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Abstract. In this editorial survey we introduce the special issue of the journal

Communications in Mathematics on the topic in the title of the article. Our

main goal is to briefly outline some of the main aspects of this important area
at the intersection of theory and applications, providing the context for the

articles showcased in this special issue.
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1. Introduction

A lattice L in a Euclidean n-dimensional space En is a discrete subgroup of rank
1 ≤ k ≤ n. This is equivalent to saying that there exists a collection of linearly
independent elements a1, . . . ,ak ∈ En (always written as column vectors) such that

L =

{
k∑

i=1

ciai : c1, . . . , ck ∈ Z

}
= AZk,

where a1, . . . ,ak is a basis for L and A = (a1 . . . ak) is the corresponding n × k
basis matrix. If this is the case, then for any U ∈ GLk(Z),

L = AZk = (AU)Zk,
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and so AU is again a basis matrix for L. Identifying En with the real space Rn,
we can therefore identify the space of all rank-k lattices in Rn with the space
GLk(R)/GLk(Z) of all orbits of GLk(R) under the action of GLk(Z) by right mul-
tiplication.

Theory of Euclidean lattices connects number theory to convex and discrete
geometry. The study of lattices originally emerged as an important subject in con-
nection with classical discrete optimization problems like sphere packing, covering
and kissing number problems, dating as far back as the celebrated 1611 conjec-
ture of Kepler and even earlier; see the classical books of Conway & Sloane [8]
and of Martinet [21] for a fairly comprehensive exposition of lattice theory and its
many connections, as well as [28] for a popular account of the fascinating history
of Kepler’s conjecture. Lattices have really come into their own in the context of
Minkowski’s geometry of numbers (see [23] for Minkowski’s original treatise, as well
as the standard books [6] by Cassels, [15] by Gruber & Lekkerkerker and [14] by
Gruber for more contemporary accounts).

Theory of lattices has seen some very exciting developments and applications over
the last century, including Minkowski’s proof of the finiteness of class number, major
results in arithmetic theory of quadratic forms, advances in discrete and convex
geometry and optimization, Diophantine approximations, geometric combinatorics,
coding theory, cryptography, and many other areas of mathematics. The recent
decades have, in particular, seen such major breakthroughs as the proof of Kepler’s
conjecture by Hales & Ferguson [16], affirming that the face-centered-cubic lattice
provides the densest sphere packing in dimension 3, as well as the spectacular
results by Viazovska et al. [32], [7] on the optimality of E8 and the Leech lattice for
packing density in dimensions 8 and 24, respectively (Maryna Viazovska received
a Fields medal for this work in 2022).

The main goal of our special issue is to collect in one place several of the recent
developments and expository surveys on the various aspects of lattice theory and
its applications. In the following sections, we will briefly introduce a few different
facets of this theory and indicate how different contributions of this special issue
fit into the general framework.

2. Geometry of numbers and Diophantine approximations

The first essential invariant of the lattice L as above is its determinant, which is
defined as

det(L) :=
√
det(A⊤A)

for any choice of a basis matrix A: this is well-defined, since |det(U)| = 1 for any
U ∈ GLk(Z). Analytically, this is the volume of a fundamental parallelotope{

Ax : x ∈ [0, 1)k
}
,

which is a full set of coset representatives for the quotient group V/L, where V =
spanR L. In fact, det(L) is the volume of the closure of any such fundamental
domain, including the important Voronoi cell

V(L) = {x ∈ V : ∥x∥ ≤ ∥x− y∥ ∀ y ∈ L} ,
i.e., the set of all points in V that are no further from the origin than from any
other point of the lattice. Our lattice L has full rank in the k-dimensional subspace
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V of Rn, which can be identified with the Euclidean space Rk. As such, we will
only talk of full rank lattices in Rn from now on.

We can now define the sphere packing and the sphere covering associated to L:
inscribe a closed ball B1 in Rn of maximal possible radius into V(L) and circum-
scribe a ball B2 of minimal possible radius around V(L), then translating V(L) by
all the points of L we obtain a packing of non-overlapping translates of B1 in Rn

and a covering of Rn by translates of B2. Hence the radius of B1 is called the
packing radius r(L) of L and the radius of B2 the covering radius R(L) of L. Now,
the packing density δ(L) and the covering thickness Θ(L) are given by the formulas

δ(L) =
Voln(B1)

Voln(V(L))
=

ωnr(L)
n

det(L)
, Θ(L) =

Voln(B2)

Voln(V(L))
=

ωnR(L)n

det(L)
,

where ωn is the volume of a unit ball Bn in Rn. In fact, these radii are closely related
to another collection of important invariants of the lattice L, called successive
minima.

Let K be a closed convex 0-symmetric set of positive volume in Rn. The suc-
cessive minima of the lattice L with respect to K,

0 < λ1(L,K) ≤ · · · ≤ λn(L,K),

are defined as

λi(L,K) = min {t ∈ R>0 : dimR spanR L ∩ tK ≥ i} ,
i.e., the smallest real number t so that the homogeneous expansion of K by a factor
of t contains at least i linearly independent points of L. In the special case when
K is the unit ball Bn centered at the origin in Rn, we refer to λi(L,K) simply as
λi(L), the successive minima of the lattice. It is then not difficult to see that the
packing radius is precisely half the distance from the origin to the shortest nonzero
lattice point, i.e.

r(L) =
1

2
λ1(L).

The more delicate inequalities of Jarnik (see, e.g., [15, Section 13.2, Theorem 1 and
Theorem 4]) also assert that the covering radius satisfies

1

2
λn(L) ≤ R(L) ≤ 1

2

n∑
i=1

λi(L).

Successive minima have been studied extensively by Minkowski himself and by
many other mathematicians working in number theory, discrete and convex geome-
try, and even analysis. In particular, Minkowski’s inequalities on successive minima
state that

(1)
2n det(L)

n! Voln(K)
≤

n∏
i=1

λi(L,K) ≤ 2n det(L)

Voln(K)
.

The survey paper [1] by I. Aliev & M. Henk in this special issue gives an overview of
the impact of successive minima on convex and discrete geometry. One significant
application of successive minima inequalities that the authors discuss is Siegel’s
lemma, a vital tool in Diophantine approximations and transcendental number
theory, which provides a bound on the size of a “smallest” nonzero solution (or,
more generally, a collection of such solutions) to a system of linear forms over a
given ring or field of arithmetic interest. The fact that such a solution exists over
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a given field is guaranteed by the assumption that these linear forms are linearly
dependent over the same field.

On the other hand, assume that we have a system of linear forms that are
linearly independent over Q. Then they will not be simultaneously equal to zero
at any nonzero point of the integer lattice. A natural question in Diophantine
approximations is how small can such a collection of linear forms in n variables
simultaneously be on Zn \ {0}? This question can be made precise by studying the
extreme values of certain appropriately defined exponents of approximation, which
is done in the paper [13] by O. German in our special issue. His main tool is a
lemma of Davenport on successive minima. At the end of this paper, a question
about the spectra of these newly introduced Diophantine exponents is formulated.

3. Special classes of lattices

As we remarked above, the analogues of Kepler’s conjecture on the densest pos-
sible sphere packing in dimension 3 has also been proved in dimensions 8 and 24.
In fact, the optimal sphere packing has been obtained earlier in dimension 2 by L.
Fejes Tóth [30], who gave the first complete proof of what was previously known as
Thue’s theorem. These are all the dimensions (besides the trivial dimension 1) in
which the optimal sphere packings are known. If, however, we restrict our consid-
eration to lattice packings only, then the optimal results are known in dimensions
1 ≤ n ≤ 8 and n = 24 (see [8]).

One can then pose a natural question: what properties should a lattice possess to
be a potential candidate for maximizing lattice packing density in its dimension?
From our discussion above, it is evident that the packing density of a full-rank
lattice L in Rn is given by the formula

δ(L) =
ωnλ1(L)

n

2n det(L)
.

Let us define an equivalence relation of similarity on lattices in Rn as follows: two
lattices L1 and L2 are called similar if there exists a positive real constant α and
an n × n real orthogonal matrix U so that L2 = αUL1. In this case, it is easy to
see that δ(L1) = δ(L2), and so the packing density is constant on a given similarity
class. Hence, restricting to unimodular lattices (determinant = 1) we can write

δ(L) =
ωn

2n
λ1(L)

n,

meaning that maximizing packing density is equivalent to maximizing the first
successive minimum λ1(L). By Minkowski’s inequalities (1), the product of all
successive minima in this case is bounded by dimensional constants:

2n

n! ωn
≤

n∏
i=1

λi(L) ≤
2n

ωn
,

where 0 < λ1(L) ≤ · · · ≤ λn(L). Thus the first step in the direction of maximizing
λ1(L) is to take a lattice L with all successive minima equal: lattices like this are
called well-rounded (WR). This property is preserved under similarity, so we can
talk of WR similarity classes, of which there are infinitely many in any dimension
n ≥ 2. There has been quite a bit of work in the recent years on various explicit
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algebraic constructions of WR lattices. Some most notable such constructions come
from ideals in algebraic number fields via Minkowski embedding into Euclidean
space, the so-called ideal lattices. As such, an interesting question remains: under
which conditions does an ideal in a number field give rise to WR ideal lattices? A
detailed study of WR ideal lattices has been initiated in [12]. While this question
has been answered for quadratic number fields and for some special families of
number fields of higher degree, in general it is wide open. In article [29] in our special
issue, D.T. Tran, N. H. Le and H. T. N. Tran conduct a thorough investigation
and establish conditions for the existence of WR ideal lattices coming from cyclic
number fields of degree 3 and 4. Their paper starts out with a brief overview of the
previous results in this area and also contains a fairly extensive bibliography.

The packing density function is continuous on GLn(R)/GLn(Z), the space of
full-rank lattices in Rn, and hence we can talk about its local extrema on this
space. While the WR condition is necessary for a local maximum to be achieved,
this condition is not sufficient. Define the set of minimal vectors of a lattice L as

S(L) = {x ∈ L : ∥x∥ = λ1(L)} ,
and let m be the cardinality of S(L). Notice that m is necessarily even, since
minimal vectors come in ± pairs (more generally, m is divisible by the order of the
group of linear automorphisms of L since it acts on S(L) by left multiplication).
Further, if L is WR then m ≥ 2n. Lattice L is called eutactic if there exist positive
real coefficients c1, . . . , cm such that for any vector v ∈ Rn,

∥v∥ =

m∑
i=1

ci
(
v⊤xi

)2
,

where S(L) = {x1, . . . ,xm}. On the other hand, a lattice L is called perfect if the
space of n× n real symmetric matrices Symn(R) can be spanned (as a real vector
space) by symmetric matrices coming from the minimal vectors of L, i.e.

Symn(R) = spanR
{
xx⊤ : x ∈ S(L)

}
.

Since dimR Symn(R) =
n(n+1)

2 and for any vector x ∈ S(L), xx⊤ = (−x)(−x)⊤,
this perfection condition implies that the cardinality m of S(L) is at least n(n+1).
The eutaxy and perfection conditions on lattices are independent (i.e., there are
eutactic non-perfect lattices and there are perfect non-eutactic lattices) and they are
both preserved under similarity. Furthermore, there are only finitely many eutactic
and finitely many perfect similarity classes in any given dimension, although their
number grows very fast with the dimension (for instance, for sufficiently large n

the number of perfect similarity classes in Rn is > en
1−ε

for any ε > 0; see [2]).
Both, perfect and eutactic lattices are necessarily WR and a famous theorem of
Voronoi (1908) asserts that a lattice corresponds to a local maximum of the packing
density function in its dimension (called extreme lattice) if and only if it is perfect
and eutactic (see, e.g., [21]). This observation drives an interest in classification
of perfect lattices, a subject of active research often pursued in the language of
quadratic forms.

For L = AZn, the Euclidean norm of any vector x = Ay ∈ L can be computed as

∥x∥2 = QA(y) := y⊤ (
A⊤A

)
y,

where QA(y) is a positive definite quadratic form with a symmetric coefficient ma-
trix A⊤A. Quadratic forms corresponding to different bases of the same lattice
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are called arithmetically equivalent: they have the same spectrum of values on Zn.
There is a bijective correspondence between positive definite arithmetic equiva-
lence classes of quadratic forms in n variables and lattices in Rn. The symmetric
coefficient matrix of a positive definite quadratic form is then called perfect if the
corresponding lattice is perfect. The paper by V. Dannenberg and A. Schürmann
[10] in our special issue builds on the classical theory of such perfect matrices to in-
troduce and initiate a study of their generalization, the so-called perfect copositive
matrices: a matrix B ∈ Symn(R) is called copositive if

y⊤By ≥ 0

for all y in the positive orthant Rn
≥0 (in contrast to the usual positive definite

matrices satisfying y⊤By ≥ 0 for all nonzero y ∈ Rn). The authors look at the
cone of copositve matrices and study the distribution of perfect matrices in this
cone.

4. Arithmetic of quadratic forms

As indicated above, the study of lattices is intrinsically connected to the arith-
metic theory of quadratic forms. A key question in that theory is that of rep-
resentation. A quadratic form Q(y) in n variables can always be written in the
form

Q(y) = y⊤By,

where B is a real symmetric coefficient matrix. This form Q is called integral if
Q(y) ∈ Z for every y ∈ Zn and it is called classically integral if B is an integer
matrix; notice that this second property is stronger than the first. An integral form
Q is said to represent an integer m if there exists y ∈ Zn such that Q(y) = m, and
Q is said to be universal if it represents every positive integer m. This is equivalent
to the corresponding lattice containing vectors of every possible (squared) integer
Euclidean norm.

Perhaps the starting point of the theory of universal quadratic forms is the fa-
mous classical theorem of Lagrange (1770) stating that the positive definite integral
quadratic form given by the sum of four squares is universal (see, for instance, [33]
for details). On the other hand, no positive definite integral form in fewer than
four variables can be universal. The major results on universal forms from the past
thirty years include the impressive necessary and sufficient universality criteria for
integral and classically integral quadratic forms in any number of variables, known
as theorems 290 and 15, respectively.

The survey article by V. Kala [17] (based on the author’s lectures on this subject)
in this special issue gives an overview of the theory of universal quadratic forms,
including these celebrated theorems, but placing the main focus on the recent de-
velopments for quadratic lattices over ring of integers OK in a totally real number
field K. The key tool emphasized by the author is the notion of an indecompos-
able element in OK : a totally positive element in OK is called indecomposable if it
cannot be written as a sum of two other totally positive elements in the same ring.
The significance of indecomposables in the context of quadratic forms is that they
essentially appear as coefficients of diagonal universal forms over OK and hence the
number of their square classes gives a lower bound on the number of variables in
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which such forms can exist. The author carefully develops the theory of indecom-
posables in this context, showing also some interesting connections, including one
to continued fractions.

5. Geometric combinatorics and integer geometry

Another important facet of the theory has to do with counting lattice points in
compact domains in Rn. More specifically, let us start with a full rank lattice L
and a compact measurable set K ⊂ Rn of positive volume. Let r ∈ R>0 and define
the counting function

fL,K(r) = |L ∩ rK| .
One can ask how does fL,K(r) grow as r → ∞? The first observation is that
each point x ∈ L is contained in its unique translate of the Voronoi cell x+ V(L),
hence counting lattice points can be replaced by counting translates of the Voronoi
cell. As r becomes large, the number of such translates that are fully contained
in rK gives the main term of the asymptotic formula for fL,K(r), whereas the
error term comes from the number of such translates intersecting tie boundary of
rK whose corresponding lattice points are in rK. Hence the main term can be
approximated simply by the quotient of the volume of rK by the volume of the
Voronoi cell, det(L). Under appropriate smooth conditions on the boundary of
K, such as Lipschitz parametrizability, the error term can be controlled and the
following asymptotic holds (see, e.g., [19], Chapter VI, §2, Theorem 2):

fL,K(r) =
Voln(K)

det(L)
rn +O(rn−1).

A considerably more delicate problem is to give tight (and as explicit as possible)
estimates on the error term ∣∣∣∣fL,K(r)− Voln(K)

det(L)
rn

∣∣∣∣ .
There is a vast amount of literature on different versions of this counting problem.
In fact, this problem is not fully resolved even in a seemingly simple case of L = Z2

and K being the unit circle S1 – this is the famous Gauss circle problem, where
the standing conjecture is that∣∣fZ2,S1(r)− πr2

∣∣ = O(r1/2+ε)

for any ε > 0.
A variation of this counting problem is treated in a paper of J. D. Vaaler [31] in

this special issue: given an n×m real matrix A, m ≤ n, obtain an estimate on the
error term ∣∣fAZm,rB(x) −Volm(B(x)) rm

∣∣
for the number of points of the lattice AZm in the ball rB(x) of radius r centered at
an arbitrary point x in the subspace ARm ⊆ Rn spanned by this lattice, as r → ∞.
While a number of estimates on such quantities have been previously obtained (see
[31] for some bibliography), the author’s estimate is explicit and uniform over all
matrices A with norm bounded by an explicit constant. Further, his inequality
takes a particularly simple form for dimension m = 3. The author’s method uses
careful analysis of extremal functions; as such, Bessel functions naturally occur in
the estimates.
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The situation with counting integer lattice points becomes more manageable
when the compact set K is a convex lattice polytope. Indeed, assume K is a convex
polytope in Rn with positive volume and vertices at points of the integer lattice
Zn. Consider the counting function fZn,K(r) for integer values of the homogeneous
expansion parameter r. A classical theorem of Ehrhart (1962) states that fZn,K(r)
is a polynomial in r of degree n with integer coefficients, where the leading coefficient
is Voln(K) (see [3] as well as Chapter 12 of [22] for a nice introduction to Ehrhart
theory). This polynomial is called Ehrhart polynomial of the polytope K. More
generally, let us define the integer point transform of the polytope rK by

σrK(ξ) =
∑

v∈Zn∩rK

e2πi(v
⊤ξ),

for all ξ ∈ Rn. In particular, notice that

σrK(0) =
∑

v∈Zn∩rK

1 = fZn,K(r),

and hence the integer point transform of a polytope is a certain generalization of
Ehrhart polynomial. In his paper [26] in this special issue, S. Robins proves that
the integer point transform is a complete invariant of the polytope in the following
sense: two lattice polytopes K1 and K2 are equal to each other if and only if
σK1

(ξ∗) = σK2
(ξ∗) for

ξ∗ =
1

π
(
√
p1, . . . ,

√
pn)

⊤,

where p1, . . . , pn are the first n primes. In fact, the author first uses the Linde-
mann–Weierstrass theorem from transcendental number theory to prove the analo-
gous property for equality of arbitrary finite sets of integer lattice points instead of
sets contained in polytopes, and then passes to polytopes. Further, he proves the
complete invariant property also for Fourier transforms of general rational poly-
hedra. Additionally, he discusses lattice spanning properties of polytopes and the
integer point transform of finite abelian groups.

Ehrhart’s theorem is often seen as a higher-dimensional generalization of the
famous Pick’s theorem (1899; see, e.g., [3] and Chapter 2 of [18]): if S is the area
of an integer polygon in the plane, I is the number of integer lattice points in its
interior and E is the number of integer lattice points on its boundary, then

S = I +
E

2
− 1.

The essential feature of this theorem is that it connects a combinatorial notion (the
number of integer lattice points in a polygon) with an analytic notion (the area of
this polygon). This is the main idea of integer geometry: introducing “discrete”
ways of measuring some traditionally “continuous” objects, as alluded to in the title
of Beck & Robins’s book [3]. A good introduction to integer geometry and its con-
nections to continued fractions is given in Karpenkov’s book [18]. In their paper [4]
in this special issue, J. Blackman, J. Dolan and O. Karpenkov take this exploration
a step further and introduce the theory of multidimensional integer trigonometry.
The integer length and integer area are defined in terms of indices of sublattices in
the integer lattice generated by lattice points on a given line segment or in a given
triangle (which then generalizes to arbitrary polygons via sums over triangulations).
Integer area can then be used to define integer trigonometric functions in the plane,
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which are also closely connected to continued fractions. After giving a careful expo-
sition of planar integer trigonometry, the authors of [4] present a generalization of
this theory to higher dimensions via integer volume of appropriate simplices. They
prove a variety of different properties of integer trigonometric functions in arbitrary
dimensions and discuss an algorithmic approach to constructions of rational poly-
hedra via given collections of rational cones. They also discuss approximations of
simplicial cones, which generalize classical approximation by continued fractions.

6. Applications to coding theory and cryptography

Arithmetic lattices have also made their way into many applications, perhaps
most notably within coding theory and cryptography.

6.1. Lattices from error-correcting codes. The association of lattices with
error-correcting codes is natural and, in order to reduce the decoding complex-
ity, a possible direction is the construction of multilevel lattices from a family of
nested codes, allowing for multistage decoding. Several different constructions have
been used to derive lattices from codes [8]. To provide one explicit example, let
ρ : Zq → Z be the standard inclusion map, which can be naturally extended to
vectors and matrices. Then, the q-ary Construction A lattice associated to the
linear code C ⊆ Zn

q can be defined as

LA(C) = ρ(C) + qZn.

In the article [11] in this special issue, F. do Carmo Silva, A. P. de Souza, E.
Strey, and S. I. R. Costa consider Constructions D, D′, and A from nested q-
ary linear codes over Zq. They study the volume, LP -minimum distance (1 ≤
P ≤ ∞), and lower bounds for the coding gain of these constructions. Further,
the aforementioned multistage decoding method is extended with re-encoding to
Construction D′ from q-ary linear codes under specific conditions. The definitions
of Constructions D and D′ are somewhat more involved, and we refer the reader to
the article for more details.

6.2. Lattice-based cryptography. One of the most promising paradigms for
post-quantum security is lattice-based cryptography, often based on different vari-
ants of the so-called learning with errors (LWE) problem [25]. The hardness of such
cryptosystems can be proved by providing a reduction from a known hard lattice
problem, e.g., the approximate shortest vector problem.

To give an example, let us consider the ring Rq = Fq[x]/(f(x)), where q is prime
and f(x) ∈ Z[x] is monic and irreducible. The polynomial learning with errors
(PLWE) [27] decision problem asks to distinguish, with a non-negligible advantage,
a sample (a, b = as+e) ∈ R2

q , where s and e are drawn from an appropriate discrete

Gaussian distribution, from a uniformly random sample (a, b) ∈ R2
q . In article [5]

in our special issue, I. Blanco-Chacón, R. Durán-Diáz, R. Njah Nchiwo, and B.
Barbero-Lucas study a decisional attack against a version of the PLWE problem
in which the samples are taken from a certain proper subring of large dimension of
the cyclotomic ring Fq[x]/(Φpk(x)) for k > 1, Φ not totally split, and q ≡ 1 (mod
p). The attack exploits the fact that the roots of Φ have zero trace over suitable
sub-extensions. This allows for a good attack success probability as a function of
input samples. The paper points out a nice open question regarding the existence
of rings with the related distribution-respecting reduction map. We refer to the
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article for more details as well as for an exposition on the ring and polynomial
LWE problems.

6.3. Lattice codes for secure wireless communications. Yet another interest-
ing application of arithmetic lattices appears in the context of physical layer secu-
rity. Namely, lattice coset codes can be utilized for communication over the wireless
medium, where eavesdroppers may receive the transmitted signals in addition to
the legitimate receiver [24]. The security of such physical layer communications
can be measured in many different ways, including the eavesdropper’s correct deci-
sion probability or the information leakage. It has been shown that both of these
quantities are bounded from above by the so-called flatness factor [20], yielding a
natural criterion for the flatness factor of the lattice to be minimized. Essentially,
the flatness factor ϵL(σ) measures the deviation of the lattice Gaussian distribution
from the uniform distribution on a Voronoi cell, and it is closely related to the

lattice theta series ΘL(q) =
∑

x∈L q||x||
2

as follows:

ϵL(σ) =
Vol(L)

(
√
2πσ)n

ΘL(e
− 1

2σ2 )− 1 = ΘL∗(e−2πσ2

)− 1,

where L∗ denotes the dual lattice.
For a “flat” lattice, it is harder to distinguish the received message from a uni-

formly random sample. In order to minimize the flatness factor, well-rounded lat-
tices have been proposed as a coding solution [9]. This motivates the search for
good well-rounded lattices in small and moderate dimensions, in addition to the
purely theoretical interest. In this special issue, well-rounded ideal lattices from
cyclic cubic and quartic fields are studied in article [29], as already mentioned in
Section 3.

Acknowledgement: We wish to thank the referees for the thorough read and
helpful comments.
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