature.

Definition 3.1.4. A symmetric bilinear or quadratic form is called nonsingular
(or nondegenerate, or regular) if its Gram matrix is nonsingular.

Alternative equivalent characterizations of nonsingular forms are given in Prob-
lem 3.5. We now deal with nonsingular quadratic forms until further notice.
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Definition 3.1.5. A nonsingular diagonal quadratic form Q can be written as

Q(X) =

r∑
j=1

bijX
2
ij −

s∑
j=1

bkj
X2

kj
,

where all coefficients bij , bkj
are positive. In other words, r of the diagonal terms

are positive, s are negative, and r + s = n. The pair (r, s) is called the signature
of Q. If Q is a non-diagonal nonsingular quadratic form, we define its signature to
be the signature of an isometric diagonal form.

The following is Lemma 5.4.3 on p. 333 of [Jac90]; the proof is essentially the
same.

Theorem 3.1.5. Signature of a nonsingular quadratic form is uniquely determined.

Proof. We will show that signature of a nonsingular quadratic form Q does
not depend on the choice of diagonalization. Let B be the coefficient matrix of
Q, and let U,W be two different matrices that diagonalize B with column vectors
u1, . . . ,un and w1, . . . ,wn, respectively, arranged in such a way that

Q(u1), . . . , Q(ur1) > 0, Q(ur1+1), . . . , Q(un) < 0,

and
Q(w1), . . . , Q(wr2) > 0, Q(wr2+1), . . . , Q(wn) < 0,

for some r1, r2 ≤ n. Define vector spaces

V +
1 = spanR{u1, . . . ,ur1}, V −

1 = spanR{ur1+1, . . . ,un},
and

V +
2 = spanR{w1, . . . ,wr2}, V −

2 = spanR{wr2+1, . . . ,wn}.
Clearly, Q is positive on V +

1 , V +
2 and is negative on V −

1 , V −
2 . Therefore,

V +
1 ∩ V −

2 = V +
2 ∩ V −

1 = {0}.
Then we have

r1 + (n− r2) = dim(V +
1 ⊕ V −

2 ) ≤ n,

and
r2 + (n− r1) = dim(V +

2 ⊕ V −
1 ) ≤ n,

which implies that r1 = r2. This completes the proof. □

The importance of signature for nonsingular real quadratic forms is that it is an
invariant not just of the form itself, but of its whole isometry class.

Theorem 3.1.6 (Sylvester’s Theorem). Two nonsingular real quadratic forms in n
variables are isomorphic if and only if they have the same signature.

We leave the proof of this theorem to exercises (Problem 3.6). An immediate impli-
cation of Theorem 3.1.6 is that for each n ≥ 2, there are precisely n+1 isomorphism
classes of nonsingular real quadratic forms in n variables, and by Theorem 3.1.4
each of these classes contains a diagonal form. Some of these isomorphism classes
are especially important for our purposes.

Definition 3.1.6. A quadratic form Q is called positive or negative definite if,
respectively, Q(x) > 0, or Q(x) < 0 for each 0 ̸= x ∈ Rn; Q is called positive or
negative semi-definite if, respectively, Q(x) ≥ 0, or Q(x) ≤ 0 for each 0 ̸= x ∈ Rn.
Otherwise, Q is called indefinite.
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A real quadratic form is positive (respectively, negative) definite if and only
if it has signature (n, 0) (respectively, (0, n)). In particular, a definite form has
to be nonsingular (Problem 3.7). Positive definite real quadratic forms are also
sometimes called norm forms, since they do define norms (Problem 3.8).

We now have the necessary machinery to relate quadratic forms to lattices. Let
Λ be a lattice of full rank in Rn, and let A be a basis matrix for Λ. Then y ∈ Λ if
and only if y = Ax for some x ∈ Zn. Notice that the Euclidean norm of y in this
case is

∥y∥ = (Ax)⊤(Ax) = x⊤(A⊤A)x = QA(x),

where QA is the quadratic form whose Gram matrix is A⊤A. By construction, QA

must be a positive definite form. This quadratic form is called the norm form for
the lattice Λ corresponding to the basis matrix A.

Now suppose C is another basis matrix for Λ. Then there must exist U ∈
GLn(Z) such that C = AU . Hence the matrix of the quadratic form QC is
(AU)⊤(AU) = U⊤(A⊤A)U ; we call two such matrices GLn(Z)-congruent. Notice
in this case that for each x ∈ Rn

QC(x) = x⊤U⊤(A⊤A)Ux = QA(Ux),

which means that the quadratic forms QA and QC are isomorphic. In such cases,
when there exists an isomorphism between two quadratic forms in GLn(Z), we will
call them arithmetically equivalent. We proved the following statement.

Proposition 3.1.7. All different norm forms of a lattice Λ of full rank in Rn are
arithmetically equivalent to each other.

Moreover, suppose that Q is a positive definite quadratic form with Gram
matrix B, then there exists U ∈ On(R) such that

U⊤BU = D,
where D is a nonsingular diagonal n×nmatrix with positive entries on the diagonal.
Write

√
D for the diagonal matrix whose entries are positive square roots of the

entries of D, then D =
√
D⊤√D, and so

B = (
√
DU)⊤(

√
DU).

Letting A =
√
DU and Λ = AZn, we see that Q is a norm form of Λ. Notice

that the matrix A is unique only up to orthogonal transformations, i.e. for any
W ∈ On(R)

(WA)⊤(WA) = A⊤(W⊤W )A = A⊤A = B.
Therefore Q is a norm form for every lattice WAZn, where W ∈ On(R). Let us call
two lattices Λ1 and Λ2 isometric if there exists W ∈ On(R) such that Λ1 = WΛ2.
This is easily seen to be an equivalence relation on lattices. Hence we have proved
the following.

Theorem 3.1.8. Arithmetic equivalence classes of real positive definite quadratic
forms in n variables are in bijective correspondence with isometry classes of full
rank lattices in Rn.

Notice in particular that if a lattice Λ and a quadratic form Q correspond to each
other as described in Theorem 3.1.8, then

(3.2) det(Λ) =
√
|det(Q)|.



52 3. QUADRATIC FORMS

Now that we have the bijective correspondence between lattices and positive
definite quadratic forms, we end this section with an application of Minkonwski’s
Convex Body Theorem to the context of quadratic forms: this is Theorem 4 on p.
44 of [GL87].

Theorem 3.1.9. Let

Q(X) =

n∑
i=1

n∑
j=1

bijXiXj = X⊤BX

be a positive definite quadratic form in n variables with Gram matrix B. There
exists 0 ̸= x ∈ Zn such that

Q(x) ≤ 4

(
det(B)

ω2
n

)1/n

.

Proof. As in the proof of Theorem 3.1.8 above, we can decompose B as
B = A⊤A for some A ∈ GLn(R). Then

det(B) = det(A)2.

For each r ∈ R>0, define the set

Er = {x ∈ Rn : Q(x) ≤ r} = {x ∈ Rn : (Ax)⊤(Ax) ≤ r} = A−1Sr,

where Sr = {y ∈ Rn : ∥y∥2 ≤ r} is a ball of radius
√
r centered at the origin in

Rn. Hence Er is an ellipsoid centered at the origin with

Vol(Er) = |det(A)|−1 Vol(Sr) = ωn

√
rn

det(B)
.

Hence if

r = 4

(
det(B)

ω2
n

)1/n

,

then Vol(Er) = 2n, and so by Theorem 1.4.2 there exists 0 ̸= x ∈ Er ∩ Zn. □
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3.2. Minkowski’s reduction

Let M ⊆ Rn be a 0-symmetric convex set with positive volume, and let Λ ⊆ Rn

be a lattice of full rank, as before. In Section 1.4 we discussed the following question:
by how much should M be homogeneously expanded so that it contains n linearly
independent points of Λ? We learned however that the resulting set of n minimal
linearly independent vectors produced this way is not necessarily a basis for Λ.
In this section we want to understand by how much should M be homogeneously
expanded so that it contains a basis of Λ? We start with some definitions. In caseM
is a unit ball, this question is directly related to the Shortest Basis Problem (SBP)
we discussed in Section 2.3. There we reviewed the polynomial-time approximation
algorithm LLL for SBP. Here we will discuss the Minkowski reduction, which (in
case M is a unit ball) yields precisely the shortest vector. Minkowski reduction,
however, cannot be implemented as a polynomial-time algorithm.

As before, let us write F for the norm corresponding to M , i.e.

M = {x ∈ Rn : F (x) ≤ 1},
then

F (x+ y) ≤ F (x) + F (y).

We write λ1, . . . , λn for the successive minima of M with respect to Λ.

Definition 3.2.1. A basis {v1, . . . ,vn} of Λ is said to be Minkowski reduced with
respect to M if for each 1 ≤ i ≤ n, vi is such that

F (vi) = min{F (v) : v1, . . . ,vi−1,v is extendable to a basis of Λ}.
In the frequently occurring case when M is the closed unit ball Bn centered at 0,
we will just say that a corresponding such basis is Minkowski reduced. Notice in
particular that a Minkowski reduced basis contains a shortest nonzero vector in Λ.

From here on let {v1, . . . ,vn} be a Minkowski reduced basis of Λ with respect to M .
Then

F (v1) = λ1, F (vi) ≥ λi ∀ 2 ≤ i ≤ n.

Assume first that M = Bn, then F = ∥ ∥. Write A for the corresponding basis
matrix of Λ, i.e. A = (v1 . . .vn), and so Λ = AZn. Let Q be the corresponding
positive definite quadratic form, i.e. for each x ∈ Rn

Q(x) = x⊤A⊤Ax.

Then, as we noted before, Q(x) = ∥Ax∥2. In particular, for each 1 ≤ i ≤ n,

Q(ei) = ∥vi∥2.
Hence for each 1 ≤ i ≤ n, Q(ei) ≤ Q(x) for all x such that

v1, . . . ,vi−1, Ax

is extendable to a basis of Λ. This means that for every 1 ≤ i ≤ n

(3.3) Q(ei) ≤ Q(x) ∀ x ∈ Zn, gcd(xi, . . . , xn) = 1.

If a positive definite quadratic form satisfies (3.3), we will say that it is Minkowski
reduced. Every positive definite quadratic form is arithmetically equivalent to a
Minkowski reduced form (Problem 3.9).

Now let us drop the assumption that M = Bn, but preserve the rest of no-
tation as above. We can prove the following analogue of Minkowski’s successive
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minima theorem; this is essentially Theorem 2 on p. 66 of [GL87], which is due to
Minkowski, Mahler, and Weyl.

Theorem 3.2.1. Let ν1 = 1, and νi =
(
3
2

)i−2
for each 2 ≤ i ≤ n. Then

(3.4) λi ≤ F (vi) ≤ νiλi.

Moreover,

(3.5)

n∏
i=1

F (vi) ≤ 2n
(
3

2

) (n−1)(n−2)
2 det(Λ)

Vol(M)
.

Proof. It is easy to see that (3.5) follows immediately by combining (3.4) with
Theorem 1.5.2, hence we only need to prove (3.4). It is obvious by definition of a
reduced basis that F (vi) ≥ λi for each 1 ≤ i ≤ n, and that F (v1) = λ1. Hence we
only need to prove that for each 2 ≤ i ≤ n

(3.6) F (vi) ≤ νiλi.

Let u1, . . . ,un be the linearly independent vectors corresponding to successive min-
ima λ1, . . . , λn, i.e.

F (ui) = λi, ∀ 1 ≤ i ≤ n.

Then, by linear independence, for each 2 ≤ i ≤ n at least one of u1, . . . ,ui does
not belong to the subspace spanR{v1, . . . ,vi−1}, call this vector uj . If the set
v1, . . . ,vi−1,uj is extendable to a basis of Λ, then by construction of reduced basis
we must have

λi ≥ λj = F (uj) ≥ F (vi),

and so it implies that λi = F (vi), proving (3.6) in this case.
Next assume that the set v1, . . . ,vi−1,uj is not extendable to a basis of Λ. Let

v ∈ spanR{v1, . . . ,vi−1,uj} be such that the set v1, . . . ,vi−1,v is extendable to a
basis of Λ. Then we can write

uj = k1v1 + · · ·+ ki−1vi−1 ±mv,

where k1, . . . , ki−1,m ∈ Z, and m ≥ 2. Indeed, m ̸= 0 since

uj /∈ spanR{v1, . . . ,vi−1}.

On the other hand, if m = 1 then

v ∈ spanZ{v1, . . . ,vi−1,uj},

which would imply that v1, . . . ,vi−1,uj is extendable to a basis. Thus m ≥ 2, and
we can write

v = α1v1 + · · ·+ αi−1vi−1 ±
1

m
uj ,

where α1, . . . , αi−1 ∈ R. In fact, for each 1 ≤ k ≤ i − 1, there exists an integer lk
and a real number βk with |βk| ≤ 1

2 such that

αk = lk + βk.

Then

v =

i−1∑
k=1

(lk + βk)vk ±
1

m
uj =

i−1∑
k=1

lkvk + v′,
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where v′ =
∑i−1

k=1 βkvk ± 1
muj . Since v − v′ ∈ spanZ{v1, . . . ,vi−1}, it must be

that v′ ∈ Λ, and the set v1, . . . ,vi−1,v
′ is extendable to a basis of Λ. Then, by

definition of vi, we have

F (vi) ≤ F (v′) ≤
i−1∑
k=1

F (βkvk) + F

(
1

m
uj

)

=

i−1∑
k=1

|βk|F (vk) +
1

m
F (uj)

≤ 1

2

(
i−1∑
k=1

F (vk) + F (uj)

)
≤ 1

2

(
i−1∑
k=1

F (vk) + λi

)
.

Combining this with the previous case, we conclude that

(3.7) F (vi) ≤ max

{
λi,

1

2

(
i−1∑
k=1

F (vk) + λi

)}
, ∀ 2 ≤ i ≤ n.

Hence we obtain

F (v2) ≤ max

{
λ2,

1

2
(λ1 + λ2)

}
= λ2,

hence F (v2) = λ2. More generally, one can easily deduce (3.6) from (3.7). This
finishes the proof. □

As a corollary of Theorem 3.2.1, one can easily deduce a bound on the product of
diagonal coefficients of reduced positive definite quadratic forms (Problem 3.11).

There are also other reduction procedures for lattice bases, most notably there
is a notion of Korkin-Zolotarev reduced basis, which has many applications, for
instance in coding theory. In general, depending on particular situation or appli-
cation one has in mind, one or another reduction may be preferable. The common
feature of all reduced bases is that they all contain the shortest nonzero vector of
the lattice. One may then ask how to find a Minkowski-reduced basis for a lattice
Λ with respect to a convex 0-symmetric set M in Rn? This problem happens to be
very difficult in a rather precise sense; in fact, it is a harder version of the Shortest
Vector Problem (SVP) that we discussed above.
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3.3. Sums of squares

A classical arithmetic problem has to do with representation of integers by posi-
tive definite quadratic forms. Indeed, let Q(X) be a positive definite quadratic form
in n variables with integer coefficients. Then its values at nonzero integer points
are necessarily positive integers. One can then ask which ones? More specifically,
given a positive integer m, does there exist a point x ∈ Zn such that Q(x) = m?
If this is the case, we say that m is representable by Q.

This question can be interpreted in several different ways. The most obvious
one is a question about existence of integer solutions to the equation

(3.8) Q(X) = m.

Notice that the set of all possible real solutions to (3.8) is actually the surface of an
ellipsoid in Rn. Then geometrically our question asks whether this surface contains
any integer points? On the other hand, as we know there is a lattice corresponding
to Q(X), call it Λ, so that Q(X) is a norm form corresponding to some choice of
basis matrix A of Λ. Then for any vector y = Ax ∈ Λ,

∥y∥ = Q(x),

and so our question is now about the possible integer norm values of vectors in Λ.
The most natural quadratic form to ask these questions about is the usual

Euclidean norm-form, that is the sum of squares: this is the problem we consider in
this section. Indeed, results on integers representable as sums of squares go back to
at least the work of Pierre de Fermat in 1640, who considered this question in two
variables. Namely, Fermat was able to characterize all the integers representable as
sums of two integer squares. We start with Fermat’s theorem on representation of
primes as sums of two squares: since 2 = 12 + 12, we focus on odd primes. There
are several known proofs of this result in the literature: we present an elegant proof
by an application of Minkowski’s Convex Body Theorem.

Theorem 3.3.1. An odd prime number p is representable as a sum of two integer
squares if and only if p ≡ 1 (mod 4).

Proof. First notice that for any integer x, x2 is congruent to either to 0 or 1
modulo 4. Hence a sum of two integer squares can be congruent to either 0, 1, or 2
modulo 4. Thus a prime that is congruent to 3 modulo 4 cannot be representable
as a sum of two squares.

We therefore only need to show that if a prime p ≡ 1 (mod 4), then there exist
x, y ∈ Z such that p = x2 + y2. There exists m ∈ Z such that m2 ≡ −1 (mod p)
(Problem 3.12). Hence

p | m2 + 1.

Define a lattice

Λ =

(
1 0
m p

)
Z2 ⊂ Z2,

then det(Λ) = p and any point u ∈ Λ is of the form

u =

(
a

am+ bp

)
for some integers a, b. Then

∥u∥2 = a2 + (am+ bp)2 = a2(m2 + 1) + (2abm+ b2p)p ≡ 0 (mod p),
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hence p | ∥u∥2 for any u ∈ Λ. Let ε > 0 and B2(
√
2p− ε) be a circle of radius√

2p− ε centered at the origin in the plane. For sufficiently small ε, the area of
B2(
√
2p− ε) is

π(2p− ε) > 22p = 22 det(Λ),

and hence B2(
√
2p− ε) contains a nonzero point of Λ, by Theorem 1.4.2. Let

u =

(
x
y

)
be this point, then

p | ∥u∥2 = x2 + y2 ≤ 2p− ε < 2p.

This implies that x2 + y2 = p, and so we are done. □

We can now deduce a sum of two squares criterion for all the positive integers.
For this, we need the following auxiliary lemma.

Lemma 3.3.2. Suppose a, b are integers representable as sums of two squares. Then
so is their product ab.

Proof. Suppose

a = x2 + y2, b = z2 + t2

for some x, y, z, t ∈ Z. Then

ab = (x2 + y2)(z2 + t2)

= (xz + yt)2 + (xt− yz)2

= (xz − yt)2 + (xt+ yz)2.(3.9)

□

Theorem 3.3.3 (Sum of Two Squares). A positive integer m is representable as a
sum of two integer squares if and only if the prime factors congruent to 3 modulo
4 in its prime factorization occur to an even power.

Proof. Let

(3.10) m = 2epf11 · · · p
fk
k qg11 · · · qgnn

be the prime decomposition of m, where p1, . . . , pk are distinct primes ≡ 1 (mod 4),
q1, . . . , qn are distinct primes ≡ 3 (mod 4), e ≥ 0 and the powers f1, . . . , fk,
g1, . . . , gn are all positive. We then need to show that m is representable as a
sum of two squares if and only if g1, . . . , gn are all even.

First suppose that all g1, . . . , gn are all even. Notice that each

q
gj
j =

(
q
gj/2
j

)2
+ 02.

Further, if e is even, then

2e =
(
2e/2

)2
+ 02,

and if e is odd, then

2e = 2e−1 + 2e−1 =
(
2(e−1)/2

)2
+
(
2(e−1)/2

)2
.

Finally, each pi is representable as a sum of two squares by Theorem 3.3.1. Com-
bining these observations with Lemma 3.3.2, we see that the product m must be
representable as a sum of two squares.
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Now assume m = x2 + y2 for some x, y ∈ Z with d = gcd(x, y). Let us write
m = a2b, where a, b ∈ Z with b is squarefree. Then

x2 + y2 = d2(x2
1 + y21) = a2b,

so d2 | a2 and gcd(x1, y1) = 1. Suppose some prime p divides b, then p must divide
x2
1 + y21 , i.e.

x2
1 ≡ −y21 (mod p).

Suppose p ≡ 3 (mod 4), then p− 1 = 4ℓ+ 2 = 2(2ℓ+ 1), and so

(3.11) xp−1
1 = (x2

1)
2ℓ+1 ≡ (−1)2ℓ+1(y21)

2ℓ+1 = −yp−1
1 (mod p).

Hence if p divides x1, it must also divide y1, which is not possible since x1, y1 are
relatively prime. Thus p ∤ x1, y1, in which case Fermat’s Little Theorem implies

that xp−1
1 and yp−1

1 are both congruent to 1 modulo p, and hence congruent to each
other. This contradicts (3.11), meaning that p cannot be congruent to 3 modulo 4.
Hence any odd primes dividing the squarefree part of m must be congruent to 1
modulo 4, so primes congruent to 3 modulo 4 must come to an even power in the
factorization (3.10). □

A natural next step in the development of the sum of squares problem is the
question of which integers can be represented as sums of three squares? The an-
swer is provided by a theorem of Adrien-Marie Legendre (1797), although (as was
observed later) it also follows from an earlier result of Gauss (1796).

Theorem 3.3.4 (Sum of Three Squares). A positive integer m is representable as
a sum of three integer squares if and only if it is not of the form m = 4a(8b + 7)
for some positive integers a, b.

The necessity of the condition m ̸= 4a(8b+7) is not difficult to see: it follows from
the fact that any integer square is either 0, 1, or 4 modulo 8. The sufficiency of
this condition is considerably harder; we do not present it here.

Interestingly, the theorem about representing integers as sums of four squares
is easier to prove: it was first obtained by Joseph Louis Lagrange in 1770, earlier
than Legendre’s theorem. The proof we present here is similar in spirit to our proof
of Fermat’s Sum of Two Squares Theorem.

Theorem 3.3.5 (Sum of Four Squares). Any positive integer m is representable as
a sum of four integer squares.

Proof. Similar to the identity (3.9) expressing the product of two sums of
two squares as a sum of two squares, there is Euler’s identity for the sum of four
squares:

(x2
1 + x2

2 + x2
3 + x2

4)(y
2
1 + y22 + y23 + y24)

= (x1y1 − x2y2 − x3y3 − x4y4)
2 + (x1y2 + x2y1 + x3y4 − x4y3)

2

+ (x1y3 − x2y4 + x3y1 + x4y2)
2 + (x1y4 + x2y3 − x3y2 + x4y1)

2.(3.12)

This identity implies that the set of integers representable as sums of four squares
is closed under multiplication. Thus we we only need to show that every prime
representable this way (obviously, 1 is representable).
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Let p be a prime. There exist some two integers a and b so that a2 + b2 + 1 is
divisible by p (Problem 3.13). Define a lattice

Λ =


p 0 a b
0 p b −a
0 0 1 0
0 0 0 1

Z4,

then det(Λ) = p2. Let u ∈ Λ, then

∥u∥2 = (px1 + ax3 + bx4)
2 + (px2 + bx3 − ax4)

2 + x2
3 + x2

4

for some x1, . . . , x4 ∈ Z. Hence

∥u∥2 ≡ (x2
3 + x2

4)(a
2 + b2 + 1) ≡ 0 (mod p),

thus p | ∥u∥2 for any u ∈ Λ. Let ε > 0 and B4(
√
2p− ε) be a ball of radius

√
2p− ε

centered at the origin in R4. For sufficiently small ε, the volume of B4(
√
2p− ε) is

π2

2
(2p− ε)2 > 24p2 = 24 det(Λ),

and hence B4(
√
2p− ε) contains a nonzero point of Λ, by Theorem 1.4.2. Let

u = (u1, u2, u3, u4)
⊤ be this point, then

p | ∥u∥2 = u2
1 + u2

2 + u2
3 + u2

4 ≤ 2p− ε < 2p.

This implies that u2
1 + u2

2 + u2
3 + u2

4 = p, and so we are done. □

Questions about representation of integers by quadratic forms in general are
at the center of an important subarea of number theory, the arithmetic theory of
quadratic forms. Ever since the work of Fermat, Lagrange, Legendre and Gauss
many mathematicians have studied such representation questions, as well as ques-
tions about counting numbers of possible representations. In other words, given an
equation of the form (3.8), one can ask:

(1) Does it have integer solutions?
(2) If so, how many integer solutions does it have?

While we do not address these questions here, we refer the interested reader to the
books [HW08] and [MSSW06], where these questions are considered. Some of
our arguments in this section followed the exposition of [Cla]. A classical account
of the theory of rational quadratic forms can be found in Cassels’ book [Cas78].
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3.4. Problems

Problem 3.1. Let Q(X) be a quadratic form in n variables. Prove that

B(X,Y ) =
1

2
(Q(X + Y )−Q(X)−Q(Y ))

is a symmetric bilinear form.

Problem 3.2. Let B be an n× n real symmetric matrix. Let x1 be an eigenvector
of B with the corresponding eigenvalue λ1 and ∥x1∥ = 1. Let U ∈ On(R) be a
matrix whose columns are an orthonormal basis containing x1 with x1 being the
first column. Prove that the matrix U⊤BU is of the form

λ1 0 . . . 0
0 a11 . . . a1(n−1)

...
...

. . .
...

0 a(n−1)1 . . . a(n−1)(n−1)

 ,

where the (n− 1)× (n− 1) matrix

A =

 a11 . . . a1(n−1)

...
. . .

...
a(n−1)1 . . . a(n−1)(n−1)


is also symmetric.

Problem 3.3. Prove that a linear transformation σ : Rn → Rn is a homomorphism
of additive groups, which is an isomorphism if and only if its matrix is nonsingular.

Problem 3.4. Prove that if σ is an isomorphism of a symmetric bilinear form
B, then det(σ) = ±1. Prove that the set of all isomorphisms of a symmetric
bilinear form is a group under matrix multiplication. Hence it must be a subgroup
of GLn(R).

Problem 3.5. Let B(X,Y ) be a symmetric bilinear form and Q(X) its associated
quadratic form. Prove that the following four conditions are equivalent:

(1) B is nonsingular.
(2) For every 0 ̸= x ∈ Rn, there exists y ∈ Rn so that B(x,y) ̸= 0.
(3) For every 0 ̸= x ∈ Rn at least one of the partial derivatives

∂Q

∂Xi
(x) ̸= 0.

(4) Q is isometric to a diagonal form with all coefficients nonzero.

Problem 3.6. Prove Sylvester’s Theorem (Theorem 3.1.6), namely that two non-
singular real quadratic forms in n variables are isomorphic if and only if they have
the same signature.
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Problem 3.7. Prove that a real quadratic form in n variables is positive (respec-
tively, negative) definite if and only if it has signature (n, 0) (respectively, (0, n)).
In particular, a definite form has to be nonsingular.

Problem 3.8. Let Q be a positive definite real quadratic form in n variables. Prove
that the function x 7→

√
Q(x) is a norm on Rn.

Problem 3.9. Prove that every positive definite quadratic form is arithmetically
equivalent to a Minkowski reduced form.

Problem 3.10. Let B = (bij)1≤i,j≤n be the symmetric coefficient matrix of a
Minkowski reduced positive definite quadratic form Q. Prove that

0 < b11 ≤ b22 ≤ · · · ≤ bnn,

and
|2bij | ≤ bii ∀ 1 ≤ i < j ≤ n.

Problem 3.11. Let

Q(X) =

n∑
i=1

n∑
j=1

bijXiXj

be a Minkowski reduced positive definite quadratic form. Prove that

(3.13)

n∏
i=1

bii ≤
4n

ω2
n

(
3

2

) (n−1)(n−2)
2

det(Q),

where ωn is the volume of a unit ball in Rn, which is given by (2.1).

(Hint: Let Λ = Zn, and let M =
{
x ∈ Rn :

√
Q(x) ≤ 1

}
; then apply Theorem

3.2.1.)

Problem 3.12. Let p be a prime congruent to 1 modulo 4. Use Euler’s Criterion
to prove that there exists m ∈ Z such that m2 ≡ −1 (mod p).

Problem 3.13. Let p be a prime. Prove that there exist some two integers a and
b so that a2 + b2 + 1 is divisible by p.

Problem 3.14. Let n ≥ 2 be even, and define quadratic forms

Q1(X1, . . . , Xn) =

n∑
i=1

X2
i −X1X2 −X3X4 − · · · −Xn−1Xn,

and
Q2(X1, . . . , Xn) = XtBX

for some real symmetric matrix B. Suppose that Q1 and Q2 are isometric, i.e.
there exists a real orthogonal matrix U such that

Q1(UX) = Q2(X).

(1) Find eigenvalues of B. Prove your answer.
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(2) Let

Q′
1(X1, . . . , Xn) =

1

2

n∑
i=1

X2
i −X1X2 −X3X4 − · · · −Xn−1Xn.

Are Q′
1 and Q2 isometric? Prove your answer.



CHAPTER 4

Diophantine Approximation

4.1. Real and rational numbers

Diophantine approximation aims to quantify the quality of approximation of
real numbers by rationals. The set Q of rational numbers can be defined as the set
of equivalence classes of integer pairs (a, b) ∈ Z2 under the relation

(4.1) (a, b) ∼ (c, d)⇔ ad = bc.

We can then construct real numbers as equivalence classes of rational Cauchy se-
quences under the relation that two sequences are equivalent whenever they con-
verge to the same limit. In terms of decimal expansion we can define a real number
to be a power series

∞∑
k=0

ak10
−k,

where the coefficients a0, a1, . . . are integers in the interval [−9, 9], either all non-
negative or all nonpositive. As indicated in Problem 4.1, each such power series
converges.

Now, rational numbers are those power series for which either all but finitely
many ak are zero, or those for which the sequence of coefficients {a0, a1, . . . } is
periodic. From this description it is clear that most real numbers must be irrational,
but can this statement be made more precise? In this chapter we will explore the
relationship between rational and all real numbers in some detail, drawing precise
conclusions.

The first observation we make is that although rationals are sparse among the
reals, it is always possible to find a rational number as close as we want to a given
real number.

Theorem 4.1.1. The set of rational numbers Q is dense inside of the set of real
number R, i.e. if x < y ∈ R, then there exists z ∈ Q such that

x < z < y.

Proof. Since y − x > 0, there must exist n ∈ Z such that

n(y − x) = ny − nx > 1,

so nx+ 1 < ny. Let m = [nx+ 1], then m is an integer such that

m ≤ nx+ 1 < m+ 1.

Hence we have
nx < m ≤ nx+ 1 < ny,

and hence
x <

m

n
< y.

63
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Let z = m
n ∈ Q, and this finishes the proof. □

Theorem 4.1.1 implies that any real number can be approximated arbitrarily
well by rational numbers. In the next section we show that, while this is true, the
number of rationals is still incomparably smaller than the number of all reals in a
certain well defined sense.
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4.2. Algebraic and transcendental numbers

We start out with definitions and basic properties of algebraic and transcen-
dental numbers.

Definition 4.2.1. A complex number α is called algebraic if there exists a nonzero
polynomial p(x) with integer coefficients such that p(α) = 0. If α is not algebraic,
it is called transcendental.

In other words, transcendental numbers are complex numbers that do not satisfy
any polynomial equation with integer coefficients. We will write A for the set of all
algebraic numbers and T := C \ A for the set of all transcendental numbers.

Examples of algebraic numbers are easy to construct. In fact, it is easily seen
that every rational number m

n is algebraic: it is the root of polynomial p(x) =

nx−m. More generally, any number of the form
(
m
n

)1/k
, where m,n are integers,

n ̸= 0, and k a positive integer is also algebraic: it is a root of the polynomial
p(x) = nxk−m. Notice that this example includes such instances as

√
2, i =

√
−1,

and many others. These examples and the ease with which they can be constructed
may give an impression that most complex numbers are algebraic. In fact, this is
not true. Our first goal is to make this idea rigorous.

First let us introduce some additional notation. Recall that we write Z[x]
for the ring of all polynomials with integer coefficients. We think of constants as
polynomials of degree 0, and hence Z ⊂ Z[x]. The degree of an algebraic number α
is defined as

deg(α) := min{deg(f(x)) : f(x) ∈ Z[x], f(α) = 0}.

Let d = deg(α) and let f(x) =
∑d

m=0 amxm ∈ Z[x] be a polynomial of degree d such
that f(α) = 0, gcd(a0, . . . , ad) = 1, and ad > 0. By Problem 4.2, this polynomial is
unique for each α ∈ A: it is called the minimal polynomial of α, denoted by mα(x).
A polynomial p(x) ∈ Z[x] is called irreducible if whenever p(x) = f(x)g(x) for some
f(x), g(x) ∈ Z[x] then either f(x) or g(x) is equal to ±1.
Definition 4.2.2. A set S is called countable if there exists a bijective (i.e., one-
to-one and onto) map f : N→ S.

Lemma 4.2.1. Let S1, S2, . . . be a collection of finite sets. Then their union

S =

∞⋃
n=1

Sn

is countable.

Proof. For each n ≥ 1, let an be the cardinality of Sn, and write

Sn = {xn1, . . . , xnan
}.

Then we can write

S = {x11, . . . , x1a1
, x21, . . . , x2a2

, . . . }.
Let ym be the m-th element of S with respect to the above ordering, i.e. ym = xnj

for some n and j such that

a1 + · · ·+ an−1 + j = m.

Then define f : N → S by f(m) = ym. This map is clearly a bijection, and hence
S is countable. □
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Lemma 4.2.2. The set N× N is countable.

Proof. Notice that

N× N = {(m,n) : m,n ∈ N}
= {(m,n) : m,n ∈ N, m ≤ n} ∪ {(m,n) : m,n ∈ N, m > n}

=

( ∞⋃
n=1

{(m,n) : m ≤ n}

)
∪

( ∞⋃
m=1

{(m,n) : n < m}

)
,

which is a (countable) union of finite sets, and hence it is countable by Lemma 4.2.1
above. □

Lemma 4.2.3. A countable union of countable sets is countable.

Proof. Let S1, S2, . . . be countable sets, say

Sn = {xn1, xn2, . . . },
and let

S =

∞⋃
n=1

Sn.

Then notice that there is a bijection f : N × N → S, given by f(n,m) = xnm. By
Lemma 4.2.2, N×N is countable, i.e. there exists a bijection g : N→ N×N. Since
a composition of two bijections f ◦ g : N→ S is again a bijection, we conclude that
S is countable. □

Lemma 4.2.4. Let m ≥ 1. The set

Zm := {a = (a1, . . . , am) : a1, . . . , am ∈ Z}
is countable.

Proof. We argue by induction on m. First suppose that m = 1, then the set

Z = N ∪ −N ∪ {0},
where −N = {−x : x ∈ N}. This is a union of two countable sets and one finite
set, hence it is countable. Now suppose that the statement of the lemma is true for
m = d− 1. We prove it for m = d. Notice that

Zd =

( ⋃
a∈N0

{(x, a) : x ∈ Zd−1}

)
∪

(⋃
a∈N
{(x,−a) : x ∈ Zd−1}

)
,

Each set like {(x, a) : x ∈ Zd−1} or {(x,−a) : x ∈ Zd−1} for a ∈ N is in bijec-
tive correspondence with Zd−1, and hence is countable by induction hypothesis.
Therefore Zd is a countable union of countable sets, and hence is countable by
Lemma 4.2.3. □

Remark 4.2.1. One can use Lemma 4.2.4 to deduce that Q is a countable set.
Indeed, rational numbers are constructed as the set of equivalence classes of the
subset Z2

∗ := {(a, b) ∈ Z : b ̸= 0} of Z2 under the specified equivalence relation (4.1).
Identifying these equivalence classes with some choice of their representatives, we
can view Q as a subset of Z2. Lemma 4.2.4 implies that Z2 is countable, and then
Problem 4.4 guarantees that Q is countable.

We will now prove a much stronger fact, namely countability of the set of all
algebraic numbers, from which countability of Q follows yet again by Problem 4.4.
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Theorem 4.2.5. The set A of algebraic numbers is countable.

Proof. Notice that each α ∈ A is a root of some polynomial in Z[x]. Further-
more, each polynomial p(x) ∈ Z[x] has finitely many roots. In fact, the Fundamen-
tal Theorem of Algebra (presented in Appendix B) guarantees that any polynomial
with coefficients in C has d roots in C, counted with multiplicity, where d is its
degree. For each p(x) ∈ Z[x], let Rp be the set of all roots of p(x). Then

A =
⋃

p(x)∈Z[x]

Rp.

This union is not disjoint, i.e. roots may be repeated. Hence, if we just think
of this union as a list of elements with repetition, then A is formally a subset of⋃

p(x)∈Z[x] Rp. Now notice that each polynomial

p(x) =

d∑
n=0

anx
n ∈ Z[x]

can be identified with its vector of coefficients (a0, . . . , ad) ∈ Zd+1, where d =
deg(p(x)). This defines a bijection between Z[x] and the set

⋃
d∈N0

Zd+1, which is

a countable union of countable sets, hence is countable. Therefore
⋃

p(x)∈Z[x] Rp

is a countable union of finite sets, hence is countable, and so its subset A is also
countable. □

Remark 4.2.2. In fact, we could rephrase the proof Theorem 4.2.5 in terms of just
irreducible polynomials. In other words, there is a bijection between A and the
disjoint union of sets of roots of all irreducible polynomials in Z[x]. Since the set
of irreducible polynomials is an infinite subset of the countable set Z[x], it is itself
countable, hence we are done.

In contrast, let us consider the set of all real numbers.

Theorem 4.2.6. The set R of all real numbers is uncountable.

Proof. Assume that R is countable. Then there exists some bijection f :
N→ R. Let us write xn := f(n) for each n ∈ N, so the image of f is the sequence
(xn)n∈N of distinct real numbers, which is supposed to be equal to all of R. We
will reach a contradiction by showing that every sequence (xn)n∈N of distinct real
numbers misses at least one x ∈ R.

Indeed, let (xn)n∈N be such a sequence. We define a nested family of intervals
as follows. Let a1 = min{x1, x2} and b1 = max{x1, x2}. Since the elements of
our sequence are all distinct, a1 < b1, and hence I1 := [a1, b1] is an interval, not a
singleton. If I1 contains only finitely many xn’s, then pick some x ∈ I1 which is not
one of these numbers (by Problem 4.5, such x must exist), and we are done. Then
assume I1 contains infinitely many xn’s. Let y and z be the first two such elements,
with respect to index, in the interior of I1 and let a2 = min{y, z}, b2 = max{y, z}
so a2 < b2 and I2 := [a2, b2] is again an interval with non-empty interior such that
I2 ⊊ I1. Continue in the same manner to obtain a nested sequence of intervals:

· · · ⊊ In ⊊ In−1 ⊊ · · · ⊊ I2 ⊊ I1,

where each In = [an, bn] with an < bn. Then notice that

a1 < a2 < · · · < an−1 < an < · · · < bn < bn−1 < · · · < b2 < b1.
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Therefore (an)n∈N (respectively, (bn)n∈N) is a monotone increasing (respectively,
decreasing) sequence, which is bounded from above (respectively, below). By the
Monotone Convergence Theorem (recall from Calculus), these sequences have lim-
its, let us write

A := lim
n→∞

an, B := lim
n→∞

bn.

It is clear that A ≤ B, so the closed interval I = [A,B] is not empty. Let h ∈ I,
then h ̸= an, bn for any n ∈ N. In fact, we will show that h ̸= xn for any n ∈ N.

Suppose that h = xk for some k ∈ N, so there are finitely many points in the
sequence (xn)n∈N before h occurs, and hence only finitely many an’s preceding h.
Let ad be the last element in the sequence (an)n∈N preceding h. Since h cannot
be equal to ad, ad < h, i.e. h is in the interior of Id. Since it is contained in the
limiting interval I, it must be contained in Id+1 = [ad+1, bd+1] by our construction
of the intervals. But this means that ad < ad+1 < h, which contradicts our choice
of ad.

This shows that h is not an element of the sequence (xn)n∈N, and hence at least
one real number is not in this sequence. This means that R cannot be countable. □

Remark 4.2.3. The fact of uncountability of reals was first established by Georg
Cantor in 1874. In fact, Cantor presented at least three different proofs of this fact,
including his famous diagonal argument (1891). Our proof of Theorem 4.2.6 above
follows Cantor’s first argument (1874).

Since R ⊂ C, we conclude that C is also uncountable, by Problem 4.4. Now
recall that C = A ∪ T, and A is countable. This means that T, the set of transcen-
dental numbers, is uncountable. Loosely speaking this means, that most complex
numbers are in fact transcendental. Ironically, while constructing algebraic num-
bers is quite straightforward, as seen above, it is not at all easy to construct a
transcendental number. Indeed, suppose we take a complex number α. To prove
that it is algebraic, we can find its minimal polynomial mα(x) ∈ Z[x]. Although
this may be somewhat laborious, there are standard techniques in algebraic number
theory that allow for such a construction. On the other hand, to prove that α is
transcendental we would need to establish that α is not a root of any polynomial in
Z[x]. This kind of fact clearly requires some sort of indirect argument, which is the
reason why it took mathematicians until mid-19th century to construct the first
transcendental number. This construction, by Joseph Liouville, used the recently
developed tools in the area of Diophantine approximation. It is our next goal to
develop the necessary tools and to present Liouville’s construction. Our exposition
in the next three sections follows the classical text of W. M. Schmidt [Sch91].
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4.3. Dirichlet’s Theorem

Since rationals are dense within reals, we can always approximate a real num-
ber with rationals. For many purposes, however, we may want to control how
“complicated” the rational numbers we use for such approximations are, i.e. we
may want to bound the size of their denominators. This is the starting point of the
theory of Diophantine approximation. The first result in this direction dates back
to Dirichlet, and is proved with the use of Dirichlet’s box principle (also known in
combinatorics as the pigeonhole principle); in fact, this is the theorem to which this
principle owes its name.

Theorem 4.3.1 (Dirichlet, (1842)). Let α ∈ R, and let Q ∈ Z>0. There exist
relatively prime integers p, q with 1 ≤ q ≤ Q such that

(4.2)

∣∣∣∣α− p

q

∣∣∣∣ ≤ 1

q(Q+ 1)
.

Moreover, if α is irrational, then there are infinitely many rational numbers p
q such

that

(4.3)

∣∣∣∣α− p

q

∣∣∣∣ ≤ 1

q2
.

Proof. If α is a rational number with denominator ≤ Q, there is nothing
to prove. Hence we will assume that either α is irrational, or it is rational with
denominator > Q. Notice that

[0, 1) =

Q+1⋃
i=1

[
i− 1

Q+ 1
,

i

Q+ 1

)
.

Consider the numbers {lα}, 1 ≤ l ≤ Q + 1, where { } denotes the fractional part
function, i.e. {x} = x− [x]. These numbers lie in the interval [0, 1) and are distinct.
Indeed, suppose that {lα} = {mα} for some 1 ≤ l < m ≤ Q + 1, then mα − lα is
an integer, say

mα− lα = α(m− l) = k ∈ Z,
and so α = k/(m − l), where m − l ≤ (Q + 1) − 1 = Q, which contradicts our
assumption.

Case 1. Suppose that each subinterval
[

i−1
Q+1 ,

i
Q+1

)
contains one of the numbers

{lα}, 1 ≤ l ≤ Q+1. In particular, subintervals
[
0, 1

Q+1

)
and

[
Q

Q+1 , 1
)
contain such

points, so at least one of them must contain some {lα} with 1 ≤ l ≤ Q. Therefore,
either

(4.4) |lα− [lα]| ≤ 1

Q+ 1
,

or

(4.5) |lα− [lα]− 1| ≤ 1

Q+ 1
.

This means that there exists an integer 1 ≤ l ≤ Q and an integer m equal to either
[lα] or [lα]− 1, depending on whether (4.4) or (4.5) holds, such that

|lα−m| ≤ 1

Q+ 1
.
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Let d = gcd(l,m), and let p = m
d and q = l

d , then

|qdα− pd| ≤ 1

Q+ 1
,

meaning that ∣∣∣∣α− p

q

∣∣∣∣ ≤ 1

qd(Q+ 1)
≤ 1

q(Q+ 1)
,

proving (4.2) in this case.

Case 2. Now assume that one of the subintervals
[

i−1
Q+1 ,

i
Q+1

)
for some 1 ≤ i ≤

Q + 1 does not contain any of the numbers {lα}, 1 ≤ l ≤ Q + 1. Since there are
Q + 1 such numbers and Q + 1 subintervals, one of the subintervals must contain

two such numbers, say
[

j−1
Q+1 ,

j
Q+1

)
for some 1 ≤ j ≤ Q+1 contains {lα} and {mα}

for some 1 ≤ l < m ≤ Q+ 1. Therefore

|(mα− [mα])− (lα− [lα])| = |(m− l)α− ([mα]− [lα])| ≤ 1

Q+ 1
.

Once again, let d = gcd((m− l), ([mα]− [lα])), and let p = [mα]−[lα]
d and q = m−l

d ,
and so in the same way as above we obtain (4.2).

We can now derive (4.3) from (4.2): since q ≤ Q,

(4.6)

∣∣∣∣α− p

q

∣∣∣∣ ≤ 1

q(Q+ 1)
<

1

q2
.

Now suppose that there are only finitely many rationals that satisfy (4.3), call them

p1
q1

, . . . ,
pk
qk

.

Let

δ = min
1≤i≤k

∣∣∣∣α− pi
qi

∣∣∣∣ ,
then δ > 0, since α is irrational. Let Q ∈ Z>0 be such that

1

Q
< δ.

By (4.6), there must exist p
q with 1 ≤ q ≤ Q such that∣∣∣∣α− p

q

∣∣∣∣ ≤ 1

q(Q+ 1)
< δ,

hence p
q /∈

{
p1

q1
, . . . , pk

qk

}
, which is a contradiciton. Thus there must be infinitely

many such rationals. □

Remark 4.3.1. Notice that the argument that derives (4.3) from (4.2) is very
similar to Euclid’s proof of the infinitude of primes.

We also present an alternate proof of Dirichlet’s inequality (4.3), which is inspired
by the geometry of numbers approach and uses Minkowski’s Linear Forms Theorem.
Our exposition of this proof follows [Cla].
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Minkowski-style proof of Dirichlet’s theorem. With notation as in the
statement of Theorem 4.3.1, let us define two binary linear forms:

L1(x, y) = x− αy, L2(x, y) = y.

Coefficients of these forms are given by the rows of the 2× 2 matrix

B =

(
1 −α
0 1

)
with det(B) = 1. Let c1, c2 ∈ R be such that c1c2 = 1, then by Theorem 1.4.3 there
exists a nonzero point (p, q) ∈ Z2 such that |L1(p, q)| ≤ c1, |L2(p, q)| ≤ c2, i.e.

|p− αq| ≤ 1

c2
, |q| ≤ c2.

If we take c2 > 1, the first of these inequalities implies that q ̸= 0: otherwise p
would have to be 0 too, contradicting the fact that (p, q) is a nonzero lattice point.
Let h ∈ (0, 1) and set c2 = Q + h, then for any such h there exist p, q ∈ Z with
q ≤ Q+ h (hence ≤ Q since q is an integer) such that

|p− αq| ≤ 1

Q+ h
.

Since this inequality holds for any h, and there are only finitely many points (p, q) ∈
Z2 with |q| ≤ Q satisfying this, there must in fact exist (p, q) ∈ Z2 such that
|p− αq| ≤ 1

Q+1 and |q| ≤ Q. Dividing through by q completes the proof. □

Hurwitz (1891) improved Dirichlet’s bound (4.3) slightly by showing that for
any irrational α ∈ R there exist infinitely many distinct rational numbers p

q such

that

(4.7)

∣∣∣∣α− p

q

∣∣∣∣ ≤ 1√
5 q2

.

We will now show that in a certain sense (4.7) is best possible.

Lemma 4.3.2. Let α ∈ R be a quadratic irrational satisfying f(α) = 0, where

f(x) = ax2 + bx+ c

with a, b, c ∈ Z and a > 0. Write D = b2 − 4ac for the discriminant of f . Then for
any real number A >

√
D, there are only finitely many rationals p

q such that

(4.8)

∣∣∣∣α− p

q

∣∣∣∣ < 1

Aq2
.

Proof. We know that α is one of the roots of f(x), then let β be the other
one, i.e.

f(x) = a(x− α)(x− β) = ax2 − a(α+ β)x+ aαβ,

meaning that b = a(α+ β) and c = aαβ. Therefore

D = b2 − 4ac = a2(α− β)2.

Now suppose that for some p
q ∈ Q (4.8) holds. Notice that since f(x) is a quadratic

polynomial with irrational roots, then

0 ̸=
∣∣∣∣f (p

q

)∣∣∣∣ = |ap2 + bpq + cq2|
q2

≥ 1

q2
,
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since 0 ̸= ap2 + bpq + cq2 ∈ Z, hence |ap2 + bpq + cq2| ≥ 1. Therefore

1

q2
≤

∣∣∣∣f (p

q

)∣∣∣∣ = a

∣∣∣∣α− p

q

∣∣∣∣ ∣∣∣∣β − p

q

∣∣∣∣
<

a

Aq2

∣∣∣∣β − p

q

∣∣∣∣ = a

Aq2

∣∣∣∣(α− p

q

)
+ (β − α)

∣∣∣∣
≤ a

Aq2

∣∣∣∣α− p

q

∣∣∣∣+ a

Aq2
|β − α| < a

A2q4
+

√
D

Aq2
,

and subtracting
√
D

Aq2 from both sides of the above inequality implies

1

q2

(
1−
√
D

A

)
<

a

A2q4
.

The left hand side of this inequality is not 0 since A >
√
D, and hence

q2 <
a

A(A−
√
D)

.

This implies that there are only finitely many possibilities for the denominator q,
but for each such q there can be only finitely many p so that (4.8) holds. This
completes the proof. □

Remark 4.3.2. Let α = 1+
√
5

2 , then the corresponding polynomial

f(x) = x2 − x− 1,

and its discriminant is D = 5. By Lemma 4.3.2, if A >
√
5 then there are only

finitely many p
q ∈ Q such that ∣∣∣∣α− p

q

∣∣∣∣ < 1

Aq2
,

which proves that Hurwitz’s bound (4.7) is best possible.
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4.4. Liouville’s theorem and construction of a transcendental number

More generally, for every quadratic irrational α there exists a constant C(α) > 0
such that for any p

q ∈ Q

(4.9)

∣∣∣∣α− p

q

∣∣∣∣ ≥ C(α)

q2
.

In other words, quadratic irrationals are badly approximable.

Definition 4.4.1. An irrational number α is called badly approximable if there
exists a positive real constant C(α) such that (4.9) holds for any p

q ∈ Q.

As can be expected after the above discussion, algebraic numbers although are
not necessarilly badly approximable, are certainly “worse” approximable than tran-
scendental numbers can be. This principle was first observed by Liouville in 1844.

Theorem 4.4.1 (Liouville). Let α ∈ R be an algebraic number of degree d =
deg(f) ≥ 2, where f(x) ∈ Z[x] is the minimal polynomial of α over Q. Then
there exists a positive real constant C(α) such that for any p

q ∈ Q

(4.10)

∣∣∣∣α− p

q

∣∣∣∣ ≥ C(α)

qd
.

Proof. Let

f(x) =

d∑
i=0

aix
i ∈ Z[x].

Then, since d ≥ 2 means that α is irrational, for each p
q ∈ Q we have

0 ̸= qdf

(
p

q

)
=

d∑
i=0

aip
iqd−i ∈ Z.

We can assume of course that
∣∣∣α− p

q

∣∣∣ ≤ 1. Then, since f(α) = 0,

1 ≤ qd
∣∣∣∣f (p

q

)∣∣∣∣ = qd
∣∣∣∣f(α)− f

(
p

q

)∣∣∣∣ = qd

∣∣∣∣∣
∫ α

p/q

f ′(u) du

∣∣∣∣∣
≤ qd

∣∣∣∣α− p

q

∣∣∣∣max{f ′(u) : |α− u| ≤ 1}.

Then pick C(α) = (max{f ′(u) : |α− u| ≤ 1})−1
, and the theorem follows. □

Liouville used his theorem to construct the first known example of a transcen-
dental number.

Corollary 4.4.2 (Liouville). The number

α =

∞∑
n=1

1

an!

is transcendental for any integer a ≥ 2.

Proof. Let a > 1. For every k ∈ Z>0, let

pk = ak!
k∑

n=1

1

an!
, qk = ak! ∈ Z.
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Then ∣∣∣∣α− pk
qk

∣∣∣∣ = ∞∑
n=k+1

1

an!
=

1

a(k+1)!

∞∑
n=k+1

a(k+1)!

an!
<

1

a(k+1)!

∞∑
n=0

1

an
.

Clearly
∑∞

n=0
1
an is a convergent series, so let

C =
∞∑

n=0

1

an
,

and then we have

(4.11)

∣∣∣∣α− pk
qk

∣∣∣∣ < C
a(k+1)!

=
C

q
(k+1)
k

<
C
qkk

.

Suppose that α is rational, say α = c/d for some c, d,∈ Z. Then (4.11) implies that

|cqk − dpk| <
Cd
qk−1
k

for infinitely many pk/qk as above. The expression Cd
qk−1
k

is < 1 for all large enough

qk. On the other hand, |cqk − dpk| is a nonnegative integer, which can be 0 for
at most one pk/qk; hence |cqk − dpk| ≥ 1 for infinitely many pk/qk. This is a
contradiction, and so α cannot be rational.

Now suppose that α is algebraic of degree d. Then, by Theorem 4.4.1, there
exists a constant C(α) such that∣∣∣∣α− pk

qk

∣∣∣∣ ≥ C(α)

qdk
,

for every k ∈ Z>0. However, if we take k large enough so that

C
qkk

<
C(α)

qdk
,

then (4.11) implies a contradiction; more specifically, we just need to take k large
enough so that

k!(k − d) >
ln C − lnC(α)

ln a
.

This completes the proof. □

Remark 4.4.1. Numbers that can be proved to be transcendental using Liouville’s
theorem are called Liouville numbers; they form a rather small set. In particular, e
and π (which are transcendental) are not Liouville numbers, and neither are most
transcendental numbers.



4.5. ROTH’S THEOREM 75

4.5. Roth’s theorem

Theorem 4.4.1 implies that if α ∈ R is an algebraic number of degree d ≥ 2
and µ > d, then there are only finitely many p

q ∈ Q with gcd(p, q) = 1 such that

(4.12)

∣∣∣∣α− p

q

∣∣∣∣ < 1

qµ
.

Indeed, suppose there were infinitely many rational numbers for which (4.12) holds.
Let C(α) be the constant guranteed by Theorem 4.4.1. Let Q be an integer so that
C(α) > 1

Qµ−d . Clearly there can be only finitely many p
q with gcd(p, q) = 1 for

which (4.12) holds with q ≤ Q, hence there must be infinitely many such rationals
with q > Q. Suppose p

q is one of them, then∣∣∣∣α− p

q

∣∣∣∣ < 1

qµ
<

1

Qµ−dqd
<

C(α)

qd
,

which contradicts (4.10). This proves finiteness of the number of solutions for
(4.12).

For an algebraic number α of degree d ≥ 2, what is the smallest possible µ
for which (4.12) will have only finitely many solutions? Combining the discussion
above with Dirichlet’s theorem (Theorem 4.3.1), we see that

2 ≤ µ ≤ d+ δ,

for any δ > 0. In 1908 Thue proved that µ ≤ d+2
2 + δ; in 1921 Siegel proved that

µ ≤ 2
√
d + δ. Dyson (1947) and Gelfond (1952) proved that µ ≤

√
2d + δ. The

major breakthrough came with the famous theorem of Roth (1955) [Rot55], for
which he received a Fields medal in 1958.

Theorem 4.5.1 (Roth). Let α ∈ R be an algebraic number. For any δ > 0, there
are only finitely many rationals p

q with gcd(p, q) = 1 such that∣∣∣∣α− p

q

∣∣∣∣ < 1

q2+δ
.

Remark 4.5.1. Dirichlet’s theorem shows that Roth’s theorem is best possible, i.e.
the exponent on q in the upper bound cannot be improved. Notice also that in case
α has degree 2, Lemma 4.3.2 gives a better result. An outline of the proof of Roth’s
theorem can be found in [Sch91]; complete versions of the proof can be found in
[Sch80], [EE93], and [Rot55].

In other words, Roth’s theorem implies that if α is algebraic, then the number of
sufficiently good rational approximations to α is finite, so perhaps one can actually
count them, although we are not quite ready to do this. If α is real, but not
necessarily algebraic, there may be infinitely many good rational approximations
to α, however we will now show that there are only finitely many of them within
a finite interval. To prove a result of this sort, we will first need a certain “gap
principle”.

Definition 4.5.1. A set S ⊆ R is called a C-set for a real number C > 1 if for any
two numbers m,n in S, m ≤ Cn and n ≤ Cm.

Notice for instance that a C-set consisting of integers must be finite, although unless
we know at least one of its elements, we cannot say anything about its cardinality.
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Definition 4.5.2. A set S ⊆ R is called a γ-set for a real number γ > 1 if whenever
m,n ∈ S and m < n, then γm ≤ n.

Notice that a γ-set can be infinite, but it has a gap principle: its elements cannot
be too close together, i.e., there is always a gap between them. A set S ⊆ Z>0

that is both a C-set and a γ-set will be called a (C, γ)-set. Notice that a (C, γ)-set
is always finite. It is possible to estimate the cardinality of a (C, γ)-set without
knowing anything about its elements.

Lemma 4.5.2. Let C > 1 and γ > 1, and suppose that S ⊆ R>0 is a (C, γ)-set.
Then

(4.13) |S| ≤ 1 +
lnC

ln γ
.

Proof. Clearly S is a finite set, so assume

S = {m0 < m1 < · · · < mk},

i.e. |S| = k + 1. Then for each 0 ≤ i ≤ k,

mi ≥ m0γ
i,

and

Cm0 ≥ mk ≥ m0γ
k.

Hence

k ≤ lnC

ln γ
,

and (4.13) follows. □

Definition 4.5.3. Given C > 1, a window of exponential width C is an interval of
real numbers x of type

w ≤ x < wC ,

for some w > 1.

We can now use Lemma 4.5.2 to prove a bound on the number of good rational
approximations to a real number α in a window of exponential width C for any
C > 1. We will say that a rational number p

q is reduced if gcd(p, q) = 1.

Lemma 4.5.3. Let α ∈ R, δ > 0, and C > 1. Let NC(α) be the number of reduced
rational numbers p

q such that

(4.14)

∣∣∣∣α− p

q

∣∣∣∣ < 1

2q2+δ

and q is in a window of exponential width C. Then

(4.15) NC(α) ≤ 1 +
lnC

ln(1 + δ)
.

Proof. Notice that if x, y are in a window of exponential width C, then

w ≤ x < wC ≤ xC , w ≤ y < wC ≤ yC ,
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for some w > 1, hence x ≤ yC and y ≤ xC . Now suppose that p1

q1
̸= p2

q2
are reduced

fractions that satisfy (4.14) with 1 ≤ q1 ≤ q2 in a window of exponential width C.
Then

1

q1q2
≤

∣∣∣∣p1q1 − p2
q2

∣∣∣∣ = ∣∣∣∣(p1
q1
− α

)
+

(
α− p2

q2

)∣∣∣∣
≤

∣∣∣∣α− p1
q1

∣∣∣∣+ ∣∣∣∣α− p2
q2

∣∣∣∣ < 1

2q2+δ
1

+
1

2q2+δ
2

≤ 1

q2+δ
1

,

and so
q2 > q1+δ

1 .

In other words, if q1 ≤ q2 are denominators of the rational approximations p1

q1
, p2

q2
satisfying the hypotheses of the lemma, then

γ ln q1 < ln q2,

where γ = 1 + δ, i.e. logarithms of these denominators form a γ-set. On the other
hand, if q1, q2 are in a window of exponential width C, then

ln q1 ≤ C ln q2, ln q2 ≤ C ln q1,

that is these logarithms also form a C-set, hence they form a (C, γ)-set, and by
Lemma 4.5.2 the cardinality of this set is

≤ 1 +
lnC

ln γ
= 1 +

lnC

ln(1 + δ)
,

but this is precisely the number NC(α). This completes the proof. □

Remark 4.5.2. Suppose that 1 < A < B are given, and suppose that we want to
know the number of reduced rational approximations p

q to the real number α with∣∣∣∣α− p

q

∣∣∣∣ < 1

2q2+δ
,

and A ≤ q ≤ B. Notice that denominators q lie in a window of exponential width
C = lnB

lnA , since

A = elnA ≤ q ≤ B =
(
elnA

) lnB
lnA ,

and so by Lemma 4.5.3, the number of such approximations is

≤ 1 +
ln
(
lnB
lnA

)
ln(1 + δ)

.

Definition 4.5.4. Let α ∈ R and let δ > 0. We will call p
q ∈ Q a δ-approximation

to α if q > 0, gcd(p, q) = 1, and ∣∣∣∣α− p

q

∣∣∣∣ < 1

q2+δ
.

A method similar to the proof of Lemma 4.5.3 yields the following result; a
proof of this can be found on p. 59 of [Sch91].

Lemma 4.5.4. Let α ∈ R, δ > 0. The number of δ-approximations p
q to α in a

window w ≤ q ≤ wC , where w ≥ 41/δ is

≤ 1 +
ln 2C

ln(1 + δ)
.
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4.6. Continued fractions

In the previous sections we learned about existence and limitations of good
rational approximations to an irrational number, however we have not really dis-
cussed how to construct such approximations. In this section we introduce a new
way of thinking about real numbers, which will yield such a construction.

Definition 4.6.1. For a real number α, an expression of the form

α = a0 +
1

a1 +
1

a2 +
1

a3 +
1

a4 + . . .

,

where a0 is an integer and a1, a2, . . . are positive integers is called a continued
fraction expansion for α. We will use more compact notation α = [a0; a1, a2, a3, . . . ]
for this expansion, and for each n ≥ 1 will define its n-th convergent to be

[a0; a1, a2, a3, . . . , an] := a0 +
1

a1 +
1

. . . +
1

an

.

We will call a continued fraction expansion for α finite if there exists some n for
which α is equal to its n-th convergent, and infinite otherwise.

Theorem 4.6.1. For each α ∈ R there exists a continued fraction expansion, which
is finite if and only if α is rational.

Proof. To prove this result, we present an actual algorithm to compute a
continued fraction expansion for α. We do it recursively. Define a0 = [α], the
integer part of α. If α = [α], we are done. If not, then

α = [α] + (α− [α]) = a0 +
1

r1
,

where r1 = 1
α−[α] . If r1 is an integer, we are done. If not, let a1 = [r1], and so

α = a0 +
1

a1 +
1

r2

,

where r2 = 1
r1−[r1]

. Continuing in the same manner, on n-th step we let an−1 =

[rn−1], rn = 1
rn−1−[rn−1]

and obtain

α = a0 +
1

a1 +
1

a2 +
1

. . . +
1

rn

.

This algorithm terminates when rn is an integer. If this happens for some n,
then bringing all the fractions to a common denominator, we can obtain a rational
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expression for α, meaning that α ∈ Q. Hence irrational numbers must have an
infinite continued fraction expansion.

On the other hand, suppose α is rational, then each rn is a rational number,
say rn = pn/qn, and rn > 1. Therefore pn > qn, and

rn+1 =
pn+1

qn+1
=

1

rn − [rn]
=

qn
pn − qn[pn/qn]

,

and so pn+1 = qn > qn+1. This means that the sequence of denominators of
r1, r2, . . . , namely q1, q2, . . . is decreasing while consisting of positive integers. Hence
the algorithm must terminate, i.e. reach the point where some qk = 1 and hence
the corresponding rk is an integer. □

Let us consider some examples. For instance, 7
3 = 2 + 1

3 = [2; 3], as well as

−93

37
= −3 +

1

2 +
1

18

= [−3; 2, 18], 103

1647
= 0 +

1

15 +
1

1 +
1

102

= [0; 15, 1]

are rational numbers, hence finite continued fractions. On the other hand,

√
2 =

√
2

(
1 +
√
2

1 +
√
2

)
= 1 +

1

1 +
√
2
= 1 +

1

1 +
(
1 + 1

1+
√
2

)
= 1 +

1

2 + 1

1+
(
1+ 1

1+
√

2

) = 1 +
1

2 + 1
2+ 1

2+ 1
2+ 1

2+...

as well as

π = 3 +
1

7 + 1
15+ 1

1+ 1
292+ 1

1+ 1
1+ 1

1+ 1
2+ 1

1+ 1
3+ 1

1+...

are examples of infinite continued fraction expansions for irrational numbers, which,
using our compact notation can also be written as

√
2 = [1; 2, 2, 2, 2, . . . ] and π =

[3; 7, 15, 1, 292, 1, 1, 1, 2, 1, 3, . . . ].

Theorem 4.6.2. For every irrational α ∈ R there is a unique continued fraction
expansion. If α is rational, there are two continued fraction expansions:

α = [a0; a1, . . . , an] = [a0; a1, . . . , an − 1, 1].

Proof. First consider the rational case, and notice that indeed

(4.16) a0 +
1

a1 +
1

a2 +
1

. . . +
1

an

= a0 +
1

a1 +
1

a2 +
1

. . . +
1

(an − 1) +
1

1

.

Now suppose that [a0; a1, a2, . . . ] is either an infinite continued fraction expansion
for a real number α or a finite expansion with the last term ̸= 1. Let us prove
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the uniqueness of this expansion. Suppose that there exists some other continued
fraction [b0; b1, b2, . . . ] so that

α = [a0; a1, a2, . . . ] = [b0; b1, b2, . . . ],

then we want to prove that ak = bk for each k ≥ 0. We will argue by induction on
k. First notice that a0 must be equal b0, since otherwise

(4.17) |a0 − b0| ≥ 1 > |[0; a1, . . . ]− [0; b1, . . . ]| ,
and so we cannot have [a0; a1, . . . ] = [b0; b1, . . . ]. Suppose ak = bk for all k ≤ m,
then we have

[a0; a1, . . . , am, am+1, . . . ] = [a0; a1, . . . , am, bm+1, . . . ],

which implies that there must be equality of the new continued fractions:

[am+1; am+2, . . . ] = [bm+1; bm+2, . . . ].

By the same argument as above,

(4.18) |am+1 − bm+1| ≥ 1 > |[0; am+2, . . . ]− [0; bm+2, . . . ]| ,
and so we must have am+1 = bm+1. We should stress that the inequalities in (4.17)
and (4.18) are strict: the only other option would be for the continued fraction to
be finite with the last term being equal to 1, which we assumed is not the case.
This completes the proof by induction. □

Since each n-th convergent αn of an irrational number α is rational, we can
write it as αn = pn

qn
for some integers pn and qn. It is now natural to approximate

a real number α by its convergents αn. How close is this approximation?

Theorem 4.6.3. Let α ∈ R and let αn = pn

qn
be its n-th convergent. Then for every

integer n ≥ 1, ∣∣∣∣α− pn
qn

∣∣∣∣ ≤ 1

qnqn+1
.

To prove this theorem, we first need a couple of auxiliary lemmas.

Lemma 4.6.4. With the notation of Theorem 4.6.3, for every n ≥ 1

pn = anpn−1 + pn−2, qn = anqn−1 + qn−2.

Proof. We argue by induction on n. First notice that p0

q0
= a0

1 and p1

q1
=

a0a1+1
a1

. If n = 2, we have

p2
q2

= a0 +
1

a1 +
1
a2

=
a0a1a2 + a2 + a0

a1a2 + 1
=

a2p1 + p0
a2q1 + q0

.

Now assume the statement is true for all n ≤ k − 1 ≥ 2, and let us prove it for
n = k. Let us define

tk−1

sk−1
= [a1; a2, . . . , ak−1]

to be the (k− 1)-st convergent of the derived continued fraction [a1; a2, . . . ]. Then
induction hypothesis applies to tk−1/sk−1, and

pk
qk

= a0 +
sk−1

tk−1
=

a0tk−1 + sk−1

tk−1
=

a0(aktk−1 + tk−2) + aksk−1 + sk−2

aktk−1 + tk−2

=
ak(a0tk−1 + sk−1) + (a0tk−2 + sk−2)

aktk−1 + tk−2
.
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Now, Problem 4.10 guarantees that for each n,

pn = a0tn + sn, qn = tn.

Substituting this into the above equation with n = k − 1 and k − 2, we obtain

pk
qk

=
akpk−1 + pk−2

akqk−1 + qk−2
.

This completes the proof of this lemma. □

Lemma 4.6.5. With the notation of Theorem 4.6.3, for every n ≥ 1

pn−1

qn−1
− pn

qn
=

(−1)n

qn−1qn
.

Proof. Multiplying both sides of the above equation by qn−1qn, we see that
we need to prove

pn−1qn − pnqn−1 = (−1)n.
Again, we argue by induction on n. If n = 1, then

p0 = a0, q0 = 1, p1 = a0a1 + 1, q1 = a1,

and so

p0q1 − p1q0 = a0a1 − (a0a1 + 1) = −1 = (−1)1.
Assume now that the statement is proved for n ≤ k − 1 and let us prove it for
n = k. Applying Lemma 4.6.4 along with the induction hypothesis, we have:

pk−1qk − pkqk−1 = pk−1(akqk−1 + qk−2)− (akpk−1 + pk−2)qk−1

= pk−1qk−2 − pk−2qk−1 = −(−1)k−1 = (−1)k.

□

Corollary 4.6.6. With the notation of Theorem 4.6.3,

p2k
q2k
≤ α,

p2k+1

q2k+1
≥ α

for all k ≥ 0.

Proof. By Lemma 4.6.5,

pn−2

qn−2
− pn

qn
=

(
pn−2

qn−2
− pn−1

qn−1

)
+

(
pn−1

qn−1
− pn

qn

)
=

(−1)n−1

qn−1qn−2
+

(−1)n

qnqn−1
=

(−1)n−1

qn−1

(
1

qn−2
− 1

qn

)
.

which is positive for odd n and negative for even, since the sequence of denomina-
tors qn is increasing by Lemma 4.6.4. Therefore, when n is even the sequence of
convergents pn/qn is increasing, and when n is odd it is decreasing. Since in both
cases the convergents tend to α, the conclusion follows. □

Proof of Theorem 4.6.3. We can now prove the theorem. By Corollary 4.6.6,
the odd-numbered convergents are greater or equal than α and the even-numbered
ones are less or equal than α. Therefore∣∣∣∣pnqn − pn+1

qn+1

∣∣∣∣ = ∣∣∣∣(pn
qn
− α

)
+

(
α− pn+1

qn+1

)∣∣∣∣ = ∣∣∣∣α− pn
qn

∣∣∣∣+ ∣∣∣∣α− pn+1

qn+1

∣∣∣∣ .
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On the other hand, Lemma 4.6.5 guarantees that∣∣∣∣pnqn − pn+1

qn+1

∣∣∣∣ = 1

qnqn+1
.

Combining these two observations yields the result. □

Theorem 4.6.7. Let α ∈ R be irrational, and let αn = pn

qn
be its n-th convergent.

Then for any rational number p/q with q ≤ qn,∣∣∣∣α− pn
qn

∣∣∣∣ ≤ ∣∣∣∣α− p

q

∣∣∣∣ .
In other words, pn/qn is the best rational approximation to α among all rational
numbers with denominators no bigger than qn.

Proof. Let p
q ̸=

pn

qn
be any rational approximation to α with q ≤ qn. Let

A =

(
pn pn+1

qn qn+1

)
,

then

det(A) = pnqn+1 − pn+1qn = (−1)n+1

by Lemma 4.6.5. Therefore the lattice AZ2 = Z2, so there exist x, y ∈ Z such that

A

(
x
y

)
=

(
p
q

)
,

in other words

(4.19) p = xpn + ypn+1, q = xqn + yqn+1.

We cannot have x and y both equal 0. Suppose that x = 0, y ̸= 0, then q = yqn+1 >
qn by Lemma 4.6.4, which contradicts the choice of q. Then assume y = 0, x ̸= 0,
then q = xqn, so x = 1, and hence p = pn, q = qn, again a contradiction. Hence we
must have x, y ̸= 0. Further,

0 < q = xqn + yqn+1 ≤ qn < qn+1,

thus x and y must have different signs. Notice that

qnα− pn and qn+1α− pn+1

must also have different signs, by Corollary 4.6.6. Therefore

|qα− p| = |x(qnα− pn)|+ |y(qn+1α− pn+1)| > |x(qnα− pn)| ≥ |qnα− pn|.

Then: ∣∣∣∣α− p

q

∣∣∣∣ ≥ |qα− p|
q

>
|qnα− pn|

q
≥ |qnα− pn|

qn
=

∣∣∣∣α− pn
qn

∣∣∣∣ .
This completes the proof. □

We proved that continued fraction expansion can be used to provide best ratio-
nal approximations to an irrational number. This fact can be interpreted geomet-
rically. Suppose α is an irrational number, and let pn/qn be its n-th convergent.
Then (qn, pn) is an integer lattice point in the plane: it is the closest lattice point
to the line y = αx in the box

{(x, y) ∈ R2 : 0 ≤ x ≤ qn, 0 ≤ y ≤ pn}.
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In this way, the lines with rational slope y = pn

qn
x approximate the line y = αx with

irrational slope, and no line through the origin and a lattice point inside this box
can come closer. Let us consider an example. Let

α =
√
2 = [1; 2, 2, 2, 2, . . . ] = 1.41421356237 . . . ,

then:

α1 =
p1
q1

= [1; 2] = 1 +
1

2
=

3

2
= 1.5

α2 =
p2
q2

= [1; 2, 2] = 1 +
1

2 + 1
2

=
7

5
= 1.4

α3 =
p3
q3

= [1; 2, 2, 2] = 1 +
1

2 + 1
2+ 1

2

=
17

12
= 1.4166666666 . . .

α4 =
p4
q4

= [1; 2, 2, 2, 2] = 1 +
1

2 + 1
2+ 1

2+ 1
2

=
41

29
= 1.41379310345

Figure 1. Continued fraction convergent approximations to
√
2

These are the best rational approximations to
√
2, where each odd numbered

convergent yields a lattice point above the line y =
√
2x and each even numbered

one provides a point below this line. For a detailed exposition of the theory of
continued fractions see [Kar13].
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4.7. Kronecker’s theorem

Here we briefly mention a famous theorem of Leopold Kronecker, which is
obtained by an application of Dirichlet’s approximation theorem. Let {α} denote
the fractional part of the real number α.

Theorem 4.7.1 (Kronecker). The sequence of fractional parts {nα} as n ranges
over all positive integers is dense in the interval [0, 1] if and only if α ∈ R is
irrational.

Proof. Problem 4.17 asserts that the sequence {nα} is periodic with a finite
period for rational α, hence it cannot be dense. We now prove that in case α
is irrational the sequence is indeed dense in [0, 1]. For a real number b, let us
write ∥b∥ for its distance to the nearest integer. For instance, ∥3.14∥ = 0.14 while
∥2.71∥ = 0.29. Let x ∈ [0, 1] and let ε > 0. It is sufficient to show that there exists
some positive integer n so that

(4.20) ∥nα− x∥ < ε.

By Dirichlet’s Theorem 4.3.1, there exist infinitely many rationals p/q with gcd(p, q) =
1 such that |α− p/q| < 1

q2 . Let us take q > 1/ε, then we have

0 < ∥α∥ ≤ |αq − p| ≤ 1

q
< ε.

This inequality implies that either

(4.21) 0 < αq − p < 1/q

or

(4.22) −1/q < αq − p < 0.

First assume (4.21) holds. Subdivide the interval [0, 1] into subintervals of length
αq − p (the last one will be shorter). Then x falls into one of these intervals, say
into the m-th one for some integer m ≥ 1. If this is not the last such subinterval,
then m(αq−p) is the right end-point of it; if it is the last one, then (m−1)(αq−p)
is its left end-point. In any case, we have

∥ℓqα− x∥ ≤ |ℓ(αq − p)− x| < |αq − p| < 1

q
< ε,

where ℓ = m or m− 1. Then (4.20) holds with n = ℓq. The argument is the same
if (4.22) holds instead, where we simply replace αq − p with p− αq. □

Remark 4.7.1. More generally, it is also true that for any integer k ≥ 1 the
sequence of fractional parts {nkα} is dense in the interval [0, 1] if and only if α ∈ R
is irrational. Further, for irrational α the sequence {nkα} is equidistributed in the
interval [0, 1] for every k ≥ 1: a sequence {xn}∞n=1 is said to be equidistributed in
the interval [0, 1] if

lim
T→∞

|{n : n ≤ T, xn ∈ [a, b]}|
T

= b− a

for any 0 ≤ a < b ≤ 1. We refer the reader to [MTB06], Chapter 12 for some
details.
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The general version of Kronecker’s theorem gives more. Suppose 1, α1, . . . , αm

are real numbers, which are linearly independent over Q. Then the sequence of
points

({nα1}, . . . , {nαm})∞n=1

is dense in the unit cube [0, 1]m ⊂ Rm. A detailed account of this multi-dimensional
theorem, as well as a general theory of simultaneous Diophantine approximation can
be found in Cassels’ classical book [Cas57]. A survey of some more recent results
in the direction of Kronecker’s theorem is given in [GM16]; see also [FM18] for a
very general effective version of this theorem.

We conclude this chapter by another remarkable result related to Kronecker’s
theorem, known as the Three-Gap Theorem.

Theorem 4.7.2 (Three-Gap Theorem). Suppose that n points have been placed on
a circle at angles θ, 2θ, . . . , nθ from the starting point. Then there can be at most
three distinct distances between adjacent pairs of these points around the circle.

This observation was first conjectured by Hugo Steinhaus, and then proved in the
1950’s by Vera Sós, János Surányi, and Stanislaw Świerczkowski. The elegant proof
we discuss here is very recent: it is due to Marklof and Strömbergsson [MS17],
and is based on the geometry of lattices. We outline only a brief sketch of their
argument. Let us think of the angles as parts of the circle with the full angle 2π
being 1. Hence all the angular positions can be thought as real numbers in the
interval [0, 1], where the endpoints have been identified: this is precisely a set of
coset representatives of the quotient additive group R/Z. Let α be the angular
position of θ, then angular positions of the angles

θ, 2θ, . . . , nθ

are given by the sequence of fractional parts

(ξk)
n
k=1 = {kα}nk=1.

Then the distances between our angular positions on the circle are precisely the
gaps between corresponding numbers in this sequence (ξk)

n
k=1. The gap between ξk

and its next neighbor in R/Z (in the direction to the right, so this is not necessarily
nearest neighbor, as the nearest may be on the left) is

sk,n = min
{
(ℓ− k)α+ n > 0 : (ℓ, n) ∈ Z2, 0 < ℓ ≤ n

}
= min

{
mα+ n > 0 : (m,n) ∈ Z2,−k < m ≤ n− k

}
,

where the second equality is obtained by the substitution m = ℓ− k. Let

A1 =

(
1 0
α 1

)
,

and notice that

sk,n = min
{
y > 0 : (x, y)⊤ ∈ A1Z2,−k < x ≤ n− k

}
.

This way sk,n can be thought of as a function on the lattice A1Z2. More generally,
we can define

F (M, t) = min
{
y > 0 : (x, y)⊤ ∈MZ2,−t < x ≤ 1− t

}
.

This is a function F : SL2(R) × (0, 1] → R>0, where SL2(R) = {M ∈ GL2(R) :
det(M) = 1} is a subgroup of GL2(R) consisting of matrices with unit determinant.
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In fact, as the authors show in [MS17] (see Proposition 1), F (M, t) is well-defined
as a function on the space of lattices for every fixed t, i.e. F (M, t) = F (M ′, t) if M
and M ′ are two basis matrices for the same lattice. Define

An =

(
n−1 0
0 n

)
A1 ∈ SL2(R),

and notice that

sk,n =
1

n
min

{
y > 0 : (x, y)⊤ ∈ AnZ2,−k

n
< x ≤ 1− k

n

}
=

1

n
F (An, k/n).

Hence the proof of Theorem 4.7.2 is reduced to showing that for every M ∈ SL2(R),
the function t→ F (M, t) is piecewise constant and takes on at most three distinct
values; in fact, if there are three values, then the third is the sum of the first and
second. This is the assertion of Proposition 2 of [MS17].
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4.8. Problems

Problem 4.1. Let {ak}∞k=0 be a sequence of integers in some interval [b, c], where
b < c are constants. Prove that the power series

∞∑
k=0

ak10
−k,

is absolutely convergent.

Problem 4.2. Let α ∈ A and let f(x), g(x) ∈ Z[x] be two polynomials of degree
deg(α) such that f(α) = g(α) = 0. Prove that f(x) = cg(x) for some constant c.

Problem 4.3. Prove that mα(x) is irreducible for each α ∈ A. Furthermore, prove
that if p(x) ∈ Z[x] is such that p(α) = 0, then mα(x) | p(x), i.e. there exists some
g(x) ∈ Z[x] such that p(x) = mα(x)g(x).

Problem 4.4. Prove that any infinite subset of a countable set is countable. Use
this fact to conclude that a superset of an uncountable set is uncountable.

Problem 4.5. Let a < b be real numbers and let I = [a, b] be a closed interval.
Prove that I contains infinitely many real numbers.

Problem 4.6. A subset S of R is called discrete if there exists real ε > 0 such that
for every two distinct elements α, β ∈ S,

|α− β| ≥ ε.

On the other hand, let us say that S is near-discrete if for every α ∈ S there exist
a real ε = ε(α) > 0 such that

|α− β| ≥ ε

for every β ∈ S distinct from α.

a) Prove that every discrete subset of R is countable.

b) Prove that every near-discrete subset of R is countable.

Problem 4.7. Prove that if α = a
Q+1 for some integer a with

gcd(a,Q+ 1) = 1,

then there is equality in (4.2).

Problem 4.8. Let µ > 0. We say that p/q ∈ Q is a µ-approximation to the real
number α if ∣∣∣∣α− p

q

∣∣∣∣ ≤ 1

qµ
.

Let S ⊆ R be a set with the following properties:

(1) Every element of S has infinitely many rational 3-approximations.
(2) If a rational number p/q is a 3-approximation for some α ∈ S, then it is

not a 3-approximation for any other element of S.
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a) Prove that S is countable.

b) Prove that every α ∈ S is transcendental.

Problem 4.9. Let {nj}∞j=1 be a sequence of natural numbers such that

lim
j→∞

nj+1

nj
=∞.

Define

f(x) =

∞∑
j=1

xnj ,

and let α be a rational number, 0 < α < 1. Prove that f(α) is transcendental.

Problem 4.10. Let α have the continued fraction expansion [a0; a1, a2, . . . ], and
let pn/qn be its n-th convergent. Let tn/sn be the n-th convergent of the number
[a1; a2, . . . ]. Prove that

pn = a0tn + sn, qn = tn.

Problem 4.11. The golden ratio is defined as

ϕ =
1 +
√
5

2
.

This number appears in numerous places in mathematics, architecture, engineering
and science throughout history, starting with proportion calculations for particularly
symmetric structures in ancient Egypt (e.g. Great Pyramid of Giza) and then
ancient Greece and Rome. Prove that

ϕ2 = ϕ+ 1,

and derive from it that

(4.23) ϕ = 1 +
1

ϕ
.

Problem 4.12. Derive a continued fraction expansion for ϕ

[a0; a1, a2, . . . ]

and use it to prove that ϕ is irrational.

Problem 4.13. Let us write ϕn for the n-th continued fraction approximations
to ϕ, i.e.

ϕn = [a0; a1, . . . , an].

Compute ϕ1 through ϕ5 as fractions.
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Problem 4.14. Now let us define the Fibonacci sequence. Let

F1 = 1, F2 = 1,

and for every n ≥ 3, let

(4.24) Fn = Fn−1 + Fn−2.

This sequence is named after the 12th century Italian mathematician Leonardo Fi-
bonacci of Pisa, but its origins go back to the study of poetic structures in Sanskrit
in ancient India. These numbers are so important in mathematics, science and en-
gineering that there are many things named after them, including the mathematical
journal Fibonacci Quarterly devoted entirely to the study of the Fibonacci sequence
and its many connections.

Compute the first ten Fibonacci numbers.

Problem 4.15. Now compute as fractions the ratios of the consecutive Fibonacci
numbers

F3

F2
,
F4

F3
,
F5

F4
,
F6

F5
,
F7

F6
.

Compare with convergents of the golden ratio.

Problem 4.16. Prove the general formula:

ϕn =
Fn+2

Fn+1
,

for every n ≥ 1.

Problem 4.17. Let α = p/q with gcd(p, q) = 1. Prove that the sequence of frac-
tional parts {nα} as n ranges over positive integers is periodic with period q.

Problem 4.18. Prove that the sequence an = sinn as n ranges over all the integers
is dense in the interval [−1, 1].
Hint: To prove that sinn comes arbitrary close to any β ∈ [−1, 1], let α ∈ [0, 1) be
such that β = sin(2πα), apply Kronecker’s theorem and use continuity of sinx.



CHAPTER 5

Algebraic Number Theory

5.1. Some field theory

Our next goal is to develop some further properties of algebraic and transcen-
dental numbers. For this we need to introduce some elements of field theory.

Definition 5.1.1. Let K and L be fields with the same addition and multiplication
operations such that K ⊆ L. Then L is called a field extension of K, denoted L/K,
and K is called a subfield of L.

If L is a field extension of K, then L is a K-vector space (Problem 5.1). Its dimen-
sion is called the degree of this field extension, denoted by [L : K]. If the degree is
finite, we say that L/K is a finite extension. A classical example of field extensions
comes from extending a subfield of C (often Q) by some collection of complex num-
bers. Let K ⊆ C be a subfield, α1, . . . , αn ∈ C, and define K(α1, . . . , αn) to be the
smallest subfield of C with respect to inclusion that contains K and α1, . . . , αn. A
subfield K of C is called algebraic if every element α ∈ K is an algebraic number.
We will also say that L/K is an algebraic extension if K ⊆ L ⊂ C are algebraic
fields.

Definition 5.1.2. Let K ⊆ C and α ∈ C. We define

K[α] := spanK
{
1, α, α2, . . .

}
=

{
n∑

m=0

amαm : a0, . . . , an ∈ K, n ∈ Z≥0

}
,

i.e., the set of all finite linear combinations of powers of α with coefficients from
K (notice that this notation is consistent with the notation K[x] denoting the ring
of one-variable polynomials with coefficients in K (Problem 5.7)). Then K[α] is a
vector space over K, whose dimension dimK K[α] is equal to the number of powers
of α which are linearly independent over K. In fact, K[α] ⊆ K(α) (Problem 5.5).

We now establish some important properties of algebraic numbers.

Theorem 5.1.1. Let α ∈ C.
(1) If α is transcendental, then dimQ Q[α] =∞.
(2) If α is algebraic of degree n, then Q[α] = spanQ{1, α, . . . , αn−1}, and

1, α, . . . , αn−1 are linearly independent over Q. Hence

dimQ Q[α] = n.

(3) Q[α] is a field if and only if α is algebraic.
(4) If α is algebraic, then Q(α) = Q[α].

90
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Proof. To prove part (1), assume that dimQ Q[α] = n < ∞. Then the col-
lection of n + 1 elements 1, α, . . . , αn must be linearly dependent, i.e. there exist
c0, . . . , cn ∈ Q such that

c0 + c1α+ · · ·+ cnα
n = 0.

Clearing the denominators, if necessary, we can assume that c0, . . . , cn ∈ Z, and
hence α is a root of

∑n
m=0 cmxm ∈ Z[x], which means that it is algebraic.

To prove part (2), assume that α is algebraic of degree n and let

mα(x) =

n∑
m=0

amxm ∈ Z[x],

where an ̸= 0 and a0 ̸= 0, since mα(x) is irreducible. Since mα(α) = 0, we have

(5.1) αn =

n−1∑
m=0

(
−am

an

)
αm.

Therefore any Q-linear combination of powers of α can be expressed as a Q-linear
combination of 1, α, . . . , αn−1. Now suppose 1, α, . . . , αn−1 are linearly dependent,
then there exist c0, . . . , cn−1 ∈ Q such that

c0 + c1α+ . . . cn−1α
n−1 = 0.

In fact, clearing the denominators if necessary, we can assume that c0, . . . , cn−1 ∈ Z.
But this means that α is a root of the polynomial

p(x) =

n−1∑
m=0

cmxm ∈ Z[x],

which has degree n − 1. This contradicts the assumption that deg(α) = n, hence
1, α, . . . , αn−1 must be linearly independent, so they form a basis for Q[α] over Q.

For part (3), assume first that α ∈ C is algebraic. It is clear that Q[α] is
closed under addition and multiplication. We only need to prove that for any
β ∈ Q[α] \ {0}, there exists β−1 ∈ Q[α]. By part (2), there exist b0, . . . , bn−1 ∈ Q
such that

β =

n−1∑
m=0

bmαm.

We want to prove the existence of

(5.2) γ =

n−1∑
m=0

cmαm ∈ Q[α]

such that βγ = 1. Let γ be as in (5.2) with coefficients c0, . . . , cn−1 to be specified,
then:

βγ =

n−1∑
m=0

n−1∑
k=0

bmckα
m+k =

2n−2∑
l=0

( ∑
m+k=l

bmck

)
αl.

For each l ≥ n, we can substitute (5.1) for αn, lowering the power. After a finite
number of such substitutions, we will obtain an expression

(5.3) βγ =

n−1∑
l=0

fl(c0, . . . , cn−1)α
l,
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where fl(c0, . . . , cn−1) is a homogeneous linear polynomial in variables c0, . . . , cn−1

with coefficients depending on bi’s and ai’s, for each 0 ≤ l ≤ n− 1. Since we want
βγ = 1, we set

f0(c0, . . . , cn−1) = 1

f1(c0, . . . , cn−1) = 0

... . . .
... . . .

... . . .
...

fn−1(c0, . . . , cn−1) = 0.(5.4)

This is a linear system of n equations in n variables, which can be written as Fc =
e1, where F is the n×n coefficient matrix of linear polynomials f0, . . . , fn−1, e1 =
(1, 0, . . . , 0)t ∈ Rn is the first standard basis vector in Rn, and c = (c0, . . . , cn−1)

t.
The matrix F must be nonsingular matrix. Indeed, suppose it is singular, then
there exists some 0 ̸= c ∈ Qn such that Fc = 0, i.e.

fl(c0, . . . , cn−1) = 0 ∀ 0 ≤ l ≤ n− 1.

Let γ as in (5.2) be defined with this choice of the coefficient vector c. Then,
by (5.3), βγ = 0, while β, γ ̸= 0. This is a contradiction, since there can be no zero
divisors in the field C. Therefore (5.4) has a unique solution c. Let γ be as in (5.2)
with this choice of c, then γ = β−1 ∈ Q[α], and so Q[α] is a field.

Now suppose α is not algebraic, i.e. it is transcendental. We show that Q[α] is
not a field. Assume it is, then α−1 ∈ Q[α], which means that

α−1 =

n∑
m=0

amαm

for some n ∈ N0 and a0, . . . , an ∈ Q. Hence

1 = αα−1 =

n∑
m=0

amαm+1,

and so
n∑

m=0

amαm+1 − 1 = 0.

This is a polynomial equation over Q satisfied by α, and multiplying through by
the product of denominators of its coefficients we can obtain a polynomial equation
over Z satisfied by α. This contradicts the assumption that α is transcendental.
Hence Q[α] cannot be a field.

Finally we establish part (4) by proving that Q[α] = Q(α). First notice that
Q[α] ⊆ Q(α), since every Q-linear combination of powers of α must be contained
in any field containing Q and α. To show containment the other way, notice that,
by part (3), Q[α] is a field containing Q and α, and so it must contain Q(α). □

Example 5.1.1. We give an example of finding the inverse of an element of Q[α]
when α is algebraic. Consider

β = 32/3 + 2× 31/3 − 2 ∈ Q[31/3].

We look for

β−1 = a32/3 + b31/3 − c ∈ Q[31/3].
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Then we need

1 = ββ−1 = a34/3 + b33/3 − c32/3 + 2a33/3 + 2b32/3 − 2c31/3

−2a32/3 − 2b31/3 + 2c

= (2b− 2a− c)32/3 + (3a− 2c− 2b)31/3 + (2c+ 6a+ 3b),

in other words we are looking for a, b, c ∈ Q such that

2b− 2a− c = 0, 3a− 2c− 2b = 0, 2c+ 6a+ 3b = 1.

This system has a unique solution:

a =
6

61
, b =

7

61
, c =

2

61
,

hence

β−1 =
6

61
32/3 +

7

61
31/3 − 2

61
.

An immediate consequence of Theorem 5.1.1 is an algebraic criterion for tran-
scendence.

Corollary 5.1.2. A number α ∈ C is transcendental if and only if [Q(α) : Q] =∞.

Proof. If α is transcendental, then dimQ Q[α] = ∞ by part (1) of Theo-
rem 5.1.1. On the other hand, Q[α] ⊆ Q(α) by Problem 5.5. Hence Q(α) must be
an infinite-dimensional Q-vector space, hence [Q(α) : Q] =∞.

Conversely, suppose that [Q(α) : Q] = ∞. Assume, towards a contradiction,
that α is algebraic of degree n. By part (4) of Theorem 5.1.1, we have Q(α) = Q[α],
but by part (2) of Theorem 5.1.1

∞ > n = dimQ Q[α] = [Q(α) : Q].

This is a contradiction, and hence α must be transcendental. □

Another important consequence is the following.

Theorem 5.1.3. The set A of algebraic numbers is a field under the usual addition
and multiplication of complex numbers.

Proof. By Theorem 4.2.5, we know that A is countable, and so we can write

A = {α1, α2, α3, . . . },
choosing an ordering on A. For each n ∈ N, define

Kn := Q(α1, . . . , αn).

By Problem 5.3, the degree [Kn : Q] < ∞. Let n ∈ N and let β ∈ Kn, then
Q(β) ⊆ Kn, which means that

[Q(β) : Q] ≤ [Kn : Q] <∞,

and so β is algebraic, by Theorem 5.1.1. Therefore any element of any field Kn is
in A, and hence we have

Q ⊆ K1 ⊆ K2 ⊆ · · · ⊆ A.
Now let 0 ̸= β, γ ∈ A, then there exist some integers 1 ≤ k ≤ n such that β = αk,
γ = αn, and so β, γ ∈ Kn. Since Kn is a field, we have

β−1, γ−1, β ± γ, βγ ∈ Kn ⊆ A.
Therefore A is a field. □
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An immediate implication of Theorem 5.1.3 is that a sum, a difference, a prod-
uct, or a quotient of two algebraic numbers is again an algebraic number. This not
always true for transcendental numbers, which is what we show next.

Lemma 5.1.4. A sum or product of an algebraic number and a transcendental num-
ber is transcendental.

Proof. Let α ∈ C be algebraic and β ∈ C transcendental. Then −α and α−1

are algebraic. Suppose that α+ β and αβ are algebraic. Since sum and product of
algebraic numbers are algebraic, we must have

β = (α+ β) + (−α) = (αβ)α−1 ∈ A,

which is a contradiction. Hence α+ β and αβ must be transcendental. □

Remark 5.1.1. A consequence of Lemma 5.1.4 is that, given one transcendental
number β, we can produce infinitely many (but countably many) transcendental
numbers:

α± β, αβ, α−1β ∀ 0 ̸= α ∈ A.
Take, for instance, β to be a Liouville number.

Example 5.1.2. Let α ∈ C be algebraic and β ∈ C transcendental. Then αβ, α+ β
are transcendental by Lemma 5.1.4. On the other hand,

α = (α+ β)− β =
αβ

β

is algebraic. Hence T is not a field.

The notion of algebraicity can also be generalized over extensions of Q as fol-
lows. Let K ⊆ C be a field and α ∈ C. We say that α is algebraic over K if
there exists a polynomial f(x) with coefficients in K such that f(α) = 0. Then the
minimal polynomial of α over K, denoted mα,K(x) is the monic such polynomial
of smallest degree. We say that a polynomial f(x) ∈ K[x] is irreducible over K if
whenever f(x) is factored as

f(x) = g(x)h(x)

with g(x), h(x) ∈ K[x], then either g(x) or h(x) is a constant. By the same logic
as in Problem 4.3, mα,K(x) is irreducible over K and mα,K(x) | p(x) for every
p(x) ∈ K[x] such that p(α) = 0.

To conclude this section, we introduce the notion of algebraic independence.

Definition 5.1.3. Let α, β ∈ C be transcendental numbers. Then, as we know
from Corollary 5.1.2,

[Q(α) : Q] = [Q(β) : Q] =∞.

These numbers are called algebraically independent if

[Q(α, β) : Q(α)] = [Q(α, β) : Q(β)] =∞.

More generally, a collection of transcendental numbers α1, . . . , αn is algebraically
independent if the degree of Q(α1, . . . , αn) over Q(S), where S is any proper sub-
collection of α1, . . . , αn, is equal to infinity. If K is a subfield of C, then its tran-
scendence degree, denoted trdegK, is the cardinality of a maximal (with respect to
size) collection of algebraically independent elements in K.
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Notice that no subcollection of each infinite collection of transcendental num-
bers mentioned in Remark 5.1.1 is algebraically independent. In other words, while
we can construct infinitely many transcendental numbers given one, it is not so
easy to construct algebraically independent transcendental numbers.
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5.2. Number fields and rings of integers

We now need to introduce some further language of algebraic number theory.

Definition 5.2.1. Let α ∈ A, then the algebraic conjugates of α (also often called
just conjugates) are all the roots of its minimal polynomial mα(x).

A polynomial f(x) ∈ C[x] of degree n is called separable if all of its n roots in C
are distinct.

Lemma 5.2.1. Let f(x) ∈ Z[x] be an irreducible polynomial. Then it is separable.

Proof. Suppose

f(x) =

n∑
k=0

akx
k ∈ Z[x],

and assume that α ∈ C is a root of f(x). By Problem 4.3, mα(x) | f(x), which
means that f(x) = mα(x), since f(x) is irreducible. Then there exists some poly-
nomial g(x) ∈ C[x] such that

f(x) = (x− α)ℓg(x),

where ℓ ≥ 1 is the multiplicity of α as a root of f(x) and g(α) ̸= 0. We want to
prove that ℓ = 1. Arguing towards a contradiction, suppose that ℓ > 1. Let f ′(x)
be the formal derivative of f(x), i.e.

f ′(x) =

n∑
k=1

kakx
k−1 ∈ Z[x].

The standard differentiation product rule applies, and so

f ′(x) = ℓ(x− α)ℓ−1g(x) + (x− α)ℓg′(x).

Hence f ′(α) = 0, and so by Problem 4.3, f(x) | f ′(x). On the other hand, degree
of f ′(x) is less than degree of f(x), while f ′(x) is not identically 0. This is a
contradiction, therefore ℓ = 1. Since this is true for every root of f(x), it must be
separable. □

This lemma has an immediate corollary.

Corollary 5.2.2. Let α ∈ C be an algebraic number. Then all of its algebraic
conjugates are distinct.

Proof. Sincemα(x), the minimal polynomial of α is irreducible (Problem 4.3),
it must be separable by Lemma 5.2.1, and hence α and its conjugates are all distinct.

□

Definition 5.2.2. A finite algebraic extension of Q is called a number field. In
other words, a number field K is a subfield of C such that [K : Q] <∞ and every
element of K is algebraic.

It is clear from the above definition that every number field K is contained in A.
Furthermore, if α ∈ A, then Q(α) is an algebraic extension of Q, and [Q(α) : Q] =
deg(α) < ∞, hence Q(α) is a number field. An element α in a number field K is
called a primitive element if K = Q(α), i.e. if α generates K over Q. In fact, all
number fields contain a primitive element.
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Theorem 5.2.3 (Primitive Element Theorem). Let K be a number field. Then
there exists α ∈ K such that K = Q(α).

Proof. Since K is a finite algebraic extension of C, there must exist a fi-
nite collection of algebraic numbers α1, . . . , αn ∈ K such that K = Q(α1, . . . , αn)
(Problem 5.10). Let K1 = Q(α1), K2 = Q(α1, α2) = K1(α2), . . . , K = Kn =
Q(α1, . . . , αn−1, αn) = Kn−1(αn). We can assume that no Km equal to Km+1,
since otherwise we do not need αm+1 in the generating set. Hence we have

Q ⊊ K1 ⊊ K2 ⊊ · · · ⊊ Kn−1 ⊊ Kn = K.

Notice that it is sufficient for us to show that there exists β1 ∈ K such that K2 =
Q(α1, α2) = Q(β1): if this the case, then applying the same reasoning, we establish
that

K3 = K2(α3) = Q(β1, α3) = Q(β2)

for some β2 ∈ K, and continuing in the same manner confirm that K = Kn =
Q(βn−1) for some βn−1 ∈ K.

Let deg(α1) = d, deg(α2) = e, and let

α1 = α11, α12, . . . , α1d and α2 = α21, α22, . . . , α2e

be algebraic conjugates of α1 and α2, respectively. Since mα1
(x) and mα2

(x) in
Z[x] are irreducible, they must be separable by Lemma 5.2.1 above, and hence all
α1n’s and all α2m’s are distinct. This means that for each 1 ≤ n ≤ d, 1 < m ≤ e
the equation

(5.5) α1n + tα2m = α11 + tα21

has at most one solution t in Q (a solution t in C always exists, but it may not
be in Q). There are only finitely many equations (5.5), each having at most one
solution, and hence we can choose 0 ̸= c ∈ Q which is not one of these solutions,
then

α1n + cα2m ̸= α11 + cα21

for any 1 ≤ n ≤ d, 1 < m ≤ e. Let

β1 = α1 + cα2,

then β1 ̸= α1n + cα2m for any 1 ≤ n ≤ d, 1 < m ≤ e. We will now prove that
Q(β1) = Q(α1, α2). It is clear that Q(β1) ⊆ Q(α1, α2), so we only need to show
that Q(α1, α2) ⊆ Q(β1). For this, it is sufficient to prove that α2 ∈ Q(β1), since
then α1 = β1 − cα2 ∈ Q(β1), and hence Q(α1, α2) ⊆ Q(β1). Notice that

mα1
(β1 − cα2) = mα1

(α1) = 0.

In other words, α2 is a zero of the polynomial

p(x) := mα1
(β1 − cx),

which has coefficients in Q(β1). On the other hand, α2 is also a root of its minimal
polynomial mα2

(x). The two polynomials p(x) and mα2
(x) have only one common

root. Indeed, if ξ ∈ C is such that

p(ξ) = mα1
(β1 − cξ) = mα2

(ξ) = 0,

then ξ must be one of α21, . . . , α2e and β1 − cξ one of α11, . . . , α1d, i.e., for some
1 ≤ n ≤ d, 1 ≤ m ≤ e,

ξ = α2m and β1 − cξ = β1 − cα2m = α1n,
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which means that

β1 = α1n + cα2m = α11 + cα21.

This contradicts our choice of c unless n = m = 1.
Now let h(x) be a minimal polynomial of α2 over Q(β1). Since p(x) and mα2

(x)
have coefficients in Q(β1) and vanish at α2, they must both be divisible by h(x)
over Q(β1). This means that every root of h(x) would be a common root of p(x)
and mα2(x), but we know that they have precisely one root in common. This means
that h(x) can have only one root, and hence is of degree 1. Thus

h(x) = x− α2,

which means that α2 ∈ Q(β1). This completes the proof. □

An algebraic number α is called an algebraic integer if its minimal polynomial
mα(x) ∈ Z[x] is monic, i.e. its leading coefficient is equal to 1. The set of all
algebraic integers in a number field K is usually denoted by OK . For instance,
OQ = Z (Problem 5.9). Let us define the set of all algebraic integers

I = {α ∈ A : mα(x) is monic}.
Let α ∈ I and let deg(α) = d. Define

Z[α] :=

{
d−1∑
n=0

anα
n : a0, . . . , ad−1 ∈ Z

}
.

Lemma 5.2.4. Let α ∈ I have degree d. Then Z[α] is a commutative ring with
identity under the usual addition and multiplication operations on complex numbers,
which contains Z. Rings like this are called ring extensions of Z.

Proof. The argument here bears some similarity with the proof of Theo-
rem 5.1.1 above. It is clear that Z ⊆ Z[α], and hence 0, 1 ∈ Z[α]. Also, if

β =
∑d−1

n=0 bnα
n ∈ Z[α], then −β =

∑d−1
n=0(−bn)αn ∈ Z[α]. Hence we only need to

prove that for every β, γ ∈ Z[α], β + γ, βγ ∈ Z[α]. Let

β =

d−1∑
n=0

bnα
n, γ =

d−1∑
n=0

cnα
n.

Then

β + γ =

d−1∑
n=0

(bn + cn)α
n ∈ Z[α].

Since α ∈ I of degree d, its minimal polynomial is monic of degree d, say

mα(x) = αd +

d−1∑
n=0

anx
n,

and mα(α) = 0, meaning that

(5.6) αd = −
d−1∑
n=0

anα
n.

Now we have:

βγ =

d−1∑
n=0

d−1∑
m=0

bncmαn+m,



5.2. NUMBER FIELDS AND RINGS OF INTEGERS 99

and (5.6) can be used to express powers of α higher than (d − 1)-st as linear
combinations of lower powers of α with rational integer coefficients, hence ensuring
that βγ is a linear combination of the terms 1, α, . . . , αd−1 with coefficients in Z.
This means that βγ ∈ Z[α] and completes the proof of the lemma. □

Problem 5.13 guarantees that 1, α, . . . , αd−1 is a maximal linearly independent col-
lection of powers of α over d, and we know that it spans Z[α]. Hence this is a basis
for Z[α] over Z, and thus Z[α] is a lattice of rank d.

Lemma 5.2.5. Let α ∈ C be such that the additive abelian group generated by all
powers of α is in fact finitely generated. Then α ∈ I.

Proof. Let G be the additive abelian group generated by all powers of α, i.e.

G =

{
k∑

n=0

anα
n : k ∈ N0, a0, . . . , ak ∈ Z

}
.

Assume that G is finitely generated and let v1, . . . , vm be a generating set for
G. Since each vn is a polynomial in α, there exists a positive integer ℓ which is
the maximal power of α present in the representations of v1, . . . , vm. Then G is
generated by 1, α, . . . , αℓ. Since αℓ+1 ∈ G, there must exist a0, . . . , aℓ ∈ Z such
that

αℓ+1 =

ℓ∑
n=0

anα
n,

which means that α is a root of the polynomial

p(x) = xℓ+1 −
ℓ∑

n=0

anx
n ∈ Z[x].

Therefore we must have mα(x) | p(x). Since p(x) is a monic polynomial, it must
be true that mα(x) is also monic. Hence α ∈ I. □

Theorem 5.2.6. I is a commutative ring with identity under the usual addition
and multiplication of complex numbers.

Proof. We only need to prove that for any α, β ∈ I, α + β and αβ are in I.
Notice that α + β and αβ can be expressed as integral linear combinations of
elements of the form αmβn for some nonnegative integers m,n, which means that

α+ β, αβ ∈ G := spanZ{αmβn : m,n ∈ Z≥0} ⊂ C.

This G is a subgroup of C under the usual addition of complex numbers, and hence
is an additive abelian group (Problem 5.14). Since α and β are algebraic integers,
we know that Z[α] and Z[β] are generated by only finitely many powers of α and
β, respectively, say, it is 1, α, . . . , αk and 1, β, . . . , βℓ. Then G is generated by
all expressions of the form αmβn, 0 ≤ m ≤ k, 0 ≤ n ≤ ℓ as an additive abelian
group. Therefore G must also be finitely generated. We now need to use a standard
property of finitely generated abelian groups, the proof of which we postpone to
Appendix A.



100 5. ALGEBRAIC NUMBER THEORY

Fact 5.2.1. Let G be a finitely generated additive abelian group, i.e., there exist
v1, . . . , vk ∈ G such that for every x ∈ G,

x =

k∑
n=1

anvn

for some a1, . . . , ak ∈ Z. Let H be a subgroup of G. Then H is also finitely
generated.

Since additive groups generated by all powers of α + β and αβ, respectively, are
subgroups of G, they must also be finitely generated. Now Lemma 5.2.5 guarantees
that α+ β and αβ must be in I. □

Notice that we can now describe the set of all algebraic integers in a number
field K as

OK = K ∩ I.
This implies that OK is a ring (Problem 5.15). We now further study some prop-
erties of the ring of algebraic integers OK of a number field K. First we observe
that every element of K can be expressed as a fraction α/c, where α is an algebraic
integer and c is a rational integer.

Lemma 5.2.7. Let K be a number field and β ∈ K. Then there exists some c ∈ N
such that cβ ∈ OK . In fact, we can take c to be the leading coefficient of mβ(x).

Proof. Let d = deg(β) and let

mβ(x) =

d∑
n=0

anx
n ∈ Z[x]

with ad > 0. Notice that

p(x) := ad−1
d mβ(x) =

d∑
n=0

ana
d−1
d xn =

d∑
n=0

ana
d−n−1
d (adx)

n

has β as its root. Now

f(x) =

d∑
n=0

ana
d−n−1
d xn = xd +

d−1∑
n=0

ana
d−n−1
d xn ∈ Z[x]

is a monic polynomial, and f(adβ) = p(β) = 0. This means that adβ ∈ OK . Taking
c = ad completes the proof of the lemma. □

This lemma has some important corollaries.

Corollary 5.2.8. A number field K can be described as

K =

{
α

β
: α, β ∈ OK , β ̸= 0

}
.

Hence we can refer to K as the field of fractions or quotient field of OK .

Proof. Let

E :=

{
α

β
: α, β ∈ OK , β ̸= 0

}
.

We need to prove that E = K. Lemma 5.2.7 implies that every β ∈ K can be
written as β = α

c for some α ∈ OK and c ∈ Z. Since Z ⊆ OK , we see that β ∈ E,
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hence K ⊆ E. Now suppose α/β = αβ−1 ∈ E. Since α, β ∈ OK ⊂ K, we must
have β−1 ∈ K and hence αβ−1 ∈ K, since K is a field. Therefore E ⊆ K, and thus
E = K. □

Theorem 5.2.3 guarantees that a number field always has a primitive element.
In fact, it always has a primitive element, which is an algebraic integer.

Corollary 5.2.9. Let K be a number field. Then there exists α ∈ OK such that
K = Q(α).

Proof. Let β ∈ K be a primitive element. By Lemma 5.2.7, there exists an
element c ∈ Z such that α := cβ ∈ OK . Since clearly Q(cβ) = Q(β), we are
done. □

We can now define embeddings of a number field K into C. Let K = Q(α),
then

d := deg(α) = [K : Q].

Recall that

K = Q(α) = Q[α] = spanQ{1, α, . . . , αd−1},
and 1, α, . . . , αd−1 are linearly independent over Q. Let

α = α1, α2, . . . , αd

be the algebraic conjugates of α. For each 1 ≤ n ≤ d, define a map σn : K → C,
given by

(5.7) σn

(
d−1∑
m=0

amαm

)
=

d−1∑
m=0

amαm
n ,

for each
∑d−1

m=0 amαm ∈ K. From Problem 5.16 we know that each such σn is an
injective field homomorphism, so K ∼= σn(K) for each 1 ≤ n ≤ d, and

Q = {β ∈ K : σn(β) = β ∀ 1 ≤ n ≤ d} .

These embeddings σ1, . . . , σd are, in fact, the only possible embeddings of K into C.

Lemma 5.2.10. Let K = Q(α) be a number field of degree d over Q. Let τ : K → C
be an embedding, i.e. an injective field homomorphism. Then τ is one of the
embeddings σ1, . . . , σd as defined in (5.7).

Proof. First we will prove that τ(c) = c for each c ∈ Q. Since τ is a field
homomorphism, we must have τ(1) = 1, and for each a/b ∈ Q,

τ(a/b) = τ(a)τ(b)−1 = aτ(1)(bτ(1))−1 = a/b.

Since [K : Q] = d, we know that deg(α) = d, and so

K = Q[α] = spanQ{1, α, . . . , αd−1}.

Let α = α1, α2, . . . , αd be the algebraic conjugates of α. Let β =
∑d−1

n=0 cnα
n ∈ K.

Since τ is a field homomorphism,

τ(β) =

d−1∑
n=0

τ(cn)τ(α)
n =

d−1∑
n=0

cnτ(α)
n.
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Hence we only need to show that τ(α) = αn for some 1 ≤ n ≤ d. Let

mα(x) =

d∑
m=0

bmxm ∈ Z[x],

be the minimal polynomial of α. Then

mα(α) =

d∑
m=0

bmαm = 0,

and so

0 =

d∑
m=0

bmτ(α)m = mα(τ(α)).

Hence τ(α) is a root of mα(x), which means that τ(α) = αn for some 1 ≤ n ≤ d.
Therefore τ = σn for some σn as in (5.7). This completes the proof. □

If K = σn(K) for each 1 ≤ n ≤ d, then the number field K is called Galois. In
this case, the set

G := {σ1, . . . , σd}
is a group under the operation of function composition (Problem 5.17). It is called
the Galois group of K over Q, where Q is precisely the fixed field of G, as follows
from Problem 5.16. In this case, elements of G are called automorphisms of K
over Q.

Definition 5.2.3. Given a Q-basis α1, . . . , αd ∈ K, its discriminant is defined as

∆(α1, . . . , αd) := (det(σn(αk))1≤n,k≤d)
2
,

where d = [K : Q].

We will now prove an important property of the discriminant.

Lemma 5.2.11. Let α1, . . . , αd ∈ K be a Q-basis. Then the discriminant

∆(α1, . . . , αd) ∈ Q.

Further, if α1, . . . , αd ∈ OK , then ∆(α1, . . . , αd) ∈ Z.
Proof. Let θ ∈ K be such that K = Q(θ), then degree of θ is equal to d

and 1, θ, . . . , θd−1 is a Q-basis for K, called a power basis. Hence there must exist
rational numbers c11, . . . , cdd such thatα1

...
αd

 =

c11 . . . c1d
...

. . .
...

cd1 . . . cdd


 1

...
θd−1

 ,

i.e. C = (cmn)1≤m,n≤d is a rational change of basis matrix. Then by Problem 5.22

∆(α1, . . . , αd) = det(C)2∆(1, . . . , θd−1),

and thus it is sufficient to prove that ∆(1, . . . , θd−1) ∈ Q. Let σ1, . . . , σd be the
embeddings of K into C and θ1, . . . , θd the conjugates of θ, i.e. θk = σk(θ). Then

∆ := ∆(1, . . . , θd−1) =

det


1 θ1 . . . θd−1

1

1 θ2 . . . θd−1
2

...
...

. . .
...

1 θd . . . θd−1
d




2

.
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Notice that each σk permutes the conjugates θ1, . . . , θd, which means that the action
of each σk only permutes the rows of the matrix above leaving the square of the
determinant unchanged. Thus σk(∆) = ∆ for every 1 ≤ k ≤ d. Now, Problem 5.23
implies that any element of K that is fixed by all embeddings must in fact be in Q,
thus ∆ ∈ Q, and so ∆(α1, . . . , αd) ∈ Q for any Q-basis α1, . . . , αd of K.

Assume additionally that α1, . . . , αd ∈ OK , i.e. they are all algebraic integers.
From definition of the discriminant it is clear that ∆(α1, . . . , αd) in this case must
also be an algebraic integer. Hence ∆(α1, . . . , αd) is in Q and in I, but Q ∩ I = Z.
Thus ∆(α1, . . . , αd) ∈ Z. □

We now use the discriminant to prove that the ring of integers OK in a number
field K of degree d is a lattice of rank d, i.e. its elements can be expressed as integer
linear combinations of a collection of d Q-linearly independent elements. A ring
with this property is called an order in K, and hence we are about to show that OK

is an order in K. Notice that if K = Q(θ) for some algebraic θ, then Z[θ] ⊆ OK is
also an order in K, however OK is a maximal order with respect to inclusion (we
will not prove it here), and Z[θ] is a maximal order precisely when OK = Z[θ].

Theorem 5.2.12. Let K be a number field of degree d over Q. Then the ring OK is
a lattice of rank d, i.e. there exists a collection of Q-linearly independent elements
α1, . . . , αd ∈ OK such that

OK =

{
d∑

n=1

anαn : a1, . . . , ad ∈ Z

}
.

Proof. Let α1, . . . , αd ∈ K be a Q-basis for K. By Lemma 5.2.7 we know
that there exist c1, . . . , cd such that c1α1, . . . , cdαd ∈ OK . Thus the set of linearly
independent collections of d elements of OK is not empty. The discriminant of any
such collection is an integer, hence let us choose such a collection β1, . . . , βd with
the smallest |∆(β1, . . . , βd)|.

We will now prove that

OK =

{
d∑

n=1

anβn : a1, . . . , ad ∈ Z

}
.

Suppose this is not true, then there exists some x ∈ OK , which is not an integer
linear combination of β1, . . . , βd. Since β1, . . . , βd for a Q-basis for K, it still must
be true that

x = a1β1 + · · ·+ adβd

for some a1, . . . , ad ∈ Q, which are not all in Z. Assume, for instance, a1 is not an
integer. Let q ∈ (0, 1) be such that a1 − q ∈ Z. Then (a1 − q)β1 ∈ OK , and since
x ∈ OK , we have

y := x− (a1 − q)β1 = qβ1 +

d∑
k=2

akβk ∈ OK .
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The collection of elements y, β2, . . . , βd ∈ OK is again linearly independent, hence
forms a Q-basis for K. Then

A =


q a2 . . . ad
0 1 . . . 0
...

...
. . .

...
0 0 . . . 1


is the change of basis matrix from the basis β1, . . . , βd to the basis y, β2, . . . , βd.
Hence, by Problem 5.22

∆(y, β2, . . . , βd) = det(A)2∆(β1, β2, . . . , βd)

= q2∆(β1, β2, . . . , βd) < ∆(β1, β2, . . . , βd).

This contradicts the choice of β1, . . . , βd, and hence completes our proof. □

A Z-basis (i.e. a basis over Z) α1, . . . , αd for the ring of integers OK is called
an integral basis for the number field K. If α1, . . . , αd and β1, . . . , βd are two such
bases, then there must exist a change of basis matrix A ∈ GLd(Z) between them
(Problem 5.24). Therefore we have, by Problem 5.22,

∆(α1, . . . , αd) = ∆(β1, . . . , βd).

This common value of the discriminant of all the integral bases of a number field
K is called the discriminant of K, denoted ∆K . As we will see later, it has some
special geometric significance.
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5.3. Noetherian rings and factorization

We are now starting to study some properties of rings of algebraic integers like
OK for a number field K in more details. We start with an important general
theorem.

Theorem 5.3.1. Let R be a commutative ring with identity. The following proper-
ties in R are equivalent:

(1) Every ideal in R is finitely generated.
(2) Every ascending chain of ideals

I1 ⊆ I2 ⊆ . . .

in R stabilizes, i.e. there exists an n such that Ik = Ik+1 for all k ≥ n.
(3) Given any nonempty collection of ideals S in R, there exists an ideal I ∈ S

such that I ̸⊆ J for any J ∈ S, J ̸= I: such an I is called a maximal
element in S.

Proof. Suppose every ideal in R is finitely generated, and let

I1 ⊆ I2 ⊆ . . .

be an ascending chain of ideals in R. Let I =
⋃∞

k=1 Ik, then I is also an ideal in
R (Problem 5.25). Hence I must be finitely generated, say x1, . . . , xn is a set of
generators for I. Then each generator xk lies in some ideal Iℓk , and so x1, . . . , xn ∈
Im, where m = max1≤k≤n ℓk. Hence

I = ⟨x1, . . . , xn⟩ ⊆ Im ⊆ I,

so I = Im. This means that for each k ≥ m, Ik = Ik+1.
Now assume that every ascending chain of ideals in R stabilizes. Let S be a

nonempty collection of ideals in R, and suppose that S does not have a maximal
element. Then for every I ∈ S there exists some J ∈ S such that I ⊊ J . Construct
an ascending chain of ideals from S

I1 ⊆ I2 ⊆ . . .

by picking each In such that In−1 ⊊ In. This chain will never stabilize, which is a
contradiction. Hence S must have a maximal element.

Finally, suppose that every nonempty collection of ideals has a maximal ele-
ments. Let I be an ideal in R, and let S be the collection of all finitely generated
ideals contained in I. Since {0} ∈ S, it is not empty. Let J be a maximal element
in S, then J ⊆ I and J is finitely generated. Suppose I is not finitely generated,
then J ⊊ I, i.e. there exists x ∈ I \ J . Let J ′ = ⟨J, x⟩, then J ⊊ J ′ and J ′ is still
finitely generated, so J ′ ∈ S. This contradicts maximality of J in S, hence I must
be finitely generated. □

A commutative ring with identity satisfying the equivalent conditions of The-
orem 5.3.1 is called noetherian. One important property of noetherian integral
domains is that they allow factorization of elements into irreducibles.

Definition 5.3.1. Let R be an integral domain. An element u ∈ R is called a
unit if there exists an element v ∈ R such that uv = 1. The set of all units in R,
denoted by R× forms an abelian group under multiplication (Problem 5.18). An
element x ∈ R is called irreducible if whenever x = yz for some y, z ∈ R then either
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y or z is a unit. Notice, in particular, that if x is irreducible, then so is ux for any
unit u ∈ R.

Theorem 5.3.2. If R is a noetherian integral domain and x ∈ R, then there exist
irreducible elements α1, . . . , αn ∈ R such that x = α1 · · ·αn.

Proof. Suppose u ∈ R is a unit, then x = u(u−1x). Notice that ±1 ∈ R, and
hence the group of units R× ̸= ∅. Therefore it is always possible to write x = yz:
if in every such factorization either y or z is a unit, then x is irreducible and we
are done. If this is not the case, then there exists a factorization x = x1x2, where
x1, x2 are both non-units. Now repeat this process for x1, x2, and keep repeating
until the process terminates. Hence we need to show that this process does in fact
terminate. Suppose not, then there exists an infinite sequence of distinct elements
in R, call them y1, y2, . . . such that

· · · | yn | yn−1 | · · · | y2 | y1 | x,
which means that there is an infinite ascending chain of ideals

⟨x⟩ ⊊ ⟨y1⟩ ⊊ ⟨y2⟩ ⊊ . . . ,

which does not stabilize. This contradicts the assumption that R is noetherian.
Hence the process must terminate, meaning that we obtain a factorization of x into
irreducibles. □

We are now ready to discuss factorization of elements into irreducibles in OK .

Lemma 5.3.3. Let K be a number field and OK its ring of integers. Then OK is
noetherian.

Proof. We prove this lemma by showing that every ideal in OK is finitely
generated. By Theorem 5.2.12 we know that OK is a lattice, i.e. a free abelian
group. Let I ⊆ OK be an ideal, then it is a subgroup of OK , which must therefore
also be free abelian as discussed in Appendix A. Let x1, . . . , xm be a basis for I,
then

I =

{
m∑

k=1

akxk : a1, . . . , am ∈ Z

}
⊆

{
m∑

k=1

akxk : a1, . . . , am ∈ OK

}
⊆ I,

hence I is generated by x1, . . . , xm. Thus it is finitely generated. □

Corollary 5.3.4. Let K be a number field and OK its ring of integers. Then
every element in OK can be factored into a product of irreducibles.

Proof. This is immediate by combining Theorem 5.3.2 with Lemma 5.3.3. □

Our next goal is to investigate uniqueness of factorization into irreducibles in
rings of algebraic integers of number fields.

Definition 5.3.2. An element x in an integral domain R is called a prime if
whenever x | yz for some y, z ∈ R, then x | y or x | z.

We are used to the situation of the ring of rational integers Z, in which the group of
units is {±1} and primes and irreducibles are the same (Problem 5.19). For more
general rings of integers, the situation is more complicated, starting with the fact
that the group of units can be larger. For instance, notice that

√
2− 1,

√
2 + 1 ∈ OQ(

√
2),
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and (
√
2 − 1)(

√
2 + 1) = 1, hence they are both units. The relationship between

primes and irreducibles is also not so simple.

Lemma 5.3.5. Let x ∈ OK be a prime. Then it is irreducible.

Proof. Suppose x = yz for some two y, z ∈ OK . Since x is a prime, it must
be true that x | y or x | z, say x | y. Then y = xt for some t ∈ OK . Hence we have:

x = xtz,

and multiplying this equation by x−1 in K, we conclude that tz = 1, i.e. z is a
unit. Thus x is irreducible. □

The converse of this lemma however is not always true. For example, in OQ(
√
−5)

the elements 2, 3, 1 ±
√
−5 are all irreducible, 2 and 3 do not divide 1 +

√
−5 or

1−
√
−5 (Problem 5.20), however

(5.8) 6 = 2× 3 = (1 +
√
−5)(1−

√
−5),

and hence 2 and 3 are not primes. The underlying reason for this is the non-
uniqueness of factorization into irreducibles demonstrated in (5.8). Recall that an
integral domain R is called a unique factorization domain (UFD) if for any x ∈ R
there exists a unique (up to permutation of terms and multiplication by a unit)
factorization

x = p1 · · · pk,
where p1, . . . , pk are irreducible elements (notice that if p is an irreducible and u is
a unit, then up is also an irreducible). We are quite used to taking this property
for granted, as the Fundamental Theorem of Arithmetic is nothing else but the
statement that Z is a UFD, however, as (5.8) demonstrates, OQ(

√
−5) is not a UFD.

Theorem 5.3.6. The ring OK is a UFD if and only if every irreducible in OK is
a prime.

Proof. First suppose OK is a UFD. Let p ∈ OK be irreducible, and suppose
that p | ab for some a, b ∈ OK . Then there exists some c ∈ OK such that pc = ab.
Let

a = q1 · · · qk, b = t1 · · · tm, c = s1 · · · sn
be unique factorizations of a, b and c into irreducibles, then the factorization

ps1 · · · sn = q1 · · · qkt1 · · · tm
is also unique. Therefore p must be one of the irreducibles q1, . . . , qk, t1, . . . , tm,
which means that p | a or p | b. Hence p is prime.

In the opposite direction, assume every irreducible in OK is prime. Suppose
some element α ∈ OK has two factorizations into irreducibles, say

x = p1 · · · pn = q1 · · · qm.

We want to prove that n = m and pi’s and qj ’s are the same up to permutation.
Assume n ≥ m, and let m be the length of the shortest factorization of x into
irreducibles. We argue by induction on m. If m = 0, then x is a unit, and so cannot
be divisible by any irreducibles, meaning that factorization is unique. Suppose now
that factorization into irreducibles is unique for every element with the length of
shortest factorization ≤ m− 1. Let us prove it for m. Since qm is a prime and

qm | p1 · · · pn,
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it must be true that qm divides some pj , say pn. Thus pn = uqm for some u ∈ OK ,
which must be a unit since pn is irreducible. Therefore

x = p1 · · · pn−1(uqm) = q1 · · · qm.

Since this equation can be viewed in the field K, we have:

up1 · · · pn−1 = q1 · · · qm−1,

which is an element in OK with length of shortest factorization ≤ m − 1. By in-
duction hypothesis, it has unique factorization into irreducibles (up to permutation
and multiplication by units), and hence so does x. □
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5.4. Norm, trace, discriminant

We will now introduce two very important functions on number fields, that will
serve as essential tools in our study of properties of the rings of algebraic integers.
Let K be a number field of degree d with embeddings σ1, . . . , σd : K → C. Let
α ∈ K, then norm of α in K is defined as

NK(α) =

d∏
k=1

σk(α),

and trace of α in K is

TrK(α) =

d∑
k=1

σk(α).

It follows directly from these definitions that norm is a multiplicative function and
trace is linear over Q, i.e. for any α, β ∈ K,

NK(cαβ) = c NK(α)NK(β), TrK(aα+ bβ) = aTrK(α) + bTrK(β)

for any a, b, c ∈ Q (Problem 5.26). There are some additional important properties
of norm and trace that we will establish here.

Lemma 5.4.1. Let α ∈ K, then NK(α),TrK(α) ∈ Q. Further, if α ∈ OK , then
NK(α),TrK(α) ∈ Z.

Sketch of Proof. Let L = Q(α), then L is a subfield of K of degree n
over Q, so that, by Problem 5.3,

d := [K : Q] = [K : L][L : Q] = (d/n)n,

where [K : L] = d/n. Let τ1, . . . , τn be embeddings of L and σ1, . . . , σd embeddings
of K. Then σi’s restricted to L must be equal to τj ’s, and τj ’s extend to σi’s on
K. In fact, every τj extends to the same number of σi’s, namely to d/n of them,
and no two different τj ’s can extend to the same σi. Therefore

NK(α) =

d∏
i=1

σi(α) =

n∏
j=1

τj(α)
d/n =

 n∏
j=1

τj(α)

d/n

,

TrK(α) =

d∑
i=1

σi(α) =

n∑
j=1

(
d

n
τj(α)

)
=

d

n

n∑
j=1

τj(α).

Let mα(x) ∈ Z[x] be the minimal polynomial of α over Z, then mα(x) can be
factored as

mα(x) =

n∑
j=0

cjx
j = cn(x− τ1(α)) · · · (x− τn(α)),

where c0, . . . , cn ∈ Z and cn = 1 if and only if α ∈ OK . Hence we see that

cn

n∏
j=1

τj(α) = c0, cn

n∑
j=1

τj(α) = −cn−1.

The result follows. □

Corollary 5.4.2. An element α ∈ OK is a unit if and only if NK(α) = ±1. On
the other hand, if N(α) = p, a rational prime, then α is irreducible.
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Proof. Suppose α ∈ OK is a unit. Then there exists α−1 ∈ OK such that
αα−1 = 1. Taking norms of both sides of this equation and using the fact that
norm is multiplicative, we have:

NK(αα−1) = NK(α)NK(α−1) = 1.

By Lemma 5.4.1, NK(α),NK(α−1) ∈ Z, hence we must have

NK(α) = NK(α−1) = ±1.
On the other hand, suppose NK(α) = ±1. There certainly exists α−1 ∈ K: it

is our goal to prove that α−1 ∈ OK . We have that

1 = NK(αα−1) = NK(α)NK(α−1) = NK(α−1).

Since α ∈ OK is of norm ±1, its minimal polynomial is of the form

p(x) = xn +

n−1∑
k=1

ckx
k ± 1

for some c1, . . . , cn−1 ∈ Z. Then

0 = p(α) = α−n

(
αn +

n−1∑
k=1

ckα
k ± 1

)
= 1 +

n−1∑
k=1

ckα
−(n−k) ± α−n,

that is α−1 is a root of the monic polynomial

±1±
n−1∑
k=1

ckx
n−k + xn ∈ Z[x].

Therefore α−1 ∈ OK .
Finally, suppose α ∈ OK is such that NK(α) = p, a rational prime. Suppose

α = xy for some x, y ∈ OK . Then Lemma 5.4.1 implies that

NK(x)NK(y) = p,

meaning that one of x, y has norm ±1 and the other ±p, hence one of them is a
unit. Since this is true for every factorization of α in OK , we conclude that α is
irreducible. □

We now use the norm to prove an important property of rings OK .

Theorem 5.4.3. Let P be a prime ideal in OK . Then P is maximal.

Proof. Let α ∈ P , and let

α = α1, α2, . . . , αn

be algebraic conjugates of α. Notice that

α2 · · ·αn =
NK(α)

α
∈ K.

On the other hand, α is an algebraic integer, therefore so are α2, . . . , αn as well as
their product. Hence α2 · · ·αn is an algebraic integer in K, i.e. it is an element of
OK . This means that

NK(α) = α(α2 · · ·αn) ∈ P.

Lemma 5.4.1 guarantees that m := NK(α) ∈ Z, hence m ∈ Z ∩ P . This implies
that the ideal mOK is contained in the ideal P , and so

|OK/P | ≤ |OK/mOK |.
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Since OK is a finitely generated abelian group, so is OK/mOK . Further, for any
β ∈ OK/mOK itm-th power under addition, mβ, is 0. Hence OK/mOK is a finitely
generated abelian group in which every element has order ≤ m (and dividing m):
this must be a finite group (Problem 5.27). This means OK/P is finite, and since
P is a prime ideal, OK/P is an integral domain. A finite integral domain is a field,
and hence OK/P is a field, which means that P is a maximal ideal. □

In the proof of Theorem 5.4.3 we used the fact that the quotient ring OK/P is
finite for a prime ideal P . In fact, this is true for all ideals in OK : notice that our
argument above proving this fact did not rely on P being prime. Hence we have:

Lemma 5.4.4. Let I ⊆ OK be an ideal. Then the quotient ring OK/I is finite.

We define the norm of ideal I to be the cardinality of this finite quotient ring, i.e.

NK(I) = |OK/I|.
This norm is obviously an integer, which (as we will see) generalizes the notion of
the norm of an element in a number field. It plays an important role in number
theory. We will prove some properties of this new norm here.

Lemma 5.4.5. Let K be a number field of degree d, so OK is a lattice of rank d.
Let I ⊆ OK be a nonzero ideal. Then I is a lattice of rank d and

NK(I) =

∣∣∣∣∆(α1, . . . , αd)

∆K

∣∣∣∣1/2 ,
where α1, . . . , αd is an integral basis for I and ∆K is the discriminant of K.

Proof. We know that OK is a lattice of rank d and the ideal I ⊆ OK is its
sublattice. Since OK/I is finite, I must have the same rank as OK (Problem 1.17),
and so |OK/I|, the norm of I, is just the index of I as a subgroup of OK . Then by
Theorem 1.3.6,

NK(I) =
det(I)

det(OK)
=

det(I)

∆K
,

since the discriminant ∆K is precisely the determinant of an integral basis matrix
for OK . Hence we only need to compute det(I). Let α1, . . . , αd be an integral basis
for I and ω1, . . . , ωd an integral basis for OK : notice that both of these are Q-bases
for the number field K. Since I is a sublattice of OK , there must exist an integral
d× d matrix A = (aij)1≤i,j≤d such that

αi =

d∑
j=1

aijωj

for each 1 ≤ i ≤ d. Then, by Problem 5.22, we have:

∆(α1, . . . , αd) = det(A)2∆(ω1, . . . , ωd) = det(A)2∆K ,

and thus

NK(I) = |det(A)| =
∣∣∣∣∆(α1, . . . , αd)

∆K

∣∣∣∣1/2 .
□

Corollary 5.4.6. If I = ⟨α⟩ ⊆ OK is a principal ideal, then

NK(I) = |NK(α)|.
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Proof. Let ω1, . . . , ωd be an integral basis for OK , then αω1, . . . , αωd an in-
tegral basis for I, and so

∆(αω1, . . . , αωd) = (det(σi(α)σi(ωj))1≤i,j≤d)
2

=

(
d∏

i=1

σi(α) det(σi(ωj))1≤i,j≤d

)2

= NK(α)2∆K .

Then, by Lemma 5.4.5,

NK(I) =

∣∣∣∣∆(αω1, . . . , αωd)

∆K

∣∣∣∣1/2 = |NK(α)|.

□

We will next look in more details at the properties of ideals in the ring OK .
The norm of an ideal will serve as an important tool, and further properties of the
norm will be established later.
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5.5. Fractional ideals

As we have seen, OK may not necessarily have unique factorization of elements
into irreducibles. On the other hand, a certain analogue of unique factorization
holds for ideals in OK . To establish this result, we first discuss an important
generalization of the notion of an ideal in number fields.

Definition 5.5.1. Let K be a number field with ring of integers OK . A fractional
ideal in K is a subset

B = α−1I =
{
α−1x : x ∈ I

}
,

where α ∈ OK and I ⊆ OK is an ideal. Trivially, any ideal I ⊆ OK is also a
fractional ideal.

Let FK be the set of all fractional ideals in K. We can define a commutative
multiplication operation on FK : for B = α−1I and C = β−1J in FK ,

BC = {bc : b ∈ B, c ∈ C} = (αβ)−1IJ ∈ FK ,

since αβ ∈ OK and IJ is again an ideal in OK . Notice that for any B = α−1I ∈ FK ,

BOK =
{
α−1xy : x ∈ I, y ∈ OK

}
=
{
α−1z : z ∈ I

}
= B.

We will now prove an important theorem.

Theorem 5.5.1. The set of fractional ideals FK is an abelian group under this
multiplication operation.

Proof. We already proved closure under the operation and existence of iden-
tity, OK . Hence we only need to establish existence of inverses. For each ideal
I ⊆ OK , define

(5.9) I ′ = {x ∈ K : xI ⊆ OK} ,

and for each fractional ideal B = α−1I ∈ FK , define B′ = αI ′. Then each such B′

is again a fractional ideal, i.e. B′ ∈ FK for every B ∈ FK (Probelm 5.29). It is
easy to see that OK ⊆ B′ for each B′ ∈ FK . Further, O′

K = OK (Problem 5.28).
We will now prove that B′ is the inverse of B for every B ∈ FK . This is a lengthy
proof, which will consist of a number of steps.

Step 1. For an ideal I ⊆ OK we know that OK ⊆ I ′. Let us prove that if I is
a proper ideal, then OK ̸= I ′. Let M ⊂ OK be a maximal ideal such that I ⊆M ,
then M ′ ⊆ I ′. It will then suffice to prove that M ′ ̸= OK , i.e. we want to find an
element of M ′ which is not in OK . First we need an auxiliary lemma.

Lemma 5.5.2. For every nonzero ideal I ⊆ OK , there exist prime ideals P1, . . . , Pr ⊂
OK such that their product P1 · · ·Pr is contained in I.

Proof. Suppose not, then let A be the collection of all ideals in OK for which
this is not true, and let I be a maximal element in A (since OK is noetherian, such
I must exist). Then I itself cannot be prime, and so exist ideals J1, J2 ⊂ OK such
that J1J2 ⊆ I while J1, J2 are not in I. Let

A1 = I + J1, A2 = I + J2,

then I ⊊ A1, A2, while

A1A2 = (I + J1)(I + J2) = I2 + I(J1 + J2) + J1J2 ⊆ I.
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By maximality of I in A, it must be true that A1, A2 /∈ A, and hence there exist
prime ideals P1, . . . , Pr, Q1, . . . , Qs in OK such that

P1 · · ·Pr ⊆ A1, Q1 · · ·Qs ⊆ A2,

but then

P1 · · ·PrQ1 · · ·Qs ⊆ A1A2 ⊆ I,

contradicting the choice of I. □

Back to our proof, let 0 ̸= a ∈ M , then the principal ideal ⟨a⟩ ⊆ M . Let r be
the smallest integer for which exists a collection of prime ideals P1, . . . , Pr ∈ OK

with the product P1 · · ·Pr ⊆ ⟨a⟩. Since M is maximal (hence prime) at least one
of P1, . . . , Pr must be in M , say it is P1. But in OK every prime ideal is maximal,
and hence P1 = M . On the other hand, by minimality of r,

P2 · · ·Pr ̸⊆ ⟨a⟩ ,

meaning that there exists some b ∈ P2 · · ·Pr which is not in ⟨a⟩. This being said,
bP1 = bM ⊆ ⟨a⟩, i.e. ba−1M ⊆ OK , hence ba−1 ∈ M ′. But since b /∈ ⟨a⟩ = aOK ,
we have that ba−1 /∈ OK , and thus we prove that M ′ ̸= OK .

Step 2. Next, let I ⊆ OK be an ideal and T ⊆ K be a set such that TI ⊆ I. We
will prove that T ⊆ OK . In other words, given θ ∈ T , we will show that θ ∈ OK .
We know that I is finitely generated as an ideal and is also a lattice of finite rank.
Let a1, . . . , an be a generating set for I, which is also an integral basis. In other
words, for every x ∈ I, there exist b1, . . . , bn ∈ Z such that

x = b1a1 + · · ·+ bnan.

Since θI ⊆ I, we have

akθ = bk1a1 + · · ·+ bknan

for each 1 ≤ k ≤ n, where bkj ∈ Z. In matrix form, this system of equations can
be written as

Ba = θa,

where B = (bkj)1≤k,j≤n is an integer matrix and a = (a1, . . . , an)
⊤ is a vector

with coordinates in I. Then θ is an eigenvalue of B, which is a root of the monic
polynomial

det

b11 − x . . . b1n
...

. . .
...

bn1 . . . bnn − x


with integer coefficients. Hence θ is an algebraic integer in K, i.e. θ ∈ OK . Thus
T ⊆ OK .

Step 3. We are now ready to prove that MM ′ = OK for a maximal ideal M
in OK . Indeed, it is clear that MM ′ ⊆ OK is an ideal (as is II ′ for any ideal I in
OK), and

M ⊆MM ′ ⊆ OK .

Since M is maximal, then either M = MM ′ or MM ′ = OK . Assume M = MM ′,
then by Step 2 we know that M ′ ⊆ OK , which contradicts Step 1. Hence we must
have MM ′ = OK .
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Step 4. We now prove that II ′ = OK for any nonzero ideal I ⊆ OK . Suppose
not, then II ′ ⊊ OK . In fact, let us take I to be a maximal element in the set of all
ideals J in OK such that JJ ′ ⊊ OK . Let M be a maximal ideal in OK containing
I. Then we know that

OK ⊊ M ′ ⊆ I ′,

hence
I = IOK ⊊ IM ′ ⊆ II ′ ⊊ OK .

Since IM ′ is an ideal in OK , the maximality condition on I implies that

(IM ′)(IM ′)′ = I(M ′(IM ′)′) = OK .

This means that M ′(IM ′)′ ⊆ I ′, hence

OK = I(M ′(IM ′)′) ⊆ II ′ ⊊ OK ,

which is a contradiction. Hence II ′ = OK .

Step 5. It now easily follows that BB′ = OK for every B ∈ FK . Indeed, let
B = α−1I be a fractional ideal in K. Then B′ = αI ′, and so

BB′ = (α−1I)(αI ′) = II ′ = OK .

This completes the argument, showing that FK is the abelian group of fractional
ideals in K. □

This result and its proof have some important implications, the first of which
is a certain weaker analogue of unique factorization in OK .

Theorem 5.5.3. Every nonzero ideal in OK can be written uniquely (up to permu-
tation) as a product of prime ideals.

Proof. We first show existence of such a factorization, and then its uniqueness.
Suppose such a factorization does not exist for every ideal, and let S be the set of
all ideals in OK which do not have such a factorization. Since OK is noetherian,
S has a maximal element, call it I. Then I itself is not a prime ideal, hence not a
maximal ideal in OK . Let M be a maximal ideal in OK such that I ⊂ M . Then
by the argument above (Step 4 in the proof of Theorem 5.5.1),

I ⊊ IM ′ ⊊ OK .

Since I is maximal without a prime factorization, the ideal IM ′ must have a fac-
torization into prime ideals, say

IM ′ = P1 · · ·Pr

for some prime ideals P1, . . . , Pr ⊂ OK . Then, since M ′M = OK ,

P1 · · ·PrM = (IM ′)M = I(M ′M) = I,

which is a factorization of I into a product of prime ideals.
We now establish uniqueness of such factorization. Let r be the length of a

shortest factorization into prime ideals for an ideal I ⊂ OK . We argue by induction
on r. If r = 1, then I itself is prime, and we are done. Assume the result is true for
all ideals with length of prime factorization ≤ r− 1. Let us prove it for r. Suppose

I = P1 · · ·Pr = Q1 · · ·Qs

are two factorizations of I into primes, s ≥ r. Since the ideals P1, . . . , Pr, Q1, . . . , Qs

are prime (hence maximal), we must have P1 = Qi for some 1 ≤ i ≤ s; in fact,
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after rearranging, if necessary, we can assume i = 1. Multiplying both sides of this
equality by P ′

1, we obtain
P2 · · ·Pr = Q2 · · ·Qs,

since P ′
1P1 = Q′

1Q1 = OK . By induction hypothesis, this factorization is unique,
and hence we are done. □
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5.6. Further properties of ideals

We continue studying structure of ideals here with a view towards factorization
of elements into irreducibles in rings of algebraic integers of number fields. The main
goal of this section is to give a vital condition for such a factorization to be unique.
We start with an important property of the norm of an ideal: it is a multiplicative
function, same as norm of an element.

Lemma 5.6.1. Let K be a number field, and I, J be nonzero ideals in the ring OK .
Then

NK(IJ) = NK(I)NK(J).

Proof. It is sufficient to prove this statement in the case when one of these
ideals, say J , is prime, let us call it P (Problem 5.30). In other words, we want to
prove that

(5.10) |OK/IP | = |OK/I| · |OK/P |.

First let us prove that

(5.11) |OK/IP | = |OK/I| · |I/IP |.

For this, let us define a map ϕ : OK/IP → OK/I, given by ϕ(x+IP ) = x+I. This
is a surjective ring homomorphism (Problem 5.31). By First Isomorphism Theorem
for groups,

(OK/IP ) /Ker(ϕ) ∼= ϕ(OK/IP ) = OK/I,

and since these groups are finite, we have

|OK/IP | = |Ker(ϕ)| · |OK/I|.

Notice that Ker(ϕ) consists of all cosets of IP which are in I, i.e. Ker(ϕ) = I/IP .
This establishes (5.11).

Next we prove that

(5.12) |I/IP | = |OK/P |.

Let B ⊆ OK be an ideal such that

IP ⊆ B ⊆ I.

Let I ′ be the inverse of I in the group of FK of fractional ideals of K, then

I ′(IP ) = P ⊆ I ′B ⊆ I ′I = OK ,

and since P is a prime ideal in OK (hence maximal), we must have I ′B either equal
to P or to OK . This means that B is either equal to IP or I, i.e. there is no ideal
between IP and I. Let α ∈ I \ IP , then we must have

IP + ⟨α⟩ = I.

Define a function fα : OK → I/IP by fα(x) = αx+ IP . This is an abelian group
homomorphism, which is surjective:

fα(OK) = (αOK + IP )/IP = (IP + ⟨α⟩)/IP = I/IP.

Therefore OK/Ker(fα) ∼= I/IP . Clearly, Ker(fα) ̸= OK , since I ̸= IP . On the
other hand, for every x ∈ P ,

fα(x) = αx+ IP = 0
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in I/IP , since αx ∈ IP (α is in I and x is in P ). Therefore P ⊆ Ker(fα), and since
P is a maximal ideal, we have P = Ker(fα). Therefore OK/P ∼= I/IP , and (5.12)
follows. Combining (5.11) with (5.12) proves (5.10). □

We next look closer at the norm values of ideals.

Lemma 5.6.2. Let I ⊆ OK be a nonzero ideal. Then:

(1) If NK(I) is a prime in Z, then I is a prime ideal in OK .
(2) NK(I) ∈ I.
(3) If I ⊂ OK is a prime ideal, then NK(I) = pm for some prime p ∈ Z and

m ≤ d = [K : Q].

Proof. To prove part (1), suppose that I = AB for some two ideals A,B ⊆
OK . Then, by multiplicativity of the norm,

NK(I) = NK(A)NK(B) = p ∈ Z,
where p is a prime number. Hence either NK(A) or NK(B) must be equal to 1, say
it is NK(A). This means that |OK/A| = 1, and so A = OK , hence

I = AB = OKB = B.

Therefore I does not have any nontrivial factorization, hence it is a prime ideal.

To prove part (2), let x+ I ∈ OK/I. Since OK/I is an additive abelian group
of order NK(I), we must have

NK(I)(x+ I) = NK(I)x = I,

meaning that NK(I)x ∈ I for every x ∈ OK . Then take x = 1, and we see that
NK(I) ∈ I.

To prove part (3), assume that

NK(I) = pm1
1 · · · pmr

r

for some rational primes p1, . . . , pr ∈ Z and positive integers m1, . . . ,mr. By part
(2), we have

pm1
1 · · · pmr

r ∈ I.

Since I is a primed ideal, we must have pi ∈ I for some 1 ≤ i ≤ r. Suppose q ∈ I is
a rational integer prime different from pi, then, by Euclid’s Division Lemma, there
exist some a, b ∈ Z such that

1 = api + bq,

and so 1 ∈ I, meaning that I = OK . However, a prime ideal has to be proper. Thus
pi is the only rational integer prime contained in I, which means that I | piOK and
I ∤ qOK for any prime q ̸= pi. Therefore

NK(I)|NK(pi) = NK(pi) =

d∏
j=1

σj(pi) = pdi ,

where σ1, . . . , σd are embeddings of K. Therefore NK(I) = pmi for some m ≤ d. □

The next lemma contains some key finiteness observations about ideals of given
norm.

Lemma 5.6.3. Let K be a number field with the ring of integers OK . The following
are true:



5.6. FURTHER PROPERTIES OF IDEALS 119

(1) Let I ⊆ OK be an ideal. There exist only finitely many ideals J ⊆ OK

such that J | I.
(2) Let m ∈ Z, m ̸= 0. There exist only finitely many ideals I ⊆ OK such

that m ∈ I.
(3) Let m ∈ Z>0. There exist only finitely many ideals I ⊆ OK of norm m.

Proof. To prove part (1), we use Theorem 5.5.3: since there is a unique
factorization I into prime ideals, all ideals dividing I must be products of some
subcollections of these primes ideals, hence there can only be finitely many of them.

For part (2), let m ∈ Z be nonzero and let I ⊆ OK be an ideal such that m ∈ I.
Then I | mOK , but by part (1) the ideal mOK can have only finitely many divisors.
Thus m can belong to only finitely many ideals in OK .

Finally, for part (3) let I be an ideal of normm, then by part (2) of Lemma 5.6.2
above, m ∈ I. However, by part (2), there can be only finitely many ideals I so
that m ∈ I. Thus there can be only finitely many ideals of norm m. □

We need one more technical lemma before we can prove the main theorem of
this section.

Lemma 5.6.4. Let I, J ⊆ OK be nonzero ideals. Then there exists an element α ∈ I
such that

αI ′ + J = OK ,

where I ′ is the inverse of I in FK .

Proof. Let α be any element of I, then αI ′ is an ideal in OK , since

I ′ = {x ∈ K : xI ⊆ OK} .
Thus αI ′ + J is an ideal in OK , which contains ideals αI ′ and J : in fact, it is
the smallest such ideal (with respect to inclusion). This means that αI ′ + J is the
greatest common divisor of αI ′ and J . Let

J = P1 · · ·Pr

be the unique factorization of J into prime ideals. Then

αI ′ + J | J = P1 · · ·Pr,

and αI ′ + J ⊆ αI ′ + Pi for each 1 ≤ i ≤ r, since J ⊆ Pi for each i. Hence

αI ′ + J =

r⋂
i=1

(αI ′ + Pi).

We will now construct and α ∈ I such that αI ′+Pi = OK for each 1 ≤ i ≤ r. Since
each Pi is a maximal ideal, it is sufficient to construct α ∈ I such that αI ′ ̸⊆ Pi for
all 1 ≤ i ≤ r: if αI ′ ̸⊆ Pi, then

Pi ⊊ αI ′ + Pi ⊆ OK ,

which by maximality of Pi means that αI ′ + Pi = OK . Notice that

αI ′ ̸⊆ Pi ⇔ Pi ∤ αI ′ ⇔ IPi ∤ αOK ⇔ α /∈ IPi

for all 1 ≤ i ≤ r. Hence we need to construct an element α ∈ I \ (
⋃r

i=1 IPi).
Notice that for each 1 ≤ i ≤ r, IPi ⊊ I. Thus if r = 1, we can take any element

α ∈ I \ IP1. Assume r > 1, and for each 1 ≤ m ≤ r, define

Im = IP1 · · ·Pm−1Pm+1 · · ·Pr,
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then ImPm = IJ . For each m, pick an element αm ∈ Im \ IJ , and define

α = α1 + · · ·+ αr.

Then α ∈ I, since each αm ∈ Im ⊆ I. Assume that α ∈ IPm for some 1 ≤ m ≤ r.
Notice that for each j ̸= m, αj ∈ Ij ⊆ IPm, and so

αm = α− (α1 + · · ·+ αm−1 + αm+1 + · · ·+ αr) ∈ IPm.

This contradicts our choice of αm, meaning that α /∈ IPm for any 1 ≤ m ≤ r. This
completes the proof. □

We are now ready for the main result of this section. Recall that an integral
domain is called principal (abbreviated PID) if every ideal in it can be generated
by one element.

Theorem 5.6.5. Let K be a number field and OK its ring of integers. The OK is
a UFD if and only if it is a PID.

Proof. Every PID is a UFD (Problem 5.32: this is a standard theorem, found
in any algebra book), so we will only prove the reverse implication. Suppose OK is
a UFD. Let I ⊆ OK be an ideal and let

I = P1 · · ·Pr

be its factorization into prime ideals. If each Pi is principal, say Pi = xiOK , then
I = (x1 · · ·xr)OK is also principal. Hence we only need to prove that primes ideals
in OK are principal. Let P ⊂ OK be a prime ideal and let m = NK(P ). Then
Lemma 5.6.2 guarantees that m ∈ P , i.e. P | mOK . Let us write m = x1 · · ·xk be
the factorization of m into irreducibles in OK . Since OK is a UFD, we know that
irreducibles are primes, and so the principal ideals ⟨x1⟩ , . . . , ⟨xk⟩ are prime ideals
in OK . Then we have

P | mOK = ⟨x1⟩ , . . . , ⟨xk⟩ ,
which means that P | ⟨xi⟩ for some 1 ≤ i ≤ k, since P is prime. Since prime
ideals are maximal in OK , we must have P = ⟨xi⟩, so P is a principal ideal. This
completes the proof. □

Finally, we record here a simple, but somewhat surprising corollary of Lemma 5.6.4.
Many (in some sense, most) rings OK do not have unique factorization into irre-
ducibles, and hence have non-principal ideals by Theorem 5.6.5. It turns out,
however, that every ideal in OK can be generated by at most two elements.

Corollary 5.6.6. Let I ⊆ OK be a nonzero ideal and let β be a nonzero element
of I. Then there exists an element α ∈ I such that I is generated by the pair α, β.

Proof. Let J = βI ′, and ideal in OK . By Lemma 5.6.4 there exists α ∈ I
such that αI ′ + J = OK , i.e.

αI ′ + βI ′ = OK .

Multiplying both sides of this equality by I, we obtain:

αI ′I + βI ′I = αOK + βOK = IOK = I.

Thus I is generated by α, β. □
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5.7. Minkowski embedding

We have previously proved that any nonzero ideal in the ring of integers OK

of a number field K is a lattice, i.e. a free abelian group. In fact, ideals can be
embedded into a Euclidean space and viewed as lattices there, which helps to study
their properties. To do this, we use embeddings of our number field to form the
important Minkowski embedding.

As usual, letK be a number field of degree d over Q, and let σ1, . . . , σd : K ↪→ C
be its embeddings. We will distinguish between real and complex embeddings: σi

is said to be real if the the field σi(K) is contained in R, and complex otherwise.
Notice that complex embeddings come in conjugate pairs: if σi is complex, then
there is it conjugate embedding σ̄i given by

σ̄i(x) := σi(x)

for every x ∈ K. Let us order the embeddings

σ1, . . . , σr, σr+1, σ̄r+1, . . . , σr+s, σ̄r+s,

where σ1, . . . , σr are real and σr+1, σ̄r+1, . . . , σr+s, σ̄r+s are complex. Then d =
r + 2s, and we can define a map

Σ := (σ1, . . . , σr, σr+1, . . . , σr+s) : K ↪→ Rr × Cs,

given by Σ(x) = (σ1(x), . . . , σr(x), σr+1(x), . . . , σr+s(x)) for every x ∈ K. We can
identify Cs with R2s, thinking of Σ(x) as

(σ1(x), . . . , σr(x),ℜ(σr+1(x)),ℑ(σr+1(x)) . . . ,ℜ(σr+s(x)),ℑ(σr+s(x))).

Let us now consider images of ideals in OK under this Minkowski embedding of the
number field into Rd.

Lemma 5.7.1. Let M be a lattice contained in K and x1, . . . , xd be a Z-basis for M .
Then Σ(M) is a lattice of rank d in Rd with determinant

(5.13) det(Σ(M)) = 2−s |det(A C)| ,
where A is an

(5.14) A = (σi(xj))1≤i≤r,1≤j≤d, C = (σr+i(xj) σ̄r+i(xj))1≤i≤s,1≤j≤d .

Proof. Notice that det(Σ(M)) is equal to the absolute value of the determi-
nant of the block matrix (A B), where A is the d× r matrix defined in (5.14) and
B is the d× 2s

B = (ℜ(σr+i(xj)) ℑ(σr+i(xj)))1≤i≤s,1≤j≤d

For any complex number z,

ℜ(z) = 1

2
(z + z̄), ℑ(z) = 1

2i
(z − z̄).

With this in mind, it is easy to see that the matrix B is column-equivalent to the
matrix (

1

2
(σr+i(xj) + σ̄r+i(xj))

1

2i
(σr+i(xj)− σ̄r+i(xj))

)
1≤i≤s,1≤j≤d

.

This means that

det(Σ(M)) =

∣∣∣∣∣
(
1

2

)2s(
1

i

)s

det(A B′)

∣∣∣∣∣ = 2−2s |det(A B′)| ,
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where

B′ = ((σr+i(xj) + σ̄r+i(xj)) (σr+i(xj)− σ̄r+i(xj)))1≤i≤s,1≤j≤d ,

a matrix column-equivalent to

B′′ = (2σr+i(xj) σ̄r+i(xj))1≤i≤s,1≤j≤d .

Thus

det(Σ(M)) = 2−2s |det(A B′′)| = 2−s |det(A C)| ,
and so we have (5.13). Notice that this determinant cannot be equal to 0 (Prob-
lem 5.33), and hence Σ(M) is a lattice of full rank in Rd. □

Corollary 5.7.2. If I ⊆ OK is an ideal, then

det(Σ(I)) = 2−s|∆K |1/2NK(I).

In particular,

det(Σ(OK)) = 2−s|∆K |1/2.

Proof. By Lemma 5.4.5,

NK(I) =

∣∣∣∣∆(α1, . . . , αd)

∆K

∣∣∣∣1/2 ,
where α1, . . . , αd is a Z-basis for I. Then, by Lemma 5.7.1 (and in the notation of
that lemma),

det(Σ(I)) = 2−s |det(A C)| = 2−s |∆(α1, . . . , αd)|1/2 = 2−sNK(I) |∆K |1/2 .

If I = OK , then NK(I) = 1. □

Lemma 5.7.3. Let d = r+2s and let Λ ⊂ Rd be a lattice of full rank with det(Λ) =
D. Let c1, . . . , cr, d1, . . . , ds ∈ R>0 be such that

c1 · · · crd1 · · · ds >
(
4

π

)s

D.

Let

X =
{
x = (x1, . . . , xr, y11, y12, . . . , ys1, ys2) ∈ Rd :

|xi| < ci ∀ 1 ≤ i ≤ r, y2j1 + y2j2 < dj ∀ 1 ≤ j ≤ s
}
.

Then there exists 0 ̸= x ∈ X ∩ Λ.

Proof. This lemma is proved by an application of Minkowski’s Convex Body
Theorem. First notice that the set X is a Cartesian product of intervals [−ci, ci]
for all 1 ≤ i ≤ r and circles of radius

√
dj for 1 ≤ j ≤ s. Therefore X is convex

0-symmetric and its volume is

Vol(X) = (2c1) · · · (2cr) · (πd1) · · · (πds) > 2rπs

(
4

π

)s

D = 2dD.

Then Theorem 1.4.2 (see also Problem 1.23) guarantees that there exists a nonzero
point x ∈ X ∩ Λ. □

We can now apply the lemma above to prove that every ideal has a nonzero
element of small norm.
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Corollary 5.7.4. Let I ⊆ OK be a nonzero ideal. There exists a nonzero element
α ∈ I such that

|NK(α)| ≤
(
2

π

)s

NK(I) |∆K |1/2 ,

where s is the number of conjugate pairs of complex embeddings of the number
field K, as above.

Proof. Let r be the number of real embeddings of K, ε > 0 and let

c1, . . . , cr, d1, . . . , ds ∈ R>0

be such that

c1 · · · cr · d1 · · · ds =
(
2

π

)s

NK(I) |∆K |1/2 + ε.

Let Λ = Σ(I) and let X = Xε be as in Lemma 5.7.3. Applying Corollary 5.7.2, we
see that

c1 · · · cr · d1 · · · ds >
(
4

π

)s

det(Λ).

Therefore Lemma 5.7.3 implies that there exists a nonzero point in Xε ∩Σ(I), and
hence this point is of the form Σ(α) for some α ∈ I. We can then compute

|NK(α)| =

r∏
i=1

|σi(α)| ×
s∏

j=1

|σr+j(α)σ̄r+j(α)| =
r∏

i=1

|σi(α)| ×
s∏

j=1

|σr+j(α)|2

< c1 · · · cr · d1 · · · ds =
(
2

π

)s

NK(I)|∆K |1/2 + ε.

Since Λ is discrete in Rd, there are only finitely such α for every ε > 0. Hence as
ε→ 0, the intersection of all sets

{α ∈ I : Σ(α) ∈ Xε}
will be nonempty, i.e. there exists a nonzero α ∈ I satisfying the bound of the
lemma. □
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5.8. The class group

Now that we understand that non-uniqueness of factorization into irreducibles
in a ring OK is equivalent to existence of non-principal ideals, we look more closely
at the structure of the group of fractional ideals FK . We say that a fractional ideal
B ∈ FK is principal if B = α−1I for α ∈ OK and I ⊆ OK a principal ideal. The
set PK of all principal fractional ideals is then a subgroup of FK (Problem 5.34):
in fact, since FK is an abelian group, the subgroup PK is normal.

Definition 5.8.1. The ideal class group, or simply the class group of the number
field K is the quotient group

Cl(K) := FK/PK .

Elements of this group are called ideal classes, and the order hK := |Cl(K)| of the
class group is called the class number of the number field K.

Two fractional ideals B1 and B2 are in the same ideal class, denoted by B1 ∼ B2

if and only if there exists some a, b ∈ OK such that ⟨a⟩B1 = ⟨b⟩B2; this is an
equivalence relation on FK (Problem 5.35). We immediately have the following
important consequence of Theorem 5.6.5.

Corollary 5.8.1. The ring of integers OK of the number field K is a UFD if and
only if the class number hK = 1.

Proof. Theorem 5.6.5 asserts that OK is a UFD if and only if any ideal
I ⊆ OK is principal. This is equivalent to saying that every fractional ideal B ∈ FK

is principal, since B = α−1I for some α ∈ OK and I ⊆ OK an ideal. This, in turn,
is equivalent to PK being all of FK , i.e. the class group Cl(K) being trivial and
hence having order 1. □

Hence we have a nice quantitative test to check if an analogue of the Funda-
mental Theorem of Arithmetic holds in OK : compute the class number hK and
check if it is equal to 1. The problem is that hK can be very hard to compute. In
fact, it is not even clear whether it is finite. The truth is, it is, however proving
it requires all the machinery we developed thus far. The finiteness of the class
number, which we are about to establish, is one of the greatest achievements of the
classical Algebraic Number Theory: it was first proved by Minkowski with the use
of his Geometry of Numbers. In fact, discovery of the kingdom referred to in the
epigraph to this text alludes precisely to this result.

Theorem 5.8.2. The class number hK of any number field K is finite.

To prove this theorem, we first need an auxiliary lemma, which follows from our
results of Section 5.7.

Lemma 5.8.3. Every ideal class in Cl(K) contains an ideal I ⊆ OK with

(5.15) NK(I) ≤
(
2

π

)s

|∆K |1/2.

Proof. Since every ideal class contains an ideal (Problem 5.36), we only need
to prove that every ideal in OK is equivalent to some ideal I ⊆ OK satisfying (5.15).
Let J ⊆ OK be an ideal and let M be an ideal equivalent to J ′, then

JM ∼ JJ ′ ∼ OK .
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By Corollary 5.7.4, there exists a nonzero element α ∈M such that

|NK(α)| ≤
(
2

π

)s

NK(M)|∆K |1/2.

Since α ∈ M , it must be true that M | ⟨α⟩, i.e. there exists some ideal I ⊆ OK

such that ⟨α⟩ = IM . Then, by multiplicativity of the norm,

NK(I)NK(M) = NK(⟨α⟩) = |NK(α)| ≤
(
2

π

)s

NK(M)|∆K |1/2,

which means that

NK(I) ≤
(
2

π

)s

|∆K |1/2.

Now,
IM = ⟨α⟩ ∈ PK ,

which means that IM ∼ OK , and so I ∼M ′ ∼ (J ′)′ = J . Hence the ideal class of
J contains an ideal with norm bounded as in (5.15). This completes the proof. □

Proof of Theorem 5.8.2. By Lemma 5.8.3 we know that every ideal class
in Cl(K) must contain an ideal of norm bounded as in (5.15). This means that
the hK , the number of ideal classes has to be no bigger than the number of ideals
I ⊆ OK with norm less or equal than

(
2
π

)s |∆K |1/2, a finite positive number. Now
Lemma 5.6.3 readily implies that there can be only finitely many such ideals. This
completes the proof. □

Theorem 5.8.2 establishes the finiteness of the class number hK , but does not
provide a direct way to compute it. In fact, explicit computation of the class
number for a given number field K can be very difficult: while there are some
known class number formulas, they are usually in terms of other invariants of the
number field that are also quite hard to compute. In particular, the classification
of number fields with class number equal to 1, i.e. those whose rings of integers
allow unique factorization into irreducibles is far from complete even in the case
of degree 2. Quadratic number fields are of the form K = Q(

√
D) where D is a

squarefree integer: K is called real if D > 0 and imaginary if D < 0. The problem
of determining the class number of quadratic number fields goes back to Gauss,
who stated several highly influential conjectures. For imaginary quadratics, Gauss
conjectured that hQ(

√
D) →∞ asD → −∞: this was proved to be true by Heilbronn

in 1934. Furthermore, in 1935 Siegel showed that hQ(
√
D) grows approximately like√

|D| as D → −∞. Gauss also compiled lists of imaginary quadratic number
fields of low class number, such as 1, 2, 3, believing them to be complete. The case
hK = 1, where Gauss listed 9 fields received especially a lot of attention. It was
proved by Heilbronn and Linfoot in 1934 that there can be at most 10 such fields,
and then Heegner in 1952 (and later independently Stark and Baker) produced the
10-th such field. As a result the full list of in integers D such that the imaginary
quadratic Q(

√
D) has class number 1 is:

−1, −2, −3, −7, −11, −19, −43, −67, −163.
Interestingly, K = Q(

√
−19) is the first example of a number field with OK being

a PID, but not Euclidean, meaning that there is no Euclidean algorithm possible
onOK . The full lists of imaginary quadratics with class numbers up to 100 have now
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been completed (Watkins, 2004). To contrast, the situation is far more complicated
with real quadratic fields: here the original Gauss conjecture that there are infinitely
many of them with class number 1 remains open.
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5.9. Dirichlet’s unit theorem

To finish our discussion of factorization in rings of algebraic integers, we turn
our attention to units. While the class number can be used as an indicator of
whether the factorization into irreducibles is unique, even when it is it only is
unique up to multiplication by units. This prompts a natural question: how big is
the unit group O×

K for a given number field K? This question is answered by the
famous theorem of Dirichlet, although the proof we present here once again uses
techniques from Minkowski’s geometry of numbers. Our main arguments in this
section are partially based on the exposition of [Sam70].

We start with setting up some notation. Define zn = e2πi/n for n ∈ Z>1: it is
an algebraic integer, since it is a root of the monic polynomial xn − 1. Notice that
the set

µn =
{
zkn : k ∈ Z

}
contains precisely n distinct elements, specifically zkn = e2kπi/n, 0 ≤ k ≤ n − 1.
Further, µn is a cyclic group under multiplication of complex numbers, and hence
is isomorphic to Z/nZ (Problem 5.37). Thus µn is called the group of n-th roots of
unity, and its generators are called n-th primitive roots of unity: clearly, zn is one
of them, and the others are precisely elements of the form zkn where 1 ≤ k ≤ n− 1
and gcd(k, n) = 1 (Problem 5.38).

Let K be a number field of degree d = r + 2s, where r is the number of real
embeddings and s is the number of conjugate pairs of complex embeddings, as
usual. Let GK ⊂ OK be the set of all roots of unity contained in K. It is easy to
see that GK ⊂ O×

K is a group (Problem 5.39). In fact, more is true.

Fact 5.9.1. The group GK is a finite cyclic group generated by e2πi/n, where n =
max{m ≥ 1 : e2πi/m ∈ K}.
We do not prove this fact here. Roots of unity and number fields they generate
(called cyclotomic fields) play an important role in algebraic number theory; while
we do not develop this theory here, we will refer the interested reader to [Lan94]
or [ST02] for some further information. With this notation, we have the following
theorem.

Theorem 5.9.1. [Dirichlet, 1846] Let K be a number field of degree d = r + 2s as
above, and define t = r + s − 1. There exist u1, . . . , ut ∈ O×

K such that for every

u ∈ O×
K ,

u = zun1
1 · · ·u

nt
t ,

for some n1, . . . , nt ∈ Z≥0 and z ∈ GK .

The elements u1, . . . , ut in Theorem 5.9.1 are called a system of fundamental
units in K. To prove this theorem, we need to introduce the logarithmic space
corresponding to K. Let

Σ := (σ1, . . . , σr, σr+1, . . . , σr+s) : K ↪→ Rr × Cs ∼= Rr+2s = Rd

be the Minkowski embedding of K, and define the logarithmic map ℓ : K× → Rr+s

given by

ℓ(x) = log |Σ(x)| := (log |σ1(x)|, . . . , log |σr(x)|, log |σr+1(x)|, . . . , log |σr+s(x)|)
for every nonzero x ∈ K. Then

ℓ(xy) = ℓ(x) + ℓ(y)
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for all nonzero x, y ∈ K, and thus ℓ is a homomorphism between multiplicative
group (K×,×) and additive group (Rr+s,+). Let us determine the kernel of this
homomorphism. First notice that ℓ(x) = 0 if and only if |σj(x)| = 1 for every
1 ≤ j ≤ r + s. Now, any complex number x can be written as x = aeiθ for some
a ∈ R>0 and θ ∈ [0, 2π), and |x| = 1 if and only if a = 1. Thus x ∈ Ker(ℓ) if
and only if x = eiθ for some θ ∈ [0, 2π) and all of its conjugates are of the same
form for some values of θ. Algebraic integers that have this property are precisely
roots of unity: a proof of this fact can be found in any abstract algebra book, for
instance [DF03]. Thus we see that Ker(ℓ) consists precisely of the roots of unity
contained in K, i.e.

(5.16) Ker(ℓ) = GK ,

which is a finite cyclic group by Fact 5.9.1.
Define

W :=

y ∈ Rr+s :

r∑
j=1

yj + 2

r+s∑
j=r+1

yj = 0

 .

Lemma 5.9.2. ℓ(O×
K) is a discrete subgroup of W .

Proof. First notice that W and ℓ(O×
K) are both additive groups in Rr+s. By

Corollary 5.4.2 we know that x ∈ O×
K if and only if

|NK(x)| =
r+2s∏
j=1

|σj(x)| = 1,

where |σj(x)| = |σ̄j(x)| for every r + 1 ≤ r + 2s: this condition is equivalent to

log |NK(x)| =
r∑

j=1

log |σj(x)|+ 2

r+s∑
j=r+1

log |σj(x)| = 0,

where the summands are precisely the coordinates of ℓ(x). Hence ℓ(O×
K) ⊆W .

Let us now prove that ℓ(O×
K) is discrete in W . Suppose not, then there exists

y = ℓ(x) = (log |σ1(x)|, . . . , log |σr(x)|, log |σr+1(x)|, . . . , log |σr+s(x)|)

for some x ∈ O×
K such that ∥y∥ < ε for any ε > 0. Taking sufficiently small ε,

this produces an element x ∈ O×
K with |NK(x)| < 1. This contradicts the fact that

NK(x) ∈ Z. Hence ℓ(O×
K) is discrete in W . □

Lemma 5.9.3. ℓ(O×
K) is a lattice of rank t = r + s− 1 in W .

Proof. Lemma 5.9.2 implies that ℓ(O×
K) is a lattice in W . Since dimR W = t,

we only need to prove that ℓ(O×
K) has full rank in W , which is equivalent to saying

that it does not lie in any proper subspace of W . Without loss of generality, we
can identify W with Rt. Since any subspace is cut out by linear forms, we need to
show that for any linear form

(5.17) f(y) = c1y1 + · · ·+ ctyt

there exists x ∈ O×
K such that f(ℓ(x)) ̸= 0. Let us pick a real number

α ≥
(
2

π

)s

|∆K |1/2.
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Then for any t-tuple λ = (λ1, . . . , λt) of positive real numbers, pick λt+1 > 0 such
that

r∏
i=1

λi

r+s∏
j=r+1

λ2
j = α.

Let Xλ be the set X as in Lemma 5.7.3 with ci = λi for 1 ≤ i ≤ r and dj = λ2
j for

r+1 ≤ j ≤ r+s. By Corollary 5.7.4, there exists a nonzero element xλ ∈ OK ∩Xλ

such that
1 ≤ |NK(xλ)| ≤ α.

On the other hand, let λj+s = λj for each r + 1 ≤ j ≤ r + s. Then for every
1 ≤ i ≤ d,

|σi(xλ)| = |NK(xλ)|
∏
j ̸=i

|σj(xλ)|−1 ≥
∏
j ̸=i

|λj |−1 = λiα
−1.

Thus, for every 1 ≤ i ≤ d, we have λiα
−1 ≤ |σi(xλ)| ≤ λi, which can be re-written

as

1 ≤ λi

|σi(xλ)|
≤ α.

Taking logarithms, we have

(5.18) 0 ≤ log λi − log |σi(xλ)| ≤ logα.

Now, let f be a linear form as in (5.17) with coefficients c1, . . . , ct. Multiplying
inequalities in (5.18) by ci, taking absolute values and summing over all 1 ≤ i ≤ t,
we obtain ∣∣∣∣∣f(ℓ(xλ))−

t∑
i=1

ci log λi

∣∣∣∣∣ ≤ logα

t∑
i=1

|ci|

Let β > logα
∑t

i=1 |ci|, and for each positive integer h pick λ(h) = (λ1(h), . . . , λt(h))
be such that

t∑
i=1

ci log λi(h) = 2βh.

Then for the corresponding xh := xλ(h), we have

|f(ℓ(xh))− 2βh| < β,

and so
(2h− 1)β < f(ℓ(xh)) < (2h+ 1)β.

Notice that if h1+1 ≤ h2, then (2h1+1)β ≤ (2h2−1)β, and therefore the numbers
f(ℓ(xh)) are distinct for different values of h. On the other hand, consider the
ideals of the form Ih := OKxh: for each such ideal,

NK(Ih) = N(xh) ≤ α,

and so there can be only finitely many such ideals, by Lemma 5.6.3. Hence there
must exist some two distinct algebraic integers xh1

, xh2
∈ OK such that

OKxh1
= OKxh2

.

Hence there are elements u1, u2 ∈ OK such that xh1 = u1xh2 and xh2 = u2xh1 , i.e.

xh1
= u1xh2

= u1u2xh1
,

and so u1, u2 ∈ O×
K . Thus we have

f(ℓ(u1)) = f(ℓ(xh1
))− f(ℓ(xh2

)) ̸= 0,
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and this completes the proof. □

We can now prove Dirichlet’s theorem.

Proof of Theorem 5.9.1. Notice that any lattice of rank t is isomorphic
to Zt as abelian groups. Combining Lemma 5.9.3 with (5.16), we see that

O×
K
∼= GK × Zt,

as abelian groups, where O× and GK are multiplicatively written and Zt is additive.
Since every element of GK × Zt can be written as

(z, n1e1, . . . , ntet)

with e1, . . . , et the standard basis vectors for Zt, the corresponding element of O×
K

mapped to it under this isomorphism can be written as

zun1
1 · · ·u

nt
t ,

where the units u1, . . . , ut ∈ O×
K are preimages of e1, . . . , et. This completes the

proof. □
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5.10. Problems

Problem 5.1. Suppose that L is a field extension of K. Prove that L is K-vector
space.

Problem 5.2. Let K and L be subfields of C. Prove that their intersection K ∩
L is also a subfield of C. Use this fact to conclude uniqueness of the extension
K(α1, . . . , αn) for α1, . . . , αn ∈ C, as defined above.

Problem 5.3. Let K ⊆ C be a subfield, α, β ∈ C, and let K1 = K(α), K2 = K(β),
L = K(α, β). Prove that L = K1(β) = K2(α). Conclude that

[L : K] = [L : K1][K1 : K] = [L : K2][K2 : K].

Problem 5.4. Prove that dimQ Q[
√
2] = 2.

Problem 5.5. Prove that K[α] ⊆ K(α) for any subfield K ⊆ C and α ∈ C.

Problem 5.6. Let K ⊂ C be a finite algebraic extension of Q and let α ∈ C be an
algebraic number. Prove parts (3) and (4) of Theorem 5.1.1 with Q replaced by K.

Problem 5.7. Let K ⊂ C be a field and α ∈ C. Prove that K[α] ⊂ C is a ring
under the operations on C, as is K[x] under the addition and multiplication of
polynomials.

Problem 5.8. Let α ∈ C, and define a map φ : K[x]→ K[α] by

φ(f(x)) = f(α)

for every f(x) ∈ K[x]. Prove that φ is a ring homomorphism. Describe its kernel
and specify under what conditions on α is this an isomorphism.

Problem 5.9. Prove that OQ = Z. Due to this property, elements of Z are often
called rational integers. Prove also that Z ⊆ OK for any number field K.

Problem 5.10. Let K ⊂ C be a finite extension of Q. Without using the Primitive
Element Theorem, prove that there must exist algebraic numbers α1, . . . , αn ∈ C
such that K = Q(α1, . . . , αn).

Problem 5.11. Let K = Q(
√
2,
√
3). Find an integral primitive element for K,

i.e. an algebraic integer α so that K = Q(α).

Problem 5.12. Consider the number field K = Q(
√
3,
√
−3).

(1) Determine the degree of K over Q. Prove your answer.
(2) Find a primitive element for K over Q. Prove your answer.
(3) Find the minimal polynomial of the primitive element you found in part

b. Prove your answer.
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(4) Is 2 a prime in K? Prove your answer.

Problem 5.13. Let α be an algebraic integer of degree d ≥ 1 and let n be a positive
integer. Prove that the numbers

1, α, . . . , αn

are linearly independent over Z if and only if n < d.

Problem 5.14. Prove that this G is a subgroup of C under the usual addition of
complex numbers, and hence is an additive abelian group.

Problem 5.15. Let A and B be subrings of the same ring R. Prove that A ∩B is
also a ring. Use this fact to prove that for any number field K, the set OK of all
algebraic integers in K is a commutative ring with identity.

Problem 5.16. Prove that each σn as defined in (5.7) is an injective field homo-
morphism, and hence K ∼= σn(K) for each 1 ≤ n ≤ d. Prove also that

Q = {β ∈ K : σn(β) = β ∀ 1 ≤ n ≤ d} .

Problem 5.17. Let K be a number field of degree d so that K = σn(K) for each
1 ≤ n ≤ d, where σ1, . . . , σn are embeddings of K into C. Prove that the set

G := {σ1, . . . , σd}

is a group under the operation of function composition.

Problem 5.18. Let R be an integral domain and

R× = {u ∈ R : ∃ v ∈ R such that uv = 1}

the set of units in R. Prove that R× is an abelian group under multiplication.

Problem 5.19. Prove that the group of units of the ring Z is {±1} and an element
x ∈ Z is an irreducible if and only if it is a prime.

Problem 5.20. Prove that the elements 2, 3, 1±
√
−5 are all irreducible in OQ(

√
−5),

and 2, 3 do not divide 1 +
√
−5 or 1−

√
−5.

Problem 5.21. Let K = Q(
√
−13). Is OK a PID (principal ideal domain)?

Problem 5.22. Let α1, . . . , αd and β1, . . . , βd be two Q-bases for the number field
K. Let C be the rational change of basis matrix from the α to the β basis. Prove
that

∆(β1, . . . , βd) = det(C)2∆(α1, . . . , αd).
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Problem 5.23. Let σ1, . . . , σd be embeddings of a number field K, and let α ∈ K
be such that

σj(α) = α ∀ 1 ≤ j ≤ d.

Prove that α ∈ Q.

Problem 5.24. Let α1, . . . , αd and β1, . . . , βd be two integral bases for a number
field K. Prove that there exists a change of basis matrix A ∈ GLd(Z) between them.

Problem 5.25. Let R be a commutative ring and

I1 ⊆ I2 ⊆ . . .

an ascending chain of ideals in R. Prove that I =
⋃∞

k=1 Ik is also an ideal in R.

Problem 5.26. Let K be a number field, α, β ∈ K and a, b, c ∈ Q. Prove that

NK(cαβ) = c NK(α)NK(β), TrK(aα+ bβ) = aTrK(α) + bTrK(β).

Problem 5.27. Let m be a positive integer and G be a finitely generated abelian
group so that every element of G has finite order dividing m. Prove that G is finite.

Problem 5.28. For an ideal I ⊆ OK , let I ′ be as in (5.9). Prove that O′
K = OK .

Problem 5.29. Prove that for each B ∈ FK , B′ is again a fractional ideal, i.e.
B′ ∈ FK for every B ∈ FK .

Problem 5.30. Complete the proof of Lemma 5.6.1 by showing that if

NK(IJ) = NK(I)NK(J)

when J is a prime ideal, then this is true for all ideals J .

Problem 5.31. Let I ⊆ OK be an ideal in the ring of integers OK of a number
field K, and P ⊂ OK a prime ideal. Define a map ϕ : OK/IP → OK/I, given by
ϕ(x+ IP ) = x+ I. Prove that this is a surjective ring homomorphism.

Problem 5.32. Let R be a principal ideal domain. Prove that every α ∈ R has a
unique factorization into irreducibles.

Problem 5.33. Prove that det(Σ(M)) in (5.13) of Lemma 5.7.1 cannot be equal
to 0.

Problem 5.34. Prove that the set PK of all principal fractional ideals is a subgroup
of the group FK of all fractional ideals in a number field K.

Problem 5.35. Prove that two fractional ideals B1, B2 ∈ FK are in the same ideal
class, denoted by B1 ∼ B2, if and only if there exists some a, b ∈ OK such that
⟨a⟩B1 = ⟨b⟩B2. Prove that this is an equivalence relation on the group FK .
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Problem 5.36. Prove that every ideal class in Cl(K) contains an ideal I ⊆ OK .

Problem 5.37. Let n ≥ 1 be an integer, and let

µn =
{
e2kπi/n : k ∈ Z

}
.

Prove that µn contains precisely n distinct elements, specifically e2kπi/n, 0 ≤ k ≤
n − 1. Further, prove that µn is a cyclic group under multiplication of complex
numbers, and hence is isomorphic to Z/nZ.

Problem 5.38. Let notation be as in Problem 5.37 above. Prove that an element
z is a generator of the cyclic multiplicative group µn if and only if

z = e2kπi/n for some 1 ≤ k ≤ n− 1 such that gcd(k, n) = 1.

Problem 5.39. Let K be a number field and GK ⊂ OK be the set of all roots of
unity contained in K. Prove that GK ⊂ O×

K , i.e. every root of unity in K is a
unit in OK . Further, prove that GK is a group under multiplication of complex
numbers.

Problem 5.40. Let K be a number with the ring of integers OK . Use finiteness of
the class number to prove that there exists a number field L containing K with ring
of integer OL such that for every ideal I in OK , OLI is a principal ideal.

Problem 5.41. Let D be a squarefree integer and let K = Q(
√
D).

(1) Determine the ring of integers OK of K.
(2) Let p ∈ Z be a prime number not dividing 2D. Show that if the ideal

(p) = pOK is prime then the congruence x2 ≡ D(mod p) has no solutions.



CHAPTER 6

Transcendental Number Theory

6.1. Function fields and transcendence

We have already been introduced to transcendental numbers and their basic
properties. The goal of this chapter is to further investigate this fascinating topic.
In this section, we briefly take a more algebraic look at transcendence and alge-
braic independence. We start by defining polynomial rings in several variables. A
monomial in the variables x1, . . . , xk, k ≥ 1, is an expression of the form

(6.1) xm1
1 xm2

2 · · ·x
mk

k ,

where m1, . . . ,mk ∈ N0 with m1 + · · · + mk > 0. Let R be a commutative ring
with 1. Define R[x1, . . . , xk] to be the set of all finite linear combinations of 1 and
all possible monomials as in (6.1) with coefficients from R. This is a commutative
ring with identity under the standard operations of addition and multiplication on
these multivariable polynomials (Problem 6.1).

Let K be a field and K[x1, . . . , xk] be the polynomial ring in k ≥ 1 variables
with coefficients in K. Define

K(x1, . . . , xk) =

{
p(x1, . . . , xk)

q(x1, . . . , xk)
: p, q ∈ K[x1, . . . , xk], q ̸= 0

}
,

where we say that

p(x1, . . . , xk)/q(x1, . . . , xk) = f(x1, . . . , xk)/g(x1, . . . , xk)

if and only if p(x1, . . . , xk)g(x1, . . . , xk) = f(x1, . . . , xk)q(x1, . . . , xk); this can be
viewed as an equivalence relation on the set of pairs of polynomials and then
K(x1, . . . , xk) is the set of equivalence classes, analogously to construction of Q
from Z. K(x1, . . . , xk) is a field, called the function field or field of rational func-
tions in k variables over K, and is precisely the quotient field of the polynomial ring
K[x1, . . . , xk] (Problem 6.2). We can now give an alternative definition of algebraic
independence.

Lemma 6.1.1. A collection of numbers α1, . . . , αk ∈ C is algebraically independent if
and only if there does not exist any nonzero polynomial p(x1, . . . , xk) ∈ Q[x1, . . . , xk]
such that

(6.2) p(α1, . . . , αk) = 0.

Proof. Suppose that there exists some nonzero polynomial p satisfying (6.2).
Define

f(x) = p(α1, . . . , αk−1, x).

Then f(x) ∈ Q(α1, . . . , αk−1)[x] and f(αk) = 0. Let d = deg(f(x)), then 1, αk, . . . , α
d
k

are linearly dependent over Q(α1, . . . , αk−1). This means that

[Q(α1, . . . , αk) : Q(α1, . . . , αk−1)] ≤ d <∞,

135
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and hence α1, . . . , αk are not algebraically independent. Thus, if the numbers
α1, . . . , αk are algebraically independent, then no nonzero polynomial p satisfying
(6.2) can exist.

Conversely, suppose now that no nonzero polynomial p satisfying (6.2) ex-
ists. Suppose, towards a contradiction, that α1, . . . , αk are algebraically dependent.
Then, without loss of generality, we can assume that

[Q(α1, . . . , αk) : Q(α1, . . . , αk−1)] <∞.

Hence 1, αk, . . . , α
d
k are linearly dependent over Q(α1, . . . , αk−1) for some d. In

other words, there exist a0, . . . , ad ∈ Q(α1, . . . , αk−1) such that

(6.3)

d∑
n=0

anα
n
k = 0.

Notice that a0, . . . , ad are rational functions in α1, . . . , αk−1, say

an =
pn(α1, . . . , αk−1)

qn(α1, . . . , αk−1)
,

where pn(x1, . . . , xk−1), qn(x1, . . . , xk−1) ∈ Q[x1, . . . , xk−1]. Write x for (x1, . . . , xk−1),
α for (α1, . . . , αk−1), and notice by (6.3) we have:

d∑
n=0

pn(α)

 d∏
m=0,m ̸=n

qm(α)

αn
k = 0.

Then define

p(x1, . . . , xk) =

d∑
n=0

pn(x)

 d∏
m=0,m̸=n

qm(x)

xn
k ∈ Q[x1, . . . , xk],

and notice that p(α1, . . . , αk) = 0. This contradicts our assumption, and hence
α1, . . . , αk must be algebraically independent. □

Let α1, . . . , αk ∈ C, and consider a subfield Q(α1, . . . , αk) ⊆ C generated by
these elements. Let us writeα for the k-tuple (α1, . . . , αk), and define the evaluation
map φα : Q(x1, . . . , xk)→ Q(α1, . . . , αk) given by sending xn 7→ αn and extending
to the rest of Q(x1, . . . , xk), i.e., a rational function in x1, . . . , xk will map to its
value at the point with x1 = α1, . . . , xk = αk.

Theorem 6.1.2. The following statements are equivalent:

(1) The map φα is well-defined for all f ∈ Q(x1, . . . , xk).
(2) The map φα is an isomorphism of fields.
(3) The numbers α1, . . . , αk are algebraically independent.

Proof. (1)⇒ (2): Let f, g ∈ Q(x1, . . . , xk), then

φα(f + g) = (f + g)(α) = f(α) + g(α) = φα(f) + φα(g),

φα(fg) = (fg)(α) = f(α)g(α) = φα(f)φα(g).

Hence φα is a ring homomorphism. Suppose that f ∈ Ker(φα), then φα(f) =
f(α) = 0. We can write f = g/h, where g, h ∈ Q[x1, . . . , xk] are polynomials in k
variables with coefficients in Q. Since f(α) = 0, we must have

g(α1, . . . , αk) = 0.
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Assume g ̸= 0, then 1/g ∈ Q(x1, . . . , xk), however φα is not defined at 1/g. Hence
we must have g = 0, meaning that f = 0. Therefore Ker(φα) = {0}, and so
φα is injective. Finally, every element β of Q(α1, . . . , αk) is a rational function in
α1, . . . , αk, which means that β is the value of some f ∈ Q(x1, . . . , xk) at α. This
proves surjectivity, and hence φα is a field isomorphism.

(2) ⇒ (3): If φα is a field isomorphism, it must be well-defined as a function
for each f = g/h ∈ Q(x1, . . . , xk), where g, h ∈ Q[x1, . . . , xk]. This means that
cannot exist a polynomial p(x1, . . . , xk) ∈ Q[x1, . . . , xk] such that p(α) = 0. Hence
α1, . . . , αk are algebraically independent by Lemma 6.1.1.

(3) ⇒ (1): Since α1, . . . , αk are algebraically independent, Lemma 6.1.1 im-
plies that for any 0 ̸= p ∈ Q[x1, . . . , xk], p(α) ̸= 0. Then for any f = g/h ∈
Q(x1, . . . , xk), where g, h ∈ Q[x1, . . . , xk], φα(f) = g(α)/h(α) is well-defined. □

Hence we have the following immediate characterization of transcendence and
algebraic independence.

Corollary 6.1.3. A collection of complex numbers α1, . . . , αk is algebraically in-
dependent if and only if Q(α1, . . . , αk) ∼= Q(x1, . . . , xk). In particular, α ∈ C is
transcendental if and only if Q(α) ∼= Q(x).
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6.2. Hermite, Lindemann, Weierstrass

Arguably the two most famous transcendental numbers are e and π. Transcen-
dence of e was originally established by Charles Hermite in 1873, and transcendence
of π established in 1882 by Ferdinand von Lindemann by an extension of Hermite’s
technique. The much more general statement, from which these two results follow,
was obtained by Karl Weierstrass in 1885. The most general form of the Hermite-
Lindemann-Weierstrass Theorem is as follows.

Theorem 6.2.1. Let s ∈ N, α1, . . . , αs be distinct algebraic numbers, and d1, . . . , ds
nonzero algebraic numbers. Then

s∑
k=1

dke
αk ̸= 0.

In this section we will establish the famous results of Hermite, Lindemann,
and Weierstrass. The general idea of the method used is similar in all three cases,
however it will be easier to follow the development of this technique starting with
transcendence of e, then π, and only then the general Theorem 6.2.1. Through-
out this chapter, we freely use the exponential and logarithmic functions, the basic
properties of which are briefly recalled in Appendix C. Our exposition here fol-
lows [MR14]. We start with some preliminary observations.

Let f(x) be a polynomial with complex coefficients, and let F (x) be the poly-
nomial obtained from f(x) by replacing each coefficient of f with its absolute value.
For a complex number t, define

(6.4) I(t, f) :=

∫ t

0

et−uf(u) du.

Then it is easy to see that

(6.5) |I(t, f)| ≤ |t|e|t|F (|t|).
On the other hand, integrating by parts, we see that

I(t, f) = etf(0)− f(t) + I(t, f ′).

If degree of f(x) is equal to m, then iterating the above procedure m times, we
obtain:

(6.6) I(t, f) = et
m∑
j=0

f (j)(0)−
m∑
j=0

f (j)(t).

Theorem 6.2.2 (Hermite, 1873). The number e is transcendental.

Proof. Working towards a contradiction, suppose that e is algebraic. Then
there exist some integers a0, . . . , an, n ≥ 1, such that

(6.7)

n∑
k=0

ake
k = 0,

where a0, an ̸= 0. Let p > |a0| be a prime, and define a polynomial

f(x) = xp−1(x− 1)p · · · (x− n)p.

Then degree of f(x) is m = (n+ 1)p− 1 and each of the roots x = 1, . . . , n of f(x)
has multiplicity p and the root x = 0 has multiplicity p− 1, which implies that

(6.8) f (j)(k) = 0 ∀ 1 ≤ k ≤ n, 0 ≤ j ≤ p, f (j)(0) = 0 ∀ 0 ≤ j ≤ p− 1.
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With this notation, define

J :=

n∑
k=0

akI(k, f),

where I(k, f) is as in (6.4). Then, by (6.6) above, we have

J =

n∑
k=0

ake
k

m∑
j=0

f (j)(0)− ak

m∑
j=0

f (j)(k)


=

m∑
j=0

(
f (j)(0)

n∑
k=0

ake
k

)
−

m∑
j=0

n∑
k=0

akf
(j)(k)

= −
m∑
j=0

n∑
k=0

akf
(j)(k) = −

m∑
j=p−1

n∑
k=0

akf
(j)(k),

where the last line follows by (6.7) and (6.8). For j = p− 1, the contribution from
f is

f (p−1)(0) = (p− 1)!(−1)np(n!)p,

hence, if n < p, then f (p−1)(0) is divisible by (p− 1)!, but not by p. Now, for every
j ≥ p, then f (j)(0) and f (j)(k) for every 1 ≤ k ≤ n are divisible by p!. In other
words, J is a nonzero integer divisible by (p− 1)!, and so

(6.9) |J | ≥ (p− 1)!

On the other hand, let A = max0≤k≤n |ak|, then (6.5) implies that

|J | ≤ (n+ 1)A|I(k, f)| ≤ n(n+ 1)Aen max
1≤k≤n

F (k).

Notice that

max
1≤k≤n

F (k) = (2n)p−1 (2(n− 1)!)
p
=

1

n
((2n)!)p,

and so

(6.10) |J | ≤ A(n+ 1)en((2n)!)p.

Combining (6.9) and (6.10), we obtain:

(p− 1)! ≤ A(n+ 1)en((2n)!)p,

which is certainly not true for sufficiently large p, and so we have a contradiction.
□

To attempt the proof of transcendence of π, we need the notion of symmet-
ric polynomials. Let n ≥ 1 and define Sn to be the set of all permutations of
the set of n elements {1, . . . , n}: this is a group under the operation of function
composition, called the symmetric group on n letters (Problem 6.3). A polynomial
f(x1, . . . , xn) ∈ Q[x1, . . . , xn] is called symmetric if for every τ ∈ Sn,

f(x1, . . . , xn) = f(xτ(1), . . . , xτ(n)).

The following property of symmetric polynomials we state without proof.
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Fact 6.2.1. Let α ∈ A be of degree n and let α = α1, . . . , αn be algebraic conjugates
of α. Let f(x1, . . . , xn) ∈ Q[x1, . . . , xn] be a symmetric polynomial. Then

f(α1, . . . , αn) ∈ Q.

Moreover, if α ∈ I and f(x1, . . . , xn) ∈ Z[x1, . . . , xn], then

f(α1, . . . , αn) ∈ Z.

Let us also recall that π is half the circumference of a circle of radius 1, which
is precisely the angle that the ray emanating from the origin through the point
(−1, 0) on the unit circle makes with the ray indicating the positive direction along
the x-axis in the Cartesian plane. Hence

cosπ = −1, sinπ = 0.

Theorem 6.2.3 (Lindemann, 1882). The number π is transcendental.

Proof. As in the proof of Theorem 6.2.2, suppose π is algebraic. Since we
know that i ∈ A and A is a field, α = πi must also be algebraic. Let d = deg(α) and
let α = α1, . . . , αd be conjugates of α. Let N be the leading coefficient of mα(x),
then Lemma 5.2.7 implies that Nα is an algebraic integer. By Euler’s formula,

eπi = −1,

and hence

(6.11) (1 + eα1) · · · (1 + eαd) = 0.

This product can be written as a sum of 2d terms of the form eθ, where

θ = ε1α1 + · · ·+ εdαd, εk = 0, 1 ∀ 1 ≤ k ≤ d.

Suppose that exactly n of these numbers are nonzero, denote them β1, . . . , βn. Let

h(x) =

1∏
ε1=0

· · ·
1∏

εd=0

(x− (ε1α1 + · · ·+ εdαd))

and notice that h(x) is symmetric in α1, . . . , αd. Then Fact 6.2.1 implies that h(x) ∈
Q[x]. Notice that the roots of h(x) are β1, . . . , βd and 0, which has multiplicity
a = 2d − n. Clearing the denominators, this means that for some C ∈ Z, h(x) =
Cxag(x), where g(x) ∈ Z[x] is the polynomial of degree n with roots β1, . . . , βn.
Now (6.11) implies that

(6.12) (2d − n)e0 + eβ1 + · · ·+ eβn = 0.

Let

f(x) = Nnpxp−1
n∏

k=1

(x− βk)
p

for some large prime p, and let I(t, f) for this choice of f(x) be as in (6.4) above.
Notice that degree of f(x) is m = (n+ 1)p− 1. Define

J :=

n∑
k=1

I(βk, f).
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Then, by (6.6),

J =

n∑
k=1

eβk

m∑
j=0

f (j)(0)−
m∑
j=0

f (j)(βk)


=

(
n∑

k=1

eβk

) m∑
j=0

f (j)(0)

− m∑
j=0

n∑
k=1

f (j)(βk)

= −(2d − n)

 m∑
j=0

f (j)(0)

− m∑
j=0

n∑
k=1

f (j)(βk),

where the last equality follows by (6.12). Notice that
∑n

k=1 f
(j)(βk) is a symmetric

polynomial in Nβ1, . . . , Nβn for each j. Furthermore, each Nβk is a linear combi-
nation of algebraic integers α1, . . . , αd, and hence is an algebraic integer. Therefore,
by Fact 6.2.1, for each 1 ≤ j ≤ m,

∑n
k=1 f

(j)(βk) ∈ Z. Further, each βk is a root

of f(x) of multiplicity p, which means that each derivative f (j)(βk) vanishes for all
j < p. For each j ≥ p,

∑n
k=1 f

(j)(βk) is divisible by p!. Also,

f (p−1)(0) = (p− 1)!(−N)np(β1 · · ·βn)
p,

which is not divisible by p provided that p is large (specifically, when p > Nβ1 · · ·βn).
In addition, f (j)(0) is divisible by p! for all j ≥ p. ThereforeK is divisible by (p−1)!,
and hence

|J | ≥ (p− 1)!

On the other hand,

|J | ≤
n∑

k=1

|I(βk, f)| ≤
n∑

k=1

|βk|e|βk|F (|βk|)

by (6.5) and F (x) related to f(x) is as above. Then we have

(p− 1)! ≤ |J | ≤ ACp

for some constants A and C. Taking p sufficiently large, we reach a contradiction.
□

We are now ready to prove the Lindemann-Weierstrass Theorem.

Proof of Theorem 6.2.1. Towards a contradiction, suppose that there exist
some algebraic numbers d1, . . . , ds, not all zero, such that

(6.13)

s∑
k=1

dke
αk = 0.

Multiplying both sides by some N , by Lemma 5.2.7 we can assume that d1, . . . , ds
are algebraic integers. Let K = Q(d1, . . . , ds), n = [K : Q], and let σk : K → C for
1 ≤ k ≤ n be embeddings of K. Notice that (6.13) implies that

(6.14)

n∏
l=1

(
s∑

k=1

σl(dk)e
αk

)
= 0.

The equation (6.14) can be written as

(6.15) a1e
γ1 + · · ·+ ameγm = 0,
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where each coefficient al is a sum of terms of the form σm(dk), which is invari-
ant under each of the embeddings σm. Then Problem 5.16 above implies that
a1, . . . , am ∈ Q, and clearing the denominators, if necessary, we can assume that
a1, . . . , am ∈ Z. Further, we can assume that the set γ1, . . . , γm contains all the
conjugates of each of the γj ’s: if some of them are not there, they can always be
included by choosing the corresponding al coefficient to be 0. Notice also that the
exponents γ1, . . . , γm are distinct algebraic numbers.

Let us write γ
(l)
j for the l-th conjugate of γj . Let t be a real variable and for

each l define the conjugate function

Al(t) :=

m∑
k=1

ake
γ
(l)
k t.

We will use the fact that when the γk’s are all distinct, the functions Al(t) are not
identically zero. Define

B(t) =
∏
l

Al(t) =

M∑
k=1

bke
βkt,

where the product is over all the conjugate functions Al(t). Notice that B(1) = 0
by our original assumption. Since a1, . . . , am ∈ Z, the coefficients b1, . . . , bM are
also rational integers, not all equal to zero. Since β1, . . . , βM are algebraic numbers,
let N ∈ Z be such that Nβ1, . . . , NβM are algebraic integers. For each 1 ≤ r ≤M ,
define a polynomial

fr(x) =
NMp

x− βr

M∏
k=1

(x− βk)
p,

where p ∈ Z is a prime. Let

f(x) =

M∑
r=1

fr(x),

then coefficients of f(x) are symmetric polynomials in the algebraic integersNβ1, . . . , NβM .
On the other hand, this set of numbers contains all of their algebraic conjugates,
since β1, . . . , βM were generated by γ1, . . . , γm, which included all the algebraic
conjugates. Hence coefficients of f(x) must be in Z by Fact 6.2.1.

Define

Jr :=

M∑
k=1

bkI(βk, fr)

for each 1 ≤ r ≤M and let J := J1 · · · JM . Let m := deg(fr) = Mp−1, and notice
that by (6.6),

Jr =

M∑
k=1

bk

eβk

m∑
j=0

f (j)
r (0)−

m∑
j=0

f (j)
r (βk)


= −

M∑
k=1

bk

m∑
j=0

f (j)
r (βk),

where the last equality follows from the assumption that B(1) = 0. Arguing analo-
gously to our proofs of Theorems 6.2.2 and 6.2.3, we conclude that J is an algebraic
integer which is fixed by all the embeddings of the number field Q(β1, . . . , βM ),
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hence it must be in Z. Further, J is divisible by (p − 1)!, but not by p for a suf-
ficiently large p. In the opposite direction, each |Jr| can be bounded by cpr for a
suitable positive real cr, and hence |J | can be bounded by Cp for some constant C.
Therefore,

(p− 1)! ≤ |J | ≤ Cp,

which leads to a contradiction for a large enough p. This completes the proof. □
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6.3. Beyond Lindemann-Weierstrass

In this section we discuss some consequences of Theorem 6.2.1. First notice that
transcendence of e and π follow easily from the Lindemann-Weierstrass Theorem.
Although we have already proved these facts separately, it is still worthwhile to see
them derived as consequences of the Lindemann-Weierstrass Theorem. We present
these derivations here.

Corollary 6.3.1. e is transcendental.

Proof. Suppose e ∈ A. Then there exists some nonzero polynomial

p(x) =

n∑
k=0

akx
k ∈ Z[x]

such that

p(e) =

n∑
k=0

ake
k = 0.

This, however, clearly contradicts Theorem 6.2.1. □

Corollary 6.3.2. π is transcendental.

Proof. Suppose π is algebraic. We know also that i ∈ A, and hence iπ ∈ A
since A is a field. By Euler’s formula,

eiπ = cosπ + i sinπ = −1,
and hence we have

eiπ + 1 = 0,

which clearly contradicts Theorem 6.2.1. □

Theorem 6.2.1 has many other important consequences. Here are some of them.

Corollary 6.3.3. Let 0 ̸= α ∈ A. Then the numbers eα, lnα, sinα and cosα are
transcendental.

Proof. Suppose eα is algebraic, say γ = eα ∈ A. Then
eα − γe0 = 0,

which contradicts Theorem 6.2.1. Hence eα is transcendental. Now assume that
lnα is algebraic, then elnα = α would have to be transcendental, which is a con-
tradiction. Furthermore, Euler’s formula implies that

sinα =
1

2i

(
eiα − e−iα

)
, cosα =

1

2

(
eiα + e−iα

)
,

and so

e0 sinα− 1

2i
eiα +

1

2i
e−iα = 0,

e0 cosα− 1

2
eiα − 1

2
e−iα = 0.

Now Theorem 6.2.1 implies that sinα, cosα cannot be algebraic. □

Corollary 6.3.4. Let α1, . . . , αn ∈ A be linearly independent over Q. Then the
numbers

eα1 , . . . , eαn

are algebraically independent.
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Proof. Suppose that eα1 , . . . , eαn are algebraically dependent, then there ex-
ists some non-constant polynomial

p(x1, . . . , xn) ∈ Q[x1, . . . , xn]

such that

p(eα1 , . . . , eαn) =
∑

i1,...,in

ai1,...,ine
i1α1+···+inαn = 0,

where the coefficients ai1,...,in are rational numbers, not all zero. Then Theo-
rem 6.2.1 implies that the exponents

i1α1 + · · ·+ inαn

cannot be all distinct. Hence there exist some two distinct families of indices
i1, . . . , in and j1, . . . , jn such that

i1α1 + · · ·+ inαn = j1α1 + · · ·+ jnαn,

in other words
n∑

k=1

ckαk = 0,

where not all of ck := ik−jk ∈ Z are equal to zero. This contradicts the assumption
that α1, . . . , αn are linearly independent over Q. □

In fact, it is easy to see that Corollary 6.3.4 is equivalent to the Lindemann-
Weierstrass Theorem, i.e. it is a convenient reformulation of the famous result. A
substantial strengthening of Corollary 6.3.4 is arguably the most important open
problem in transcendental number theory.

Conjecture 6.3.1 (Schanuel’s Conjecture). Let α1, . . . , αn ∈ C be linearly inde-
pendent over Q. Then

trdeg(Q(α1, . . . , αn, e
α1 , . . . , eαn)) ≥ n.

We now discuss some of the many remarkable implications of this conjecture.
First we mention (a weak form of) the famous theorem of Alan Baker (1966) on
linear independence of logarithms of algebraic numbers, for which he received a
Fields Medal in 1970.

Theorem 6.3.5 (Baker’s Theorem, 1966). Let

Λ =
{
ℓ ∈ C : eℓ ∈ A

}
.

If ℓ1, . . . , ℓn ∈ Λ are linearly independent over Q, then they are algebraically inde-
pendent (and hence linearly independent over A).

Proof. Baker’s theorem has been proved unconditionally, however the proof
is quite complicated. Here we will only show how this result follows from Schanuel’s
Conjecture. Indeed, Schanuel’s Conjecture implies that

trdeg(Q(ℓ1, . . . , ℓn, e
ℓ1 , . . . , eℓn)) ≥ n.

Since ℓ1, . . . , ℓn ∈ Λ, we know that eℓ1 , . . . , eℓn ∈ A, which implies that

trdeg(Q(ℓ1, . . . , ℓn)) = trdeg(Q(ℓ1, . . . , ℓn, e
ℓ1 , . . . , eℓn)) ≥ n.

Hence ℓ1, . . . , ℓn are algebraically independent. □
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In fact, a strong version of Baker’s Theorem establishes transcendence of any
nonzero linear combination of ℓ1, . . . , ℓn with algebraic coefficients, which, in its
turn, is a generalization and strengthening of the celebrated Gelfond-Schneider
Theorem, established independently in 1934 by Alexander Gelfond and Theodor
Schneider. Their theorem presented a solution to Hilbert’s 7th Problem.

Theorem 6.3.6 (Gelfond-Schneider Theorem, 1934). Let a, b ∈ A be such that
a ̸= 0, 1 and b /∈ Q. Then ab ∈ T.

Furthermore, Schanuel’s Conjecture implies algebraic independence of e and
π, which is currently an open problem, as well as a wide variety of other known
results and open problems in transcendental number theory. We conclude with yet
another famous open problem, which would follow from Schanuel’s Conjecture.

Conjecture 6.3.2 (Schneider’s Four Exponentials Conjecture). Let x1, x2 and
y1, y2 be pairs of complex numbers linearly independent over Q. Then at least one
of the four numbers exjyk where 1 ≤ j, k ≤ 2 is transcendental.

If the linearly independent pair y1, y2 in the conjecture above is replaced with the
linearly independent triple y1, y2, y3, then the conjecture becomes a theorem, known
as the Six Exponentials Theorem. It is our next big goal to prove this result.
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6.4. Siegel’s Lemma

We now develop an important tool, which will be used to prove another cele-
brated transcendence result, the Six Exponentials Theorem. This tool is Siegel’s
Lemma, the simplest version of which was originally observed by Axel Thue in 1909
and then formally proved by Carl Ludwig Siegel in 1929. While Siegel’s Lemma
originated as a tool used in transcendence arguments, it took on a separate life in
the more recent years as a first case of a result on points of bounded height on
algebraic varieties: we will talk more about this direction in Section 7.6 below.

Our presentation here partially follows [Sch91] and [MR14]. Let

A =

a11 . . . a1n
...

. . .
...

al1 . . . aln


be an l × n matrix with integer entries and rank equal to l < n. Define

Λ = {x ∈ Zn : Ax = 0}.

Theorem 6.4.1 (Siegel’s Lemma, version 1). With notation as above, there exists
0 ̸= x ∈ Λ with

(6.16) |x| < 2 + (n|A|)
l

n−l ,

where |x| = max{|xi| : 1 ≤ i ≤ n}, |A| = max{|aij | : 1 ≤ i ≤ l, 1 ≤ j ≤ n}.

Proof. Let R ∈ Z>0, and let

Cn
R = {x ∈ Rn : |x| ≤ R}

be the cube centered at the origin in Rn with sidelength 2R. Then

|Cn
R ∩ Zn| = (2R+ 1)n.

Let TA : Rn → Rl be a linear map, given by TA(x) = Ax for each x ∈ Rn. Notice
that for every x ∈ Cn

R,
|TA(x)| ≤ n|A|R,

i.e. TA maps Cn
R into Cl

n|A|R ⊆ Rl, since rk(A) = l. Now

|Cl
n|A|R ∩ Zl| = (2n|A|R+ 1)l.

Now let us choose R to be a positive integer satisfying

(n|A|)
l

n−l ≤ 2R < (n|A|)
l

n−l + 2.

Then

|Cn
R ∩ Zn| = (2R+ 1)n = (2R+ 1)l(2R+ 1)n−l

≥ (2R+ 1)l(n|A|)l > (2n|A|R+ 1)l

= |Cl
n|A|R ∩ Zl|.

This means that TA cannot be mapping Cn
R ∩ Zn into Cl

n|A|R ∩ Zl in a one-to-one

manner. Hence, there must exist x ̸= y ∈ Cn
R ∩ Zn such that TA(x) = TA(y), i.e.

TA(x− y) = 0,

and so x− y ∈ Λ. On the other hand,

|x− y| ≤ |x|+ |y| ≤ 2R < (n|A|)
l

n−l + 2,
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and this finishes the proof. □

Notice that the main underlying idea in the proof of Siegel’s Lemma was the
pigeon hole principle. It is remarkable that the exponent l

n−l in the upper bound of

(6.16) cannot be improved. To see this, let for instance l = n− 1 and for a positive
integer R consider the (n− 1)× n matrix

A =


R −1 0 . . . 0 0
0 R −1 . . . 0 0
...

...
...

. . .
...

...
0 0 0 . . . R −1

 .

Then |A| = R, and every nonzero integer solution of the system of linear equations
Ax = 0 must have xn = Rn−1x1. Therefore, if

Λ = {x ∈ Zn : Ax = 0},

and 0 ̸= x ∈ Λ, then

|x| ≥ Rn−1 = |A|
l

n−l .

Siegel’s Lemma-type results have been proved in a variety of considerably more
general settings by a number of authors, employing quite sophisticated machin-
ery from number theory and arithmetic geometry (more on this in Section 7.6).
However, the original motivation for Siegel’s Lemma came from Diophantine ap-
proximation and transcendental number theory.

For our use, we will also need a basic version of Siegel’s Lemma over number
fields. Let K be a number field of degree d with embeddings σ1, . . . , σd. For each
α ∈ K, define its height

H(α) := max{|σk(α)| : 1 ≤ k ≤ d}.

Height functions more generally are devices meant to measure arithmetic complex-
ity of objects, in a certain well-defined sense. This is a somewhat simplified version
of a height function, which takes into account only partial information about the
arithmetic properties of an algebraic number. We will discuss the theory of height
functions and introduce more sophisticated machinery in Section 7.4 below.

As we know, the ring of integers OK is a free Z-module of rank d. In other
words, OK has a Z-basis: there exists a linearly independent collection ω1, . . . , ωd ∈
OK such that

OK =

{
d∑

k=1

akωk : a1, . . . , ad ∈ Z

}
.

Define the corresponding d× d basis matrix W := (σℓ(ωk))1≤ℓ,k≤d, which of course
is nonsingular. With this notation and information in mind, we can now prove our
next result.

Theorem 6.4.2 (Siegel’s Lemma, version 2). Let K be a number field of degree d,
and let A = (αij) be an l × n matrix of rank l < n with entries αij ∈ OK . Define

H(A) := max{H(αij) : 1 ≤ i ≤ l, 1 ≤ j ≤ n}.
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There exists a solution 0 ̸= x = (x1, . . . , xn) ∈ On
K to the homogeneous linear

system Ax = 0 with

(6.17) max
1≤j≤n

H(xj) < BK(l, n)H(A)
l

n−l ,

where BK(l, n) is some constant depending only on l, n and the number field K.

Proof. Let ω1, . . . , ωd ∈ OK be a Z-basis for OK , as described above, and let
W be the corresponding basis matrix. Then for each entry αij of our matrix A,
there exist aijk ∈ Z, 1 ≤ k ≤ d, such that

αij =

d∑
k=1

aijkωk.

Applying embeddings σ1, . . . , σd to the above equation, we obtain

σℓ(αij) =

d∑
k=1

aijkσℓ(ωk)

for each 1 ≤ ℓ ≤ d, and hence

αij := (σ1(αij), . . . , σd(αij))
t = W (aij1, . . . , aijd)

t.

Since W is invertible, we have

aij := (aij1, . . . , aijd)
t = W−1αij .

If we write vkℓ for the entries of W−1, then

aijk =

d∑
ℓ=1

vkℓσℓ(αij),

and so

(6.18) |aijk| ≤ d max
1≤ℓ≤d

|vkℓσℓ(αij)| ≤ dCKH(A),

where CK is a constant depending only on the number field K such that CK ≥
max1≤k,ℓ≤d |vkℓ|.

Now suppose x ∈ On
K is a nontrivial solution of the system Ax = 0, and write

(6.19) x =

(
d∑

ℓ=1

b1ℓωℓ, . . . ,

d∑
ℓ=1

bnℓωℓ

)
for some bjℓ ∈ Z for 1 ≤ j ≤ n, 1 ≤ ℓ ≤ d. Then i-th entry of the vector Ax is

n∑
j=1

d∑
ℓ=1

d∑
k=1

aijkbjℓωkωℓ = 0.

Since ωkωℓ ∈ OK , it can also be expressed as a linear combination of ωm’s with
Z-coefficients:

ωkωℓ =

d∑
m=1

ckℓmωm

for each 1 ≤ k, ℓ ≤ d, and hence we have

d∑
m=1

n∑
j=1

d∑
ℓ=1

d∑
k=1

aijkbjℓckℓmωm = 0.
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Since ω1, . . . , ωd are linearly independent over Z, all the coefficients in the above
equations must be zero, and hence we have a system of ld homogeneous linear
equations with integer coefficients in the nd variables bjℓ:

n∑
j=1

d∑
ℓ=1

d∑
m=1

aijkbjℓckℓm = 0,

for all 1 ≤ i ≤ l, 1 ≤ m ≤ d. Applying Theorem 6.4.1 along with (6.18), we see
that there exists a solution with

max
j,ℓ
|bjℓ| ≤ 2 + (nd2CKH(A))

ld
nd−ld ,

and hence, by (6.19),

max
1≤j≤n

H(xj) ≤ d
(
2 + (nd2CKH(A))

l
n−l

)
max
1≤ℓ≤d

H(ωℓ).

Since the choice of ω1, . . . , ωℓ depends only on K, the conclusion of the theorem
follows. □

Recall that for any β ∈ K, there exists c ∈ N such that cβ ∈ OK . In fact, for
any collection β1, . . . , βn ∈ K, let us define their common denominator to be

D(β1, . . . , βn) = min{c ∈ N : cβk ∈ OK ∀ 1 ≤ k ≤ n}.
For an l × n matrix A with entries in K, we will write D(A) for the common
denominator of all of its entries, i.e.,

D(A) = D(αij : 1 ≤ i ≤ l, 1 ≤ j ≤ n).

With this notation in mind, we have one more version of Siegel’s lemma.

Corollary 6.4.3 (Siegel’s Lemma, version 3). Let K be a number field of degree
d, and let A = (αij) be an l × n matrix of rank l < n with entries αij ∈ K. There
exists a solution 0 ̸= x = (x1, . . . , xn) ∈ On

K to the homogeneous linear system
Ax = 0 with

(6.20) max
1≤j≤n

H(xj) < BK(l, n)(D(A)H(A))
l

n−l ,

where BK(l, n) is the same constant as in Theorem 6.4.2 above.

Proof. Let A′ = D(A)A, then A′ is an l × n matrix with entries in OK , and
Ax = 0 if and only A′x = 0. Then apply Theorem 6.4.2 to the system A′x = 0
while keeping in mind that H(A′) = D(A)H(A). □
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6.5. The Six Exponentials Theorem

In this section we use Siegel’s Lemma and Maximum Modulus Principle to
prove the Six Exponentials Theorem. Our presentation here follows [MR14]. Let
us set some notation. Let K be a number field of degree d over Q, and let σ1, . . . , σd

be the embeddings of K into C. Recall that for every α ∈ K, the norm of α over
K is

NK(α) =

d∏
k=1

σk(α),

and we write N(α) for NQ(α)(α). It is not difficult to observe that

NK(α) = N(α)[K:Q(α)].

Notice also that N(α) is precisely the free coefficient of the minimal polynomial of
α over Q, and hence is a rational number. If α ∈ OK , then the minimal polynomial
of α over Q is equal to mα(x), and hence N(α) ∈ Z. This in particular implies that
for every α ∈ OK ,

(6.21) 1 ≤ |NK(α)| = |N(α)|[K:Q(α)] ≤ |N(α)|d ≤ H(α)d−1|α|,
since one of the embeddings σ1, . . . , σd is the identity map.

Theorem 6.5.1 (The Six Exponentials Theorem). Let x1, x2 ∈ C be linearly inde-
pendent over Q. Let y1, y2, y3 ∈ C also be linearly independent over Q. Then at
least one of the six numbers exiyj where 1 ≤ i ≤ 2, 1 ≤ j ≤ 3 is transcendental.

Proof. Suppose that exjyk ∈ A for all 1 ≤ j ≤ 2, 1 ≤ k ≤ 3, and let K
be a number field containing all of these numbers. Let r ∈ N, aij ∈ OK for all
1 ≤ i, j ≤ r, and define

(6.22) F (z) =

r∑
i=1

r∑
j=1

aije
(ix1+jx2)z

for a variable z ∈ C. Let n ∈ N and let k1, k2, k3 ∈ N range between 1 and n. Then

F

(
3∑

m=1

kmym

)
=

r∑
i=1

r∑
j=1

aij exp ((ix1 + jx2)(k1y1 + k2y2 + k3y3)) .

Since each exp ((ix1 + jx2)(k1y1 + k2y2 + k3y3)) is algebraic, setting each

(6.23) F

(
3∑

m=1

kmym

)
= 0

yields a system of n3 equations with algebraic coefficients in the r2 variables aij .
We want to apply Siegel’s Lemma to this system to obtain a small-height solution
vector; for this we need r2 > n3. Let D be the common denominator of the six
exponentials

{exiyj : 1 ≤ i ≤ 2, 1 ≤ j ≤ 3},
then the common denominator of the coefficients of the system (6.23) is bounded
above by D6rn, and heights of these coefficients are bounded above by ec0rn for
some constant c0. Now Theorem 6.4.3 guarantees that (6.23) has a solution vector
with coordinates aij ∈ OK , not all zero, such that

max
i,j
H(aij) ≤ BK(n3, r2)

(
D6rnec0rn

) n3

r2−n3 .
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Then, choosing r = 8n3/2, we ensure that

(6.24) max
i,j
H(aij) ≤ BK(n3, 8n3/2)

(
D48n5/2

e8c0n
5/2
) 1

63 ≤ ec1n
5/2

for some appropriately chosen constant c1. Then let aij ∈ OK be a solution to (6.23)

with r = 8n3/2 satisfying (6.24), and let F (z) be as in (6.22) for this choice of aij ’s.
Notice that F (z) is not identically zero, since x1, x2 are linearly independent over Q.
Also notice that the set

S = {k1y1 + k2y2 + k3y3 : k1, k2, k3 ∈ N}

is not discrete, since the numbers y1, y2, y3 are linearly independent over Q. Since
F (z) is not identically zero, it cannot vanish on a non-discrete set, and hence there
must exist elements of S on which F is not zero. Let

s = max {t ∈ N : F (k1y1 + k2y2 + k3y3) = 0 ∀ 1 ≤ ki ≤ t} .

Clearly, s ≥ n. Define

w = k1y1 + k2y2 + k3y3

with some ki = s+ 1 and all 1 ≤ ki ≤ s+ 1 be such that F (w) ̸= 0. Using (6.24),
we can obtain an estimate on the height of F (w):

H(F (w)) ≤ C
n5/2+(s+1)r
0 ≤ Cs5/2

1

for some positive constants C0, C1. Observe also that D6r(s+1)F (w) is an algebraic
integer. Then, by (6.21) we have:

1 ≤ NK(D6r(s+1)F (w)) ≤ H(D6r(s+1)F (w))[K:Q]−1|D6r(s+1)F (w)|,

and so

(6.25) |F (w)| ≥ D−6r(s+1)[K:Q]H(F (w))−([K:Q]−1) ≥ C−s5/2

2 ,

where C2 is another constant independent of s.
Our next goal will be to arrive at a contradiction with (6.25) by obtaining an

incompatible estimate for |F (w)| from above. Notice that

(6.26) F (w) = lim
z→w

F (z)
∏

1≤k1,k2,k3≤s

(
w − (k1y1 + k2y2 + k3y3)

z − (k1y1 + k2y2 + k3y3)

) .

The right hand side of the above identity is a holomorphic function that has s3

factors in the product. Let R be a real number such that |w| < R and

|z − (k1y1 + k2y2 + k3y3)| ≥ R/2

for all z on the circle of radius R. Applying the Maximum Modulus Principle
(specifically, Corollary B.2) to the right hand side of (6.26) on the disk of radius R,
we conclude that it assumes its maximum value on the boundary, i.e. on the circle
of radius R, and hence

|F (w)| ≤ |F |R(C3s/R)s
3

,

for some constant C3, where |F |R, the maximum of F (z) on the circle of radius R,
can be estimated as follows:

|F |R ≤ C4e
c1n

5/2+c2rRr2,
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for some constants C4, c2, and with c1 as above. Taking R = s3/2, recalling that
r2 = 64n3, and combining these inequalities yields:

|F (w)| ≤ 64n3C4e
c1n

5/2+c28(ns)
3/2

(
C3√
s

)s3

.

Since s ≥ n, taking n large will cause a contradiction with (6.25), hence completing
the proof. □
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6.6. Problems

Problem 6.1. Let R be a commutative ring with 1. Prove that R[x1, . . . , xk] is
a commutative ring with identity under the standard operations of addition and
multiplication on these multivariable polynomials.

Problem 6.2. Let K be a field. Write x for the variable vector (x1, . . . , xk), and
prove that K(x) is a field under the standard operations of addition and multipli-
cation of rational functions:

p(x)

q(x)
+

f(x)

g(x)
=

p(x)g(x) + f(x)q(x)

q(x)g(x)
,
p(x)

q(x)
· f(x)
g(x)

=
p(x)f(x)

q(x)g(x)
.

Problem 6.3. Prove that Sn, the set of all permutations of the set of n elements,
is a group under the operation of function composition.

Problem 6.4. Let K be a subfield of C. Recall that an embedding of K into C is
an injective field homomorphism τ : K → C.

(1) Suppose that τ : K → C is a field homomorphism such that for some
a ∈ K, τ(a) ̸= 0. Prove that τ is an embedding.

(2) Let K = Q(α) for some α ∈ C. Prove that α is transcendental if and only
if there exist infinitely many distinct embeddings of K into C.

Problem 6.5. Let R be a subring of the ring S, both commutative rings with
identity. Let α ∈ S, and define

R[α] = {f(α) : f(x) ∈ R[x]} .
More generally, for α1, . . . , αn ∈ S define recursively

R[α1, . . . , αn] = Rn−1[αn],

where Rn−1 = R[α1, . . . , αn−1]. A subring T of S is called a finitely generated ring
extension of R if T = R[α1, . . . , αn] for some α1, . . . , αn ∈ S.

(1) Prove that R[α] is a subring of S.
(2) Prove that R[α] is the smallest ring containing R and α, with respect to

inclusion.
(3) Let T = Z

[
1
n

]
for an integer n > 1. Compute the group of units T× of T .

(4) Prove that Q is not a finitely generated ring extension of Z.

Problem 6.6. Let α, β ∈ C, both nonzero, let γ = α/β, and suppose Q(α) ∼= Q(β).

(1) Give necessary and sufficient conditions on α, β so that [Q(γ) : Q] <∞.
(2) Suppose α and β are algebraic and γ ∈ Q. Let f(x) =

∑
k=0 akx

k be the
minimal polynomial of α. Determine the minimal polynomial g(x) of β.

(3) Suppose α and β are algebraic and f(x) = g(x), i.e. they have the same
minimal polynomial. Is it true that γ ∈ Q?



CHAPTER 7

Further Topics

In the previous chapters we have given an introduction to the geometric topics
in number theory, many of which stem from the pioneering work of Minkowski. In
fact, geometric ideas underline many different directions in arithmetic. In this final
chapter we will briefly mention several topics for further exploration and provide
references to more advanced reading on these subjects. Many results in this chapter
will be stated without proof.

7.1. Frobenius problem

Let us start with a simple binary linear Diophantine equation of the form

(7.1) ax+ by = c,

in which a, b, c are nonzero integers. There are always rational solutions to (7.1).
For which values of a, b, c does it have solutions in integers x, y? The greatest
common divisor provides a criterion for the existence of solutions.

Lemma 7.1.1. Let a, b, c be nonzero integers. Then (7.1) has a solution in integers
x, y if and only if gcd(a, b)|c.

Proof. (⇒) Suppose that ax + by = c for some x, y ∈ Z. Since gcd(a, b)
divides a and b, it divides ax+ by = c.
(⇐) If gcd(a, b)|c, write c = d gcd(a, b), in which d ∈ Z. By Euclid’s Division
Lemma, there exist x′, y′ ∈ Z such that ax′+by′ = gcd(a, b). Thus, a(dx′)+b(dy′) =
d(ax′ + by′) = d gcd(a, b) = c and hence (7.1) has integer solutions x = dx′ and
y = dy′. □

In fact, we can classify all integer solutions to (7.1).

Theorem 7.1.2. Let a, b, c be nonzero integers, and let d = gcd(a, b). Assume d|c.
Then the equation ax + by = c has infinitely many integer solutions. In fact, if
x0, y0 is one such solution pair, then all solutions are given by

(7.2) xt = x0 − t
b

d
, yt = y0 + t

a

d

as t ranges over all the integers.

Proof. First let t ∈ Z and xt, yt be as in (7.2). Then

axt + byt = a

(
x0 − t

b

d

)
+ b

(
y0 + t

a

d

)
= (ax0 + by0) + t

(
ab

d
− ab

d

)
= c,

hence our pair x, y is a solution to (7.1) for any t ∈ Z.

155
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We now show that any solution is of this form. Indeed, suppose x, y is a solution
pair, then

ax0 + by0 = c = ax+ by,

and so

a(x0 − x) = b(y − y0).

Let us divide both sides of the above equation by d and write a′ = a/d, b′ = b/d,
then gcd(a′, b′) = 1 and

a′(x0 − x) = b′(y − y0).

Then Euclid’s Lemma implies that a′|y − y0 and b′|x0 − x, say a′ = y−y0

t and

b′ = x0−x
s for some integers t and s. Then we have

(y − y0)(x0 − x)

t
=

(x0 − x)(y − y0)

s
,

and so s = t. Therefore we obtain

y = y0 + a′t, x = x0 − b′t,

which is precisely what we wanted. □

Corollary 7.1.3. If gcd(a, b) = 1, then for any c the equation ax + by = c has
infinitely many solutions. Furthermore, if x0, y0 is one such solution pair, then all
solutions are of the form

xt = x0 − tb, yt = y0 + ta

for t ∈ Z.

Example 7.1.1. Let a = 4, b = 6, c = 9. Since gcd(a, b) = 2 ∤ 9, the equations
4x+6y = 9 has no integer solutions. On the other hand, if c = 10, then gcd(a, b)|c,
and so the equation 4x+6y = 10 has infinitely many integer solutions. Since x = 1,
y = 1 is one such solution, all solutions are of the form

xt = 1− 3t, yt = 1 + 2t

as t ranges over all the integers.

These observations also have a simple geometric interpretation. Notice that
the set of integer solution pairs to (7.1){

(x, y) ∈ Z2 : ax+ by = c
}

is the set of all integer lattice points on the line given by the equation (7.1) in the
Euclidean plane. For instance, the set of all such points in the case a = 4, b = 6, c =
10 of Example 7.1.1 is {(1− 6t, 1 + 4t) : t ∈ Z}.

Assume now that c > 0 and gcd(a, b) divides c, so the line ax+ by = c contains
infinitely many integer lattice points, but does it necessarily contain any such points
with nonnegative coordinates? As we will show in the next section, this question
has some rather interesting applications. Upon a quick inspection, we can see for
instance that the line

(7.3) 3x+ 5y = c

contains integer lattice points for any c, but no such points with x, y ≥ 0 when
c = 1, 2, 4. For which values of c is our line guaranteed to have nonnegative integer
points?
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Here is an initial observation, which follows from Theorem 7.1.2 via a geometric
argument.

Corollary 7.1.4. Let a, b, c be positive integers with d := gcd(a, b) dividing c. If
c ≥ ab/d, then the equation (7.1) has integer solution pairs x, y ≥ 0.

Proof. Let t, s ∈ Z and consider the solution pairs (xt, yt) and (xs, ys), as
in (7.2), where (x0, y0) is some fixed solution pair. Notice that the Euclidean
distance between the points (xt, yt) and (xs, ys) is√

(xt − xs)2 + (yt − ys)2 =

√
b2

d2
(t− s)2 +

a2

d2
(t− s)2 =

|t− s|
√
a2 + b2

d
,

which is minimized when |t − s| = 1. Let ℓa,b(c) be the line ax + by = c in the
Euclidean plane, then the minimal distance between two integer lattice points on

ℓa,b(c) is
√
a2+b2

d , which is assumed for any neighboring pair of integer lattice points
(xt, yt) and (xt+1, yt+1). Notice that the intersection of the line ℓa,b(c) with the
positive quadrant

{(x, y) ∈ R2 : x, y ≥ 0}
is a line segment with endpoints (c/a, 0) and (0, c/b), so the length of this line
segment is √

c2

a2
+

c2

b2
=

c
√
a2 + b2

ab
.

If the length of this line segment is no less than the distance between the neighboring
integer lattice points, then the line segment must contain at least one integer lattice
point. This means that when

c
√
a2 + b2

ab
≥
√
a2 + b2

d
,

the equation (7.1) has integer solution pairs x, y ≥ 0. This happens when c ≥
ab/d. □

Going back to the example of equation (7.3) and applying Corollary 7.1.4, we
are guaranteed that there are nonnegative solutions at least for all c ≥ 15. Checking
by hand, we quickly see that in fact there are nonnegative solutions already for all
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c ≥ 8, suggesting that the bound of Corollary 7.1.4 may not be very good. Indeed,
we can obtain more precise results.

Let a, b be relatively prime positive integers, and suppose that we have unlim-
ited supply of coins of denominations a and b. What is the maximal amount of
change which we cannot give with such coins?

At first it may not seem clear that such a maximal impossible amount of change
even exists. Notice, however, that if we use x coins of denomination a and y coins
of denomination b, then the total amount of change we are giving is ax+ by. Hence
it is possible to give change in the amount of c if and only if the equation

ax+ by = c

has a nonnegative integer solution x, y. Since gcd(a, b) = 1, we know from Corol-
lary 7.1.4 that is certainly possible at least for all c ≥ ab. Hence the maximal
impossible amount of change must be no bigger than ab− 1. But is there an exact
formula?

This problem, although possibly in different terms was mentioned in the lectures
of a famous German mathematician Ferdinand Georg Frobenius in the late 1800s,
although Frobenius himself never published anything in these regards. Nonetheless,
this problem became known as the (binary) Frobenius coin exchange problem with
the maximal impossible amount of change denoted g(a, b) and called the Frobenius
number of a and b. Interestingly, closely related problems also appear in recreational
mathematical literature under different names, such as postage stamp problem
or the chicken McNugget problem. The origins of the latter name are curious:
apparently, in the 1980s chicken McNuggets were sold by McDonalds in the UK in
boxes of 3, 6 and 20 pieces, prompting a mathematician Henri Picciotto to ask what
is the maximal number of nuggets that cannot be purchased (and then answering
his own question – it is 43).

Let us now derive a formula for the binary Frobenius number.

Theorem 7.1.5. Let gcd(a, b) = 1, then

g(a, b) = (a− 1)(b− 1)− 1.

In other words, this is the largest number that cannot be represented as ax+by with
x, y nonnegative integers.

Proof. Since a and b are relatively prime, for every c ∈ Z there exist x, y ∈ Z
such that

c = ax+ by.

We will say that c is representable in terms of a and b if there exist such x, y ≥ 0.
Notice in fact that we can assume without loss of generality that 0 ≤ x < b: if
x ≥ b, then x = nb+ x′ for some n, x′ ∈ Z with 0 ≤ x′ < b, and so

c = a(nb+ x′) + by = ax′ + b(an+ y),

meaning that we can replace x with x′ by replacing y with an+ y, if necessary.
Now, if 0 ≤ x < b, then for every c there is a unique pair (x, y) such that

c = ax + by, and so c is representable if and only if y ≥ 0. Notice then that the
largest non-representable c corresponds to the largest choice of x (namely, x = b−1)
and the largest negative choice of y (namely, y = −1). This means that the largest
non-representable integer is

g(a, b) = a(b− 1) + b(−1) = ab− a− b = (a− 1)(b− 1)− 1.
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□

Theorem 7.1.5 therefore guarantees that for every c > ab − a − b the line
ax+ by = c contains a nonnegative integer lattice point, however for c < ab− a− b
such a point may or may not exist. Revisiting for instance our example (7.3), we see
that while g(3, 5) = 7, the equation 3x + 5y = c has nonnegative integer solutions
for c = 3, 5, 6, but does not for c = 1, 2, 4, 7. Non-representable positive integers
with respect to relatively prime a and b are often called gaps, so the Frobenius
number g(a, b) is the largest gap. Given a and b, how many gaps are there? This
natural question was asked as a challenge problem in a journal called Educational
Times by James Joseph Sylvester in 1884. Specifically, Sylvester, who has already
obtained and published the answer himself in 1882, asked for a proof that this
number is equal to 1

2 (a− 1)(b− 1); in other words, out of (a− 1)(b− 1)− 1 integers
between 1 and the Frobenius number g(a, b) about half are non-representable. A
clever solution was produced by W. J. Curran Sharp. We prove this result here.

Theorem 7.1.6. The number of gaps with respect to a relatively prime pair of
positive integers a and b is

1

2
(a− 1)(b− 1).

Proof. Let 0 ≤ c ≤ g(a, b), and define

c′ = g(a, b)− c = ab− a− b− c.

By our argument in the proof of Theorem 7.1.5, there must exist the unique integers
x, y with 0 ≤ x < b such that c = ax+ by, then

c′ = ab− a− b− c = ab− a− b− ax− by = ax′ + by′,

where x′ = b − x − 1 and y′ = −y − 1. Since 0 ≤ x′ < b, we see that y′ must also
be unique.

Suppose that c is representable by a and b (including c = 0), then y ≥ 0, and
y′ < 0, hence c′ is not representable. On the other hand, assume that c is not
representable, then y < 0, and so y′ ≥ 0, meaning that c′ is representable. It is
clear that c and c′ are in a bijection with each other, and c = c′ if and only if

c =
1

2
(ab− a− b),

but this cannot be an integer, since a and b cannot both be even. Hence precisely
a half of g(a, b) + 1 integers between 0 and g(a, b) are representable and the rest
are gaps, meaning that there are

1

2
(g(a, b) + 1) =

1

2
(a− 1)(b− 1)

gaps. □

The Frobenius number has also been defined more generally. Let n ≥ 2 be an
integer and let

(7.4) 1 < a1 < · · · < an

be relatively prime integers. We say that a positive integer t is representable by the
n-tuple a := (a1, . . . , an) if

(7.5) t = a1x1 + · · ·+ anxn
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for some nonnegative integers x1, . . . , xn, and we call each such solution x :=
(x1, . . . , xn) of (7.5) a representation for t in terms of a. Let s ≥ 0 be an in-
teger, then the s-Frobenius number of this n-tuple, gs(a), as defined by Beck and
Robins in [BR04], is the largest positive integer that has at most s distinct repre-
sentations in terms of a. In the binary case (n = 2), Beck and Robins proved the
following natural generalization of Theorem 7.1.5.

Theorem 7.1.7. Let gcd(a, b) = 1 and s ≥ 0, then

gs(a, b) = (s+ 1)ab− (a+ b).

In the case s = 0, the formula of Theorem 7.1.5 is recovered.

This is a generalization of the classical Frobenius number g0(a), i.e., the largest
positive integer that has no such representations. The Frobenius number has been
studied extensively by a variety of authors, starting as early as late 19th century;
see [Ram05] for a detailed account and bibliography. The condition

(7.6) gcd(a1, . . . , an) = 1

implies that gs(a) exists for every s. The algorithmic Frobenius problem, known to
be NP-hard, is to determine g0 (or more generally gs for s ≥ 1) given n and the
relatively prime n-tuple a1, . . . , an on the input. The hardness of this problem in
particular implies that no general closed form formulas for the Frobenius numbers
exist, sparking interest in upper and lower bounds.

A geometric approach to the classical Frobenius problem has been pioneered
in the influential paper of R. Kannan [Kan92], leading to a polynomial-time al-
gorithm to find the Frobenius number for each fixed n. Bounds on the classical
Frobenius number stemming from further geometry of numbers applications have
been obtained in [FR07] and [AG07]. These ideas have also been extended to the
more general s-Frobenius problem in [FS11] and [AFH12]. A higher-dimensional
analogue of the Frobenius problem has also been considered in the recent years by
several authors, notably in [AH10], [AHL13], and [ALL16]. A generalization of
this problem to certain number fields has been studied in [FS20].

Let us briefly describe Kannan’s approach to the Frobenius problem. Let

La =

{
x ∈ Zn−1 :

n−1∑
i=1

aixi ≡ 0 (mod an)

}
,

then La is a sublattice of Zn−1 of full rank. Define also a simplex

Sa =

{
x ∈ Rn−1

≥0 :

n−1∑
i=1

aixi ≤ 1

}
.

With this notation, Kannan proves the following remarkable identity.

Theorem 7.1.8.

(7.7) g0(a) = µ(Sa, La)−
n∑

i=1

ai.

where µ(Sa, La) is the inhomogeneous minimum (also known as the covering radius)
of Sa with respect to L, namely

(7.8) µ(Sa, La) = inf
{
t ∈ R>0 : tSa + La = Rn−1

}
.



7.1. FROBENIUS PROBLEM 161

On the other hand, Kannan showed that in every fixed dimension n there is a
polynomial-time algorithm to find the covering radius, given Sa and La (which is
to say, given a). This result, along with his identity (7.7) implies a polynomial-time
algorithm for the Frobenius number in fixed dimension. Kannan’s Theorem 7.1.8
has been extended to the s-Frobenius numbers in [AFH12]. For integer s ≥ 1,
define

(7.9) µs(Sa, La) = min{t > 0 : ∀ x ∈ Rn ∃ b1, . . . , bs ∈ La s.t. x ∈ bi + tSa}
be the smallest positive number t such that any x ∈ Rn is covered by at least s
lattice translates of tSa: this µs(Sa, La) is called the s-covering radius of Sa with
respect to La. If s = 1, this is precisely the classical covering radius as in (7.8).
With this notation, the following theorem is established in [AFH12].

Theorem 7.1.9.

gs(a) = µs+1(Sa, La)−
n∑

i=1

ai.

Such geometric ideas have also been used by different authors to give expected val-
ues of Frobenius numbers with respect to the uniform probability distribution on
ensembles of vectors in Zn defined with respect to different norms; see [Arn99],
[Arn06], [AH09], [AHH11], [BS07], [Li15], [Mar10], [Str12], [SSU09], [Ust10],
and [AFH12] for results on average behavior of Frobenius numbers.

Frobenius numbers and their various generalizations tend to play an important
role in several areas of mathematics, including theory of numerical semigroups,
commutative algebra, algebraic geometry, number theory, combinatorics, opera-
tions research, and theoretical computer science, to name a few. The literature
on this subject is vast with a large number of relevant references available in the
bibliography to the book [Ram05].
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7.2. Lattice point counting in homogeneously expanding domains

Another famous optimization problem closely related to the Frobenius problem
is known as the integer knapsack problem. Let n ≥ 2 be an integer, a ∈ Zn

>0 with

a1 < · · · < an, gcd(a1, . . . , an) = 1,

and b ∈ Z>0. The corresponding knapsack polytope is defined as

P (a, b) :=

{
x ∈ Rn

>0 :

n∑
i=1

aixi = b

}
.

The problem then is to determine whether P (a, b) ∩ Zn = ∅? Here we can think
of a1, . . . , an as weights of different types of objects, then positive integer values of
x1, . . . , xn stand for corresponding numbers of objects of each type, and b is the
total weight of a knapsack with xi objects of weight ai, 1 ≤ i ≤ n. Once it is known
that for some given values of the total weight b the knapsack is not empty, one can
maximize the cost function of this knapsack, provided the objects of different types
have assigned prices. This problem comes up frequently in the fields of operations
research and resource allocation.

Similar to the Frobenius problem, the integer knapsack problem is also known to
be NP-hard. In fact, the Frobenius problem can be stated in terms of the knapsack
polytopes as follows: find the smallest positive integer g so that P (a, b) ∩ Zn ̸= ∅
for every b > g.

Notice that we can actually state a more general problem: count the number of
integer lattice points in a given knapsack polytope, i.e. determine the cardinality
of the set P (a, b) ∩ Zn. Then integer knapsack problem becomes:

Is |P (a, b) ∩ Zn| = 0?

and the Frobenius problem becomes:

Find min{g ∈ Z>0 : |P (a, b) ∩ Zn| > 0 ∀ b > g}.

Notice also that
n∑

i=1

aixi = b ⇐⇒
n∑

i=1

ai

(xi

b

)
= 1,

i.e. x ∈ P (a, b) if and only if 1
bx ∈ P (a, 1), meaning that P (a, b) = bP (a, 1), a

homogeneous expansion of the polytope. This does not necessarily apply directly
to the integer points, since for x ∈ Zn the rescaled points 1

bx may no longer be
in Zn. Still, it suggests a natural question: how can we count the number of integer
lattice points in homogeneous expansions of polytopes? An area of mathematics
that aims to answer this question is Ehrhart theory.

Let P ⊆ Rn be a convex polytope such that Vol(P ) > 0, and vertices of P are
points of Zn: such P is called a lattice polytope. Write

GP (t) = |tP ∩ Zn| .

We want to understand the behaviour of GP (t) for all t ∈ Z>0; specifically, we
will prove a famous theorem of Ehrhart, which states that GP (t) is a polynomial
in t. Our presentation closely follows [Ewa96]. First we consider a special case of
polytopes, namely simplices.
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Lemma 7.2.1. Let a1, . . . ,an ∈ Zn be linearly independent, and define the simplex

S = Co(0,a1, . . . ,an) =

{
n∑

i=1

tiai : ti ≥ 0 ∀ 1 ≤ i ≤ n,

n∑
i=1

ti ≤ 1

}
.

Then there exist β1, . . . , βn ∈ Z≥0 such that for every t ∈ Z>0, we have

G(tS) = |tS ∩ Zn| =
(
n+ t

n

)
+

n∑
i=1

(
n+ t− i

n

)
βi.

Proof. LetA be the half-open parallelotope spanned by the vectors a1, . . . ,an,
i.e.

A =

{
n∑

i=1

tiai : 0 ≤ ti < 1 ∀ 1 ≤ i ≤ n

}
.

For every y ∈ tS ∩ Zn there exists a unique representation of y of the form

(7.10) y = x+

n∑
i=1

αiai,

where x ∈ A ∩ Zn and α1, . . . , αn ∈ Z≥0. For each 0 ≤ j ≤ t, let Hj be the
hyperplane which passes through the points ja1, . . . , jan. We will determine the
number of points of Zn in Hj ∩ tS, and the number of points of Zn∩ tS in the strips
of space bounded by Hj−1 and Hj for each 1 ≤ j ≤ t; notice that H0 = {0}.

First, let x = 0 in (7.10). Then y as in (7.10) lies in Hj if and only if

(7.11)

n∑
i=1

αi = j, 0 ≤ αi ≤ j ∀ 1 ≤ i ≤ n.

We will prove now that there are precisely
(
n+j−1
n−1

)
possibilities for α1, . . . , αn sat-

isfying (7.11) for each j. We argue by induction on n. If n = 1, then there is only

1 =
(
j
0

)
possibility. Suppose the claim is true for n−1. Then there are

(
n+(j−αn)−2

n−2

)
possibilities for α1, . . . , αn−1 such that

n−1∑
i=1

αi = j − αn

for each value of 0 ≤ αn ≤ j. Then the number of possibilities for α1, . . . , αn

satisfying (7.11) is

(7.12)

j∑
αn=0

(
n+ (j − αn)− 2

n− 2

)
=

j∑
i=0

(
n+ i− 2

n− 2

)
.

Then our claim follows by combining (7.12) with the result of Problem 7.2:

j∑
i=0

(
n+ i− 2

n− 2

)
=

(
n+ j − 1

n− 1

)
.

Now to find the number of points y as in (7.10) with x = 0 on
⋃t

j=0 Hj , we
sum over j, using the result of Excercise 7.2 once again:

t∑
j=0

(
n+ j − 1

n− 1

)
=

(
n+ t

n

)
.
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If x in (7.10) lies properly between H0 and H1, then the number of possible y

as given by (7.10) that lie in
⋃t

j=0 Hj reduces to
(
n+t−1

n

)
. Similarly, the number

of possibilities for y as in (7.10) with x lying properly between Hi−1 and Hi or

on Hi is
(
n+t−i

n

)
for each 1 ≤ i ≤ n. Therefore, if βi is the number of points

x ∈ A ∩ Zn which lie properly between Hi−1 and Hi or on Hi, then the number of
corresponding points y as in (7.10) is(

n+ t− i

n

)
βi.

Finally, in the case t < n, we let βi = 0 for each t + 1 ≤ i ≤ n. The statement of
the lemma follows.

□

Let a1, . . . ,an ∈ Zn be linearly independent, and let

S = Co(0,a1, . . . ,an)

be the simplex as in Lemma 7.2.1. Define the pseudo-simplex associated with S

S0 = S \ (Co(0,a1, . . . ,an−1) ∪ . . . ∪ Co(0,a2, . . . ,an)) .

Lemma 7.2.2. G(tS0) is a polynomial in t ∈ Z≥0.

Proof. We argue by induction on dimension of S0. If dim(S0) = 0, there is
nothing to prove, so assume the lemma is true for pseudo-simplices of dimension
< n. Let F (1), . . . , F (s) be proper faces of S which contain 0 and satisfy

0 < dim(F (i)) < n, ∀ 1 ≤ i ≤ s.

Then

S \ S0 = {0} ∪ F
(1)
0 ∪ . . . ∪ F

(s)
0

is a disjoint union. By induction hypothesis,

G(t(S \ S0)) = 1 +G(tF
(1)
0 ) + · · ·+G(tF

(s)
0 )

is a polynomial in t. Hence, by Lemma 7.2.1,

G(tS0) = G(tS)−G(t(S \ S0)) = G(tS)− 1−G(tF
(1)
0 )− · · · −G(tF

(s)
0 )

is a polynomial in t. □

We are now ready to prove Ehrhart’s theorem.

Theorem 7.2.3 (Ehrhart). Let P be a lattice polytope in Rn. Then GP (t) is a
polynomial in t ∈ Z≥0.

Proof. We can assume 0 to be a vertex of P , since such translation would not
change the number of integer lattice points. Notice that each (n − 1)-dimensional
face of P which does not contain 0 can be given a decomposition as a simplicial
complex whose 0-cells are the vertices of this face. We can then join each simplex,
obtained in this manner, to 0 resulting in a decomposition of P into a simplicial
complex whose 0-cells are precisely the vertices of P . Then P can be represented
as a disjoint union

P = {0} ∪ S
(1)
0 ∪ . . . ∪ S

(r)
0 ,

where S
(1)
0 , . . . , S

(r)
0 are precisely the cells of this simplicial complex which contain

0, but are not equal to {0}. The theorem follows by Lemma 7.2.2. □
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GP (t) as in Theorem 7.2.3 is called Ehrhart polynomial of P . An excellent ref-
erence on Ehrhart polynomials, their many fascinating properties, and connections
to other important mathematical objects is [BR06]. For a general lattice polytope
P very little is known about the coefficients of its Ehrhart polynomial GP (t). Let

GP (t) =

n∑
i=0

ci(P )ti,

then it is known that the leading coefficient cn(P ) is equal to Vol(P ), and cn−1(P )
is (n − 1)-dimensional volume of the boundary ∂P , which is normalized by the
determinants of the sublattices induced by the corresponding faces of P . Also,
c0(P ) is the combinatorial Euler characteristic χ(P ):

χ(P ) =

n∑
i=0

(−1)i(number of i− dimensional faces of P ).

The rest of the coefficients of GP (t) are in general unknown, however there are
known relations and identities that they satisfy; see [BR06] for further details.

Let us present the first simple example of Ehrhart polynomial. Consider the
n-dimensional cube of sidelength 2 centered at the origin:

(7.13) Cn = {x ∈ Rn : |x| ≤ 1},
then for each t ∈ Z>0

|tCn ∩ Λ| = (2t+ 1)n =

n∑
i=0

2i
(
n

k

)
ti

is the corresponding Ehrhart polynomial. We will give two more explicit examples
of Ehrhart polynomial. The first one is for an open simplex, which is precisely the
interior of the simplex S of Lemma 7.2.1 with ai = ei for each 1 ≤ i ≤ n; the
following observation along with the proof is due to S. I. Sobolev.

Proposition 7.2.4. Define an open simplex

S◦ =

{
x ∈ Rn : xi > 0 ∀ 1 ≤ i ≤ n,

n∑
i=1

xi < 1

}
.

Then GS◦(t) = 0 if t ≤ n, and for every t ∈ Z>n,

(7.14) GS◦(t) =

(
t− 1

n

)
.

Proof. Let t > n, and notice that the simplex tS◦ can be mapped by an affine
transformation to the simplex

tS◦
1 = {x ∈ Rn : 0 < x1 < · · · < xk < t} .

This transformation is volume-preserving and maps Zn to itself. Integral points of
tS◦

1 correspond to increasing sequences of integers 0 < y1 < · · · < yn < t. The
number of such sequences is precisely

(
t−1
n

)
, which is the number of all possible

n-element subsets of the set {1, ..., t− 1}. □

Notice that (7.14) can be thought of as a geometric interpretation of binomial
coefficients. The next example is closely related to the one in Proposition 7.2.4: it
has been established in [BCKV00].
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Proposition 7.2.5. Let

Sn =

{
x ∈ Rn :

n∑
i=1

|xi| ≤ 1

}
.

Then for every t ∈ Z>0

(7.15) GSn(t) =

min{t,n}∑
i=0

2i
(
n

i

)(
t

i

)
.

Proof. Notice that for each 0 ≤ i ≤ min{t, n} the number of points in tSn∩Zn

with precisely i nonzero coordinates is

2i
(
n

i

)(
t

i

)
.

Indeed, the number of choices of which coordinates are nonzero is
(
n
i

)
; for each such

choice there are 2i choices of ± signs, and
(
t
i

)
choices of absolute values. Summing

over all 0 ≤ i ≤ min{t, n} completes the proof. □

Remark 7.2.1. A remarkable property of the polynomial in Proposition 7.2.5 is
that the right hand side (7.15) is symmetric in t and n. This means that

|tSn ∩ Zn| = |nSt ∩ Zt|.

All of the lattice point counting results above were specifically for integer points
in polytopes, which is a rather special class of convex bodies in Rn and only one
lattice. What can be said for more general convex bodies and lattices? Let M ⊆ Rn

be closed, bounded, and Jordan measurable with Vol(M) > 0, and let Λ ⊆ Rn be
a lattice of full rank. Suppose we homogeneously expand M by a positive real
parameter t, i.e. for each positive real value of t we will consider the set tM . How
many points of Λ are there in tM as t grows? To partially answer this question, we
will be interested in the asymptotic behavior of the function

GM,Λ(t) = |tM ∩ Λ|

as t→∞. In general, this is a very difficult question. We will need to make some
additional assumptions on M in order to study GM,Λ(t).

Definition 7.2.1. Let S be a subset of some Eucildean space. A map

φ : S → Rn

is called a Lipschitz map if there exists C ∈ R>0 such that for all x,y ∈ S

∥φ(x)− φ(y)∥2 ≤ C∥x− y∥2.

We say that C is the corresponding Lipschitz constant.

Let Cn be the cube as in (7.13). We say that a set S ⊆ Rn is Lipschitz
parametrizable if there exists a finite number of Lipschitz maps

φj : Cn → S,

such that S =
⋃

j φj(Cn).
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Definition 7.2.2. Let f(t) and g(t) be two functions defined on R. We will say
that

f(t) = O(g(t)) as t→∞
if there exists a positive real number B and a real number t0 such that for all t ≥ t0,

|f(t)| ≤ B|g(t)|.
We usually use the O-notation to emphasize the fact that f(t) behaves similar to
g(t) when t is large. This is quite useful if g(t) is a simpler function than f(t); in
this case, such a statement helps us to understand the asymptotic behavior of f(t),
namely its behavior as t→∞.

Let ∂M be the boundary ofM , and assume that ∂M is (n−1)-Lipschitz parametriz-
able. Notice that for t ∈ R>0, ∂(tM) = t∂M . The following result is Theorem 2
on p. 128 of [Lan94].

Theorem 7.2.6. Let t ∈ R>0, then

GM,Λ(t) =
Vol(M)

det(Λ)
tn +O(tn−1),

where the constant in O-notation depends on Λ, n, and Lipschitz constants.

Proof. Let x1, . . . ,xn be a basis for Λ, and let F be the corresponding fun-
damental parallelotope, i.e.

F =

{
n∑

i=1

tixi : 0 ≤ ti < 1, ∀ 1 ≤ i ≤ n

}
.

For each point x ∈ Λ we will write Fx for the translate of F by x:

Fx = F + x.

Notice that if x ∈ tM ∩ Λ, then Fx ∩ tM ̸= ∅. Moreover, either

Fx ⊆ int(tM),

or
Fx ∩ ∂(tM) ̸= ∅.

Let
m(t) = |{x ∈ Λ : Fx ⊆ int(tM)}| ,
b(t) = |{x ∈ Λ : Fx ∩ ∂(tM) ̸= ∅}| .

Then clearly
m(t) ≤ GM,Λ(t) ≤ m(t) + b(t).

Moreover, since Vol(F) = det(Λ)

m(t) det(Λ) ≤ Vol(tM) = tn Vol(M) ≤ (m(t) + b(t)) det(Λ),

hence

m(t) ≤ Vol(M)

det(Λ)
tn ≤ m(t) + b(t).

Therefore to conclude the proof we only need to estimate b(t). Let

φ : Cn−1 → ∂M

be one of the Lipschitz paramterizing maps for a piece of the boundary of M , and
let C be the maximum of all Lipschitz constants corresponding to these maps. Then
tφ parametrizes a corresponding piece of ∂(tM) = t∂M . Cut up each side of Cn−1
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into segments of length 1/[2t], then we can represent Cn−1 as a union of [t]n−1

small cubes with sidelength 1/[2t] each, call them C1, . . . , C [t]n−1

. For each such
Ci, we have

∥φ(x)− φ(y)∥2 ≤ C∥x− y∥2 ≤
C
√
n− 1

[2t]
,

for each x,y ∈ Ci, i.e. the image of each such Ci under φ has diameter at most
C
√
n−1

[2t] . Hence image of each such Ci under the map tφ has diameter at most

C
√
n− 1

t

[2t]
≤ 2 C

√
n− 1.

Clearly therefore the number of x ∈ Λ such that the corresponding translate Fx

has nonempty intersection with tφ(Ci), for each 1 ≤ i ≤ [t]n−1, is bounded by some
constant C′ that depends only on Λ, C, and n. Hence

b(t) ≤ C′[t]n−1.

This completes the proof. □

Theorem 7.2.6 provides an asymptotic formula for GM,Λ(t), demonstrating an

important general principle, namely that as t → ∞, GM,Λ(t) grows like Vol(M)
det(Λ) t

n,

which is what one would expect. However, it does not give any explicit information
about the constant in the error term O(tn−1). Can this constant be somehow
bounded, i.e. what can be said about the quantity∣∣∣∣GM,Λ(t)−

Vol(M)

det(Λ)
tn
∣∣∣∣ ?

A large amount of work has been done in this direction (see for instance pp. 140
- 147 of [GL87] for an overview of results and bibliography). This subject essen-
tially originated in a paper of Davenport [Dav51], who used a principle of Lipschitz
[Lip65]; also see [Thu93] for a nice overview of Davenport’s result and its gener-
alizations and [Wid12] for further recent results. We present here without proof
a result of P. G. Spain [Spa95], which is a refinement of Davenport’s bound, and
can be thought of as a continuation of Theorem 7.2.6.

Theorem 7.2.7. Let the notation be as in Theorem 7.2.6, and let C be the maximal
Lipschitz constant corresponding to parametrization of ∂M . Then for each t ∈ R>0,∣∣∣∣GM,Λ(t)−

Vol(M)

det(Λ)
tn
∣∣∣∣ ≤ 2n(Ct+ 1)n−1.

Finally, for very explicit inequalities in the case of counting lattice points in rect-
angular boxes see [Fuk06a], [Fuk06b] and [FH13].
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7.3. Simultaneous Diophantine approximation

A fundamental problem of Diophantine approximation, which we discussed
in Chapter 4 is to approximate a given real number by rational numbers with
controlled denominators. Dirichlet’s theorem of 1842 (Theorem 4.3.1) is the original
result in this direction. In fact, we can ask the same question in higher dimensions:
given a point α ∈ Rn, how closely can we approximate it by points in Qn with
bounded denominators? This question can be answered by Dirichlet’s theorem
on simultaneous Diophantine approximation, which also dates back to 1842 (our
exposition here follows [Sch80]).

Theorem 7.3.1. Let m,n ≥ 1 be integers, and let

(αi1, . . . , αin) ∈ Rn

for 1 ≤ i ≤ m be m real points. For any integer Q > 1 there exist integers

q1, . . . , qn, p1, . . . , pm

such that 1 ≤ max1≤i≤n |qi| < Qm/n and

|αj1q1 + . . . αjnqn − pj | ≤
1

Q
,

for all 1 ≤ j ≤ m.

Proof. While different proofs of this result exist in the literature, we will
present a geometric argument based on Minkowski’s Linear Forms Theorem: this
is a generalization of the Minkowski-style proof of Theorem 4.3.1 that we presented
in Chapter 4. Let ℓ = n+m and define the following collection of ℓ linear forms in
ℓ variables with real coefficients:

Li(x1, . . . , xℓ) = xi, ∀ 1 ≤ i ≤ n

Ln+j(x1, . . . , xℓ) = αj1x1 + · · ·+ αjnxn − xn+j , ∀ 1 ≤ j ≤ m.

Let B be the matrix of coefficients of these linear forms, i.e.

B =



1 . . . 0 0 . . . 0
...

. . .
...

...
. . .

...
0 . . . 1 0 . . . 0
α11 . . . α1n −1 . . . 0
...

. . .
...

...
. . .

...
αm1 . . . αmn 0 . . . −1


.

This is a lower-triangular matrix with±1’s on the diagonal, and hence det(B) = ±1.
Then Theorem 1.4.3 guarantees existence of a point 0 ̸= x ∈ Zℓ such that

|Li(x)| < Qm/n, ∀ 1 ≤ i ≤ n

|Ln+j(x)| ≤ Q−1, ∀ 1 ≤ j ≤ m,

since (Qm/n)n(Q−1)m = 1. Let qi = xi for 1 ≤ i ≤ n, and pj = xn+j for 1 ≤ j ≤ m.
Then we have

max
1≤j≤n

|qj | = max
1≤j≤n

|Li(x)| < Qm/n,

and

|αj1q1 + . . . αjnqn − pj | = |Ln+j(x)| ≤
1

Q
,
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for all 1 ≤ j ≤ m. We now only need to show that

max
1≤j≤n

|qj | ≥ 1.

Assume not, then q1, . . . , qn = 0, and then for all 1 ≤ j ≤ m,

|Ln+j(x)| = |pj | ≤ 1/Q < 1,

and so all the integers pj must be equal to 0, and hence x = 0, which contradicts
Minkowski Linear Forms Theorem. This completes the proof. □

Corollary 7.3.2. Let the notation be as in Theorem 7.3.1. Suppose in addition
that

(7.16)

 n∑
j=1

α1jqj , . . . ,

n∑
j=1

αmjqj

 ∈ Rm \ Zm, ∀ (q1, . . . , qn) ∈ Zn \ {0}.

Then there exist infinitely many co-prime integer (n+m)-tuples

q1, . . . , qn, p1, . . . , pm

such that

(7.17) |αj1q1 + . . . αjnqn − pj | <
1

qn/m
, ∀ 1 ≤ j ≤ m,

where q := max1≤i≤n |qi| > 0.

Proof. Derivation of this corollary from Theorem 7.3.1 is very similar to the
Euclid-style exhaustion argument used in the proof of Theorem 4.3.1 to derive (4.3)
from (4.2). Let

z := (q1, . . . , qn, p1, . . . , pm) ∈ Zn+m

be the (n+m)-tuple with q < Qm/n guaranteed by Theorem 7.3.1. Then

|αj1q1 + . . . αjnqn − pj | ≤
1

Q
<

1

qn/m
,

for all 1 ≤ j ≤ m. Suppose that there are only finitely many such (n+m)-tuples,
call them

zl := (ql1, . . . , qln, pl1, . . . , plm)

for 1 ≤ l ≤ k. Let

δ = min
1≤l≤k,1≤j≤m

|αj1ql1 + . . . αjnqln − plj | ,

then δ > 0 by (7.16). Let Q ∈ Z>0 be such that 1
Q < δ. By Theorem 7.3.1, there

must exist z′ := (q′1, . . . , q
′
n, p

′
1, . . . , p

′
m) such that∣∣αj1q

′
1 + . . . αjnq

′
n − p′j

∣∣ ≤ 1

Q
< δ,

for all 1 ≤ j ≤ m. Hence z′ /∈ {z1, . . . ,zk}, which is a contradiciton. Thus there
must be infinitely many such (n+m)-tuples. □

Notice that taking m = n = 1 in Theorem 7.3.1 and Corollary 7.3.2 reduces to
the classical Dirichlet’s Theorem 4.3.1: in this case, condition (7.16) means precisely
that the real number α11 is irrational. On the other hand, taking just n = 1 gives
simultaneous approximation to m real numbers by rationals with the same bounded
denominator, where as taking just m = 1 results in producing an integer point of
bounded sup-norm at which an irrational linear form is close to an integer. For
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instance, taking n = 1 and m = 2 we see that for an irrational point (x, y) in the
plane there exist infinitely many rational points (p/q, r/q) such that

max

{∣∣∣∣x− p

q

∣∣∣∣ , ∣∣∣∣y − r

q

∣∣∣∣} <
1

q3/2
.

What if our point (x, y) is on some curve, say a unit circle: can we approximate it
by rational points on the same circle? This can be done with the use of the following
interesting result of E. Hlawka [Hla80] on simultaneous Diophantine approximation
by quotients of Pythagorean triples, i.e. integer solutions to the equation

x2 + y2 = z2.

Theorem 7.3.3. Let x ∈ (0, 1) be a real number. Then there exist infinitely many

Pythagorean triples
(
p,
√
q2 − p2, q

)
∈ Z3 such that

(7.18)

∣∣∣∣x− p

q

∣∣∣∣ ≤ 2
√
2

q
.

We can use Theorem 7.3.3 to approximate points on a unit circle with rational
points on the same circle. The following corollary was established in [Fuk09a].

Corollary 7.3.4. Let (x, y) be a point on the unit circle. Then either x, y ∈
{0,±1}, or there exist infinitely many rational points (p/q, r/q) on the same circle
such that

(7.19) max

{∣∣∣∣x− p

q

∣∣∣∣ , ∣∣∣∣y − r

q

∣∣∣∣} ≤ 2
√
2

q
.

Proof. First notice that it suffices to prove the statement of this corollary for
the case 0 < x, y < 1, namely the case when the point in question lies in the first
quadrant, since any other point on the circle can be obtained from those in the first
quadrant by a rational rotation. Let c be an arbitrary real number in the interval
(0, 1), then either

(7.20) 0 < x ≤
√

1− c2 < 1, c ≤ y < 1,

or

(7.21) 0 < y ≤
√

1− c2 < 1, c ≤ x < 1.

First assume that (7.20) holds. By Theorem 7.3.3, there exist infinitely many

Pythagorean triples (p, r, q) with r =
√

q2 − p2 which satisfy (7.18). Then:

2
√
2

q
≥
∣∣∣∣x− p

q

∣∣∣∣ =

∣∣∣∣∣√1− y2 −

√
1− r2

q2

∣∣∣∣∣ =
∣∣∣ r2q2 − y2

∣∣∣√
1− y2 +

√
1− r2

q2

=

r
q + y√

1− y2 +
√
1− r2

q2

∣∣∣∣y − r

q

∣∣∣∣ ≥ c
(
1 + n

n+1

)
2
√
1− n2

(n+1)2 c
2

∣∣∣∣y − r

q

∣∣∣∣ .(7.22)

The last inequality is true because w+z√
1−w2+

√
1−z2

is an increasing function in both

variables for 0 < z,w < 1; since y ≥ c, we can pick q large enough so that r/q
would have to be sufficiently close to y so that r/q ≥ n

n+1c for some n ∈ Z>0, then
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r/q + y ≥ c
(
1 + n

n+1

)
, and

√
1− y2 +

√
1− r2

q2 ≤ 2
√

1− n2

(n+1)2 c
2. Then (7.22)

implies:

(7.23)

∣∣∣∣y − r

q

∣∣∣∣ ≤
√
1− n2

(n+1)2 c
2

c
(
1 + n

n+1

) × 4
√
2

q
.

Since our choice of c ∈ (0, 1) and positive integer n was arbitrary, we can for instance
choose

(7.24) c =
2n+ 2√

8n2 + 4n+ 1
,

and take n = 2, in which case, combining (7.18), (7.23), and (7.24), we obtain
(7.19).

If, on the other hand, (7.21) holds instead of (7.20), simply repeat the above
argument interchanging x with y and p/q with r/q. This completes the proof. □

A related result has also been obtained by Kopetzky in [Kop80] (also see
[Kop81]), however his bounds are different in flavor in the sense that the constants
in the upper bounds depend on x and y. Notice that the bound of Corollary 7.3.4
can be easily extended to any rational ellipse.

Corollary 7.3.5. Let (x, y) be a point on the ellipse E, given by the equation(x
a

)2
+
(y
b

)2
= 1,

where a, b are positive rational numbers. Then either (x, y) = (±a, 0), (0,±b), or
there exist infinitely many rational points (p/q, r/q) on the same ellipse such that

(7.25) max

{∣∣∣∣x− p

q

∣∣∣∣ , ∣∣∣∣y − r

q

∣∣∣∣} ≤ 2
√
2max{a, b}

q
.

Proof. Problem 7.1. □

Stronger and more general results on approximating points on spheres by ra-
tional points on the same spheres (with sharper constants, as well as in higher di-
mensions) have appeared recently in [KM15] and [Mos16]. Additionally, [Cas57],
[Sch80] and [Sch91] are excellent classical references on Diophantine approxima-
tion, including simultaneous and higher dimensional approximations.

Another classical problem on simultaneous approximation that we will briefly
mention here is Minkowski’s Conjecture. Define a function N : Rn → R by

N (x) = |x1 · · ·xn|.
This function is inspired by a number field norm under Minkowski embedding: if
K is a number field of degree n with all real embeddings σ1, . . . , σn, then

Σ = (σ1, . . . , σn) : K → Rn

is its Minkowski embedding, and for any x ∈ K \ {0}
|NK(x)| = N (Σ(x)) ̸= 0.

Suppose we have a fixed point y ∈ Rn. How closely can we approximate it with
respect to N by points of Zn? It is not difficult to see that

sup
y∈Rn

inf
x∈Zn

N (y − x) = 2−n.
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In other words, there exist points in Rn that cannot be approximated by points of
Zn better than up to 1

2n with respect to N . Indeed, if

y =


1
2
...
1
2

 ∈ Rn,

then in fact

inf
x∈Zn

N (y − x) = N (y − 0) = N (y) = 2−n.

Can we do better if we replace Zn with perhaps another unimodular lattice, i.e.
another lattice of determinant 1? Minkowski conjectured in [Min00] that at least
we will not do any worth. Define a group of diagonal matrices

A =


a1 . . . 0

...
. . .

...
0 . . . an

 : ai > 0, a1 · · · an = 1

 .

Conjecture 7.3.1. For any unimodular lattice Λ ⊂ Rn, we have:

(7.26) sup
y∈Rn

inf
x∈Λ
N (y − x) ≤ 2−n.

Equality holds if and only if there exists A ∈ A such that

Λ = AZn = spanZ{a1e1, . . . , anen},

where e1, . . . , en are the standard basis vectors in Rn, and a1, . . . , an ∈ R are
positive with a1 . . . an = 1.

The significance of this conjecture is perhaps best demonstrated by its implication
for the totally real number fields, i.e. number fields with all real embeddings as
above.

Corollary 7.3.6. Let K be a totally real number field of degree n and discriminant
∆K . Then for every x ∈ K there exists an algebraic integer y ∈ OK such that

NK(x− y) ≤ 2−n
√
|∆K |.

In other words, every element of a totally real number field can be appropriately
approximated with respect to norm by an algebraic integer. Minkowski’s conjecture
has been proved for n = 2 by Minkowski himself [Min00], for n = 3 by Remak in
1923 [Rem23], for n = 4 by Dyson in 1948 [Dys48], for n = 5 by Skubenko in
1972 [Sku72], and for n = 6 by McMullen in 2005 [McM05].

Let us very briefly describe McMullen’s geometric approach to this problem.
His main contribution was to prove that any lattice can be appropriately “rescaled”
to a well-rounded one. More specifically, he prove the following result.

Theorem 7.3.7. For any lattice Λ ⊂ Rn, there exists A ∈ A such that the lattice
AΛ is well-rounded, i.e. has n linearly independent shortest vectors.

Recall now that covering radius of a lattice Λ in Rn is

µ(Λ) = sup
y∈RN

inf
x∈Λ
∥y − x∥.
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Notice that this is the same expression as in (7.26), but with respect to the Euclidean
norm ∥ ∥ instead of N . By the inequality between arithmetic and geometric means,
we have

(7.27) N (x)
1
n ≤ ∥x∥√

n
,

for all x ∈ Rn. The following bound on the covering radius has been proved by
Woods in 1972 [Woo72] for well-rounded lattices when n ≤ 6.

Theorem 7.3.8. Let n ≤ 6, and let Λ ⊂ Rn be a well-rounded unimodular lattice.
Then

(7.28) µ(Λ) ≤
√
n

2
.

Equality holds if and only if Λ = BZn is isometric to Zn.

Now, combining Theorem 7.3.7 with (7.27) and Theorem 7.3.8 yields Conjecture
2.2.2 for n ≤ 6. Hence McMullen’s fundamental contribution to Minkowski’s con-
jecture was the understanding of “distribution” of well-rounded lattices among the
orbits of lattices in Rn under the action of the diagonal group A. In fact, Woods
conjectured that the inequality (7.28) holds in any dimension n. Woods’ conjecture
was proved for n = 7, 8, 9 ([HGRS09], [HGRS11], [KR16]) hence also establish-
ing Minkowski’s conjecture (now in all dimensions n ≤ 9), by combination with
McMullen’s theorem. Interestingly, Woods conjecture has been disproved by a
family of explicit counterexamples in all dimensions n ≥ 30 ([RSW17]).
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7.4. Absolute values and height functions

In this section we introduce the basic machinery of absolute values and heights,
which is used to investigate further questions in Diophantine Approximations and
Diophantine Geometry.

Definition 7.4.1. Let K be a field. An absolute value on K is a function | | : K →
R≥0 such that for all x, y ∈ K we have:

(1) |x| ≥ 0 with equality if and only if x = 0,
(2) |xy| = |x||y|,
(3) Triangle inequality: |x+ y| ≤ |x|+ |y|.

Sometimes (3) can be replaced by the stronger property:

(4) Ultrametric inequality: |x+ y| ≤ max{|x|, |y|}.

If | | satisfies (1), (2), (3), but fails (4), we say that it is archimedean absolute value;
if it also satisfies (4), it is called non-archimedean.

Here is the most basic example of an absolute value on K: it is called the trivial
absolute value, and is defined by

|x| =
{

0 if x = 0,
1 if x ̸= 0.

This is the only possible absolute value on a finite field.

We will say that two absolute values | |1 and | |2 on K are equivalent if there
exists θ ∈ R>0 such that

|x|1 = |x|θ2
for all x ∈ K. In this case we will write | |1 ∼ | |2. It is easy to see that an
archimedean absolute value cannot be equivalent to a non-arhimedean one. This
relation ∼ is an actual equivalence relation (Problem 7.3), and the only absolute
value equivalent to the trivial one is itself (Problem 7.4).

Equivalence classes of nontrivial absolute values on K are called places. The
set of all places of K will be denoted by M(K). Notice that an absolute value | |
defines a metric on K:

(x, y)→ |x− y|
for every x, y ∈ K. Therefore | | induces a metric topology on K. Moreover, we
can talk about the completion of K with respect to this topology. K equipped
with the metric induced by | | is a metric space, we will write (K, | |) to mean that
we are thinking of K as a metric space with respect to this metric. Recall that a
metric space (K, | |) is called complete if every Cauchy sequence in K converges to a
point in K. The completion of (K, | |) is the set of all equivalence classes of Cauchy
sequences on (K, | |), where two Cauchy sequences {an} and {bn} are equivalent if

lim
n→∞

|an − bn| = 0.

Notice that | | is also defined on the completion of (K, | |), and so this completion
also has a metric topology induced by | |. Then (K, | |) is complete if and only
if it is equal to its completion; by “equal” here we mean isometrically isomorphic
as fields: it is a well known fact that completion of a field is also a field, where
addition and multiplication on Cauchy sequences are defined component-wise.
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Notice that for an absolute value | | on K, x → |x| is a homomorphism from
the multiplicative group K× = {x ∈ K : x ̸= 0} to multiplicative group R>0.
Therefore:

(1) |1| = 1,
(2) |ζ| = 1 for every root of unity ζ ∈ K, i.e. for every ζ ∈ K

such that ζn = 1 for some n ∈ Z>0,
(3) | − x| = |x|, for all x ∈ K×,
(4) |x−1| = |x|−1, for all x ∈ K×.

If L/K is an extension of fields and | | is an absolute value on L, then its restriction
to K is an absolute value on K. It is in general possible that | | is non-trivial on
L, but is trivial on K.

We will now demonstrate some standard absolute values on Q. The first one is
the usual absolute value, which we will denote by | |∞:

|x|∞ =

{
x if x ≥ 0,
−x if x < 0.

This is an archimedean absolute value (Problem 7.6), which induces the usual metric
topology on Q; the completion of Q with respect to this topology is R. Sometimes
we will write Q∞ instead of R to stress this fact.

Now let p ∈ Z be a prime, and define the p-adic absolute value | |p on Q as
follows. For each n ∈ Z, let

|n|p = p−µ(n),

where pµ(n) is the largest power of p dividing n, hence |n|p ≤ 1 for each n ∈ Z.
Now for each m

n ∈ Q, let ∣∣∣m
n

∣∣∣
p
=
|m|p
|n|p

.

This is a non-archimedean absolute value on Q for every prime p (Problem 7.7).
The topology induced by | |p on Q is called p-adic topology; the completion of Q
with respect to this is called the field of p-adic numbers, denoted by Qp. The set

Zp = {a ∈ Qp : |a|p ≤ 1}
is a ring, and is called the ring of p-adic integers. Problem 7.8 implies that Z ⊆ Zp

for every prime p ∈ Z. Moreover, if we write P for the set of all primes in Z, then

Z =
⋂
p∈P

Zp.

The important result classifying all absolute values on Q is Ostrowski’s theorem.

Theorem 7.4.1 (Ostrowski, 1935). Any non-trivial absolute value on Q is equiva-
lent to either | |∞ or | |p for some p ∈ P.

Proof. We start with the following fact, the proof of which is deferred to
Problem 7.9.

Lemma 7.4.2. An absolute value | | on Q is non-archimedean if and only if |n| ≤ 1
for every n ∈ Z. Moreover, for any absolute value | | on Q there exists ρ ∈ R>0

such that

(7.29) |n| ≤ |n|ρ∞.
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Now suppose | | is an absolute value on Q. We will use Lemma 7.4.2 throughout

this proof, assuming without loss of generality that ρ = 1 in (7.29); indeed, | |
1
ρ is

equivalent to | |, so it is not important whether we prove that | |
1
ρ or | | is equivalent

to | |∞ or | |p for some p ∈ P.
Let a, b ∈ Z>0, a > 1, b > 1. For any ν ∈ Z>0, there exists integers c0, . . . , cn

with 0 ≤ ci < a and cn ̸= 0 such that

bν = c0 + c1a+ · · ·+ cna
n.

Notice that by Lemma 7.4.2 for each 0 ≤ i ≤ n,

|ci| ≤ |ci|∞ ≤ |a|∞ = a.

Also notice that

an ≤ cna
n ≤ bν ,

and so n ≤ ν log b
log a . Then

|b|ν = |bν | ≤
n∑

i=0

|ci||a|i ≤ (n+ 1) amax{1, |a|}n

≤
(
1 +

ν log b

log a

)
amax{1, |a|}n.

Therefore

|b| ≤
(
1 +

ν log b

log a

)1/ν

a1/ν max{1, |a|}
log b
log a → max

{
1, |a|

log b
log a

}
,

as ν →∞, in other words

(7.30) |b| ≤ max
{
1, |a|

log b
log a

}
.

Case 1. Assume | | is archimedean. Then by Lemma 7.4.2, there exists b ∈ Z
such that |b| > 1. Then by (7.30), |a| > 1 for every a ∈ Z except for -1,0,1.
Therefore if a, b ∈ Z, a, b > 1, then

|b|
1

log b ≤ |a|
1

log a ≤ |b|
1

log b ,

and so

|b|
1

log b = |a|
1

log a .

We have

1 < |b| ≤ |b|∞ = b,

so |b| = |b|ρ∞ = bρ for some 0 < ρ ≤ 1, and hence

|a| = |b|
log a
log b = bρ

log a
log b = aρ = |a|ρ∞.

Same way therefore |α| = |α|ρ∞ for every α ∈ Q.

Case 2. Assume | | is non-archimedean. Then by Lemma 7.4.2, |n| ≤ 1 for
every n ∈ Z, and since | | is non-trivial, there exists a ∈ Z such that |a| < 1. Let

I = {a ∈ Z : |a| < 1}.
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This is an ideal in Z (Problem 7.10). Therefore there exists a prime p ∈ Z such
that I = pZ. Let 0 ̸= α ∈ Q. Write

α = pr
x

y

with x, y ∈ Z such that p ∤ xy. Then x, y /∈ I, hence

|x| = |y| = 1,

and so

|α| = |pr| = |p|r.
Since p ∈ I, |p| < 1, so |p| = p−s for some s > 0. Then

|α| = p−rs = |r|sp.

We have shown that | | must be equivalent to either | |∞ or | |p for some prime
p. This completes the proof. □

Therefore we can write

M(Q) = {∞} ∪ P,
this way indexing the archimedean place by ∞, and non-archimedean places by p
for each p ∈ P.

Theorem 7.4.3 (Artin - Whaples Product Formula). If 0 ̸= a ∈ Q, then

|a|∞
∏
p∈P
|a|p = 1.

Proof. Problem 7.11. □

Next we discuss absolute values on a number field K. If | | is an absolute value
on K, its restriction to Q is an absolute value on Q, and so must belong to either
∞ or one of the p-adic places on Q. Hence absolute values on K are precisely
extensions of those on Q. If v ∈M(K), we will write | |v for an absolute value that
represents it. We know that | |v extends either | |∞ or | |p for some p ∈ P, and
we say that v lies over ∞ or p respectively; we denote it by writing v|∞ or v|p.
The place v ∈ M(K) is archimedean if and only if v|∞. Sometimes we will write
v ∤∞ to mean that v is non-archimedean, i.e. lies over some p-adic place of Q. For
each place u ∈ M(Q) there may be more than one place v ∈ M(K) such that v|u,
however each places v ∈M(K) lies over precisely one place u ∈M(Q).

First we describe all archimedean places of K. Let σ1, . . . , σr be real embed-
dings of K, and τ1, τ1, . . . , τs, τs conjugate pairs of complex embeddings, then

r + 2s = d = [K : Q].

Notice that since Q∞ = R ⊂ C, the absolute value | |∞ is defined on R and on C.
Also, for each a ∈ K

σi(a) ∈ R, τj(a), τ j(a) ∈ C
for each 1 ≤ i ≤ r and 1 ≤ j ≤ s. If ρ is one of these embeddings, then we define
an absolute value | |ρ on K by

|a|ρ = |ρ(a)|∞.
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It is easy to notice that if | |τj = | |τj
for each 1 ≤ j ≤ s. However, the absolute

values

| |σ1
, . . . , | |σr

, | |τ1 , . . . , | |τs
are not equivalent to each other. These represent all the archimedean places of K.
For each v ∈M(K), we will write Kv for the completion of K at v. If v|u for some
u ∈M(Q), then Kv/Qu is an extension of fields, and we will define the local degree
of K at v to be the degree of this extension, and denote it by

dv = [Kv : Qu].

We will also write sometimes Qv where v ∈M(K) to mean Qu, where u ∈M(Q) is
the unique place over which v lies. Notice that if v ∈ M(K) is archimedean, then
Kv is either R or C, depending on whether v is real or complex, i.e. corresponds to
a real or to a complex embedding. Therefore, for each v|∞

dv = [Kv : Q∞] = [Kv : R] =
{

1 if v is real
2 if v is complex.

Therefore ∑
v|∞

dv = r + 2s = d.

Next we describe non-archimedean places of K. Let p be a prime in Z, so that
(p) = pZ is a prime ideal in Z. Recall that OK , the ring of algebraic integers of K,
is a Dedekind domain, which means that there is unique factorization into prime
ideals in OK . Notice that Z ∈ OK , and so pOK is an ideal in OK , although it may
no longer be prime. Then there exist prime ideals P1, . . . , Pk and positive integers
e1, . . . , ek such that

pOK = P e1
1 . . . P ek

k ,

and
∑k

i=1 ei = d; each such ei is called the ramification degree of Pi over p. First
we define |0|Pi

= 0. Now let 0 ̸= a ∈ OK , then for each Pi, 1 ≤ i ≤ k, define

ordPi a = max{j ∈ Z : a ∈ P j
i },

and let

|a|Pi = p
−

ordPi
a

ei .

The number ordPi
a is well-defined due to unique factorization of ideals into powers

of prime ideals: it is precisely the power to which Pi divides aOK . Notice that K
is the field of fractions of OK , i.e.

K =
{a
b
: a, b ∈ OK

}
.

Then for each α = a
b ∈ K with a, b ∈ OK , define

(7.31) |α|Pi
=
|a|Pi

|b|Pi

.

This is an absolute value on K, which restricts to the usual p-adic absolute value
on Q (Problem 7.12). Hence for each prime p in Z, we defined absolute values lying
over it; these are all the non-archimedean places of K. Suppose v ∈ M(K) lies
over p, and Pi is the corresponding prime ideal of OK with ramification degree ei
over p. In a Dedekind domain every nonzero prime ideal is maximal, hence Pi is a
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maximal ideal, and so OK/Pi is a field; in fact, it is a finite field of characteristic
p, meaning that

|OK/Pi| = pfi ,

for some fi ∈ Z>0. This fi is called the inertia degree of Pi over p. Its significance
for our purposes is that the local degree dv = [Kv : Qp] is equal to eifi. A result
from algebraic number theory implies that if P1, . . . , Pk are prime ideals in OK

lying over a rational prime p with respective ramification degrees e1, . . . , ek and
ramification degrees f1, . . . , fk, then

k∑
i=1

eifi = d.

In particular this means that ∑
v|u

dv = d

is true for any u ∈ M(Q). The Artin - Whaples product formula works over a
number field in a similar way as over Q: we state here without proof.

Theorem 7.4.4. If 0 ̸= a ∈ K, then∏
v∈M(K)

|a|dv
v = 1.

Example 7.4.1. Let K = Q(
√
2), then d = 2. Since K is totally real, there are

no complex embeddings. Hence if v ∈M(K) is archimedean, then Kv = R, and so
dv = 1. Since ∑

v|∞

dv = 2,

K must have two archimedean places. These are precisely the places corresponding
to embeddings σ1, σ2 : K → R, given by

σ1(
√
2) =

√
2, σ2(

√
2) = −

√
2,

and fixing Q, hence σ1 is the identity. Let v1, v2 be the archimedean places corre-
sponding to embeddings σ1, σ2 respectively. Notice that for every α ∈ K, there exist
a, b ∈ Q such that α = a+ b

√
2, hence

|α|v1 = |σ1(a+ b
√
2)|∞ = |a+ b

√
2|∞,

and

|α|v2 = |σ2(a+ b
√
2)|∞ = |a− b

√
2|∞.

Now let us look at non-archimedean places of K. Consider for instance all
places v ∈M(K) lying over 7. Notice that

7 = (3 +
√
2)(3−

√
2),

therefore the ideal 7OK no longer prime in OK splits as the product of these two
prime ideals:

7OK = P1P2,
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where P1 = (3 +
√
2)OK and P2 = (3 −

√
2)OK . This means that there are two

places lying over 7, corresponding to P1 and P2, call them u1 and u2 respectively.
Then du1 = du2 = 1. Notice for instance that

3 +
√
2 ∈ P1, 3 +

√
2 /∈ P 2

1 , 3 +
√
2 /∈ P2,

3−
√
2 ∈ P2, 3−

√
2 /∈ P 2

2 , 3−
√
2 /∈ P1,

hence
|3 +

√
2|u1

= 7−1, |3−
√
2|u1

= 70,

|3 +
√
2|u2

= 70, |3−
√
2|u2

= 7−1.

Recall that prime ideals in OK are maximal. This implies that 3 ±
√
2 are not

contained in any other prime ideal of OK , hence for every place v ∈ M(K) which

is not equal to v1, v2, u1, or u2, |3±
√
2|v = 1. Hence∏

v∈M(K)

|3±
√
2|v = |3 +

√
2|∞|3−

√
2|∞7−1 = 1.

This is a demonstration of the product formula at work.

Remark 7.4.1. The same construction of absolute values as described in this sec-
tion can be carried out for any field extension of number fields L/K. In this case,
we would replace the ground field Q with K, and talk about places of L lying
over places of K in the same precise manner. We will assume this more general
construction going forward.

We now introduce height functions, which serve as the main tool used to mea-
sure arithmetic complexity. We have already seen an example of a height functionH
in Section 6.4, however H only carries archimedean information: it only measured
the size of a given algebraic number at the archimedean places. We are now prepared
to define more general heights on vectors, which incorporate arithmetic information
at all the places of a number field. As above, K is a number field of degree d over
Q and M(K) is its set of places. Let n ≥ 2 be an integer. For each place v of K
we define a local height Hv for each vector x ∈ Kn

v by

Hv(x) =

{ (∑n
i=1 |xi|2v

) 1
2 if v|∞,

max1≤i≤n |xi|v if v ∤∞.

Then for each 0 ̸= x ∈ Kn, define the global height HK by

(7.32) HK(x) =
∏

v∈M(K)

Hv(x)
dv .

Notice that for each 0 ̸= x ∈ Kn, Hv(x) = 1 for all but finitely many places v
of K, hence the product in (7.32) is actually finite, therefore convergent, meaning
that HK is well-defined. Also notice that if 0 ̸= α ∈ K and 0 ̸= x ∈ Kn, then

HK(αx) =
∏

v∈M(K)

|α|dv
v Hv(x)

dv

=

 ∏
v∈M(K)

|α|dv
v

 ∏
v∈M(K)

Hv(x)
dv = HK(x)(7.33)

by the product formula. This means that HK is a homogeneous function, and so is
projectively defined. Indeed, define an equivalence relation on Kn \ {0} by writing
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x ∼ y whenever x = αy for some 0 ̸= α ∈ K. It is easy to check that this indeed is
an equivalence relation, and we write [x1 : · · · : xn] for the equivalence class of the
vector x = (x1, . . . , xn) ∈ Kn, which is called the projective point corresponding
to x. The space of all projective points on Kn is called the (n − 1)-dimensional
projective space over K, i.e.

Pn−1(K) = {[x1 : · · · : xn] : (x1, . . . , xn) ∈ Kn \ {0}}.

Notice that this is precisely the space of all lines through the origin in Kn, i.e. the
space of 1-dimensional subspaces of Kn. This is the simplest example of the more
general construction of Grassmannian that we will encounter later. Then (7.33)
implies that HK is well-defined on Pn−1(K), i.e. it can be viewed as a function
HK : Pn−1(K)→ R>0.

Notice that the definition of HK depends on K. Let L be an extension of K of
degree e, hence [L : Q] = de. For each place v ∈M(L), we will write ev = [Lv : Kv],
hence [Lv : Qv] = dvev. Also notice that∑

v∈M(L),v|u

ev = e

for each place u ∈M(K). Suppose that 0 ̸= x ∈ Kn, then

HL(x) =
∏

v∈M(L)

Hv(x)
dvev =

∏
u∈M(K)

∏
v∈M(L),v|u

Hv(x)
duev ,

but since x ∈ Kn, Hv(x) = Hv′(x) whenever v, v′ ∈M(L) lie over the same place
u ∈M(K). Hence:

HL(x) =
∏

u∈M(K)

Hu(x)
du

∑
v∈M(L),v|u ev =

∏
u∈M(K)

Hu(x)
due = HK(x)e.

This suggests that if we want a height function that does not depend on the field
of definition, we may want to introduce the normalizing exponent 1

[K:Q] .

Definition 7.4.2. Let A be the field of all algebraic numbers, as before. Define
the absolute height H : An \ {0} → R>0 by

H(x) = HK(x)
1

[K:Q]

for every 0 ̸= x ∈ An, where K is any number field containing the coordinates of
x. By the discussion above, H does not depend on the choice of this number field.
Once again, notice that H is projectively defined. We will also adopt a convention
that H(0) = 1.

We also define the inhomogeneous height hK : Kn → R>0 by

hK(x) = HK(1,x),

for every x ∈ Kn, and the absolute inhomogeneous height h : An → R>0 by

h(x) = hK(x)
1

[K:Q] ,

for every x ∈ An, where K is any number field containing the coordinates of x.
Notice that hK and h are no longer projectively defined, i.e. if α ∈ A, then h(αx)
is not necessarily equal to h(x). Also notice that for every x ∈ An,

H(x) ≤ h(x).
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For any algebraic number α ∈ A, we define its Weil height to be

h(α) = H(1, α).

We now briefly outline the basic properties of heights, proofs of which are left to
the exercises.

Lemma 7.4.5. The following statements are true:

(1) If x ∈ Z is such that gcd(x1, . . . , xn) = 1, then

H(x) = ∥x∥2 =
(
x2
1 + · · ·+ x2

n

) 1
2 ,

i.e. height of an integer vector is the Euclidean norm of the corresponding
primitive vector.

(2) If 0 ̸= x0 ∈ Z, and

x =

(
x1

x0
, . . . ,

xn

x0

)
∈ Qn,

is such that gcd(x0, x1, . . . , xn) = 1, then

h(x) =
(
x2
0 + x2

1 + · · ·+ x2
n

) 1
2 ,

i.e. the inhomogeneous height of a rational vector is the Euclidean norm
of the corresponding reduced integer vector (x0, x1, . . . , xn).

Proof. Problem 7.13. □

Lemma 7.4.6. If m1, . . . ,mk ∈ Z, and x1, . . . ,xk ∈ An, then

h

(
k∑

i=1

mixi

)
≤

(
k∑

i=1

m2
i

) 1
2 k∏
i=1

h(xi).

In particular, if α1, . . . , αk ∈ A, then

h

(
k∑

i=1

miαi

)
≤

(
k∑

i=1

m2
i

) 1
2 k∏
i=1

h(αi).

Additionally, for any α, β ∈ A,

h(αβ) ≤ h(α)h(β).

Proof. Problem 7.14. □

Lemma 7.4.7. Suppose that K and L are isomorphic number fields with σ : K → L
an isomorphism, and let us also write σ for the isomorphism it induces from Kn

to Ln for each integer n ≥ 1. Then

H(σ(x)) = H(x)

for each x ∈ K. Hence conjugate vectors have the same height. Notice in particular
that this implies that conjugate algebraic numbers have the same height.

Proof. Problem 7.15. □

The notion of height also extends to polynomials. In particular, if F is a
polynomial with coefficients a1, . . . , an ∈ A, then we define

H(F ) = H(a1, . . . , an).
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Lemma 7.4.8. Let P (X), Q(X) ∈ A[X] be polynomials in one variable with coeffi-
cients in A of degrees n1, n2 respectively, and let n = min{n1, n2}. Then

H(PQ) ≤
√
n+ 1 H(P )H(Q).

Proof. Let K be a number field containing coefficients of P and Q, and sup-
pose it has degree d over Q. It is easy to observe that for every v ∈ M(K) such
that v ∤∞,

Hv(PQ) = Hv(P )Hv(Q),

where these are precisely the local heights of corresponding coefficient vectors. Let
v ∈M(K), v|∞, then by Problem 7.16

Hv(PQ) ≤
√
n+ 1 Hv(P )Hv(Q).

Therefore we have:

H(PQ) =
∏

v∈M(K)

Hv(PQ)
dv
d

≤
∏
v∤∞

(Hv(P )Hv(Q))
dv
d

∏
v|∞

(
|n+ 1|

1
2
v Hv(P )Hv(Q)

) dv
d

= H(P )H(Q)
∏
v|∞

|n+ 1|
dv
2d
v

=
(√

n+ 1
)∑

v|∞ dv

d H(P )H(Q) =
√
n+ 1 H(P )H(Q).

This completes the proof. □

Corollary 7.4.9. Suppose that

P (X) = ad(X − α1) . . . (X − αd),

where ad, α1, . . . , αd ∈ A. Then

(7.34) H(P ) ≤ 2
d−1
2 h(α1) . . . h(αd).

Proof. Notice that here we can view P (X) as a product of d linear polyno-
mials in one variable, hence applying Lemma 7.4.8 d− 1 times yields (7.34). □

For a vector x ∈ An, we define its degree to be

deg(x) = [Q(x1, . . . , xn) : Q].

Also, for a projective point [x] we write deg([x]) to mean the minimum of deg(x)
taken over all representatives of [x]. We are now ready to prove the fundamental
property of heights, which was first established by Northcott in 1949 [Nor49]: this
result is known as Northcott’s theorem, and any height function satisfying this
theorem (there are others, not only our H) is said to satisfy Northcott’s finiteness
property.

Theorem 7.4.10. Let n, d,B be positive integers. Then the set

Sn(B, d) =
{
[x] ∈ Pn−1(A) : deg([x]) ≤ d, H(x) ≤ B

}
is finite.
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Proof. If x = (x1, x2, . . . , xn) ∈ An with xi ̸= 0 for some 1 ≤ i ≤ n, then

H(x) = H
(

x
xi

)
. Therefore we can always choose a representative x of [x] ∈

Pn−1(A) with one coordinate equal to 1. Without loss of generality assume x =
(1, x2, . . . , xn) ∈ An, then

H(x) ≥ H(1, xi) = h(xi), ∀ 2 ≤ i ≤ n.

Therefore it suffices to prove that the set

S(B, d) = {α ∈ A : deg(α) ≤ d, h(α) ≤ B}
is finite. Notice that if α ∈ S(B, d), then it must be a root of a monic polynomial
with rational coefficients of degree at most d

P (X) = (X − α1)(X − α2) . . . (X − αd),

where α = α1, α2, . . . , αd are conjugates of α. By Lemma 7.4.7, h(α) = h(αi) for
every 1 ≤ i ≤ d, and so h(αi) ≤ B for all 1 ≤ i ≤ d. By Corollary 7.4.9,

(7.35) H(P ) ≤ 2
d−1
2 h(α1) . . . h(αd) ≤ 2

d−1
2 Bd.

Since P (x) is monic, let
(
m0

m , . . . , md−1

m , 1
)
∈ Q be the coefficient vector of P , written

is such a way that gcd(m,m0, . . . ,md−1) = 1. Then by Lemma 7.4.5,

H(P ) =
√
m2 +m2

0 + · · ·+m2
d−1 = ∥m∥2,

where m = (m,m0, . . . ,md−1) ∈ Zd+2, and ∥ ∥2 stands for the Euclidean norm, as
usual. It is now easy to see that there are only finitely many integral vectors m

with ∥m∥2 ≤ 2
d−1
2 Bd, and so there are only finitely many polynomials P satisfying

(7.35). This means that S(B, d) must be finite, and so completes the proof. □

Remark 7.4.2. The cardinality of Sn(B, d) has been investigated by various au-
thors, starting with a result of Schanuel in 1979. More recently there were upper
and lower bounds produced by Schmidt, Gao, Thunder, Masser, Vaaler, and Wid-
mer among others, however there still is no known general asymptotic formula for
|Sn(B, d)| (see [Wid09] and [Wid10] for some recent results and a more detailed
bibliogrpahy).

Next we will show how the notion of height can be extended to subspaces of
Kn. Let V ⊆ Kn be an ℓ-dimensional subspace, 1 ≤ ℓ ≤ n. Let x1, . . . ,xℓ be a
basis for V , and write X = (x1 . . . xℓ) for the corresponding n × ℓ basis matrix.
Let I be the set of subsets of {1, . . . , n} of cardinality ℓ, then

|I| =
(
n

ℓ

)
.

For each I ∈ I, let XI be the ℓ × ℓ submatrix of X whose rows are indexed by
elements of I. We introduce lexicographic ordering on elements of I, and write

I =
{
I1, . . . , I(nℓ)

}
with respect to that order. Then define a vector of Grassmann coordinates (also
known as Plücker coordinates) of V with respect to the basis x1, . . . ,xℓ to be

g(X) =

(
det(XI1), . . . ,det

(
XI

(nℓ)

))
∈ K(nℓ).
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Suppose y1, . . . ,yℓ is a different basis for V , and write Y for the corresponding
basis matrix. Then there exists a matrix U ∈ GLℓ(K) such that

Y = XU,

and so it is easy to see that

g(Y ) = det(U)g(X).

As before, we write [g(X)] for the projective point in P(
n
ℓ)−1 represented by the

vector g(X), hence [g(X)] = [g(Y )], and so we denote this projective point [g(V )]
to indicate that it does not depend on the choice of the basis. Define

Gℓ
n(K) = {[g(V )] : V ⊆ Kn, dimK(V ) = ℓ}.

Gℓ
n(K) is called the

(
n
ℓ

)
-Grassmann component of Kn, and this is the projective

space whose points correspond to ℓ-dimensional subspaces of Kn. Notice that this
is a generalization of the projective space Pn−1(K), which can be thought of as the
space of one-dimensional subspaces of Kn. This is perhaps the simplest example
of a parameter space, i.e. of a general type of objects in algebraic geometry which
are called moduli spaces.

Using this notation, we can now define height of an ℓ-dimensional subspace V
of Kn by

(7.36) H(V ) = H(g(V )).

Of course, this works in precisely the same manner for subspaces of An. This height
function on subspaces of a vector space was originally introduced by W. M. Schmidt
in [Sch67] and is called the Schmidt height. Height can also be defined for more
general objects, such as algebraic varieties and intersection cycles; this is done in
a manner similar in spirit to the simplest case of linear varieties (namely vector
subspaces) that we considered here, namely by parametrizing these objects in an
appropriate manner. This, however, is more in the realm of arithmetic geometry,
and out of the scope of our exposition.

Let us use Weil height on algebraic numbers to briefly revisit Roth’s theo-
rem from Diophantine approximation. Recall that for a positive real number δ,
a δ-approximation to an algebraic number α is a rational number p

q with q > 0,

gcd(p, q) = 1, and ∣∣∣∣α− p

q

∣∣∣∣ < 1

q2+δ
.

Then Roth’s theorem (Theorem 4.5.1) can be restated by saying that any algebraic
number α has only finitely many δ-approximations for each δ > 0. A natural
question to ask is how many δ-approximations are there for a fixed algebraic α and
a fixed δ > 0? Recall that in Section 4.5 we were counting the number of δ- and
related approximations to α in fixed intervals and windows of exponential width.
We can now state a result on the overall number of δ-approximations. There are
bounds produced by Davenport, Roth, Luckhardt, Mueller, and Schmidt, among
others. A version of the following theorem is due to Bombieri and Van der Poorten.

Theorem 7.4.11. Let α be an algebraic number of degree d ≥ 3, and let 0 < δ < 1.
Then the number of δ-approximations to α is less than

(7.37)
log+ log h(α)

log(1 + δ)
+ c(d, δ),
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where log+ a = max{0, log a}, and

c(d, δ) =
108

δ5
(log 2d)2 log

((
50

δ

)2

log 2d

)
.

The first term in (7.37) is best possible, however c(d, δ) can likely be improved; see
[Sch91] for many further details on this subject.
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7.5. Mahler measure and Lehmer’s problem

Notice that the bound on the number of δ-approximations to an algebraic num-
ber α in Theorem 7.4.11 depends on the height of α; in particular, the smaller h(α)
is, the fewer such approximations are there. This underlines the meaning of h(α) in
the following sense. Height measures arithmetic complexity of an algebraic number,
incorporating together its size (i.e. archimedean norms) with its divisibility prop-
erties (i.e. non-archimedean norms). Hence, roughly speaking, the larger height
is, the more “complicated” the algebraic number is, the “closer” it is to transcen-
dental numbers. We know, on the other hand, that transcendental numbers are
better approximable than algebraic numbers, so the dependence of the number of
δ-approximations on the height makes sense. But how small can h(α) be? In order
to investigate this question, it will be convenient to use a different height h1 on
algebraic numbers, which is closely related to h. For each α ∈ A, define

h1(α) =
∏

v∈M(K)

max{1, |α|v}
dv
d ,

where K = Q[α], d = [K : Q], and dv = [Kv : Qv]. Then (Problem 7.17) for every
α ∈ A,

h1(α) ≤ h(α) ≤
√
2 h1(α).

Hence instead of investigating lower bounds for h(α) we can talk about lower bounds
for h1(α). It is easy to see that

h1(α) ≥ 1.

Further, a classical theorem of Kronecker guarantees that h1(α) = 1 if and only if
α is either 0 or a root of unity. So suppose that α ∈ A is of fixed degree d, and
h1(α) > 1. How small can h1(α) be? In other words, is there a gap in values of
h1(α), or is it continuous? In this direction we state a famous conjecture of D. H.
Lehmer, dating back to 1932 [Leh33].

Conjecture 7.5.1. There exists an absolute constant C ∈ R>1 such that for any
algebraic number α of degree d which is not 0 or a root of unity, we have

h1(α) ≥ C
1
d .

In this section we briefly review some of the material required to understand
this outstanding conjecture and its significance. For more detailed information
on the material of this section see [EW99], which is an excellent account of this
fascinating subject.

Let α1, . . . , αd be conjugate algebraic numbers of degree d, and let

f(x) = ad

d∏
i=1

(x− αi) =

d∑
i=0

aix
i ∈ Z[x]

be their minimal polynomial. We define the Mahler measure of f(x) to be

(7.38) M(f) = |ad|∞
d∏

i=1

max{1, |αi|∞}.

If α is an algebraic number of degree d and f(x) ∈ Z[x] is its minimal polynomial,
then (Problem 7.18)

h1(α) = M(f)
1
d .
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Hence we can restate Lehmer’s conjecture in terms of Mahler measure, which inci-
dentally is how it was originally stated.

Conjecture 7.5.2. There exists an absolute constant C ∈ R>1 such that for any
polynomial f(x) ∈ Z[x] which is not a product of cyclotomics and a power of x, we
have

M(f) ≥ C.

Moreover,

C = M(g) = 1.1762808...,

where

g(x) = x10 + x9 − x7 − x6 − x5 − x4 − x3 + x+ 1

is the so-called Lehmer’s polynomial.

We can think of Mahler measure as another height function defined on poly-
nomials in Z[x]; in particular it satisfies Northcott’s finiteness property as in The-
orem 7.4.10. More specifically, let B, d ∈ R≥1, and consider the set

S(B, d) = {f(x) ∈ Z[x] : deg(f) ≤ d, M(f) ≤ B}.
Northcott’s theorem (Theorem 7.4.10) implies that it is finite. Indeed, if f(x) ∈
S(B, d), then its roots α1, . . . , αd must be in the set

S′(B, d) = {α ∈ A : deg(α) ≤ d, h(α) ≤ B
1
d ≤ B},

which is finite by Theorem 7.4.10.

The definition of Mahler measure immediately implies a few nice properties
that it satisfies. First of all, M(f) = 1 if and only if f(x) is a product of cyclotomic
polynomials and xn for some n ∈ Z>0. Also notice that unlike the height H on
polynomials, which only satisfies Lemma 7.4.8, M is a multiplicative function, i.e.

M(fq) = M(f)M(q),

for any two polynomials f(x), q(x). On the other hand, Mahler proved that M(f)
is comparable to H(f), specifically that there exist constants c1(d) and c2(d), de-
pending only on the degree d of the polynomial f , such that

(7.39) c1(d)H(f) ≤M(f) ≤ c2(d)H(f).

Notice that the definition of Mahler measure automatically extends to polyno-
mials in C[x]. Although we can no longer think of it as a height function, since
the roots of a polynomial in C[x] are not necessarily algebraic, the multiplicative
property remains true. Mahler measure can also be defined as an integral via an
application of the classical Jensen’s formula from complex analysis:

Theorem 7.5.1. For any α ∈ C,

e
∫ 1
0
log|α−e2πiθ| dθ = max{1, |α|},

where | | stands for the regular | |∞ absolute value on C.

This is a standard theorem, a proof of which can be found for instance in [EW99],
Lemma 1.9. An immediate application of this is the following result, which was
originally proved by Mahler; in fact, this along with (7.39) is the reason why M(f)
is called Mahler measure.
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Corollary 7.5.2. For any nonzero f(x) ∈ C[x],

M(f) = e
∫ 1
0
log|f(e2πiθ)| dθ.

Proof. Let d = deg(f), then there exist ad, α1, . . . , αd ∈ C such that

f(x) = ad

d∏
j=1

(x− αj),

and so

log
∣∣f (e2πiθ)∣∣ = log |ad|+

d∑
j=1

log
∣∣αj − e2πiθ

∣∣ .
Therefore, by Theorem 7.5.1

e
∫ 1
0
log|f(e2πiθ)| dθ = |ad|

d∏
j=1

e
∫ 1
0
log|αj−e2πiθ| dθ

= |ad|
d∏

j=1

max{1, |α|} = M(f).

This completes the proof. □

Corollary 7.5.2 hence implies that Mahler measure is a continuous function on C[x].

Now let us review some of the results in the direction of Lehmer’s conjecture.
For a polynomial f(x) ∈ C[x] of degree d, define its reciprocal polynomial

f∗(x) = xdf
(
x−1

)
.

We will say that f(x) is reciprocal if f(x) = f∗(x), and that it is non-reciprocal
otherwise. The reciprocal condition on f(x) is equivalent to the condition that its
coefficients read forward same as backward. The following theorem was proved by
C. Smyth in 1971 [Smy71].

Theorem 7.5.3. If f(x) ∈ Z[x] is non-reciprocal such that f(0)f(1) ̸= 0, then

M(f) ≥M(x3 − x− 1) = 1.324...

Smyth’s theorem implies that we can restrict our attention to reciprocal polynomi-
als. However, in this case no absolute lower bound is known. The best unconditional
bound known depends on the degree of f(x): it was obtained by E. Dobrowolski in
1979 [Dob79] and looks as follows.

Theorem 7.5.4. Let ε > 0. Then there exists d0(ε) ∈ Z such that for every
f(x) ∈ Z[x] of degree d > d0(ε),

(7.40) M(f) > 1 + (1− ε)

(
log log d

log d

)3

.

Actually, Cantor, Straus, Loubotin, and Rausch slightly improved Dobrowolski’s
method in several papers published between 1982 and 1985, which allowed to replace
(1 − ε) in the lower bound of (7.40) with (9/4 − ε), however getting rid of the
dependence on d seems to be a major obstacle. Dobrowolski’s theorem stated in
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terms of height of algebraic numbers implies that there exists a positive constant
C1 such that for every α ∈ A of degree d, we have

h1(α) >

(
1 + C1

(
log log d

log d

)3
) 1

d

,

which is weaker than the bound of the form C
1
d proposed by Conjecture 7.5.1 where

the constant C is independent of d. However, if we consider pairs of algebraic
numbers α and 1 − α, it turns out to be possible to produce a lower bound on
the product of their heights which is completely independent of d. The following
Lehmer-type result with an implicit constant was first obtained by Zhang in 1992
with the use of Arakelov theory; in 1995 Zagier obtained an elementary proof of it
with an explicit constant.

Theorem 7.5.5 (Zhang, Zagier). Let α ∈ A be not equal to 0, 1, or 1±
√
−3

2 , then

h1(α)h1(1− α) ≥

√
1 +
√
5

2
,

with equality if and only if α or 1− α is a primitive 10-th root of unity.

Notice that Theorem 7.5.5 can be viewed as a uniform lower bound on the
height of algebraic points on the curve

x+ y = 1.

There is also a uniform upper bound on all such points that satisfy one additional
condition.

Definition 7.5.1. Two numbers α, β ∈ A are called multiplicatively dependent if
there exist t ∈ A, a, b ∈ Z, and ε1, ε2 roots of unity such that

α = ε1t
a, β = ε2t

b.

The following bound was obtained in 1998 by P. Cohen and U. Zannier in [CZ98].

Theorem 7.5.6. Let 0, 1 ̸= α ∈ A be such that α and 1 − α are multiplicatively
dependent, then

h1(α) ≤ 2,

with equality if and only if α = 2 or 1/2.

Hence by combining the results of Theorems 7.5.5 and 7.5.6, we conclude that if
(x, y) is an algebraic point on the curve

x+ y = 1

with multiplicatively dependent coordinates ̸= 0, 1, 1±
√
−3

2 , then√
1 +
√
5

2
≤ h1(x)h1(y) ≤ 4.

This is a rare example of a uniform bound for the height of a set of algebraic points
on an algebraic variety.
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7.6. Points of small height

In the previous section we saw an example of uniform bounds on height of
points on a simple curve. In a more general situation we cannot hope to obtain
such nice results. In fact, on higher dimensional varieties it is usually very difficult
to prove existence of even a single point of relatively small height. If however we
were to prove existence with an explicit bound on height, it would reduce the search
for such points to a finite set due to Northcott’s theorem. In other words, we can
think of a bound on the height of a point on variety over a fixed number field K as
a search bound.

We start discussing this topic with the case of a linear variety, i.e. by revisiting
Siegel’s lemma we introduced in Section 6.4, but this time in a more powerful form.
Let us look back at Theorems 6.4.1 and 6.4.2: they provide a bound on the height
of a solution to a homogeneous linear system in terms of the height of the coefficient
matrix A of this system. Notice, however, that if we multiply A by 2 the solution
space does not change, but height of A certainly changes in a way that would
affect the upper bounds of these theorems. This problem is circumvented by using
Schmidt height (7.36) on the solution space instead of the height of a coefficient
matrix. The following version of Siegel’s lemma was proved by Bombieri and Vaaler
in 1983, see [BV83].

Theorem 7.6.1. Let V be an ℓ-dimensional subspace of Kn, ℓ < n. Then there
exists a basis x1, ...,xℓ ∈ On

K for V such that

(7.41)

ℓ∏
i=1

H(xi) ≤
{
n|∆K |1/d

}ℓ/2

H(V ),

where ∆K is the discriminant of K, and d = [K : Q] as usual.

In other words, Theorem 7.6.1 states that a subspace V of Kn has a basis of
relatively small height with coordinates in OK , where the bound on the height is
explicit and depends on the height of V . In particular, it implies the existence of a
non-zero point of small height in V , bounded as follows.

Corollary 7.6.2. Let V be an ℓ-dimensional subspace of Kn, ℓ < n. Then there
exists 0 ̸= x ∈ On

K ∩ V such that

(7.42) H(x) ≤
{
n|∆K |1/d

}1/2

H(V )1/ℓ.

This corollary can be viewed as a generalization of Minkowski’s Convex Body The-
orem, specifically of Corollary 1.5.1 (Problem 7.19). The dependence on H(V ) in
(7.41) and (7.42) is sharp. An analogous bound has been proved for a small-height
basis of a subspace V of An by Roy and Thunder, see [RT96], where the constant
in the upper bound does not depend on any number field; this is often desired,
since ∆K can be quite large.

Next we consider the case of a quadratic hypersurface. Namely, let

F (X) =

n∑
i=1

n∑
j=1

fijXiXj ∈ K[X1, . . . , Xn]

be a quadratic form in n variables with coefficients in the number field K of degree
d over Q. We say that F is isotropic over K if there exists 0 ̸= x ∈ Kn such that
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F (x) = 0. Provided that F is isotropic over K, we are interested in proving the
existence of a non-zero point of bounded height in the quadratic variety

VK(F ) = {x ∈ Kn : F (x) = 0}

with an explicit bound on height. The following theorem was originally proved by
Cassels in 1955 for the case K = Q, and then extended to arbitrary number fields
by Raghavan in 1975; see [Cas55] and [Rag75].

Theorem 7.6.3. Let F be a quadratic form, which is isotropic over K as above,
then there exists 0 ̸= x ∈ VK(F ) such that

H(x) ≤ c1(K,n)H(F )
n−1
2 ,

where the constant c1(K,n) in the upper bound is explicit and depends on K and n.

The dependence of H(F ) in the upper bound of Theorem 7.6.3 is best possible, as
demonstrated by the following example due to M. Kneser [Cas56]. Consider an
integral quadratic form

F (X) = X2
1−

n∑
i=2

(Xi−cXi−1)
2 = (1−c2)X2

1−(1+c2)

n−1∑
i=2

X2
i −X2

n+2c

n∑
i=2

Xi−1Xi

for some large positive integer c. Then H(F ) = 1 + c2. Now, if F (x) = 0 for some
0 ̸= x ∈ Zn, then it must be true that

0 ̸= x2
1 =

n∑
i=2

(xi − cxi−1)
2 = y22 + · · ·+ y2n,

where yi = xi − cxi−1 for each 2 ≤ i ≤ n. We can express

xn = yn + cyn−1 + · · ·+ cn−1y2 + cn−1x1.

Then the smallest possible absolute value of xn becomes

(cn−1 − cn−2)|x1| >
1

2
cn−1 =

1

2
(H(F )− 1)

n−1
2 .

Let us now consider the case when instead of being a quadratic form, F is an
inhomogeneous quadratic polynomial over K. In other words, let

F (X) =

n∑
i=1

n∑
j=1

fijXiXj +

n∑
i=1

f0iXi + f00 ∈ K[X1, . . . , Xn],

and suppose that

VK(F ) = {x ∈ Kn : F (x) = 0}
is not empty. We want to prove the existence of a point x ∈ VK(F ) of bounded
height. Notice that we can “homogenize” F by adding one more variable X0, i.e.
consider the quadratic form in n+ 1 variables

F (X) =

n∑
i=0

n∑
j=1

fijXiXj ∈ K[X0, . . . , Xn].

Problem 7.20 guarantees that a point x = (x0, x1, . . . , xn) ∈ Kn+1 with x0 ̸= 0 is
a zero of F (X0, . . . , Xn) if and only if the point x′ = (x1, . . . , xn) ∈ Kn is a zero of

F1(X1, . . . , Xn) := F (1, X1, . . . , Xn).
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Hence we want to look for small-height zeros of F with additional condition x0 ̸= 0.
The following theorem was originally proved for the case K = Q by Masser in
1998 [Mas98] and extended over an arbitrary number field in [Fuk04].

Theorem 7.6.4. Let F be a quadratic form in n+1 ≥ 2 variables with coefficients
in K. Suppose that there exists x = (x0, ..., xn) ∈ Kn+1 such that F (x) = 0 and
x0 ̸= 0, then there exists such x with

(7.43) H(x) ≤ c2(K,n)H(F )
n+1
2 ,

where the constant in the upper bound is explicit, and depends in particular on ∆K .

This implies that if an inhomogeneous quadratic polynomial in n variables with
coefficients in K has a zero over K, then it has such a zero of height bounded as in
(7.43). The exponent in the upper bound of (7.43) is best possible as demonstrated
by an example of Masser presented in [Mas98]: for a fixed integer a ≥ 2, consider
the inhomogeneous quadratic polynomial

F (X1, . . . , Xn) = 2X1 − (X2 − aX1)
2 − · · · − (Xn − aXn−1)

2 − 2a2.

The height of this polynomial is a constant multiple of a2. It is not very difficult
to show that the “smallest” rational zeros this polynomial has are of the height

≥ c(n)an+1 = c′(n)H(F )
n+1
2 for appropriate dimensional constants c(n), c′(n). See

also [Fuk13] for a survey of a vast variety of further results on Cassels’ theorem and
its many generalizations, including the more complicated inhomogeneous situation
over the ring of integers instead of a field.

What can be said about bounds on height of solutions of polynomials of degree
higher than 2 in an arbitrary number of variables over a fixed number field K?
There are some known results in this direction for rational cubic forms in large
enough number of variables: the current state of the art in this direction is a rather
technical result obtained in [BDE12]. For sufficiently general polynomials of higher
degree, this problem seems to be out of reach at the present time. In fact, such a
bound would provide an algorithm to decide whether a Diophantine equation has
an integral solution, and so would imply a positive answer to Hilbert’s 10th problem
in this case, i.e. this would mean that there exists an algorithm to decide whether
such an equation has nontrivial integral solutions. However, by the famous theorem
of Matijasevich [Mat70] Hilbert’s 10th problem is undecidable. This means that in
general such bounds do not exist over Q; in fact, they seem unlikely to exist over any
fixed number field even for a quartic polynomial (see [Mas02] for further details).
The problem becomes easier if we allow for solutions to lie over some extension of
K of bounded degree. The following basic bound is easy to prove (see [Fuk09b]).

Proposition 7.6.5. Let d ≥ 1, n ≥ 2, and F (X1, ..., Xn) be a homogeneous poly-
nomial in n variables of degree d with coefficients in a number field K. There exists
0 ̸= z ∈ An with degK(z) ≤ d such that F (z) = 0 and

H(z) ≤
√
2 H(F )1/d.

Here degK(z) is the degree [L : K], where L is the number field generated over K
by the coordinates of the point z.

Further investigations of small-height solutions of polynomial equations have
strong connections with arithmetic geometry via the study of points of bounded
height on algebraic varieties. This subject requires a more extensive theory of height
functions. An excellent source for further reading in this direction is [BG06].
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7.7. Problems

Problem 7.1. Prove Corollary 7.3.5.

Problem 7.2. Prove that
j∑

i=0

(
n+ i− 2

n− 2

)
=

(
n+ j − 1

n− 1

)
.

Problem 7.3. Prove that ∼ as defined in Definition 7.4.1 is an equivalence relation
on the set of all absolute values on a field K.

Problem 7.4. Prove that the only absolute value equivalent to the trivial one is
itself.

Problem 7.5. Prove that two absolute values | |1 and | |2 on a field K are equivalent
if and only if they induce the same topology.

Problem 7.6. Prove that | |∞ is an archimedean absolute value on Q.

Problem 7.7. Prove that | |p is a non-archimedean absolute value on Q for each
prime p ∈ Z.

Problem 7.8. Prove that

Z = {a ∈ Q : |a|p ≤ 1 ∀ primes p ∈ Z}.

Problem 7.9. Prove Lemma 7.4.2.

Problem 7.10. Prove that I = {a ∈ Z : |a| < 1} is a prime ideal in Z.

Problem 7.11. Prove Theorem 7.4.3 (Artin - Whaples Product Formula over Q):
if 0 ̸= a ∈ Q, then

|a|∞
∏
p∈P
|a|p = 1.

Problem 7.12. Prove that (7.31) defines an absolute value on a number field K,
which restricts to the usual p-adic absolute value on Q.

Problem 7.13. Prove Lemma 7.4.5.

Problem 7.14. Prove Lemma 7.4.6.

Problem 7.15. Prove Lemma 7.4.7.
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Problem 7.16. Let K be a number field, v ∈ M(K), v|∞, and let P and Q be
polynomials in one variable of degree ≤ n with coefficients in K. Use Cauchy’s
inequality to prove that

Hv(PQ) ≤
√
n+ 1 Hv(P )Hv(Q).

Problem 7.17. Prove that for every α ∈ A,
h1(α) ≤ h(α) ≤

√
2 h1(α).

Problem 7.18. Let α ∈ A be of degree d, and let f(x) ∈ Z[x] be its minimal
polynomial. Prove that

h1(α) = M(f)
1
d .

Problem 7.19. Let A be an n× ℓ integer matrix of rank ℓ < n. Let Λ = AZℓ be a
sublattice of Zn of rank ℓ. Let

V = spanR Λ = ARℓ

be the ℓ-dimensional subspace of Rn spanned by Λ, then Λ = V ∩ Zn. The famous
Cauchy-Binet formula then implies that the Schmidt height

H(V ) =
√
det (A⊤A) = detΛ.

Use Cauchy-Binet formula along with Corollary 1.5.1 (stated verbatim for the full-
rank lattice Λ in the Euclidean space V ) to prove that there exists 0 ̸= x ∈ Λ such
that

H(x) ≤ cnH(V )1/ℓ,

for some constant cn depending only on n.

Problem 7.20. Let K be a number field. Prove that a point x = (x0, x1, . . . , xn) ∈
Kn+1 with x0 ̸= 0 is a zero of a quadratic form F (X0, . . . , Xn) if and only if the
point x′ = (x1, . . . , xn) ∈ Kn is a zero of the quadratic polynomial

F1(X1, . . . , Xn) := F (1, X1, . . . , Xn).



Appendices

197



APPENDIX A

Some properties of abelian groups

Here we briefly discuss some properties of abelian groups, in particular outlining
a proof of the fact that any subgroup of a finitely generated abelian group is finitely
generated. Throughout this section, we will mostly deal with a finitely generated
abelian group G, written additively with 0 denoting the identity element and nx,
for n ∈ Z and x ∈ G, denoting the n-th power of the element x. A collection of
elements x1, . . . ,xk in an abelian group G is called linearly independent if whenever

n1x1 + · · ·+ nkxk = 0

for some n1, . . . , nk ∈ Z, then n1 = · · · = nk = 0. A linearly independent generating
set for an abelian group G is called a basis. An abelian group G is called free if it
has a basis. Hence free abelian groups are precisely lattices, and the most common
example of a finitely generated free abelian group is Zk, k ∈ Z>0. In fact, it turns
out that Zk is the only example of a finitely generated free abelian group, up to
isomorphism.

Lemma A.1. Let G be a finitely generated free abelian group. Then G ∼= Zk for
some k ∈ Z>0.

Proof. Let x1, . . . ,xk be a basis for G, then

G =

{
k∑

i=1

nixi : n1, . . . , nk ∈ Z

}
.

Define a map φ : G→ Zk, given by

φ

(
k∑

i=1

nixi

)
=

k∑
i=1

niei.

We leave it to the reader to check that this is a group isomorphism. □

Corollary A.2. Let G be a finitely generated free abelian group. Then every basis
in G has the same cardinality. This common cardinality is called the rank of G.

Proof. Let x1, . . . ,xk and y1, . . . ,ym be two different bases for G. Then by
the argument in the proof of Lemma A.1, G ∼= Zk and G ∼= Zm. now Problem A.2
implies that Zk ≇ Zm unless k = m. Recall that isomorphism is an equivalence

relation on groups. Thus, since G ∼= Zk and G ∼= Zm, we must have Zk ∼= Zm.
Hence k = m. □

If H is a subgroup of a finitely generated free abelian group G of rank k, then H
is also free abelian of rank ≤ k: it is simply a sublattice of a lattice G of smaller
rank. A standard proof is along the lines of linear algebra, using Smith normal
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form for matrices, which constructs a basis for a subgroup starting with a basis for
the group: it is very much along the lines of arguments given in Section 1.3.

We now recall some additional basic algebraic notation without proofs. We refer
the reader to [DF03] for details. If G is an abelian group and H is a subgroup
of G, then a coset of H in G is a set x + H where x ∈ G. The group G can be
represented as a disjoint union of all cosets of H in G. We write G/H for the set
of such cosets, which is a group under the operation of addition of cosets:

(x+H) + (y +H) = (x+ y) +H.

G/H is called the quotient group of G modulo H. The identity element in this
group is the trivial coset 0+H = H = x+H for every x ∈ H, and inverse of y+H
is −y +H for every y ∈ G. The order of G/H, i.e. its cardinality as a set (could
be infinite) is called the index of H in G, and denoted by |G : H|. Suppose that G
and E are two abelian groups and φ : G → E is a group homomorphism between
them. Recall that Ker(φ) is a subgroup of G and φ(G) is a subgroup of E. The
First Isomorphism Theorem states that

(A.1) G/Ker(φ) ∼= φ(G).

Finally, notice that a finitely generated group can only be isomorphic to another
finitely generated group. We are now ready for the main result of this section.

Theorem A.3. Let G be a finitely generated abelian group, and let H be a subgroup
of G. Then H is finitely generated.

Proof. Let us assume G is addivtiely written. Let x1, . . . ,xk be a generating
set for G, then every element y ∈ G is expressible as

y =

k∑
i=1

nixi

for some n1, . . . , nk ∈ Z. Define a map φ : Zk → G, given by

φ

(
k∑

i=1

niei

)
=

k∑
i=1

nixi.

We leave it to the reader to check that this is a group homomorphism. Let K =
Ker(φ), then K is a subgroup of Zk, hence it is free abelian of rank ℓ ≤ k. Now H
be a subgroup of G, then there exists a subgroup M of Zk such that φ(M) = H; in
other words, M is the pre-image of H in Zk under φ. Then M is also free abelian of
rank m ≤ k. Furthermore, M contains K: indeed, for every x ∈ K, φ(x) = 0 ∈ H,
hence x ∈M . Therefore ℓ ≤ m, and by (A.1),

H ∼= M/K,

hence we only need to show that M/K is finitely generated.
By Lemma A.1 we know thatM ∼= Zm andK ∼= Zℓ. By viewing vectors in Zℓ as

m-tuples with last m− ℓ coordinates equal to 0, we can think of Zℓ being contained
in Zm. Hence we only need to show that Zm/Zℓ is finitely generated. If m = ℓ,
then Zm = Zℓ and so Zm/Zℓ ∼= {0}, the trivial group. Then assume that m > ℓ.
Considering the standard basis e1, . . . , em for Zm, we can view e1, . . . , eℓ as the
standard basis for Zℓ under its embedding into Zm. Then Zm/Zℓ is isomorphic to
Zm−ℓ via the map sending an element

∑m
i=1 niei +Zℓ in Zm/Zℓ to

∑m
i=m−ℓ+1 niei
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in Zm−ℓ (this is easily checked to be a group isomorphism). Now, Zm−ℓ is finitely
generated, and hence we are done. □

Problems

Problem A.1. Suppose that G is a free abelian group. Prove that the following
property holds: whenever nx = 0 for some n ∈ Z and x ∈ G, then either n = 0 or
x = 0.

Problem A.2. Suppose that 1 ≤ k < m. Prove that free abelian groups Zk and Zm

are not isomorphic.



APPENDIX B

Maximum Modulus Principle and Fundamental
Theorem of Algebra

Our main goal here is to prove the Fundamental Theorem of Algebra. For this,
we will use the Maximum Modulus Principle. We first need some basic notation
from complex analysis. A region in C is a subset R of C, which is open and
connected. A function f(z) on a region R is called analytic if for any z0 ∈ R,

f(z) =

∞∑
n=0

an(z − z0)
n,

where an ∈ C for every n ≥ 0 and the series is convergent to f(z) in an an open
neighborhood of z0. It is a well-known fact that every holomorphic (i.e., complex-
differentiable) function is analytic, and vice versa.

Theorem B.1 (Maximum Modulus Principle). Suppose f(z) is a non-constant
analytic function in a region R. Then the real-valued function |f(z)| does not
attain its maximum in R. In other words, if for some z0 ∈ R, |f(z)| ≤ |f(z0)| for
all points z ∈ R, then f(z) is constant on R.

A proof of this theorem can be found in any book on complex analysis, for
instance [Rud87]. Here is an immediate consequence of Theorem B.1, which is
very useful in applications.

Corollary B.2. Let

Dr = {z ∈ C : |z| ≤ r}
be the closed disk of radius r and let f(z) be a continuous function on Dr, which is
analytic on the open disk

Do
r = {z ∈ C : |z| < r} .

Then f(z) assumes its maximum value on Dr on its boundary

∂Dr = {z ∈ C : |z| = r} = Dr \Do
r .

Proof. Since f(z) is continuous and Dr is closed and bounded, f(z) must
have a maximum on Dr. On the other hand, since the open disk Do

r is a region in
C, by Theorem B.1 f(z) cannot have a maximum on Do

r . Thus it must be assumed
on the boundary. □

We will now derive an important consequence of this fundamental principle.

Theorem B.3. [Fundamental Theorem of Algebra] Any polynomial p(x) ∈ C[x] of
degree n has precisely n roots in C, counted with multiplicity. In other words, the
field of complex numbers C is algebraically closed.
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Proof. Notice that it is sufficient to prove that any polynomial p(x) of degree
n ≥ 1 has at least one root in C. Suppose not, say p(x) ∈ C[x] of degree n ≥ 1 has
no complex roots. This means that 1/p(x) is an analytic (holomorphic) function.
Notice that 1/p(x) tends to zero as |x| tends to infinity. This means that for any
α ∈ C there exists an r ∈ R such that

1/|p(x)| < 1/|p(α)|
for all x ∈ C with |x| ≥ r. Now pick r large enough so that |α| < r, and let Dr

be the closed disk of radius r, as in Corollary B.2 above. Then α ∈ Dr and, since
1/|p(x)| is continuous, it assumes its maximum on Dr, specifically on its boundary,
by Corollary B.2. Then there exists β ∈ ∂Dr such that

1/|p(x)| ≤ 1/|p(β)| ∀ x ∈ Dr.

Now pick t > r and Do
t be the open disk of radius t. Then Dr ⊊ Do

t , and for all
x ∈ Do

t \Dr,
1/|p(x)| < 1/|p(α)| ≤ 1/|p(β)|.

Hence 1/|p(x)| assumes its maximum onDo
t at x = β. Since 1/p(x) is not a constant

function (degree of p(x) is > 0) and Do
t is a region (it is open and connected), this

violates the Maximum Modulus Principle. Hence p(x) must have a zero in C. □



APPENDIX C

Brief remarks on exponential and logarithmic
functions

We recall the basic properties of the exponential and logarithmic functions. We
give only an abbreviated and restrictive definition here; for a detailed treatment
of this important topic, the reader may want to consult a good book on complex
analysis, such as [Rud87].

We first define the exponential function fa : C→ C given by fa(x) = ax for each
base a ∈ C and outline some of its basic properties. We will do this in multiples
steps. First assume that 0 ̸= a ∈ C and b ∈ N, then

ab := a · · · · · a taken b times, a0 := 1, 0b := 0, a−b := (a−1)b.

If b = m
n ∈ Q>0 with gcd(m,n) = 1 (a fraction can always be reduced) and

a is a positive real number, then ab is defined as the unique positive real root
(Problem C.1) of the polynomial

xn − am ∈ R[x].

We also define a−b := (a−1)b, same as for integer exponents. Now, if b ∈ R, then
there exists a rational Cauchy sequence {cn}∞n=1 converging to b, and so we define

(C.1) ab := lim
n→∞

acn .

Equation (C.1) above needs some clarification. Consider the sequence (an) =
{acn}∞n=1. Each element an of this sequence is a real number, and it can be shown
that this sequence is a Cauchy sequence of real number, meaning that for every
positive real number ϵ there exists a positive integer N such that for all integers
m,n > N ,

|am − an| < ϵ.

A Cauchy sequence of real numbers always converges to a real number. This means
that every Cauchy sequence of real numbers is equivalent to some Cauchy sequence
of rational numbers. A field with this property is called complete, and R is the most
common example of a complete field. Hence ab in (C.1) is precisely the equivalence
class of the Cauchy sequence {acn}∞n=1.

Lemma C.1. Let a, b ∈ R>0, c, d ∈ R. Then

(C.2) ac+d = acad, (ab)c = acbc, acd = (ac)d.

This means that for each a ∈ R>0, a ̸= 1, the exponential map x 7→ ax is an injective
group homomorphism from Z, Q, or R (viewed as additive groups) to R+ = R>0

(viewed as a multiplicative group).

Proof. Problem C.2. □
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In fact, the exponential map is an isomorphism of abelian groups (R,+) and (R+, ·)
(we do not prove it here, but a proof can be found in many standard algebra and
analysis books). The inverse of this isomorphism is called the logarithmic function
with base a, denoted loga x.

Next, let us recall a definition of e. Let a ∈ R>0 and consider the exponential
function with base a, fa(x) = ax for x ∈ R. Notice that the derivative of this
function at x is

f ′
a(x) = lim

h→0

ax+h − ax

h
= ax lim

h→0

ah − 1

h
,

and so

f ′
a(0) = lim

h→0

ah − 1

h
.

This limit depends only on a, and there exists a unique value of a for which this
limit is equal to 1. This value is called e. Hence e is the unique value of the base
a for which the graph of fa(x) has slope = 1 at x = 0, as well as fa(x) = f ′

a(x) for
all x. It is also possible to define e in terms of its well-known properties:

e =

∞∑
n=0

1

n!
= lim

n→∞

(
1 +

1

n

)n

= 2.71828 . . . ,

as well as ∫ e

1

1

x
dx = 1.

This number is denoted by e in honor of Leonard Euler, who was first to prove
its irrationality in 1737, although the number itself was first introduced by Jacob
Bernoulli in 1683.

Recall from calculus the following power series expansions:

(C.3) ex =

∞∑
n=0

xn

n!
, cosx =

∞∑
n=0

(−1)nx2n

(2n)!
, sinx =

∞∑
n=0

(−1)nx2n+1

(2n+ 1)!
.

These power series converge for all x ∈ C (Problem C.3), and hence one can treat
these power series expansions as definitions of ex, cosx, and sinx for any complex
number x. In case of ex, one can also derive an easier to use Euler’s formula
(Problem C.4):

(C.4) eix = cosx+ i sinx

for all x ∈ C. Notice that the argument of a complex number is not uniquely
defined: it is easy to see from Euler’s formula that if θ is equal to arg(a) then so
is θ + 2πn for any n ∈ Z. This problem leads to the general logarithmic function
not actually being a function in the usual meaning of this word, but a multivalued
function instead. We avoid this complication by restricting the argument: from
here on, we will assume that

−π ≤ arg(a) < π ∀ a ∈ C

whenever it matters. Placing this restriction is usually called selecting the principal
branch.

Now let a ∈ C and b ∈ R. We can define

ab =
(
|a|ei arg(a)

)b
:= |a|beib arg(a) = |a|b (cos(b arg(a)) + i sin(b arg(a))) ,
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by Euler’s formula. In other words, ab is the complex number with modulus |a|b
and argument b arg(a). It is easy to notice that the properties (C.2) of Exercise C.1
apply to this situation as well.

We can now define the exponential for any base and exponent. We want our
general definition to be consistent with all previous cases, which in particular means
that me must have

(ab)c = acbc, ab+c = abac, abc = (ab)c

for all a, b, c ∈ C. Let a, b ∈ C. It will be convenient to write a = |a|ei arg(a),
b = b1 + b2i. Then

ab = ab1aib2 .

We already know what ab1 is, so it only remains to define

aib2 = |a|ib2
(
ei arg(a)

)ib2
= |a|ib2ei

2b2 arg(a) = |a|ib2e−b2 arg(a).

Now, |a| ∈ R×, and hence by our discussion above

|a| = eln |a|,

where ln := loge. Then

|a|ib2 =
(
eln |a|

)ib2
= eib2 ln |a|.

Thus we have

(C.5) ab := |a|b1e−b2 arg(a)ei(b1 arg(a)+b2 ln |a|)) = |a|b1−
b2 arg(a)

ln |a| ei(b1 arg(a)+b2 ln |a|))

for any a = |a|ei arg(a) and b = b1 + ib2 in C.
Now for every a ∈ C, we have the exponential function with base a, fa : C→ C

given by fa(x) = ax. It is a homomorphism of groups (C,+) and (C×, ·), which
is surjective whenever a ̸= 0,±1, however is not injective: its kernel is equal to
{2nπi : n ∈ Z} as can be seen from Euler’s formula. Restricting the argument of
x to the interval [−π, π), as discussed above, we can define the inverse of fa, the
logarithmic function, denoted by loga: since fa is surjective, for each y ∈ C there
exists the unique x ∈ C with arg(x) ∈ [−π, π) such that ax = y; define loga(y) to be
this x. Unfortunately, our restriction of argument causes the logarithmic function
not to be continuous. This difficulty can be overcome by introduction of a Riemann
surface for the logarithm function, which is usually done in complex analysis (see,
for instance, [Rud87]).

Problems

Problem C.1. Let p(x) = xn − am for n,m ∈ N with gcd(m,n) = 1 and a ∈ R>0,
as above. Prove that p(x) has precisely one positive real root.

Problem C.2. Prove Lemma C.1.

Problem C.3. Prove that the power series in (C.3) converge for all x ∈ C.
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Problem C.4. Use expansions (C.3) to prove Euler’s formula, established by him
in 1740:

eix = cosx+ i sinx

for all x ∈ C. Furthermore, using Euler’s formula, prove that any complex number
a+ bi can be written as

a+ bi = |a+ bi|eiθ =
√
a2 + b2 eiθ

for some θ ∈ R. Here
√
a2 + b2 is called the modulus and θ the argument of a+ bi,

denoted arg(a+ bi). It is not hard to notice that modulus and argument identify the
complex number uniquely.

Problem C.5. Derive a power series expansion for the exponential function fa(x) =
ax with base a ∈ C, a ̸= 0,±1, which converges for all x ∈ C.
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[Ram05] J. L. Ramı́rez Alfonśın. The Diophantine Frobenius problem. Oxford University Press,
2005.

[Rem23] R. Remak. Verallgemeinerung eines Minkowskischen Satzes. Math. Z., 18(1):173–200,
1923.

[Rot55] K.F. Roth. Rational approximations to algebraic numbers. Mathematika, 2:1–20, 1955.

[RSW17] O. Regev, U. Shapira, and B. Weiss. Counterexamples to a conjecture of Woods. Duke
Math. J., 166(13):2443–2446, 2017.

[RT96] D. Roy and J. L. Thunder. An absolute Siegel’s lemma. J. Reine Angew. Math.,

476:1–26, 1996.
[Rud87] W. Rudin. Real and Complex Analysis. McGraw-Hill Book Co., New York, 3rd edition,

1987.

[Sam70] P. Samuel. Algebraic theory of numbers. Translated from the French by Allan J. Sil-
berger. Houghton Mifflin Co., Boston, Mass., 109 pp., 1970.

[Sch50] P. Scherk. Convex bodies off center. Archiv Math., 3:303, 1950.

[Sch67] W. M. Schmidt. On heights of algebraic subspaces and Diophantine approximations.
Ann. of Math., 85(2):430–472, 1967.

[Sch80] W. M. Schmidt. Diophantine Approximation. Springer-Verlag, 1980.
[Sch91] W. M. Schmidt. Diophantine Approximations and Diophantine Equations. Springer-

Verlag, 1991.

[Sku72] B. F. Skubenko. On Minkowski’s conjecture for n = 5. Soviet Math. Dokl., 13:1136–
1138, 1972.

[Smy71] C. Smyth. On the product of the conjugates outside the unit circle of an algebraic

integer. Bull. London Math. Soc., 3:169–175, 1971.
[Spa95] P. G. Spain. Lipschitz: a new version of old principle. Bull. London Math. Soc.,

27:565–566, 1995.
[SSU09] V. Shchur, Ya. Sinai, and A. Ustinov. Limiting distribution of Frobenius numbers for

n = 3. Journal of Number Theory, 129:2778–2789, 2009.

[ST02] I. Stewart and D. Tall. Algebraic number theory and Fermat’s last theorem. Third

edition. A K Peters, Ltd., Natick, MA, 2002.
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[SvdW53] K. Schütte and B. L. van der Waerden. Das Problem der dreizehn Kugeln. Math.

Ann., 125:325–334, 1953.

[Thu93] J. L. Thunder. The number of solutions of bounded height to a system of linear
equations. J. Number Theory, 43:228–250, 1993.
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