PRACTICE MIDTERM SOLUTIONS (MATH 115A)

Problem 1. Label the following statements as true or false. You will receive 4 points for each correct answer, -4 for each incorrect one, and 0 if you give no answer.

- (1) The union of two subspaces of a vector space is a subspace.
- (2) A subset of a linearly independent set is linearly independent.
- (3) For any $x_1, x_2 \in V$ and $y_1, y_2 \in W$ there is a linear transformation $T: V \to W$ such that $T(x_1) = y_1$, $T(x_2) = y_2$.
- (4) For a matrix A the condition $A^3 = O$ implies that A = O. (Here O is the zero matrix).
- (5) Two vector spaces of different dimensions can not be isomorphic.

Solution. (1) is false. For example, consider the x and y axes in \mathbb{R}^2 . Each is a subspace, but their union is not (it is not closed under addition: (1,0) + (0,1) = (1,1)

- (2) is true. If there is a non-trivial linear combination equal to zero and involving the elements of a subset, then it is of course also a nontrivial linear combination equal to zero and involving elements of the set itself.
- (3) is false. For example, if $y_1 \neq 0$ and $x_1 = 0$, there can be no linear T with $T(x_1) = y_1$, since T(0) = 0 by linearity.
- (4) is false. For example, let A be the matrix $\begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}$. Then $A \neq O$, but $A^2 = O$ and so is $A^3 = O$.
- (5) is true. Any isomorphism takes a basis to a basis and hence preserves dimension.

Problem 2. Let $V = \mathbb{R}^n$, and let $T: V \to V$ be a map. Consider the subset of \mathbb{R}^{2n} defined by

$$G = \{(v, w) : v, w \in \mathbb{R}^n, v = T(w)\}.$$

(This subset is called the graph of T). Show that T is linear if and only if G is a subspace of \mathbb{R}^{2n} .

Solution. Assume first that T is linear. We'll show that G is a subspace of \mathbb{R}^{2n} . To do this, we must prove that G is closed under addition and scalar multiplication. Let $x \in G$, $x' \in G$, $\alpha \in \mathbb{R}$. Thus x is a pair (v, w), so that $v, w \in \mathbb{R}^n$ and v = T(w), and y = (v', w') with v' = Tw'. Then

$$x + x' = (v + v', w + w').$$

Since v + v' = T(w) + T(w') = T(w + w') by the linearity of T, it follows that $x + x' \in G$. Similarly,

$$\alpha x = (\alpha v, \alpha w).$$

Since $\alpha v = \alpha T(w) = T(\alpha w)$ by the linearity of T, we conclude that $\alpha x \in G$. Thus G is a vector subspace.

Assume now that G is a subspace. We must prove that T is linear. Let $w, w' \in \mathbb{R}^n$ and $\alpha \in \mathbb{R}$. We must prove that T(w+w')=T(w)+T(w') and that $T(\alpha w)=\alpha T(w)$. To prove this, note that by the definition of G, $(T(w),w)\in G$ and $(T(w'),w')\in G$. Since G is a vector subspace, also $(T(w),w)+(T(w'),w')=(T(w)+T(w'),w+w')\in G$ and $\alpha(T(w),w)=(\alpha T(w),\alpha w)\in G$. Using the definition of G, we learn that T(w)+T(w')=T(w+w') and $\alpha T(w)=T(\alpha w)$.

Problem 3. Let u, v, w be three distinct vectors in a vector space V. Show that if $\{u, v, w\}$ is a basis, then so is the set $\{u+v+w, v+w, w\}$.

Solution. It is sufficient to prove that $\operatorname{Span}(u+v+w,v+w,w)$ is all of V. Indeed, since a basis of V has 3 elements, any set of 3 elements of V which spans V must be a basis (part (a) in Corollary 2 on page 47). Since $\{u,v,w\}$ spans V, it suffices to show that $u,v,w\in\operatorname{Span}(u+v+w,v+w,w)$. This is indeed the case: $w=0(u+v+w)+0(v+w)+1(w),\ v=0(u+v+w)+1(v+w)+(-1)w$ and u=1(u+v+w)+(-1)(v+w)+0(w).

Problem 4. Is there a linear transformation $T: \mathbb{R}^2 \to \mathbb{R}^3$, so that

$$T(1,2) = (3,4,5)$$

 $T(6,7) = (8,9,10)$?

If yes, compute T(11, 12). If not, explain why not.

Solution. We note that (1,2) and (6,7) are linearly independent. Indeed, if $\alpha(1,2) + \beta(6,7) = 0$, with α, β not both zero, this would imply that (1,2) is proportional to (6,7), which is not true. Thus $\{(1,2), (6,7)\}$ is a basis for \mathbb{R}^2 . Now by Theorem 2.6 on p. 72, there exists a linear transformation T which maps (1,2) and (6,7) to any prescribed pair of vectors, e.g., (3,4,5) and (8,9,10).

To compute T(11, 12), we must first express (11, 12) in our basis. We have

$$(11, 12) = 2(6, 7) + (-1)(1, 2).$$

Thus

$$T(11, 12) = 2T(6,7) - T(1,2) = 2(8,9,10) - (3,4,5) = (13,14,15).$$

Problem 5. Let $T: M_{2\times 2}(\mathbb{R}) \to \mathbb{R}$ be given by

$$T(A) = \operatorname{tr}(A).$$

- (a) Find a basis for the null space of T.
- (b) Find the dimensions of the null space and the range of T.
- (c) Let α be the standard basis for $M_{2\times 2}(\mathbb{R})$ and let γ be the standard basis for \mathbb{R} . Find the matrix $[T]_{\alpha}^{\gamma}$.

Solution. (b) Note that the transformation T is clearly onto (For any $\lambda \in \mathbb{R}$ we have $\operatorname{tr}(\lambda I) = 2\lambda$, where I is the identity matrix). Thus the dimension of the range of T is 1. By the rank-nullity theorem, the null space of T has dimension $\dim(M_{2\times 2}) - 1 = 4 - 1 = 3$.

(a) Next, note that the matrices

$$\left(\begin{array}{cc} 0 & 1 \\ 0 & 0 \end{array}\right), \left(\begin{array}{cc} 0 & 0 \\ 1 & 0 \end{array}\right), \left(\begin{array}{cc} -1 & 0 \\ 0 & 1 \end{array}\right)$$

all belong to the null space of T, and clearly form a linearly independent set. Thus this set of three matrices is a basis for the null space of T.

(c) We compute:

$$T\left(\begin{array}{cc} 1 & 0 \\ 0 & 0 \end{array}\right) = 1,\, T\left(\begin{array}{cc} 0 & 1 \\ 0 & 0 \end{array}\right) = T\left(\begin{array}{cc} 0 & 0 \\ 1 & 0 \end{array}\right) = 0,\, T\left(\begin{array}{cc} 0 & 0 \\ 0 & 1 \end{array}\right) = 1.$$

Thus the matrix of T is