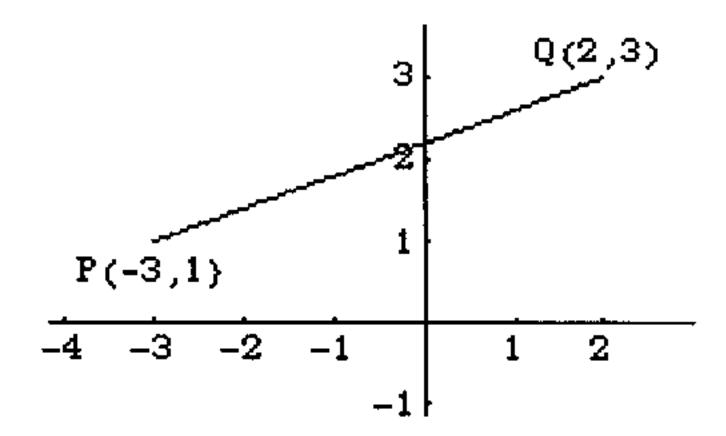
Placement test instructions:

There are three exams included in this packet, one for placement in each semester of our calculus sequence, and solutions are provided.

Test I checks readiness for Math 30, first semester calculus. It is multiple choice and getting 13 out of 25 or more right probably indicates readiness for Math 30 (accounting for summer lag etc.). The test should take a bit more than an hour, but the timing is not so important. What is important is that the student should be familiar with the questions and have the general feeling that she knows how to solve them, or that she could get back up to speed on the necessary topics with ease. In this case, we encourage you to try Math 30 and to seek our help in reviewing the exam problems.


Test II checks readiness for Math 31, second semester calculus. The exact same comments and advice apply as for test I. In both these exams, it may be the case that simply working out the problems with the help of an old book will be enough to get you back up to speed for the course you have in mind. Feel free to come ask math faculty for help on the questions if you want to treat the exams as refresher exercises.

Test III checks readiness for Math 32, third semester calculus. It is not multiple choice and there are only 7 questions. A good showing on at least 4 of the seven questions probably indicates that you are ready for Math 32, but once again, if you have the general feeling that you could do the questions after a bit of review, you are encouraged to try Math 32 and to use the exam as a review exercise.

Placement Test 1 To check your preparation for Math 30 (Calculus I)

your name (please print)	
email	

- 1. Let $f(x) = \frac{x-1}{\sqrt{x+2}}$. Then the domain of the function is
 - a) the half line $[0,+\infty)$
 - b) the interval (-2,0]
 - c) the half line $(-2,+\infty)$
 - d) the entire real line
 - e) the half line $[-2,+\infty)$
- **2.** Let f(x) = 2x + 3 and g(x) = 1 x. Then g(f(x)) = 1 x
 - a) 2x + 1
 - b) -2x+1
 - c) 2x + 2
 - d) -(2x+2)
 - e) -(2x-1)
- 3. The distance between P and Q is

- a) 7
- b) -7
- c) $\sqrt{29}$
- d) 3
- e) $\sqrt{5}$

$$4. \sqrt[5]{64x^6y^8z^{10}} =$$

- a) $2xyz^2 \sqrt[3]{xy^3}$ b) $2xyz^2 \sqrt[3]{2x^2y^3}$
- c) $2xyz^2\sqrt[3]{2xy^3}$
- d) $4xyz^2\sqrt{2xy^3}$
- e) none of the above

5. If $x \ne 1$ then $(x^3 - 1)/(x - 1)$ is equal to		
	a) $x^2 - 1$	
	b) $x^2 + x + 1$	
	c) $x^2 - x + 1$	
	d) $x^2 + 1$	
	e) none of the above	
6. The equation $x + 2y = 1$ represents a line L of the The equation of the line M parallel to L and contains	· -	
	a) $x - 2y = -5$	
	b) $x + 2y = 3$	
	c) $x + 2y = 2$	
	d) -x + 2y = 3	
	e) none of the above	
7. The equation $x + 2y = 1$ represents a line L of the The equation of the line N perpendicular to L and α	• •	-2) is
	a) $2x - y = 4$	
	b) $2x + y = 0$	
	c) $x + y = -1$	
	d) $-2x + 3y = -8$	
	e) none of the above	
8. Which of the following are factors of $x^4 - 81$ I. $x + 3$ II. $x - 3$ III. $x^2 + 9$		
	a) I only	
	b) II only	
	c) III only d) I and II	
	e) All three	
9. Let $f(x) = x^2 + 1$. Then $f(x+h) =$		
$\mathbf{y} \in \mathcal{A} = \mathcal{A} + 1 \cdot 1 \text{ find } 1 (\mathbf{x} + 1 1) - 1 1 1 1 1 1 1 1$	a) $x^2 + 2xh + h^2 + 1$	
	b) $x^2 + h^2 + 1$	
	c) $(x+h+1)^2$	
	d) $x^2 + h + 1$	
	e) none of the above	
10. The values of a such that the solutions of the q real and distinct are	uadratic equation $x^2 - a$	ax + 4 = 0 are
	a) all values	
	b) $a < -4$ or $a > 4$	
	c) $a < 0$	
	d) a > 0e) none of the above	
	o, none or the above	······································

11. If x <y th="" then<=""><th></th><th></th></y>		
	a) $1/x > 1/y$	
	a) $1/x > 1/y$ b) $x^2 < y^2$	
	c) $xy < y^2$	
	d) $2x < 2y$	
	e) $ x < y $	
4		
12. Let $f(x) = \frac{x-1}{\sqrt{x+2}}$. Then the range of the	ne function is	
	a) the half line $[-3,+\infty)$	
	b) the half line $(-3,+\infty)$	
	c) the entire real line	
	d) the half line $(-\infty,0]$	
	e) none of the above	<u> </u>
12 All values of woudh that by 21 < 5 are		
13. All values of x such that $ x-2 < 5$ are	a) $2 < x < 5$	
	b) $-3 < x < 7$	
	c) $-5 < x < 3$	<u> </u>
	d) $ x < 3$	<u> </u>
	e) $3 < x < 7$	
14. The center of the circle $x^2 + y^2 - 4x + 6$		
	a) (2,3)	
	b) (-2,3)	<u></u>
	c) (2,-3)	
	d) (-2,-3)	
	e) none of the above	
15. The equation $y = x^2 - 4x + 3$ representa	S	
	a) a parabola	
	b) one line	
	c) 2 lines	
	d) a circle	
	e) a hyperbola	
16 - 37i Al l 6 - 6 4i	f () 3 7	
16. You are given the graph of a function its graph is obtained from the graph of f by units down. Then	• •	
	a) $g(x)=f(x-3)+2$	
	b) $g(x)=f(x+3)+2$	
	c) $g(x)=f(x-3)-2$	
	d) $g(x)=f(x+3)-2$	
	e) none of the above	

•

•

 e) none of the above 	
22. Suppose that the measure α (in radial $\sin \alpha = 4/7$ then $\cos \alpha =$	ins) of an angle A is between π/2
	a) 3/7
	b) 4/3
	c)-4/3
	d) $\sqrt{33}/7$
	e)–√33/7
23. If $\log_5(x-7)=2$, then what is the v	alue of x?
	a) 18
	b) 39
	c) 25
	d) 32
	e) 17
24. Suppose that $10^{3r-2} = 5$. Then t=	
	a) 0
	b) 1/3
	c) $(2 - \log_{10} 5)/3$
	d) $(2 + \log_{10} 5)/3$
	e) none of the above
25. $\log_2 a - \log_2 (a - 3) =$	
	a) $\log_2(a/(a-3))$
	b) $\log_2(2a-3)$
	c) $a^2 - 3a$
	d) $\log_2(a^2 - 3a)$
	e) $\log_2(a^2 + 3a)$

Solutions to Placement Test I.

- 1.c
- 2.d
- 3.c
- 4.c
- 5.b
- 6.b
- 7.a
- 8.e
- 9.a
- 10.b
- 11.d
- 12.c
- 13.b
- 14.c
- 15.a
- 16.c
- 17.a
- 18.b
- 19.e
- 20.d
- 21.c
- 22.e
- 23.d
- 24.d
- 25.a

Placement Test Calculus II

To qualify for Math 31

Your name		
The last four digits of your st	udent ID	
1. $\lim_{x\to 1} \frac{x^3-1}{x-1} =$		
$x \rightarrow 1$ $x - 1$		
	a) 0	
	b) 1	
	c) does not exist	
	d) 3	
	e) 2	
2. $\lim \frac{\sqrt{2x^2 + x + 1}}{} =$		
$x \to \infty$ χ		
	a) 0	
	b) 1	
	c) √2	
	d)-1	
	e) 1.4145	
3. Let $f(x) = x^3 - 2x$. All values of x such horizontal are	h that the tangent line to the graph of f	(x) is
	a) 0 and 1	
	b) $\pm 2/\sqrt{3}$	
	c) $\pm \sqrt{\frac{2}{3}}$	
	d) 0 and 2	
	e) none of the above	
	o, none or the decove	.
4. Let $f(x)$ and $g(x)$ be differentiable and	d such that $f'(x) = g'(x)$ for all x. The	n
	a) $f(x)=g(x)$	
	b) $f(x)g(x)=constant$	
	c) $f(x)/g(x)$ =constant	
	d) $f(x)-g(x)=constant$	
	e) $f(x)+g(x)=constant$	
5. The critical values of $f(x) = x - \frac{\cos \pi x}{\pi}$	for $0 \le x \le 2$ are	
	a) 0 and 1	
	b) 1.5	
	c) 0.25 and 0.75	
	d) 1 and 1.5	

6. The linear approximation of $f(x) = \sqrt{x+3}$	3 at $x=1$ is	
	a) $x+3$	
	b) $(7+x)/4$	
	c) $(5+x)/4$	
	d) $x+2$	
	e) $x+1$	
		-
7. The maximum value of $f(x)$ is 2 and $f'(x)$	=2-2x. Then $f(x)=$	
	a) $-x^2 + 2x + 1$	
	b) $-x^2 + 2x + 2$	
	c) $-x^2 + 2x$	
	d) $-x^2 + 2x - 2$	
	e) $-x^2 + 2x - 1$	
8. Let $f(x) = x^3/3 + x^2/2 + 6x + 8$. Then the interval [0,3] is	minimum value of this function in the	e closed
	a) 2/3	
	b) 3/2	
	c) 2	
	d) –2	
	e) 8	
9. A rectangular enclosure of 20000 ft ² has o \$3/foot. Fencing the remaining 3 sides cost \$		
	a) \$200	
	b) \$800	
	c) \$950	
	d) \$300	
	e) \$1250	
10. Let		
	$x \le 2$	
$f(x) = \begin{cases} x \\ -2 \end{cases}$	$x \le 2$ $+kx \qquad 2 < x$	
(x^{-})	$+ \kappa x 2 < x$	
For what value of k will f be continuous at x :	=2?	
	a) 32	
	b) 14	
	c) 7	
	d) 5	
	e) 2	

e) none of the above

11. Let $x^2y + \sqrt{y} + x = 1$. Notice that the cur	ve passes through the point (0,1). The	;
tangent line at that point is		
	a) $x - 2y = -2$	<u></u>
	b) $x - y = -1$	
	c) x = 0	
	d) $2x + y = 1$	
	e) $2x + y = 2$	
12. Let $G(x) = \int_{-\infty}^{x} g(s)ds$. Then $G'(x) =$		
	a) $g'(x) - g'(1)$	
	b) $g(x) - g(1)$	
	c) $g(x)$	
	d) $G(x) - G(1)$	
	e) $G(x)$	
13. Let $h(x) = f(g(x))$, $f'(4) = 5$, $g'(3) = 8$,	g(3) = 4. Then $h'(3) =$	
	a) 40	
	b) 20	
	c) we do not know	
	d) 8	
	e) 10	
14. Assume that $f''(x)f'(x) < 0$ in [0,2]. As one which could be true.	mong the possibilities listed below se	lect the
a) f is increasing in [0,2] and concave up.		
b) f is increasing in [0,2] and concave down.		
c) f is decreasing in [0,2] and concave down	•	
d) f is constant in [0,2]		
e) f has a maximum value in 0 and in 2.		
15. Assume that $f'(c) = 0$, $f'(x) < 0$ when	x < c and $f'(x) > 0$ when $x > c$. T	hen
a) f has an absolute maximum at c	•	
b) f has an inflection point at c		
c) f is decreasing at c		
d) f is increasing at c		
e) f has an absolute minimum at c		
16. For what values of c in $(-1,2)$ is the tan point $(c, f(c))$ parallel to the line joining $(-1, c)$		x at the
	a) 2	
	b) 0	
	c) 1 and -1	
	-,	

7. Gas is escaping from a spherical balloour urface area decreasing when $r = 12 ft$?		
Recall that the volume and surface area of a	sphere are $\frac{4\pi r^2}{3}$ and $4\pi r^2$ respective	ely.
	a) $2/3 ft^2 / \min$	
	b) $1/3 ft^2 / \min$	
	c) 2 ft ² / min	
	d) $1/4 ft^2 / \min$	
	e) $0.2 ft^2 / \min$	
18. Let $s(t) = t^3 - 6t^2 + 9t + 4$, denote the perceleration is 0 the velocity is	osition of a particle at time t. When the	ne
	a) -3	
	b) 2	
	c) 3	
	d) 1	
	e) 6	
19. Suppose that f is continuous at 2, $f(2) > 0$ correct statement.	0, and f is defined in $(-1,3)$. Choose	the
a) there exists an open interval around 2 who) f is increasing at 2	here f is positive	
c) f is decreasing at 2		
d) f is concave up in an open interval around the street of the above	nd 2	
20. Let $f(x) = \arctan(x)$ and $g(x) = \sin(x)$.	Let $h(x) = f(g(x))$. Then $h'(x) =$	
	a) $\frac{\cos(\arctan x)}{1+x^2}$	
	b)	
	$\cos x$ $\cos x$	
	c) $\frac{-\cos x}{1+\sin^2 x}$	
	d) $(1+x^2)^{-3/2}$	
	e) $\frac{\sin x}{1 + \cos^2 x}$	
21. $\int_0^3 \sqrt{9-x^2} dx$ represents the area of	11005 //	
J ₀ ,	a) a quarta airela of radina 2	
	a) a quarte circle of radius 3b) a quarter circle of radius 5	
	c) half circle of radius 3	
	of mair virviv or radius s	

d) 1

e) none

	d) half circle of radius 5e) half circle of radius 9	
22. Let $f(x) = \begin{cases} -1 & \text{for } 0 \le x \le 1 \\ x & \text{for } 1 < x \le 2 \end{cases}$. Then	•	
	a) 1 b) 2	
	c) 1/2 d) -1/2 e) 0	
23. Assume that f and g are continuous an	•	which
one of the following must hold?	J ₁ J () J _O () E	
one of the following mast hold.	a) $f(x) = g(x)$	
	b) $f(x) > g(x)$	
	c) $f(x) = g(x) = 0$	
	d) $f(x) - g(x)$ changes sign in [1,2] e) none of the above	
24. The area of the bounded region enclose $f(x) = x((2x-3)^2)$ is	ed by the x-axis and the graph of the fu	nction
	a) $\frac{27}{4}$ b) $\frac{27}{16}$	
	b) 2//16 c) 9/4	
	d) 81/4	
25. Let $f(x) = \int_{0}^{1} \sin(y^2 + y) dy$. Then $f'(x) = \int_{0}^{1} \sin(y^2 + y) dy$.	e) 3 (r) is equal to	
$\mathbf{z}_{x}^{\text{bill}}(y) = \mathbf{j}_{x}^{\text{bill}}(y) + \mathbf{j}$		
	a) 0 b) does not exist	
	c) $\sin(x^2 + x)$	
	d) $\sin(x^2 - x)$	
	e) $-\sin(x^2+x)$	

Solutions to placement test Π

- 1.d
- 2.c
- 3.c
- 4.d
- 5.b
- 6.b
- 7.a
- 8.e
- 9.b
- 10e
- 11.d
- 12.c
- 13.a
- 14.b
- 15.e
- 16.d 17.b
- 18.a
- 19.a
- 20.c
- 21.a
- 22.c
- 23.e
- 24.b
- 25.e

Placement Test Calculus III To qualify for Math 32

your	name			 	
•					

The last four digits of your student ID_____

- 1. Find the area between the graphs of the two functions $f(x) = x^3 2x$ and $g(x) = x^2$.
- 2. a) Find the volume of the solid obtained by rotating around the y-axis the region bounded by the lines y = 0, x = 1, and x = 4 and by the graph of the function $y = \sqrt{x}$. b) Find the volume of the solid obtained by rotating the same region around the line y = -1.
- 3. a) Recall that $\sinh x = \frac{e^x e^{-x}}{2}$ and $\cosh x = \frac{e^x + e^{-x}}{2}$. Show that $\cosh^2 x \sinh^2 x = 1$.
- b) Show that the derivative of $\cosh x$ is $\sinh x$.
- 4. Find the sum of the geometric series $\sum_{n=1}^{\infty} \left(\frac{2}{3}\right)^n$
- 5. a) Find the radius of convergence of the series $\sum_{n=1}^{\infty} \frac{(-1)^n (n+1) x^n}{2^n}$.
- b) Test the convergence at the end points of the interval of convergence.
- 6. The differential equation

$$P'(t) = aP(t)(1 - \frac{P(t)}{k})$$

is called "logistic" and it is frequently used to model population growth. The parameters a and k are positive. Explain why the maximum value of P'(t), namely the maximum growth rate of the population, occurs when $P = \frac{k}{2}$.

7. Recall that the relation between the rectangular (or Cartesian) coordinates and the polar coordinates is

$$x = r \cos t$$
, $y = r \sin t$.

- a) Find the Cartesian equation of the curve having polar equation $r = 2\cos t$.
- b) Find the polar equation of the circle $(x-1)^2 + (y-2)^2 = 5$.
- 8. An investment manager determines that the growth of an investment V(t) is proportional to $V^2(t)$. The initial value of the investment was \$10,000 and it took 10 years to reach \$20,000. How long will it take before the investment is worth \$50,000? Set up and solve a differential equation to answer this question.

Solution

1. Setting f(x) = g(x) we obtain x=0, x=-1, and x=2. In [-1,0] f is larger than g and in [0,2] g is larger than f. Taking this into account we find that the area is 37/12.

2. a) Using rectangles parallel to the axis of rotation we find that the volume is given by $2\pi \int_{-\pi}^{4} x \sqrt{x} dx = 255\pi/4$.

b) Using rectangles perpendicular to the axix of rotation we find that the volume is given by $\pi \int_{1}^{4} (x-1)dx = \frac{9\pi}{2}$.

3. a) We have

$$\left(\frac{e^{x} + e^{-x}}{2}\right)^{2} - \left(\frac{e^{x} - e^{-x}}{2}\right)^{2} = \left(\frac{e^{x} + e^{-x}}{2} + \frac{e^{x} - e^{-x}}{2}\right) \left(\frac{e^{x} + e^{-x}}{2} - \frac{e^{x} - e^{-x}}{2}\right) = e^{x}e^{-x} = e^{0} = 1$$

b) Evident

4. Since the series starts at 1 and the ration is 2/3 we have that the sum is $\frac{1}{1-2/3} - 1 = 3 - 1 = 2$

5. a) Using the ratio test for the absolute value we find r=2.

b) For x=2 or x=-2 the general term does not go to 0. Hence the series does not converge.

6. The maximum value for the growth rate is taking place when the function $ax(1-\frac{x}{k})$ is largest. Using the derivative we find that this is taking place when 1-2x/k=0, i.e. x=k/2.

7. a) We have
$$\sqrt{x^2 + y^2} = \frac{2x}{\sqrt{x^2 + y^2}}$$
. Hence $x^2 + y^2 - 2x = 0$.

b) We have $(r\cos t - 1)^2 + (r\sin t - 2)^2 = 4$. Expand and simplify to get $r^2 - 2r\cos t - 4r\sin t + 1 = 0$.