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1. Hilbert’s 10th problem and search bounds

Consider a system of m Diophantine equations in n variables, i.e.

(1.1)

P1(X1, . . . , Xn) = 0
...
Pm(X1, . . . , Xn) = 0


where P1, . . . , Pm are polynomials with integer coefficients.

Question 1. Does this system have a nontrivial integral solution?

Question 2. Assuming it does, how do we find such a solution?

The famous result of Y. Matijasevich (1970; building on the previous work by M.
Davis, H. Putnam and J. Robinson - 1961) implies that Question 1 in general is
undecidable. Suppose that we could prove a theorem of the following kind:

If the system (1.1) has a nontrivial solution vector x ∈ Zn, then there exists such
a solution vector with

(1.2) |x| := max
1≤i≤n

|xi| ≤ B

for some explicit constant B = B(P1, . . . , Pm).

Then to answer Question 1, it would be enough to check whether any of the vectors
in the finite set {

x ∈ Zn : max
1≤i≤n

|xi| ≤ B

}
is a solution to (1.1), reducing it to a finite search algorithm. Moreover, if Question 1
is answered affirmatively, then this finite search algorithm simultaneously provides
an answer to Question 2. We will refer to a constant B satisfying (1.2) as an
explicit search bound (with respect to | |) for the polynomial system P1, . . . , PM .
Hence Questions 1 and 2 can be replaced by -

Question 3. Assuming the polynomial system P1, . . . , PM has a nontrivial integral
solution, can we find an explicit search bound?

This search-bounds approach to the problem was proposed by D. W. Masser
in [Mas02]. Existence of search bounds for general polynomial systems like (1.1)
would contradict Matijasevich’s theorem, and hence search bounds in general can-
not exist. Moreover, it was proved by J. P. Jones (1980) that the question whether
a single Diophantine equation of degree four or larger has a solution in positive
integers is already undecidable. This suggests that search bounds for equations
of degree ≥ 4 may be out of reach, and relatively little is known even for degree
3 (although some work has been done, especially in the recent years). There is
however a wealth of results for polynomials of degree 1 and 2, which is going to be
the focus of these lectures.
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2. Integral linear equations

We start by discussing a search bound for a system of homogeneous linear equa-
tions. This is Siegel’s Lemma, the simplest version of which was originally observed
by Axel Thue in 1909 and then formally proved by Carl Ludwig Siegel in 1929.
While Siegel’s Lemma originated as a tool used in transcendence arguments (in
particular, for construction of auxiliary polynomials with bounded coefficients), it
took on a separate life in the more recent years as a first case of a result on points
of bounded height on algebraic varieties.

Our presentation here partially follows [Sch91]. Let

A =

a11 . . . a1n
...

. . .
...

am1 . . . amn


be an m× n matrix with integer entries and rank equal to m < n. Define

Λ = {x ∈ Zn : Ax = 0}.

Theorem 2.1 (Siegel’s Lemma, version 1). With notation as above, there exists
0 ̸= x ∈ Λ with

(2.1) |x| < 2 + (n|A|)
m

n−m ,

where |x| = max{|xi| : 1 ≤ i ≤ n}, |A| = max{|aij | : 1 ≤ i ≤ m, 1 ≤ j ≤ n}.

Proof. Let R ∈ Z>0, and let

Cn
R = {x ∈ Rn : |x| ≤ R}

be the cube centered at the origin in Rn with sidelength 2R. Then

|Cn
R ∩ Zn| = (2R+ 1)n.

Let TA : Rn → Rm be a linear map, given by TA(x) = Ax for each x ∈ Rn. Notice
that for every x ∈ Cn

R,
|TA(x)| ≤ n|A|R,

i.e. TA maps Cn
R into Cm

n|A|R ⊆ Rm, since rk(A) = l. Now

|Cm
n|A|R ∩ Zm| = (2n|A|R+ 1)m.

Now let us choose R to be a positive integer satisfying

(n|A|)
m

n−m ≤ 2R < (n|A|)
m

n−m + 2.

Then

|Cn
R ∩ Zn| = (2R+ 1)n = (2R+ 1)m(2R+ 1)n−m

≥ (2R+ 1)m(n|A|)m > (2n|A|R+ 1)m

= |Cm
n|A|R ∩ Zm|.

This means that TA cannot be mapping Cn
R ∩Zn into Cm

n|A|R ∩Zm in a one-to-one

manner. Hence, there must exist x ̸= y ∈ Cn
R ∩ Zn such that TA(x) = TA(y), i.e.

TA(x− y) = 0,

and so x− y ∈ Λ. On the other hand,

|x− y| ≤ |x|+ |y| ≤ 2R < (n|A|)
m

n−m + 2,

and this finishes the proof. □
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Notice that the main underlying idea in the proof of Siegel’s Lemma was the
pigeon hole principle. It is remarkable that the exponent m

n−m in the upper bound

of (2.1) cannot be improved. To see this, let for instance m = n − 1 and for a
positive integer R consider the (n− 1)× n matrix

A =


R −1 0 . . . 0 0
0 R −1 . . . 0 0
...

...
...

. . .
...

...
0 0 0 . . . R −1

 .

Then |A| = R, and every nonzero integer solution of the system of linear equations
Ax = 0 must have xn = Rn−1x1. Therefore, if

Λ = {x ∈ Zn : Ax = 0},
and 0 ̸= x ∈ Λ, then

|x| ≥ Rn−1 = |A|
m

n−m .

In the theorem above, we did not have to assume that the system of polynomial
equations has a solution: an underdetermined homogeneous linear system always
has a nontrivial integer solution. On the other hand, we can consider an inhomo-
geneous integral linear system

(2.2) Ax = b,

for a matrix A as above and a nonzero integer vector b ∈ Zm. A system like this
does not necessarily have a solution, so let us start with a criterion to determine
whether it has a solution. Define

gcd(A) := gcd(detA′ : A′ is an m×m submatrix of A),

and in the same manner define gcd(A b) for the augmeneted (n + 1) × m matrix
(A b) with b added as the last column. The following theorem was originally proved
by I. Heger in 1856.

Theorem 2.2. The linear system (2.2) has an integer solution if and only if

gcd(A b) = gcd(A).

A much more recent result of Borosh, Flahive, Rubin and Treybig [BFRT89] gives
a search bound for this inhomogeneous problem.

Theorem 2.3. Assume that the linear system (2.2) has an integer solution. Then
there exists such a solution x with

|x| ≤ max {detA′ : A′ is an m×m submatrix of A} .
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3. Some geometry of numbers

In this section we will discuss some of the famous theorems related to the follow-
ing very classical problem in the geometry of numbers: given a set M and a lattice
Λ in Rn, how can we tell if M contains any points of Λ?

Theorem 3.1 (Blichfeldt, 1914). Let M be a Jordan measurable set in Rn. Suppose
that Vol(M) > 1, or that M is closed, bounded and Vol(M) ≥ 1. Then there exist
x,y ∈ M such that 0 ̸= x− y ∈ Zn.

Proof. First suppose that Vol(M) > 1. Let

P = {x ∈ Rn : 0 ≤ xi < 1 ∀ 1 ≤ i ≤ n},
and let

S = {u ∈ Zn : M ∩ (P + u) ̸= ∅}.
Since M is bounded, S is a finite set, say S = {u1, . . . ,ur0}. Write Mr = M ∩ (P +
ur) for each 1 ≤ r ≤ r0. Also, for each 1 ≤ r ≤ r0, define

M ′
r = Mr − ur,

so that M ′
1, . . . ,M

′
r0 ⊆ P . On the other hand,

⋃r0
r=1 Mr = M , and Mr ∩Ms = ∅ for

all 1 ≤ r ̸= s ≤ r0, since Mr ⊆ P +ur, Ms ⊆ P +us, and (P +ur)∩ (P +us) = ∅.
This means that

1 < Vol(M) =

r0∑
r=1

Vol(Mr).

However, Vol(M ′
r) = Vol(Mr) for each 1 ≤ r ≤ r0,

r0∑
r=1

Vol(M ′
r) > 1,

but
⋃r0

r=1 M
′
r ⊆ P , and so

Vol

(
r0⋃
r=1

M ′
r

)
≤ Vol(P ) = 1.

Hence the sets M ′
1, . . . ,M

′
r0 are not mutually disjoined, meaning that there exist

indices 1 ≤ r ̸= s ≤ r0 such that there exists x ∈ M ′
r ∩ M ′

s. Then we have
x+ ur,x+ us ∈ M , and

(x+ ur)− (x+ us) = ur − us ∈ Zn.

Now suppose M is closed, bounded, and Vol(M) = 1. Let {sr}∞r=1 be a sequence
of numbers all greater than 1, such that

lim
r→∞

sr = 1.

By the argument above we know that for each r there exist

xr ̸= yr ∈ srM

such that xr − yr ∈ Zn. Then there are subsequences {xrk} and {yrk
} converging

to points x,y ∈ M , respectively. Since for each rk, xrk − yrk
is a nonzero lattice

point, it must be true that x ̸= y, and x− y ∈ Zn. This completes the proof. □

As a corollary of Theorem 3.1 we can prove the following version of Minkowski
Convex Body Theorem.
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Theorem 3.2 (Minkowski). Let M ⊂ Rn be a compact convex 0-symmetric set
with Vol(M) ≥ 2n. Then there exists 0 ̸= x ∈ M ∩ Zn.

Proof. Notice that the set

1

2
M =

{
1

2
x : x ∈ M

}
=


1/2 0 . . . 0
0 1/2 . . . 0
...

...
. . .

...
0 0 . . . 1/2

M

is also convex, 0-symmetric, and by Problem 11.3 its volume is

det


1/2 0 . . . 0
0 1/2 . . . 0
...

...
. . .

...
0 0 . . . 1/2

Vol(M) = 2−n Vol(M) ≥ 1.

Thererfore, by Theorem 3.1, there exist 1
2x ̸= 1

2y ∈ 1
2M such that

1

2
x− 1

2
y ∈ Zn.

But, by symmetry, since y ∈ M , −y ∈ M , and by convexity, since x,−y ∈ M ,

1

2
x− 1

2
y =

1

2
x+

1

2
(−y) ∈ M.

This completes the proof. □

Remark 3.1. This result is sharp: for any ε > 0, the cube

C =

{
x ∈ Rn : max

1≤i≤n
|xi| ≤ 1− ε

2

}
is a convex 0-symmetric set of volume (2− ε)n, which contains no nonzero integer
lattice points.

Problem 11.4 extends Blichfeldt and Minkowski theorems to arbitrary lattices as
follows:

• If Λ ⊂ Rn is a lattice of full rank and M ⊂ Rn is a compact convex set
with Vol(M) ≥ detΛ, then there exist x,y ∈ M such that 0 ̸= x− y ∈ Λ.

• If Λ ⊂ Rn is a lattice of full rank and M ⊂ Rn is a compact convex 0-
symmetric set with Vol(M) ≥ 2n detΛ, then there exists 0 ̸= x ∈ M ∩ Λ.

As an application of these results, we prove Minkowski’s Linear Forms Theorem.

Theorem 3.3. Let B = (bij)1≤i,j≤n ∈ GLn(R), and for each 1 ≤ i ≤ n define a
linear form with coefficients bi1, . . . , bin by

Li(X) =

n∑
j=1

bijXj .

Let c1, . . . , cn ∈ R>0 be such that

c1 . . . cn ≥ |det(B)|.

Then there exists 0 ̸= x ∈ Zn such that

|L1(x)| ≤ c1, |Li(x)| < ci ∀ 1 ≤ i ≤ n.
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Proof. Let us write b1, . . . , bn for the row vectors of B, then

Li(x) = bix,

for each x ∈ Rn. Let 0 < ε < 1 and consider the parallelepiped

Pε = {x ∈ Rn : |L1(x)| < c1(1 + ε), |Li(x)| < ci ∀ 2 ≤ i ≤ n} = B−1Rε,

where Rε = {x ∈ Rn : |x1| < c1(1 + ε), |xi| < ci ∀ 2 ≤ i ≤ n} is the open
rectangular box with sides of length 2c1(1 + ε), 2c2, . . . , 2cn centered at the origin
in Rn. Then by Problem 11.3,

Vol(Pε) = |det(B)|−1 Vol(Rε) = |det(B)|−12n(1 + ε)c1 . . . cn ≥ 2n(1 + ε) > 2n,

and so by Theorem 3.2 there exists 0 ̸= xε ∈ Pε ∩ Zn. This is true for every ε and
Pε1 ⊂ Pε2 whenever ε1 < ε2. Further, each Pε ⊂ P1, which is bounded, and hence
contains only finitely many points of Zn. There is a nonzero integer in each of Pε,
and hence there must be a nonzero integer point x ∈

⋂
ε Pε, which is precisely the

point we are looking for. □

Corollary 3.4. Let θ1, . . . , θn be real numbers, and let M > 1 be an integer. There
exists a positive integer m < M and integers b1, . . . , bn such that

|mθj − bj | ≤ M−1/n, ∀ 1 ≤ j ≤ n.

Proof. Define n+ 1 linear forms in n+ 1 variables:

Lj(X) = θjXn+1 −Xj , ∀ 1 ≤ j ≤ n,

Ln+1(X) = Xn+1.

Let us apply Theorem 3.3 with this choice of the linear forms, so the corresponding
matrix B is of the form

B =


−1 0 . . . 0 θ1
0 −1 . . . 0 θ2
...

...
. . .

...
...

0 0 . . . −1 θn
0 0 . . . 0 1

 ,

hence det(B) = ±1. Let us take cj = M−1/n for each 1 ≤ j ≤ n and cj = M , then

c1 · · · cn+1 = 1.

Then Theorem 3.3 guarantees the existence of a nonzero point (b,m) ∈ Zn+1 such
that

|Li(b)| ≤ ci, ∀ 1 ≤ i ≤ n, m < M.

This establishes the corollary. □
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4. Cassels’ theorem on quadratic forms

In this section, we consider the case of a quadratic hypersurface. Namely, let

F (X) =

n∑
i=1

n∑
j=1

fijXiXj ∈ Z[X1, . . . , Xn]

be a quadratic form in n variables with integer coefficients. We say that F is
isotropic if there exists 0 ̸= x ∈ Zn such that F (x) = 0; noticed that F has an
integral zero if and only if it has a rational zero, by homogeneity. Provided that F
is isotropic, we are interested in proving the existence of a nonzero point of bounded
height in the zero-set

V(F ) = {x ∈ Zn : F (x) = 0}
with an explicit bound on height. Define

|F | = max{|fij | : 1 ≤ i, j ≤ n}.
The following theorem was originally proved by Cassels in 1955.

Theorem 4.1. Let F be an isotropic integral quadratic form, as above. Then there
exists 0 ̸= a ∈ V(F ) such that

(4.1) |a| ≤
(
3n2|F |

)n−1
2 .

Proof. Let 0 ̸= a ∈ V(F ) be a vector of minimal sup-norm |a|. Permuting the
indices and taking −a instead of a, if necessary, we can assume that a1 = |a|. If
a1 = 1, then (4.1) is satisfied, so assume a1 ≥ 2. Define the numbers

θj = aj/a1 ∀ 2 ≤ j ≤ n,

and apply Corollary 3.4 with this choice of θj ’s and M = a1. Then there exists
b1 < a1 and b = (b1, . . . , bn) ∈ Zn−1 such that

|b1(aj/a1)− bj | ≤ a
−1/(n−1)
1 , ∀ 2 ≤ j ≤ n.

Hence, for all 2 ≤ j ≤ n,

|bj | ≤ |b1θj |+ a
−1/(n−1)
1 ≤ b1 + a

−1/(n−1)
1 < b1 + 1,

and so |b| = b1 < a1 = |a|. By minimality of |a|, it must be that F (b) ̸= 0. Define

a′ = F (b)a− 2F (a, b)b ∈ Zn.

Notice that a′ ̸= 0. Indeed, assume a′ = 0, then F (b)a = 2F (a, b)b, hence
F (a, b) ̸= 0, since a ̸= 0. On the other hand,

F (b)2F (a) = 4F (a, b)2F (b) = 0,

meaning that F (b) = 0, which is a contradiction.
It is also easy to verify that

F (a′) = F (b)2F (a) + 4F (a, b)2F (b)− 4F (a, b)2F (b) = 0.

Now, for each 1 ≤ j ≤ n, we can write

bj =

(
b1
a1

)
aj + dj ,

where

d1 = 0, |dj | ≤ a
−1/(n−1)
1 ∀ 2 ≤ j ≤ n.
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Writing d = (d1, . . . , dn), we see that

|d| ≤ a
−1/(n−1)
1 = |a|−1/(n−1).

Also, b =
(

b1
a1

)
a+ d, and so

F (a, b) = F (a,d) and F (b) = 2

(
b1
a1

)
F (a,d) + F (d).

Therefore

a′ =

(
2

(
b1
a1

)
F (a,d) + F (d)

)
a− 2F (a,d)

((
b1
a1

)
a+ d

)
= F (d)a− 2F (a,d)d.

We can now roughly estimate the size of a′:

|a′| ≤ 3n2|F ||d|2|a|.
Since a is a minimal zero of F , we must have |a′| ≥ |a|, and so

|a| ≤ 3n2|F ||d|2|a|,
meaning that 3n2|F ||d|2 ≥ 1. On the other hand, |d| ≤ |a|−1/(n−1), and so

1 ≤ 3n2|F ||a|−2/(n−1),

meaning that |a| ≤
(
3n2|F |

)n−1
2 , as asserted. □

The dependence on |F | in the upper bound of Theorem 4.1 is best possible, as
demonstrated by the following example due to M. Kneser [Cas56]. Consider an
integral quadratic form

F (X) = X2
1 −

n∑
i=2

(Xi−cXi−1)
2 = (1−c2)X2

1 −(1+c2)

n−1∑
i=2

X2
i −X2

n+2c

n∑
i=2

Xi−1Xi

for some large positive integer c. Then |F | = 1 + c2. Now, if F (x) = 0 for some
0 ̸= x ∈ Zn, then it must be true that

0 ̸= x2
1 =

n∑
i=2

(xi − cxi−1)
2 = y22 + · · ·+ y2n,

where yi = xi − cxi−1 for each 2 ≤ i ≤ n. We can express

xn = yn + cyn−1 + · · ·+ cn−1y2 + cn−1x1.

Then the smallest possible absolute value of xn becomes

(cn−1 − cn−2)|x1| >
1

2
cn−1 =

1

2
(|F | − 1)

n−1
2 .
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5. Inhomogeneous quadratic polynomials

Let us now consider the case when instead of being a quadratic form, F is an
inhomogeneous quadratic polynomial over K. In other words, let

F (X) =

n∑
i=1

n∑
j=1

fijXiXj +

n∑
i=1

f0iXi + f00 ∈ K[X1, . . . , Xn],

and suppose that

VK(F ) = {x ∈ Kn : F (x) = 0}
is not empty. We want to prove the existence of a point x ∈ VK(F ) of bounded
height. Notice that we can “homogenize” F by adding one more variable X0, i.e.
consider the quadratic form in n+ 1 variables

F (X) =
n∑

i=0

n∑
j=1

fijXiXj ∈ K[X0, . . . , Xn].

Problem 11.20 guarantees that a point x = (x0, x1, . . . , xn) ∈ Kn+1 with x0 ̸= 0 is
a zero of F (X0, . . . , Xn) if and only if the point x′ = (x1, . . . , xn) ∈ Kn is a zero of

F1(X1, . . . , Xn) := F (1, X1, . . . , Xn).

Hence we want to look for small-height zeros of F with additional condition x0 ̸= 0.
The following theorem was proved by D. Masser in 1998 [Mas98].

Theorem 5.1. Let F be a quadratic form in n + 1 ≥ 2 variables with coefficients
in K. Suppose that there exists x = (x0, ..., xn) ∈ Kn+1 such that F (x) = 0 and
x0 ̸= 0, then there exists such x with

(5.1) |x| ≪n |F |
n+1
2 ,

where the implied constant depends only on n.

This implies that if an inhomogeneous quadratic polynomial in n variables with
coefficients in K has a zero over K, then it has such a zero of height bounded as in
(5.1). The exponent in the upper bound of (5.1) is best possible as demonstrated
by an example of Masser presented in [Mas98]: for a fixed integer a ≥ 2, consider
the inhomogeneous quadratic polynomial

F (X1, . . . , Xn) = 2X1 − (X2 − aX1)
2 − · · · − (Xn − aXn−1)

2 − 2a2.

The height of this polynomial is a constant multiple of a2. It is not very difficult
to show that the “smallest” rational zeros this polynomial has are of the height

≥ c(n)an+1 = c′(n)H(F )
n+1
2 for appropriate dimensional constants c(n), c′(n).

Masser’s theorem provides a search bound for an inhomogeneous quadratic equa-
tion over Q. The problem of obtaining an inhomogeneous result over Z instead of Q
is substantially more difficult. Some state-of-the art results for integer solutions
to inhomogeneous integral quadratic equations were obtained by R. Dietmann in
[Die03].

Theorem 5.2. Let F (X1, . . . , Xn) ∈ Z[X1, . . . , Xn] be a nonsingular integral qua-
dratic form. Suppose that there exists a vector x ∈ Zn such that F (x) = t for some
integer t. Then there is a vector x ∈ Zn such that F (x) = t and

|x| ≪ |Ft|ℓ(n),
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where Ft(X) = F (X)− t, the implied constant depends only on n, and

ℓ(n) =


2100 if n = 3,

84 if n = 4,

5n+ 19 + 74/(n− 4) if n ≥ 5.
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6. Multilinear forms

In this section, we study a special class of polynomials of arbitrary degree. Let
n ≥ 1 be an integer and let us define [n] := {1, . . . , n}. Given an integer d with 1 ≤
d ≤ n, we put Id(n) := {I ⊆ [n] : |I| = d}. For each indexing set I = {i1, . . . , id} ∈
Id(n) with 1 ≤ i1 < · · · < id ≤ n, we define the monomial xI in the variables
xi1 , . . . , xid out of x1, . . . , xn as xI := xi1 · · ·xid . An integer multilinear (n, d)-form
is a polynomial of the form

F (x1, . . . , xn) =
∑

I∈Id(n)

fIxI ,

where the coefficients fI are integers for all I ∈ Id(n). Such an F is a homogeneous
polynomial in n variables of degree d which has degree 1 in each of the variables
x1, . . . , xn. We will say that F represents an integer b it there exists an integer
vector a ∈ Zn such that F (a) = b. Under what conditions on F does such a
polynomial represent all integers? The first observation is that the coefficients fI
of F must be relatively prime: if g = gcd(fI)I∈Id(n) > 1, then g must divide F (a)
for every a ∈ Zn, and hence an integer b that is not a multiple of g is not represented
by F . We will say that our form is coprime if gcd(fI)I∈Id(n) = 1.

We will provide some sufficient conditions for a multilinear (n, d)-form F to
represent all integers. Further, our results are effective in the sense that we provide
algorithms that yield an integer solution a of the equation F (a) = b (theoretically
but not necessarily practically) in a finite number of steps. The following theorem
was proved in [BF20].

Theorem 6.1. Let F (x) be a coprime integer multilinear (n, d)-form. Suppose in
addition that at least one of the following two conditions holds:

(a) The nonzero coefficients of F are pairwise coprime,
(b) n = d+ 1 and F has a pair of coprime coefficients.

Then F represents all integers. Further, for each b ∈ Z there exists an a ∈ Zn such
that F (a) = b and

|a| ≤ |b| (2|F |)d! e ,
where |a| = max1≤i≤n |ai|, |F | = maxI∈Id(n) |fI |, and e = 2.71828 . . ..

Proof of Theorem 6.1(a). By the remark after Theorem 6.1, we may assume
that d ≥ 2. We define

(6.1) νd =

d∑
k=0

d!

k!

and will show the theorem with the bound

(6.2) |a| ≤ |b| (2|F |)νd .

As νd < d! e, this is actually sharper than the bound given in Theorem 6.1.
Since F (x) := F (x1, . . . , xn) is homogeneous, F (0) = 0. Hence from here on we

assume that b ̸= 0. First suppose that F (x) has only one monomial, i.e.,

F (x) = fI
∏
i∈I

xi

for some I ⊆ [n] and fI ∈ Z. Since the gcd of the coefficients of F is 1, we must
have fI = ±1. Take some j ∈ I and put aj = ±b and ai = 1 for i ∈ I \ {j}. We
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so obtain a vector a ∈ Zn such that F (a) = b and |a| = max{1, |b|} = |b|, which is
smaller than the bound (6.2).

Next assume that F (x) has exactly two monomials, i.e.,

F (x) = fI1
∏
i∈I1

xi + fI2
∏
i∈I2

xi

for some I1, I2 ⊆ [n] and coprime fI1 , fI2 ∈ Z. Then the index sets I1 and I2
must be distinct (since otherwise there would be only one monomial) of the same
cardinality d, and so there must exist some k ∈ I1 \ I2 and m ∈ I2 \ I1. Let
a′k, a

′
m ∈ Z be such that

a′kfI1 + a′mfI2 = 1.

The Euclidean algorithm allows us to find such a′k, a
′
m with

|a′k|, |a′m| ≤ max{|fI1 |, |fI2 |}.
Letting ak = ba′k, am = ba′m, and ai = 1 for i ̸= k,m, we get

F (a) = akfI1 + amfI2 = b

with |a| ≤ |b||F |, which is again smaller than the bound (6.2).
We now argue by induction on ℓ ≥ 1, the number of monomials of F . Since the

base of induction is already established, we assume that ℓ ≥ 3 and that the result
is proved for polynomials with no more than ℓ− 1 monomials. First notice that we
can assume without loss of generality that F depends on all variables (if not, then
F is a polynomial in < n variables) and that no variable is present in all monomials
(if it is, then just set it equal to 1). Let d ≥ 2 be the degree of F . Every monomial
is indexed by a subset I of [n] = {1, . . . , n} of cardinality d.

Suppose first that the variable x1 is present in ℓ − 1 monomials. We then may
write

(6.3) F (x) = x1G(x2, . . . , xn) + fI
∏
i∈I

xi,

where I ⊂ {2, . . . , n} with |I| = d andG is a homogeneous polynomial of degree d−1
that is linear in each of the n−1 variables with pairwise coprime integer coefficients.
By the induction hypothesis, there exists a vector a′ = (a2, . . . , an) ∈ Zn−1 such
that G(a′) = 1 and

|a′| ≤ |1|(2|G|)νd−1 ≤ (2|F |)νd−1 .

Put a1 = b− fI
∏

i∈I ai. Then

(6.4) F (a1,a
′) =

(
b− fI

∏
i∈I

ai

)
G(a′) + fI

∏
i∈I

ai = b,

that is, F (a) = b for a = (a1, a2, . . . , an). Furthermore,

|a| ≤ |b|+ |fI ||a′|d ≤ 2|b||F ||a′|d

since |b|, |fI ||a′|d are positive integers and fI is a coefficient of F . Therefore

|a| ≤ 2|b||F | (2|F |)νd−1d = (2|F |)1+dνd−1 |b|,
and because, by (6.1),

1 + dνd−1 = 1 + d

d−1∑
k=0

(d− 1)!

k!
=

d∑
k=0

d!

k!
= νd,
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we obtain the bound (6.2).
On the other hand, assume that x1 is not present in at least two different mono-

mials. Then set x1 = 0 and apply the induction hypothesis to the resulting poly-
nomial

(6.5) P (x2, . . . , xn) := F (0, x2, . . . , xn)

in n− 1 variables. This polynomial has no more than ℓ− 1 and no fewer than two
monomials and satisfies all the other conditions of the theorem. Take a′ ∈ Zn−1 to
be the point guaranteed by the induction hypothesis, so that P (a′) = b and

(6.6) |a′| ≤ (2|P |)νd |b| ≤ (2|F |)νd |b|.
Setting a to be a′ with inserted 0 in the first coordinate, we obtain the necessary
solution F (a) = b with |a| = |a′| bounded as in (6.6), which gives the bound (6.2).
□

Proof of Theorem 6.1(b). We argue by induction on d ≥ 1. As said, if d = 1,
then n = 2 and F (x1, x2) = f1x1 + f2x2 with gcd(f1, f2) = 1. Thus, the result
follows from the Euclidean algorithm.

Suppose now d ≥ 2. Since n = d+ 1 ≥ 3, the set Id(n) consists of the indexing
sets I(k) = [n] \ {k} with 1 ≤ k ≤ n, and so

F (x1, . . . , xn) =

n∑
k=1

fI(k)xI(k).

Since F has a pair of coprime coefficients, there must exist 1 ≤ j < m ≤ n such
that gcd(fI(j), fI(m)) = 1. Assume without loss of generality that j = n−1, m = n,
and notice that each monomial xI(k) for k ̸= 1 is divisible by x1. Thus, writing
I ′(k) = I(k) \ {1} we obtain

F (x1, . . . , xn) = x1G(x2, . . . , xn) + fI(1)xI(1) = x1G(x2, . . . , xn) + fI(1)

n∏
i=2

xi

with

G(x2, . . . , xn) =

n∑
k=2

fI(k)xI′(k).

The polynomial G is a coprime integer multilinear (n− 1, d− 1)-form with n− 1 =
(d− 1) + 1 and G still has the same pair of coprime coefficients fI(n−1), fI(n). We
can therefore apply the induction hypothesis to G and can argue in the same way
as in the proof of Theorem 6.1(a) to get the desired result. □
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7. Siegel’s Lemma over number fields

In this section, we present a basic version of Siegel’s Lemma over number fields.
Let K be a number field of degree d with embeddings σ1, . . . , σd. For each α ∈ K,
define its height

H(α) := max{|σk(α)| : 1 ≤ k ≤ d}.
Height functions more generally are devices meant to measure arithmetic complex-
ity of objects, in a certain well-defined sense. This is a somewhat simplified version
of a height function, which takes into account only partial information about the
arithmetic properties of an algebraic number. We will discuss the theory of height
functions and introduce more sophisticated machinery in Section 8 below.

As we know, the ring of integers OK is a free Z-module of rank d. In other words,
OK has a Z-basis: there exists a linearly independent collection ω1, . . . , ωd ∈ OK

such that

OK =

{
d∑

k=1

akωk : a1, . . . , ad ∈ Z

}
.

Define the corresponding d× d basis matrix W := (σℓ(ωk))1≤ℓ,k≤d, which of course
is nonsingular. With this notation and information in mind, we can now prove our
next result, following [MR14].

Theorem 7.1 (Siegel’s Lemma, version 2). Let K be a number field of degree d,
and let A = (αij) be an l × n matrix of rank l < n with entries αij ∈ OK . Define

H(A) := max{H(αij) : 1 ≤ i ≤ l, 1 ≤ j ≤ n}.
There exists a solution 0 ̸= x = (x1, . . . , xn) ∈ On

K to the homogeneous linear
system Ax = 0 with

(7.1) max
1≤j≤n

H(xj) < BK(l, n)H(A)
l

n−l ,

where BK(l, n) is some constant depending only on l, n and the number field K.

Proof. Let ω1, . . . , ωd ∈ OK be a Z-basis for OK , as described above, and let W
be the corresponding basis matrix. Then for each entry αij of our matrix A, there
exist aijk ∈ Z, 1 ≤ k ≤ d, such that

αij =

d∑
k=1

aijkωk.

Applying embeddings σ1, . . . , σd to the above equation, we obtain

σℓ(αij) =

d∑
k=1

aijkσℓ(ωk)

for each 1 ≤ ℓ ≤ d, and hence

αij := (σ1(αij), . . . , σd(αij))
t = W (aij1, . . . , aijd)

t.

Since W is invertible, we have

aij := (aij1, . . . , aijd)
t = W−1αij .

If we write vkℓ for the entries of W−1, then

aijk =

d∑
ℓ=1

vkℓσℓ(αij),
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and so

(7.2) |aijk| ≤ d max
1≤ℓ≤d

|vkℓσℓ(αij)| ≤ dCKH(A),

where CK is a constant depending only on the number field K such that CK ≥
max1≤k,ℓ≤d |vkℓ|.

Now suppose x ∈ On
K is a nontrivial solution of the system Ax = 0, and write

(7.3) x =

(
d∑

ℓ=1

b1ℓωℓ, . . . ,

d∑
ℓ=1

bnℓωℓ

)
for some bjℓ ∈ Z for 1 ≤ j ≤ n, 1 ≤ ℓ ≤ d. Then i-th entry of the vector Ax is

n∑
j=1

d∑
ℓ=1

d∑
k=1

aijkbjℓωkωℓ = 0.

Since ωkωℓ ∈ OK , it can also be expressed as a linear combination of ωm’s with
Z-coefficients:

ωkωℓ =

d∑
m=1

ckℓmωm

for each 1 ≤ k, ℓ ≤ d, and hence we have

d∑
m=1

n∑
j=1

d∑
ℓ=1

d∑
k=1

aijkbjℓckℓmωm = 0.

Since ω1, . . . , ωd are linearly independent over Z, all the coefficients in the above
equations must be zero, and hence we have a system of ld homogeneous linear
equations with integer coefficients in the nd variables bjℓ:

n∑
j=1

d∑
ℓ=1

d∑
m=1

aijkbjℓckℓm = 0,

for all 1 ≤ i ≤ l, 1 ≤ m ≤ d. Applying Theorem 2.1 along with (7.2), we see that
there exists a solution with

max
j,ℓ

|bjℓ| ≤ 2 + (nd2CKH(A))
ld

nd−ld ,

and hence, by (7.3),

max
1≤j≤n

H(xj) ≤ d
(
2 + (nd2CKH(A))

l
n−l

)
max
1≤ℓ≤d

H(ωℓ).

Since the choice of ω1, . . . , ωℓ depends only on K, the conclusion of the theorem
follows. □

Recall that for any β ∈ K, there exists c ∈ N such that cβ ∈ OK . In fact, for
any collection β1, . . . , βn ∈ K, let us define their common denominator to be

D(β1, . . . , βn) = min{c ∈ N : cβk ∈ OK ∀ 1 ≤ k ≤ n}.
For an l × n matrix A with entries in K, we will write D(A) for the common
denominator of all of its entries, i.e.,

D(A) = D(αij : 1 ≤ i ≤ l, 1 ≤ j ≤ n).

With this notation in mind, we have one more version of Siegel’s lemma.
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Corollary 7.2 (Siegel’s Lemma, version 3). Let K be a number field of degree d,
and let A = (αij) be an l × n matrix of rank l < n with entries αij ∈ K. There
exists a solution 0 ̸= x = (x1, . . . , xn) ∈ On

K to the homogeneous linear system
Ax = 0 with

(7.4) max
1≤j≤n

H(xj) < BK(l, n)(D(A)H(A))
l

n−l ,

where BK(l, n) is the same constant as in Theorem 7.1 above.

Proof. Let A′ = D(A)A, then A′ is an l×n matrix with entries in OK , and Ax = 0
if and only A′x = 0. Then apply Theorem 7.1 to the system A′x = 0 while keeping
in mind that H(A′) = D(A)H(A). □
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8. Absolute values and height functions

In this section we introduce the basic machinery of absolute values and heights,
which is used to investigate further questions in Diophantine Approximations and
Diophantine Geometry.

Definition 8.1. Let K be a field. An absolute value on K is a function | | : K →
R≥0 such that for all x, y ∈ K we have:

(1) |x| ≥ 0 with equality if and only if x = 0,
(2) |xy| = |x||y|,
(3) Triangle inequality: |x+ y| ≤ |x|+ |y|.

Sometimes (3) can be replaced by the stronger property:

(4) Ultrametric inequality: |x+ y| ≤ max{|x|, |y|}.

If | | satisfies (1), (2), (3), but fails (4), we say that it is archimedean absolute value;
if it also satisfies (4), it is called non-archimedean.

Here is the most basic example of an absolute value on K: it is called the trivial
absolute value, and is defined by

|x| =
{

0 if x = 0,
1 if x ̸= 0.

This is the only possible absolute value on a finite field.

We will say that two absolute values | |1 and | |2 on K are equivalent if there
exists θ ∈ R>0 such that

|x|1 = |x|θ2
for all x ∈ K. In this case we will write | |1 ∼ | |2. It is easy to see that an
archimedean absolute value cannot be equivalent to a non-arhimedean one. This
relation ∼ is an actual equivalence relation (Problem 11.5), and the only absolute
value equivalent to the trivial one is itself (Problem 11.6).

Equivalence classes of nontrivial absolute values on K are called places. The
set of all places of K will be denoted by M(K). Notice that an absolute value | |
defines a metric on K:

(x, y) → |x− y|
for every x, y ∈ K. Therefore | | induces a metric topology on K. Moreover, we
can talk about the completion of K with respect to this topology. K equipped
with the metric induced by | | is a metric space, we will write (K, | |) to mean that
we are thinking of K as a metric space with respect to this metric. Recall that a
metric space (K, | |) is called complete if every Cauchy sequence in K converges to a
point in K. The completion of (K, | |) is the set of all equivalence classes of Cauchy
sequences on (K, | |), where two Cauchy sequences {an} and {bn} are equivalent if

lim
n→∞

|an − bn| = 0.

Notice that | | is also defined on the completion of (K, | |), and so this completion
also has a metric topology induced by | |. Then (K, | |) is complete if and only
if it is equal to its completion; by “equal” here we mean isometrically isomorphic
as fields: it is a well known fact that completion of a field is also a field, where
addition and multiplication on Cauchy sequences are defined component-wise.
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Notice that for an absolute value | | on K, x → |x| is a homomorphism from
the multiplicative group K× = {x ∈ K : x ̸= 0} to multiplicative group R>0.
Therefore:

(1) |1| = 1,
(2) |ζ| = 1 for every root of unity ζ ∈ K, i.e. for every ζ ∈ K

such that ζn = 1 for some n ∈ Z>0,
(3) | − x| = |x|, for all x ∈ K×,
(4) |x−1| = |x|−1, for all x ∈ K×.

If L/K is an extension of fields and | | is an absolute value on L, then its restriction
to K is an absolute value on K. It is in general possible that | | is non-trivial on
L, but is trivial on K.

We will now demonstrate some standard absolute values on Q. The first one is
the usual absolute value, which we will denote by | |∞:

|x|∞ =

{
x if x ≥ 0,
−x if x < 0.

This is an archimedean absolute value (Problem 11.8), which induces the usual
metric topology on Q; the completion of Q with respect to this topology is R.
Sometimes we will write Q∞ instead of R to stress this fact.

Now let p ∈ Z be a prime, and define the p-adic absolute value | |p on Q as
follows. For each n ∈ Z, let

|n|p = p−µ(n),

where pµ(n) is the largest power of p dividing n, hence |n|p ≤ 1 for each n ∈ Z.
Now for each m

n ∈ Q, let ∣∣∣m
n

∣∣∣
p
=

|m|p
|n|p

.

This is a non-archimedean absolute value on Q for every prime p (Problem 11.9).
The topology induced by | |p on Q is called p-adic topology; the completion of Q
with respect to this is called the field of p-adic numbers, denoted by Qp. The set

Zp = {a ∈ Qp : |a|p ≤ 1}
is a ring, and is called the ring of p-adic integers. Problem 11.10 implies that
Z ⊆ Zp for every prime p ∈ Z. Moreover, if we write P for the set of all primes in
Z, then

Z =
⋂
p∈P

Zp.

The important result classifying all absolute values on Q is Ostrowski’s theorem.

Theorem 8.1 (Ostrowski, 1935). Any non-trivial absolute value on Q is equivalent
to either | |∞ or | |p for some p ∈ P.

Proof. We start with the following fact, the proof of which is deferred to Prob-
lem 11.11.

Lemma 8.2. An absolute value | | on Q is non-archimedean if and only if |n| ≤ 1
for every n ∈ Z. Moreover, for any absolute value | | on Q there exists ρ ∈ R>0

such that

(8.1) |n| ≤ |n|ρ∞.
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Now suppose | | is an absolute value on Q. We will use Lemma 8.2 throughout

this proof, assuming without loss of generality that ρ = 1 in (8.1); indeed, | |
1
ρ is

equivalent to | |, so it is not important whether we prove that | |
1
ρ or | | is equivalent

to | |∞ or | |p for some p ∈ P.

Let a, b ∈ Z>0, a > 1, b > 1. For any ν ∈ Z>0, there exists integers c0, . . . , cn
with 0 ≤ ci < a and cn ̸= 0 such that

bν = c0 + c1a+ · · ·+ cna
n.

Notice that by Lemma 8.2 for each 0 ≤ i ≤ n,

|ci| ≤ |ci|∞ ≤ |a|∞ = a.

Also notice that

an ≤ cna
n ≤ bν ,

and so n ≤ ν log b
log a . Then

|b|ν = |bν | ≤
n∑

i=0

|ci||a|i ≤ (n+ 1) amax{1, |a|}n

≤
(
1 +

ν log b

log a

)
amax{1, |a|}n.

Therefore

|b| ≤
(
1 +

ν log b

log a

)1/ν

a1/ν max{1, |a|}
log b
log a → max

{
1, |a|

log b
log a

}
,

as ν → ∞, in other words

(8.2) |b| ≤ max
{
1, |a|

log b
log a

}
.

Case 1. Assume | | is archimedean. Then by Lemma 8.2, there exists b ∈ Z such
that |b| > 1. Then by (8.2), |a| > 1 for every a ∈ Z except for -1,0,1. Therefore if
a, b ∈ Z, a, b > 1, then

|b|
1

log b ≤ |a|
1

log a ≤ |b|
1

log b ,

and so

|b|
1

log b = |a|
1

log a .

We have

1 < |b| ≤ |b|∞ = b,

so |b| = |b|ρ∞ = bρ for some 0 < ρ ≤ 1, and hence

|a| = |b|
log a
log b = bρ

log a
log b = aρ = |a|ρ∞.

Same way therefore |α| = |α|ρ∞ for every α ∈ Q.

Case 2. Assume | | is non-archimedean. Then by Lemma 8.2, |n| ≤ 1 for every
n ∈ Z, and since | | is non-trivial, there exists a ∈ Z such that |a| < 1. Let

I = {a ∈ Z : |a| < 1}.
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This is an ideal in Z (Problem 11.12). Therefore there exists a prime p ∈ Z such
that I = pZ. Let 0 ̸= α ∈ Q. Write

α = pr
x

y

with x, y ∈ Z such that p ∤ xy. Then x, y /∈ I, hence

|x| = |y| = 1,

and so

|α| = |pr| = |p|r.
Since p ∈ I, |p| < 1, so |p| = p−s for some s > 0. Then

|α| = p−rs = |r|sp.

We have shown that | | must be equivalent to either | |∞ or | |p for some prime
p. This completes the proof. □

Therefore we can write

M(Q) = {∞} ∪ P,

this way indexing the archimedean place by ∞, and non-archimedean places by p
for each p ∈ P.

Theorem 8.3 (Artin - Whaples Product Formula). If 0 ̸= a ∈ Q, then

|a|∞
∏
p∈P

|a|p = 1.

Proof. Problem 11.13. □

Next we discuss absolute values on a number field K. If | | is an absolute value
on K, its restriction to Q is an absolute value on Q, and so must belong to either
∞ or one of the p-adic places on Q. Hence absolute values on K are precisely
extensions of those on Q. If v ∈ M(K), we will write | |v for an absolute value that
represents it. We know that | |v extends either | |∞ or | |p for some p ∈ P, and
we say that v lies over ∞ or p respectively; we denote it by writing v|∞ or v|p.
The place v ∈ M(K) is archimedean if and only if v|∞. Sometimes we will write
v ∤ ∞ to mean that v is non-archimedean, i.e. lies over some p-adic place of Q. For
each place u ∈ M(Q) there may be more than one place v ∈ M(K) such that v|u,
however each places v ∈ M(K) lies over precisely one place u ∈ M(Q).

First we describe all archimedean places of K. Let σ1, . . . , σr be real embeddings
of K, and τ1, τ1, . . . , τs, τs conjugate pairs of complex embeddings, then

r + 2s = d = [K : Q].

Notice that since Q∞ = R ⊂ C, the absolute value | |∞ is defined on R and on C.
Also, for each a ∈ K

σi(a) ∈ R, τj(a), τ j(a) ∈ C
for each 1 ≤ i ≤ r and 1 ≤ j ≤ s. If ρ is one of these embeddings, then we define
an absolute value | |ρ on K by

|a|ρ = |ρ(a)|∞.
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It is easy to notice that if | |τj = | |τj
for each 1 ≤ j ≤ s. However, the absolute

values

| |σ1
, . . . , | |σr

, | |τ1 , . . . , | |τs
are not equivalent to each other. These represent all the archimedean places of K.
For each v ∈ M(K), we will write Kv for the completion of K at v. If v|u for some
u ∈ M(Q), then Kv/Qu is an extension of fields, and we will define the local degree
of K at v to be the degree of this extension, and denote it by

dv = [Kv : Qu].

We will also write sometimes Qv where v ∈ M(K) to mean Qu, where u ∈ M(Q) is
the unique place over which v lies. Notice that if v ∈ M(K) is archimedean, then
Kv is either R or C, depending on whether v is real or complex, i.e. corresponds to
a real or to a complex embedding. Therefore, for each v|∞

dv = [Kv : Q∞] = [Kv : R] =
{

1 if v is real
2 if v is complex.

Therefore ∑
v|∞

dv = r + 2s = d.

Next we describe non-archimedean places of K. Let p be a prime in Z, so that
(p) = pZ is a prime ideal in Z. Recall that OK , the ring of algebraic integers of K,
is a Dedekind domain, which means that there is unique factorization into prime
ideals in OK . Notice that Z ∈ OK , and so pOK is an ideal in OK , although it may
no longer be prime. Then there exist prime ideals P1, . . . , Pk and positive integers
e1, . . . , ek such that

pOK = P e1
1 . . . P ek

k ,

and
∑k

i=1 ei = d; each such ei is called the ramification degree of Pi over p. First
we define |0|Pi

= 0. Now let 0 ̸= a ∈ OK , then for each Pi, 1 ≤ i ≤ k, define

ordPi a = max{j ∈ Z : a ∈ P j
i },

and let

|a|Pi = p
−

ordPi
a

ei .

The number ordPi
a is well-defined due to unique factorization of ideals into powers

of prime ideals: it is precisely the power to which Pi divides aOK . Notice that K
is the field of fractions of OK , i.e.

K =
{a
b
: a, b ∈ OK

}
.

Then for each α = a
b ∈ K with a, b ∈ OK , define

(8.3) |α|Pi
=

|a|Pi

|b|Pi

.

This is an absolute value on K, which restricts to the usual p-adic absolute value
on Q (Problem 11.14). Hence for each prime p in Z, we defined absolute values
lying over it; these are all the non-archimedean places of K. Suppose v ∈ M(K)
lies over p, and Pi is the corresponding prime ideal of OK with ramification degree
ei over p. In a Dedekind domain every nonzero prime ideal is maximal, hence Pi is
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a maximal ideal, and so OK/Pi is a field; in fact, it is a finite field of characteristic
p, meaning that

|OK/Pi| = pfi ,

for some fi ∈ Z>0. This fi is called the inertia degree of Pi over p. Its significance
for our purposes is that the local degree dv = [Kv : Qp] is equal to eifi. A result
from algebraic number theory implies that if P1, . . . , Pk are prime ideals in OK

lying over a rational prime p with respective ramification degrees e1, . . . , ek and
ramification degrees f1, . . . , fk, then

k∑
i=1

eifi = d.

In particular this means that ∑
v|u

dv = d

is true for any u ∈ M(Q). The Artin - Whaples product formula works over a
number field in a similar way as over Q: we state here without proof.

Theorem 8.4. If 0 ̸= a ∈ K, then∏
v∈M(K)

|a|dv
v = 1.

Example 8.1. Let K = Q(
√
2), then d = 2. Since K is totally real, there are no

complex embeddings. Hence if v ∈ M(K) is archimedean, then Kv = R, and so
dv = 1. Since ∑

v|∞

dv = 2,

K must have two archimedean places. These are precisely the places corresponding
to embeddings σ1, σ2 : K → R, given by

σ1(
√
2) =

√
2, σ2(

√
2) = −

√
2,

and fixing Q, hence σ1 is the identity. Let v1, v2 be the archimedean places corre-
sponding to embeddings σ1, σ2 respectively. Notice that for every α ∈ K, there exist
a, b ∈ Q such that α = a+ b

√
2, hence

|α|v1 = |σ1(a+ b
√
2)|∞ = |a+ b

√
2|∞,

and

|α|v2 = |σ2(a+ b
√
2)|∞ = |a− b

√
2|∞.

Now let us look at non-archimedean places of K. Consider for instance all places
v ∈ M(K) lying over 7. Notice that

7 = (3 +
√
2)(3−

√
2),

therefore the ideal 7OK no longer prime in OK splits as the product of these two
prime ideals:

7OK = P1P2,
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where P1 = (3 +
√
2)OK and P2 = (3 −

√
2)OK . This means that there are two

places lying over 7, corresponding to P1 and P2, call them u1 and u2 respectively.
Then du1 = du2 = 1. Notice for instance that

3 +
√
2 ∈ P1, 3 +

√
2 /∈ P 2

1 , 3 +
√
2 /∈ P2,

3−
√
2 ∈ P2, 3−

√
2 /∈ P 2

2 , 3−
√
2 /∈ P1,

hence
|3 +

√
2|u1

= 7−1, |3−
√
2|u1

= 70,

|3 +
√
2|u2

= 70, |3−
√
2|u2

= 7−1.

Recall that prime ideals in OK are maximal. This implies that 3 ±
√
2 are not

contained in any other prime ideal of OK , hence for every place v ∈ M(K) which

is not equal to v1, v2, u1, or u2, |3±
√
2|v = 1. Hence∏

v∈M(K)

|3±
√
2|v = |3 +

√
2|∞|3−

√
2|∞7−1 = 1.

This is a demonstration of the product formula at work.

Remark 8.1. The same construction of absolute values as described in this section
can be carried out for any field extension of number fields L/K. In this case,
we would replace the ground field Q with K, and talk about places of L lying
over places of K in the same precise manner. We will assume this more general
construction going forward.

We now introduce height functions, which serve as the main tool used to measure
arithmetic complexity. We have already seen an example of a height function H in
Section 7, however H only carries archimedean information: it only measured the
size of a given algebraic number at the archimedean places. We are now prepared
to define more general heights on vectors, which incorporate arithmetic information
at all the places of a number field. As above, K is a number field of degree d over
Q and M(K) is its set of places. Let n ≥ 2 be an integer. For each place v of K
we define a local height Hv for each vector x ∈ Kn

v by

Hv(x) =

{ (∑n
i=1 |xi|2v

) 1
2 if v|∞,

max1≤i≤n |xi|v if v ∤ ∞.

Then for each 0 ̸= x ∈ Kn, define the global height HK by

(8.4) HK(x) =
∏

v∈M(K)

Hv(x)
dv .

Notice that for each 0 ̸= x ∈ Kn, Hv(x) = 1 for all but finitely many places v of
K, hence the product in (8.4) is actually finite, therefore convergent, meaning that
HK is well-defined. Also notice that if 0 ̸= α ∈ K and 0 ̸= x ∈ Kn, then

HK(αx) =
∏

v∈M(K)

|α|dv
v Hv(x)

dv

=

 ∏
v∈M(K)

|α|dv
v

 ∏
v∈M(K)

Hv(x)
dv = HK(x)(8.5)

by the product formula. This means that HK is a homogeneous function, and so is
projectively defined. Indeed, define an equivalence relation on Kn \ {0} by writing
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x ∼ y whenever x = αy for some 0 ̸= α ∈ K. It is easy to check that this indeed is
an equivalence relation, and we write [x1 : · · · : xn] for the equivalence class of the
vector x = (x1, . . . , xn) ∈ Kn, which is called the projective point corresponding
to x. The space of all projective points on Kn is called the (n − 1)-dimensional
projective space over K, i.e.

Pn−1(K) = {[x1 : · · · : xn] : (x1, . . . , xn) ∈ Kn \ {0}}.
Notice that this is precisely the space of all lines through the origin in Kn, i.e. the
space of 1-dimensional subspaces of Kn. This is the simplest example of the more
general construction of Grassmannian that we will encounter later. Then (8.5)
implies that HK is well-defined on Pn−1(K), i.e. it can be viewed as a function
HK : Pn−1(K) → R>0.

Notice that the definition of HK depends on K. Let L be an extension of K of
degree e, hence [L : Q] = de. For each place v ∈ M(L), we will write ev = [Lv : Kv],
hence [Lv : Qv] = dvev. Also notice that∑

v∈M(L),v|u

ev = e

for each place u ∈ M(K). Suppose that 0 ̸= x ∈ Kn, then

HL(x) =
∏

v∈M(L)

Hv(x)
dvev =

∏
u∈M(K)

∏
v∈M(L),v|u

Hv(x)
duev ,

but since x ∈ Kn, Hv(x) = Hv′(x) whenever v, v′ ∈ M(L) lie over the same place
u ∈ M(K). Hence:

HL(x) =
∏

u∈M(K)

Hu(x)
du

∑
v∈M(L),v|u ev =

∏
u∈M(K)

Hu(x)
due = HK(x)e.

This suggests that if we want a height function that does not depend on the field
of definition, we may want to introduce the normalizing exponent 1

[K:Q] .

Definition 8.2. Let Q be the field of all algebraic numbers, as before. Define the
absolute height H : Qn \ {0} → R>0 by

H(x) = HK(x)
1

[K:Q]

for every 0 ̸= x ∈ Qn
, where K is any number field containing the coordinates of

x. By the discussion above, H does not depend on the choice of this number field.
Once again, notice that H is projectively defined. We will also adopt a convention
that H(0) = 1.

We also define the inhomogeneous height hK : Kn → R>0 by

hK(x) = HK(1,x),

for every x ∈ Kn, and the absolute inhomogeneous height h : Qn → R>0 by

h(x) = hK(x)
1

[K:Q] ,

for every x ∈ Qn
, where K is any number field containing the coordinates of x.

Notice that hK and h are no longer projectively defined, i.e. if α ∈ Q, then h(αx)

is not necessarily equal to h(x). Also notice that for every x ∈ Qn
,

H(x) ≤ h(x).
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For any algebraic number α ∈ Q, we define its Weil height to be

h(α) = H(1, α).

We now briefly outline the basic properties of heights, proofs of which are left to
the exercises.

Lemma 8.5. The following statements are true:

(1) If x ∈ Z is such that gcd(x1, . . . , xn) = 1, then

H(x) = ∥x∥2 =
(
x2
1 + · · ·+ x2

n

) 1
2 ,

i.e. height of an integer vector is the Euclidean norm of the corresponding
primitive vector.

(2) If 0 ̸= x0 ∈ Z, and

x =

(
x1

x0
, . . . ,

xn

x0

)
∈ Qn,

is such that gcd(x0, x1, . . . , xn) = 1, then

h(x) =
(
x2
0 + x2

1 + · · ·+ x2
n

) 1
2 ,

i.e. the inhomogeneous height of a rational vector is the Euclidean norm of
the corresponding reduced integer vector (x0, x1, . . . , xn).

Proof. Problem 11.15. □

Lemma 8.6. If m1, . . . ,mk ∈ Z, and x1, . . . ,xk ∈ Qn
, then

h

(
k∑

i=1

mixi

)
≤

(
k∑

i=1

m2
i

) 1
2 k∏
i=1

h(xi).

In particular, if α1, . . . , αk ∈ Q, then

h

(
k∑

i=1

miαi

)
≤

(
k∑

i=1

m2
i

) 1
2 k∏
i=1

h(αi).

Additionally, for any α, β ∈ Q,

h(αβ) ≤ h(α)h(β).

Proof. Problem 11.16. □

Lemma 8.7. Suppose that K and L are isomorphic number fields with σ : K → L
an isomorphism, and let us also write σ for the isomorphism it induces from Kn

to Ln for each integer n ≥ 1. Then

H(σ(x)) = H(x)

for each x ∈ K. Hence conjugate vectors have the same height. Notice in particular
that this implies that conjugate algebraic numbers have the same height.

Proof. Problem 11.17. □

The notion of height also extends to polynomials. In particular, if F is a poly-
nomial with coefficients a1, . . . , an ∈ Q, then we define

H(F ) = H(a1, . . . , an).
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Lemma 8.8. Let P (X), Q(X) ∈ Q[X] be polynomials in one variable with coeffi-
cients in Q of degrees n1, n2 respectively, and let n = min{n1, n2}. Then

H(PQ) ≤
√
n+ 1 H(P )H(Q).

Proof. Let K be a number field containing coefficients of P and Q, and suppose it
has degree d over Q. It is easy to observe that for every v ∈ M(K) such that v ∤ ∞,

Hv(PQ) = Hv(P )Hv(Q),

where these are precisely the local heights of corresponding coefficient vectors. Let
v ∈ M(K), v|∞, then by Problem 11.18

Hv(PQ) ≤
√
n+ 1 Hv(P )Hv(Q).

Therefore we have:

H(PQ) =
∏

v∈M(K)

Hv(PQ)
dv
d

≤
∏
v∤∞

(Hv(P )Hv(Q))
dv
d

∏
v|∞

(
|n+ 1|

1
2
v Hv(P )Hv(Q)

) dv
d

= H(P )H(Q)
∏
v|∞

|n+ 1|
dv
2d
v

=
(√

n+ 1
)∑

v|∞ dv

d H(P )H(Q) =
√
n+ 1 H(P )H(Q).

This completes the proof. □

Corollary 8.9. Suppose that

P (X) = ad(X − α1) . . . (X − αd),

where ad, α1, . . . , αd ∈ Q. Then

(8.6) H(P ) ≤ 2
d−1
2 h(α1) . . . h(αd).

Proof. Notice that here we can view P (X) as a product of d linear polynomials in
one variable, hence applying Lemma 8.8 d− 1 times yields (8.6). □

For a vector x ∈ Qn
, we define its degree to be

deg(x) = [Q(x1, . . . , xn) : Q].

Also, for a projective point [x] we write deg([x]) to mean the minimum of deg(x)
taken over all representatives of [x]. We are now ready to prove the fundamental
property of heights, which was first established by Northcott in 1949 [Nor49]: this
result is known as Northcott’s theorem, and any height function satisfying this
theorem (there are others, not only our H) is said to satisfy Northcott’s finiteness
property.

Theorem 8.10. Let n, d,B be positive integers. Then the set

Sn(B, d) =
{
[x] ∈ Pn−1(Q) : deg([x]) ≤ d, H(x) ≤ B

}
is finite.
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Proof. If x = (x1, x2, . . . , xn) ∈ Qn
with xi ̸= 0 for some 1 ≤ i ≤ n, then H(x) =

H
(

x
xi

)
. Therefore we can always choose a representative x of [x] ∈ Pn−1(Q) with

one coordinate equal to 1. Without loss of generality assume x = (1, x2, . . . , xn) ∈
Qn

, then

H(x) ≥ H(1, xi) = h(xi), ∀ 2 ≤ i ≤ n.

Therefore it suffices to prove that the set

S(B, d) =
{
α ∈ Q : deg(α) ≤ d, h(α) ≤ B

}
is finite. Notice that if α ∈ S(B, d), then it must be a root of a monic polynomial
with rational coefficients of degree at most d

P (X) = (X − α1)(X − α2) . . . (X − αd),

where α = α1, α2, . . . , αd are conjugates of α. By Lemma 8.7, h(α) = h(αi) for
every 1 ≤ i ≤ d, and so h(αi) ≤ B for all 1 ≤ i ≤ d. By Corollary 8.9,

(8.7) H(P ) ≤ 2
d−1
2 h(α1) . . . h(αd) ≤ 2

d−1
2 Bd.

Since P (x) is monic, let
(
m0

m , . . . , md−1

m , 1
)
∈ Q be the coefficient vector of P , written

is such a way that gcd(m,m0, . . . ,md−1) = 1. Then by Lemma 8.5,

H(P ) =
√
m2 +m2

0 + · · ·+m2
d−1 = ∥m∥2,

where m = (m,m0, . . . ,md−1) ∈ Zd+2, and ∥ ∥2 stands for the Euclidean norm, as
usual. It is now easy to see that there are only finitely many integral vectors m

with ∥m∥2 ≤ 2
d−1
2 Bd, and so there are only finitely many polynomials P satisfying

(8.7). This means that S(B, d) must be finite, and so completes the proof. □

Remark 8.2. The cardinality of Sn(B, d) has been investigated by various authors,
starting with a result of Schanuel in 1979. More recently there were upper and lower
bounds produced by Schmidt, Gao, Thunder, Masser, Vaaler, and Widmer among
others, however there still is no known general asymptotic formula for |Sn(B, d)|
(see [Wid09] and [Wid10] for some recent results and a more detailed bibliogrpahy).

Next we will show how the notion of height can be extended to subspaces of Kn.
Let V ⊆ Kn be an ℓ-dimensional subspace, 1 ≤ ℓ ≤ n. Let x1, . . . ,xℓ be a basis
for V , and write X = (x1 . . . xℓ) for the corresponding n× ℓ basis matrix. Let I
be the set of subsets of {1, . . . , n} of cardinality ℓ, then

|I| =
(
n

ℓ

)
.

For each I ∈ I, let XI be the ℓ × ℓ submatrix of X whose rows are indexed by
elements of I. We introduce lexicographic ordering on elements of I, and write

I =
{
I1, . . . , I(nℓ)

}
with respect to that order. Then define a vector of Grassmann coordinates (also
known as Plücker coordinates) of V with respect to the basis x1, . . . ,xℓ to be

g(X) =

(
det(XI1), . . . ,det

(
XI

(nℓ)

))
∈ K(nℓ).
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Suppose y1, . . . ,yℓ is a different basis for V , and write Y for the corresponding
basis matrix. Then there exists a matrix U ∈ GLℓ(K) such that

Y = XU,

and so it is easy to see that

g(Y ) = det(U)g(X).

As before, we write [g(X)] for the projective point in P(
n
ℓ)−1 represented by the

vector g(X), hence [g(X)] = [g(Y )], and so we denote this projective point [g(V )]
to indicate that it does not depend on the choice of the basis. Define

Gℓ
n(K) = {[g(V )] : V ⊆ Kn, dimK(V ) = ℓ}.

Gℓ
n(K) is called the

(
n
ℓ

)
-Grassmann component of Kn, and this is the projective

space whose points correspond to ℓ-dimensional subspaces of Kn. Notice that this
is a generalization of the projective space Pn−1(K), which can be thought of as the
space of one-dimensional subspaces of Kn. This is perhaps the simplest example
of a parameter space, i.e. of a general type of objects in algebraic geometry which
are called moduli spaces.

Using this notation, we can now define height of an ℓ-dimensional subspace V of
Kn by

(8.8) H(V ) = H(g(V )).

Of course, this works in precisely the same manner for subspaces of Qn
. This

height function on subspaces of a vector space was originally introduced by W. M.
Schmidt in [Sch67] and is called the Schmidt height. We also define Schmidt height
on matrices: for an n×m matrix A over K, 1 ≤ m ≤ n we let

H(A) = H (spanK {a1, . . . ,am}) ,
where a1, . . . ,am are column vectors of A. If m > n, we define H(A) to be H(A⊤).
Suppose the m-dimensional vector subspace V ⊂ Kn is described as

V = {Ax : x ∈ Km} = {y ∈ Kn : By = 0}
for the n×m matrix A and (n−m)× n matrix B over K, respectively. Then the
Brill-Gordan duality principle [Gor73] (also see Theorem 1 on page 294 of [HP47])
states that

(8.9) H(A) = H(B) = H(V ).

We also recall here a useful property of height functions that we will need: this is
Lemma 4.7 of [RT96].

Lemma 8.11. Let V be a subspace of Kn and let U1, . . . , Um be subspaces of V
such that V = spanK{U1, . . . , Um}. Then

H(V ) ≤ H(U1) · · ·H(Um).

Height can also be defined for more general objects, such as algebraic varieties
and intersection cycles; this is done in a manner similar in spirit to the simplest
case of linear varieties (namely vector subspaces) that we considered here, namely
by parametrizing these objects in an appropriate manner. This, however, is more
in the realm of arithmetic geometry, and out of the scope of our exposition.
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9. Siegel’s lemma revisited

In this section, we revisit Siegel’s lemma we introduced in Sections 2 and 7, but
this time in a more powerful form. Let us look back at Theorems 2.1 and 7.1:
they provide a bound on the height of a solution to a homogeneous linear system
in terms of the height of the coefficient matrix A of this system. Notice, however,
that if we multiply A by 2 the solution space does not change, but height of A
certainly changes in a way that would affect the upper bounds of these theorems.
This problem is circumvented by using Schmidt height (8.8) on the solution space
instead of the height of a coefficient matrix. The following version of Siegel’s lemma
was proved by Bombieri and Vaaler in 1983, see [BV83].

Theorem 9.1. Let V be an m-dimensional subspace of Kn, m < n. Then there
exists a basis x1, . . . ,xm ∈ On

K for V such that

(9.1)

m∏
i=1

H(xi) ≤
{
n|∆K |1/d

}m/2

H(V ),

where ∆K is the discriminant of K, and d = [K : Q] as usual.

In other words, Theorem 9.1 states that a subspace V of Kn has a basis of relatively
small height with coordinates in OK , where the bound on the height is explicit and
depends on the height of V . In particular, it implies the existence of a non-zero
point of small height in V , bounded as follows.

Corollary 9.2. Let V be an m-dimensional subspace of Kn, m < n. Then there
exists 0 ̸= x ∈ On

K ∩ V such that

(9.2) H(x) ≤
{
n|∆K |1/d

}1/2

H(V )1/m.

This corollary can be viewed as a generalization of Minkowski’s Convex Body The-
orem (Problem 11.19). The dependence on H(V ) in (9.1) and (9.2) is sharp. An

analogous bound has been proved for a small-height basis of a subspace V of Qn

by Roy and Thunder, see [RT96], where the constant in the upper bound does not
depend on any number field; this is often desired, since ∆K can be quite large.

Theorem 9.3. Let V be an m-dimensional subspace of Qn
, m < n. Then for every

ε > 0, there exists a basis x1, . . . ,xm ∈ Qn
for V such that

m∏
i=1

H(xi) ≤
(
e

m(m−1)
4 + ε

)
H(V ).

While the Roy-Thunder bound does not depend on any number field, the basis
vectors x1, . . . ,xm they produce are also not guaranteed to lie over a fixed number
field. Bridging between the Bombieri-Vaaler and the Roy -Thunder results, we
establish [FF24] the existence of a small-height basis for an m-dimensional subspace
of Kn (i.e., the space of solutions to a system of simultaneous linear equations),
and the inequalities we prove are free of constants that depend on a number field.
While we bound the individual heights of the vectors instead of the product, our
basis lies over a fixed number field K and our bound is particularly simple.

Theorem 9.4. Let V ⊂ Kn be an m-dimensional subspace, 1 ≤ m < n. Then
there exists a basis x1, . . . ,xm for V such that

(9.3) max
1≤j≤m

H(xj) ≤ H(V ).
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Proof. Since dimK V = m, there exists an (n − m) × n matrix A of rank n − m
with entries in K so that

V = {x ∈ Kn : Ax = 0} ,
then H(A) = H(V ). Since rk(A) = n−m, there must exist standard basis vectors

ei1 , . . . , eim ∈ Kn so that the matrix B :=

(
A
E

)
with E := (ei1 . . . eim)⊤ is in

GLn(K). Now, for each 1 ≤ j ≤ m define the vector

xj = B−1ej+n−m,

which is the (j + n − m)-th column vector of the matrix B−1. Notice then that
for every 1 ≤ j ≤ m, Axj = 0, i.e. xj ∈ V . Further, these vectors are linearly
independent since they are columns of a nonsingular matrix B−1, and so they form
a basis for V . We will now estimate their heights.

Let us write Bj for the (n− 1)× n submatrix of B without the (j + n−m)-th
row, then Bjxj = 0 since the (j+n−m)-th is the only row of B whose dot-product
with the (j + n−m)-th column of B−1 is nonzero. Then we have

spanK xj = {y ∈ Kn : Bjy = 0} ,
and so H(xj) = H(Bj) by (8.9). On the other hand, H(Bj) = H(B⊤

j ) is equal to
the height of the (n − 1)-dimensional subspace of Kn spanned by the row-vectors
of Bj . These row-vectors are the row-vectors of A and all but one row-vectors of
E, therefore by Lemma 8.11,

H(xj) = H(Bj) ≤ H(A)

m∏
k=1,k ̸=j+n−m

H(ek) = H(A) = H(V ),

since height of a standard basis vector is equal to 1. This completes the proof. □

Remark 9.1. While (9.1) is a stronger result than (9.3), in general it does not imply
a better bound on max1≤j≤m H(xj) than (9.3). Further, the bound of (9.3) does
not depend on the number field K: this is a feature of a so-called absolute result
such as the absolute Siegel’s lemma given in [RT96]. While the bound presented
in [RT96] is analogous to (9.1) with the constant in the bound independent of any
number field, the basis vectors constructed there lie in Q and not in a fixed number
field either. On the other hand, our Theorem 9.4 guarantees vectors lying in Kn.
Due to these features, our Theorem 9.4 may be preferable to these classical results
in some specific situations where |∆K | dominates H(V ).
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10. Some generalizations over number fields

In this section we state (without proof) generalizations over number fields of
some of the above results on quadratic and multilinear polynomials.

First, consider the case of a quadratic hypersurface. Namely, let

F (X) =

n∑
i=1

n∑
j=1

fijXiXj ∈ K[X1, . . . , Xn]

be a quadratic form in n variables with coefficients in the number field K of degree
d over Q. We say that F is isotropic over K if there exists 0 ̸= x ∈ Kn such that
F (x) = 0. Provided that F is isotropic over K, we are interested in proving the
existence of a non-zero point of bounded height in the quadratic variety

VK(F ) = {x ∈ Kn : F (x) = 0}

with an explicit bound on height. The following number-field generalization of
Cassels’ theorem (Theorem 4.1) was obtained by Raghavan in 1975; see [Rag75].

Theorem 10.1. Let F be a quadratic form, which is isotropic over K as above,
then there exists 0 ̸= x ∈ VK(F ) such that

H(x) ≤ c1(K,n)H(F )
n−1
2 ,

where the constant c1(K,n) in the upper bound is explicit and depends on K and n.

For the case of an inhomogeneous quadratic polynomial F over a number field
K, given by

F (X) =

n∑
i=1

n∑
j=1

fijXiXj +

n∑
i=1

f0iXi + f00 ∈ K[X1, . . . , Xn],

we suppose that

VK(F ) = {x ∈ Kn : F (x) = 0}
is not empty. Then we have the following number-field generalization of Masser’s
theorem (Theorem 5.1); see [Fuk04].

Theorem 10.2. Let F be a quadratic form in n+1 ≥ 2 variables with coefficients
in K. Suppose that there exists x = (x0, ..., xn) ∈ Kn+1 such that F (x) = 0 and
x0 ̸= 0, then there exists such x with

H(x) ≤ c2(K,n)H(F )
n+1
2 ,

where the constant in the upper bound is explicit, and depends in particular on ∆K .

See also [Fuk13] for a survey of a vast variety of further results on Cassels’ and
Masser’s theorems and their many generalizations, including the more complicated
inhomogeneous situation over the ring of integers instead of a field.

What can be said about bounds on height of solutions of polynomials of degree
higher than 2 in an arbitrary number of variables over a fixed number field K of
degree d and discriminant ∆K? We can state a rather general result for a system
of polynomials of arbitrary degree, linear in some of the variables. Specifically,
let F (x1, . . . , xn) ∈ K[x1, . . . , xn] and let 1 ≤ k < n. Let [n] = {1, . . . , n}, I =
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{i1, . . . , ik} ⊂ [n], and I ′ = [n] \ I. Let xI′ = (xj)j∈I′ . We will say that F is linear
in I-separated variables if

(10.1) F (x1, . . . , xn) =

k∑
j=1

xijFj(xI′) + Fk+1(xI′),

where Fj(xI′) ∈ K[xI′ ] for 1 ≤ j ≤ k+1 are any polynomials in n−k variables in-
dexed by I ′ with coefficients in K. For a polynomial F (x1, . . . , xn) ∈ K[x1, . . . , xn],
we define its zero-set over K

ZK(F ) = {z ∈ Kn : F (z) = 0} .
We also write N (F ) for the number of nonzero monomials of F and h(□) = H(1,□)
for the inhomogeneous height, as before. The following result is proved in [FF23].

Theorem 10.3. Let I be as above and let

Fl(x1, . . . , xn) =

k∑
j=1

xijFl,j(xI′) + Fl,k+1(xI′), 1 ≤ l ≤ k

be polynomials over K of respective degrees m1, . . . ,mk linear in I-separated vari-
ables as in (10.1). Consider the inhomogeneous system

F1(x1, . . . , xn) =
∑k

j=1 xijF1,j(xI′) + F1,k+1(xI′) = 0
...

Fk(x1, . . . , xn) =
∑k

j=1 xijFk,j(xI′) + Fk,k+1(xI′) = 0

(10.2)

of linear equations in the variables xi1 , . . . , xik with coefficients Fl,j(xI′), 1 ≤ l ≤
k, 1 ≤ j ≤ k + 1. Assume that the matrix F := (Fl,j(xI′))1≤l≤k,1≤j≤k of the
corresponding homogeneous system has the same rank as the coefficient matrix of
inhomogeneous system, i.e., F augmented by the column (Fl,k+1(xI′))1≤l≤k. Then⋂k

l=1 ZK(Fl) ̸= ∅ and there exists a point z ∈
⋂k

l=1 ZK(Fl) with

h(z) ≤ kk+1|∆K | 1d
(
D + 2

2

)2km+1

(NH)
2k

,

where

D =

k∑
l=1

ml, m = max
1≤l≤k

ml,

N = max
1≤l≤k

N (Fl), H = max
1≤l≤k

h(Fl).

There are some known results in this direction for rational cubic forms in large
enough number of variables: the current state of the art in this direction is a rather
technical result obtained in [BDE12]. For sufficiently general polynomials of higher
degree, this problem seems to be out of reach at the present time. In fact, such a
bound would provide an algorithm to decide whether a Diophantine equation has
an integral solution, and so would imply a positive answer to Hilbert’s 10th problem
in this case, i.e. this would mean that there exists an algorithm to decide whether
such an equation has nontrivial integral solutions. However, by the famous theorem
of Matijasevich [Mat70] Hilbert’s 10th problem is undecidable. This means that
in general such bounds do not exist over Q; in fact, they seem unlikely to exist
over any fixed number field even for a quartic polynomial (see [Mas02] for further
details).
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One can ask if it is possible to obtain a search bound for a system of quadratic
equations. There is a reduction method (sometimes called Skolem reduction) that
allows to describe the solution set of a single polynomial of arbitrary degree in
terms of a system of quadratic equations, albeit in more variables. For instance,
here is an example from [Mas02]:

x3 + y3 + z3 = 3

is equivalent over Z to the system

xu+ yv + zw = 3, u = x2, v = y2, w = z2.

Since it is unlikely that there are search bounds for polynomial of high degree, it
seems equally unlikely that they exist for systems of quadratic equations.

The problem becomes easier if we allow for solutions to lie over some extension
of K of bounded degree. The following basic bound is easy to prove (see [Fuk09]).

Proposition 10.4. Let d ≥ 1, n ≥ 2, and F (X1, ..., Xn) be a homogeneous polyno-
mial in n variables of degree d with coefficients in a number field K. There exists
0 ̸= z ∈ Qn

with degK(z) ≤ d such that F (z) = 0 and

H(z) ≤
√
2 H(F )1/d.

Here degK(z) is the degree [L : K], where L is the number field generated over K
by the coordinates of the point z.

Additional (although somewhat technical and difficult to state) results on systems of
quadratic equations over Q can be found in [Fuk15]. Further investigations of small-
height solutions of polynomial equations have strong connections with arithmetic
geometry via the study of points of bounded height on algebraic varieties. This
subject requires a more extensive theory of height functions. An excellent source
for further reading in this direction is [BG06].
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11. Problems

Problem 11.1. Let A be an m × n integer matrix, 1 ≤ m < n and b ∈ Zm a
nonzero vector. Assume that the linear system Ax = b has integer solutions. Prove
that

gcd(A b) = gcd(A).

Problem 11.2. An m× n integer matrix A with 1 ≤ m < n is called unimodular
if there exists an (n−m)× n integer matrix B so that(

A
B

)
∈ GLn(Z).

Use Theorem 2.2 to prove that if A is unimodular, then gcd(A) = 1.

Problem 11.3. Let S be a compact convex set in Rn, A ∈ GLn(R), and define

T = AS = {Ax : x ∈ S}.
Prove that Vol(T ) = |det(A)|Vol(S).
Hint: If we treat multiplication by A as coordinate transformation, prove that its
Jacobian is equal to det(A). Now use it in the integral for the volume of T to relate
it to the volume of S.

Problem 11.4. Prove versions of Theorems 3.1 - 3.2 where Zn is replaced by
an arbitrary lattice Λ ⊆ Rn or rank n and the lower bounds on volume of M are
multiplied by det(Λ).

Hint: Let Λ = AZn for some A ∈ GLn(R). Then a point x ∈ A−1M ∩ Zn if and
only if Ax ∈ M ∩ Λ. Now use Problem 11.3 to relate the volume of A−1M to the
volume of M .

Problem 11.5. Prove that ∼ as defined in Definition 8.1 is an equivalence relation
on the set of all absolute values on a field K.

Problem 11.6. Prove that the only absolute value equivalent to the trivial one is
itself.

Problem 11.7. Prove that two absolute values | |1 and | |2 on a field K are equiv-
alent if and only if they induce the same topology.

Problem 11.8. Prove that | |∞ is an archimedean absolute value on Q.

Problem 11.9. Prove that | |p is a non-archimedean absolute value on Q for each
prime p ∈ Z.

Problem 11.10. Prove that

Z = {a ∈ Q : |a|p ≤ 1 ∀ primes p ∈ Z}.
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Problem 11.11. Prove Lemma 8.2.

Problem 11.12. Prove that I = {a ∈ Z : |a| < 1} is a prime ideal in Z.

Problem 11.13. Prove Theorem 8.3 (Artin - Whaples Product Formula over Q):
if 0 ̸= a ∈ Q, then

|a|∞
∏
p∈P

|a|p = 1.

Problem 11.14. Prove that (8.3) defines an absolute value on a number field K,
which restricts to the usual p-adic absolute value on Q.

Problem 11.15. Prove Lemma 8.5.

Problem 11.16. Prove Lemma 8.6.

Problem 11.17. Prove Lemma 8.7.

Problem 11.18. Let K be a number field, v ∈ M(K), v|∞, and let P and Q be
polynomials in one variable of degree ≤ n with coefficients in K. Use Cauchy’s
inequality to prove that

Hv(PQ) ≤
√
n+ 1 Hv(P )Hv(Q).

Problem 11.19. Let A be an n× ℓ integer matrix of rank ℓ < n. Let Λ = AZℓ be
a sublattice of Zn of rank ℓ. Let

V = spanR Λ = ARℓ

be the ℓ-dimensional subspace of Rn spanned by Λ, then Λ = V ∩ Zn. The famous
Cauchy-Binet formula then implies that the Schmidt height

H(V ) =
√
det (A⊤A) = detΛ.

Use Cauchy-Binet formula along with Problem 11.4 to prove that there exists 0 ̸=
x ∈ Λ such that

H(x) ≤ cnH(V )1/ℓ,

for some constant cn depending only on n.

Problem 11.20. Let K be a number field. Prove that a point x = (x0, x1, . . . , xn) ∈
Kn+1 with x0 ̸= 0 is a zero of a quadratic form F (X0, . . . , Xn) if and only if the
point x′ = (x1, . . . , xn) ∈ Kn is a zero of the quadratic polynomial

F1(X1, . . . , Xn) := F (1, X1, . . . , Xn).
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