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ABSTRACT 

 

Ruin probabilities are determined for a variety of gambler’s ruin models.  Specifically, 

ruin probabilities are found in the classical gambler’s ruin model augmented to include  

catastrophe and windfall probabilities.  This problem is solved in both a finite time and 

infinite time setting. In the finite time case, lattice path combinatorics plays a key role  

to count sample paths of the Markov chain.  In the infinite time case, recurrence relations 

are solved using probability generating functions and the theory of difference equations. 

The transient probability functions are explicitly determined for the general three state 

Markov process.  These solutions are categorized into three distinct cases and function 

forms; examples of each type of transient probability function are presented. 
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Chapter 1  

Gambler’s Ruin in Finite Time 

 

Introduction 

 

In this chapter, the gambler’s ruin probabilities, in finite time, are determined in two 

different settings.  The gambler’s ruin with catastrophes is solved in Section 2 and then 

the gambler’s ruin problem with catastrophes and windfalls is determined in Section 3.   

We begin with a key lattice path counting result for solving the classic gambler’s ruin in 

finite time.  This combinatoric method is extended to solve the gambler’s ruin with 

catastrophes and the gambler’s ruin with catastrophes and windfalls, by isolating the 

classic gambler’s ruin within these generalized models. There are two path counting 

approaches to find the gambler’s ruin with catastrophes in finite time.  The first method 

avoids catastrophes and produces a solution that is dependent upon the catastrophe 

probability only implicitly.  The second approach is more direct and is explicitly 

catastrophe dependent.  The second technique is then used to solve the gambler’s ruin 

with catastrophes and windfalls in Section 3.   
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Section 1-1 

 Gambler’s Ruin in Finite Time  

 

The gambler’s ruin problem is over three hundred fifty years old.  It can be traced back to 

conversation letters back and forth between Blaise Pascal and Pierre Fermat, see [1].  

Pascal considered the problem so difficult that he doubted whether Fermat would be able 

to solve it. In Pascal’s opinion, see [1], it was more difficult than all the other probability 

problems they had discussed. The gambler’s ruin problem goes as follows: a player starts 

with a given amount of money, j-dollars, and makes a series of one dollar bets.  Assume 

this player either wins a dollar or loses a dollar on each bet.  The player’s fortune may be 

visualized as a Markov chain on the state diagram shown below in Figure 1   

   j 0 1 … … H-1 H-1

q q q q q

 p p p p p 1

1

 

Figure 1 - The state diagram for the gambler’s ruin problem 

 

where ,  p + q = 1 and1,0 << qp 11 −≤≤ Hj .  Each state represents the amount of 

money the player has at any given time.  Starting at state j, the player wins or loses a 

dollar, moving to the left or the right on Figure 1.  The game ends when the player loses 

all of his money or when he reaches his goal of winning H dollars.  The ruin probability 

is the chance of reaching state “0” before state “H”.  There are two variants of the 
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gambler’s ruin problem: one assumes finite time (or a limited number of bets) and the 

other assumes an infinite time (or an unlimited number of bets).  The solution to both 

gambler’s ruin problems dates back at least to the late 1600’s [1,11].  In addition to 

Pascal and Fermat, solutions were obtained by C. Huygens, J. Bernoulli, A. de Moivre,  

P. de Montmort and N. Bernoulli, see [1,11 ].  In this chapter, we analyze the finite time 

gambler’s ruin problem using lattice path combinatorics. 

 

We suppose there is only time for n wagers. The probability of having k dollars after 

making n bets given you started with j dollars is denoted by  for k=0,1,2,3,…,H. ( )
,
n

j kP

By theory of Markov chains, [4] if  

⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

=

10000

000
000
0...0001

OO

pq
pq

P  

then  has entries .  Note:  and  are the probabilities of being absorbed by 

time n. That is, the probability that by the nth  bet the player has no money left is  

and  is the probability of meeting his goal of H dollars by the nth  bet.  At the 

absorbing states 0 and H there is no place to go but remain there. Let  

nΡ ( )
,
n

j kP ( )
,0
n

jP ( )
,
n

j HP

( )
,0
n

jP

( )
,
n

j HP

)(
,
n
kjP = Prob( being in state k after n-steps | initially at state j) 

as already defined and 

)(
0,

n
jR = Prob( absorption at state zero in n-steps | initially at state j). 

We next discuss a method to determine an explicit analytic expression for . ( )
,
n

j kP
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For simplicity assume 1,1 −≤≤ Hkj . That is, we assume j, k are both inside the box in 

Figure 2. 

  

   j 0 1 … … H-1 H-1

q q q q q

 p p p p p 1

1

Figure 2 

Let ( )
, ( )n

j kL H  represent the collection all lattice paths going from j to k in n-steps, bounded 

by horizontal lines y = 0 and y = H and restricted to not hit these boundaries. 

H

0

j

k

 

Figure 3 – Typical Lattice Path 

 

To determine , the problem comes down to finding the number of lattice paths going 

from j to k in n-steps not hitting zero or H.  The number of lattice paths in  

)(
,
n
kjP

( )
, ( )n

j kL H  is  

represented by ( )
, ( )n

j kL H . 
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Lemma 1-1.1    For  1,1 −≤≤ Hkj  

∑
+

=
++
⎥
⎥

⎦

⎤

⎢
⎢

⎣

⎡

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
+++

−++−
⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
+−

+−=
1

1

)(
, 1)1(

2
2)1(

2
)(

H

l

n
kj Hljkn

n
Hljkn

n
HL  

where the subscript of “+” means  
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This result is derived using combinatorics, the reflection principle, and the method of 

inclusion/exclusion.  The proof may be found in [9, 10].  

 

Rewriting the sum of binomial coefficients in the preceding lemma as nth powers we 

obtain a result discovered by Cal Poly Pomona Professor Daniel Marcus, see [7]. 

Afterwards, it was found out that this result goes back many years, cf. [11]. 

 

Lemma 1-1.2   For 10 −≤≤ ma  where a, m are whole numbers 

∑∑
=

−

≡ +

+=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ m

u

nuua

mag
ww

mg
n

1mod
)1(1  

and where 2exp iw
m
π⎧ ⎫= ⎨ ⎬

⎩ ⎭
, an  root of unity. thm

Combining Lemmas 1-1.1 and 1-1.2 and simplifying gives the following important 

proposition. 
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Proposition 1-1.3 For 1 ,j≤ 1k H≤ −  

nH

u
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Note: it is not obvious the preceding expression is an integer, let alone that it counts the 

number of lattice paths.  We can think of it like the well-known Fibonacci formula.  See 

[6] for the complete details of the proof of this proposition. 

 

From this proposition a corollary follows. 

 

Corollary 1-1.4 
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Proof.  For Case 1, notice that  

( ) ( )
, , ( )n n u

j k j kP L H p= dq  
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where u is the number of “up” steps and d the number of “down” steps. As before, p is 

the probability of moving from state i to state i+1, winning a dollar and q is the 

probability of moving from state i to state i-1, losing a dollar.  The number of sample 

paths, in Figure 3, that start at state j and end at state k in n-steps without hitting the two 

absorbing states is )()(
, HL n
kj .  Moreover 

      2

2
2

n k ju d n u
u d k j

n k jdu n k j

+ −+ = =
→− = −

− +
== + −

 

where u is the number of upward steps and d is the number of downward steps. The total 

number of steps made, n, is equal to the number of upward steps and downward steps.  

The difference in upward steps and downward steps is equivalent to the difference in 

ending and starting positions. 

 

This gives Case 1, using the formula for )(, HLn
kj  found in Proposition 1-1.3 . 

For Case 2, the probability of starting at state j and going to state 0 in n-steps is 

equivalent to the probability of starting at state j, going to state one in n-1 steps, then 

going to zero on the nth-step, or starting at state j, going to state one in n-2 steps, then 

going to zero on the (n-1)th-step, or… This is equal to the sum ,over i, of probabilities 

going from j to 1 in i-steps times q , the probability of moving from 1 to state zero in one 

step.  Hence, 

qPR
n

i

i
j

n
j ⋅= ∑

−

=

1

1

)(
1,

)(
0,  

But  is determined by Case 1 setting k=1.  Thus )(
1,
i

jP
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So, 
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This completes the proof of Case 2. 
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 Roulette Example 

A roulette player starts with a given amount of money, j= 1,2,3 or 4 dollars, and makes a 

series of one dollar bets.  Assume the player either wins a dollar or loses a dollar on each 

bet of red or black. 

 

0 1 … 5

 18/38 18/38 18/38 

1 1
20/38 20/38 20/38 20/38

18/38 

j …

Figure 4 

H= 5 (maximum value), p=18/38 (probability of a win, placing a bet on black or red), 

q=20/38 (probability of a loss), j= starting amount 

)(
,
n
kjP  have been calculated in the following table listed as P(j,k).  

             j         P(j,0)      P(j,1)      P(j,2)      P(j,3)      P(j,4)      P(j,5)     
n = 5 

    1.0000    0.7230    0.0000    0.1472    0.0000    0.0795    0.0503     
      2.0000    0.4151    0.1636    0.0000    0.2355    0.0000    0.1858     
     3.0000    0.2548    0.0000    0.2617    0.0000    0.1472    0.3363     
     4.0000    0.0767    0.1090    0.0000    0.1636    0.0000    0.6507    
n = 10 
     1.0000   0.7902    0.0327    0.0000    0.0477    0.0000    0.1294     
       2.0000   0.5934    0.0000    0.0857    0.0000    0.0477    0.2732     
     3.0000   0.3748    0.0589    0.0000    0.0857    0.0000    0.4807     
     4.0000   0.1972    0.0000    0.0589    0.0000    0.0327    0.7111     
n = 50 
     1.0000   0.8398    0.0000    0.0000    0.0000    0.0000    0.1602     
     2.0000   0.6618    0.0000    0.0000    0.0000    0.0000    0.3382     
     3.0000   0.4640    0.0000    0.0000    0.0000    0.0000    0.5360     
     4.0000   0.2442    0.0000    0.0000    0.0000    0.0000    0.7558     
n = 500 
     1.0000  0.8398    0.0000    0.0000    0.0000    0.0000    0.1602     
     2.0000  0.6618    0.0000    0.0000    0.0000    0.0000    0.3382     
       3.0000  0.4640    0.0000    0.0000    0.0000    0.0000    0.5360     
       4.0000  0.2442    0.0000    0.0000    0.0000    0.0000    0.7558     
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Section 1-2 

Gambler’s Ruin with Catastrophes in Finite Time 

 

In this section, a generalization of the original gambler’s ruin problem is considered.   

An added probability, r, of a catastrophe is assumed. That is, a chance that at any point 

during the betting a player can lose all of his money is now possible.  A computer system 

may be modeled in a similar manner. A hard drive may be thought of as adding bytes of 

information with probability p and losing or processing information with probability q, 

but at any point in time the hard drive might crash losing all of its information.  The 

lattice path counting result found in Proposition 1-1.3, some algebra, and basic concepts 

of probability, provide the tools required to solve the gambler’s ruin problem with 

catastrophes.  In this section, we present two different methods of solution.  The second 

method appears more general, allowing us to consider more general related problems (see 

Section 3).  However, in this present section, our primary goal is to obtain a general 

analytic expression for the probability of being ruined (in finite time) when the gambler’s 

ruin problem is augmented to include catastrophe probabilities. 

 

Motivated by queueing and population models, consider that at any step k=1,2,..(H-1) 

there is a probability r of a catastrophe taking you to state zero as shown in Figure 5.   
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0 1 2 j … … H-1 H

q+r q q q q q 

 p p p p p p 

1

1

r 

 

Figure 5 - Gambler’s Ruin with Catastrophes 

 

where 1p q r+ + = , 1,,0 <≤ rqp , and 11 −≤≤ Hj . With transition matrix 

⎥
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then  has entries . nΡ ( )
,
n

j kP

Note:  and  are the probabilities of being absorbed by time n. As before, we wish 

to find an explicit representation for 

( )
,0
n

jP ( )
,
n

j HP

( )
,
n

j kP .  Assume 1,1 −≤≤ Hkj  as shown in Figure 6.  

Again, let  

)(
,
n
kjP = Prob( being in state k in n-steps | initially at state j). 

)(
0,

n
jR = Prob( absorption at state zero in n-steps | initially at state j). 
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0 1 2 j … … H-1 H

q+r q q q q q 

 p p p p p p

r 

1

1

Figure 6 - Gambler’s Ruin with Catastrophes P  in the box )(
,
n
kj

The following corollary follows from Corollary 1-1.4 

 

Corollary 1-2.1 

Case 1  ,  1 j≤ 1k H≤ −
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Proof. 

In Case 1, the number of sample paths inside the box of Figure 6 is the same as the 

number of sample paths inside the box of Figure 2. The only difference is that now 
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1<+ qp  since 1p q r+ + = . Therefore the same counting formula (Proposition 1-1.3) 

holds and Case 1 follows here as it did in Corollary 1-1.4.  For Case 2, finding ( )
,
n

j HP  is 

equivalent to the problem of finding ( )
,0

n
H jP −

 with the p’s and q’s reversed in Figure 2.  In 

Section 1, the probability of moving from state j to state zero in n-steps was shown in 
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which establishes Case 2 in Corollary 1-2.1. 

 

To determine the ruin probabilities on Figure 5 we use two different methods. 
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Proof. 

Since p + q + r = 1, 
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holds, and the ruin probability follows from Corollary 1-2.1. 
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Note: the preceding theorem depends upon the ruin probability r in an implicit way since 

p + q + r = 1. The following theorem gives a more general alternative expression for the 

ruin probabilities on Figure 5. Here the dependency upon r is explicit. 

Theorem 1-2.3 For 11 −≤≤ Hj  
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Proof 

The theorem will be shown assuming 1≤++ rqp .  The argument proceeds by looking at 

where you were at one step back from ruin, assuming you are ruined in l steps. This 

means that we either started at state j and went to state 1 in  l-1 steps and then on the last 

step went to state 0 with probability q, a loss; or starting at j we journeyed to state k in l-1 

steps and then on the last step went to state 0 with probability r, a catastrophe. If we add 

up over all possible paths having l steps and over all possible last positions k, we obtain 

∑∑ ∑
−

=

−

=

−

=

⋅+⋅=
1

1

)(
,

1

1

1

1

)(
1,

)(
0,

H

k

l
kj

n

l

n

l

l
j

n
j rPqPR  

Theorem 1-2.3 now follows from substitution of Case 1 of Corollary 1-2.1. 

 

Note:  This path counting argument applies to the more general situation of 1≤++ rqp .
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 Example with Catastrophes  

A player, playing at an illegal casino, starts with a given amount of money, j= 1,2,3 or 4 

dollars, and makes a series of one dollar bets placing a bet.  Assume the player either 

wins a dollar or loses a dollar on each bet.  At any time during the player’s betting the 

casino has probability .125 of being closed down, causing the player to lose all of his 

money. 

0 1 2 j … … 5

.5

 .5 .5 .5 

1

.125 

.5 

.375.375.375 .375 .375

.5 

 

Figure 7 

H = 5, p=1/2 (probability of a win), q=3/8 (probability of a loss), r=1/8 (probability of 

catastrophe), j = starting amount 

)(
,
n
kjP  have been calculated in the following table, listed as P(j,k).  For example the 

probability for being in state three after ten bets given you stated with one dollar is found 
in the n = 10 table, by picking off the forth row, P(j,2) column, entry.      =.0170 )10(

3,1P
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                    j  P(j,5)      P(j,1)      P(j,2)      P(j,3)      P(j,4)      P(j,0)   
n = 5 
          1.0000    0.0198    0.0000    0.0879    0.0000    0.0703    0.8220 
          2.0000    0.0824    0.0659    0.0000    0.1406    0.0000    0.7111 
          3.0000    0.1934    0.0000    0.1055    0.0000    0.0879    0.6133 
          4.0000    0.4717    0.0297    0.0000    0.0659    0.0000    0.4327 
n = 10 
          1.0000   0.0392    0.0079    0.0000    0.0170    0.0000    0.9359 
          2.0000   0.1045    0.0000    0.0206    0.0000    0.0170    0.8579 
         3.0000   0.2360    0.0096    0.0000    0.0206    0.0000    0.7338 
          4.0000   0.4901    0.0000    0.0096    0.0000    0.0079    0.4925 
n = 20 
          1.0000   0.0418    0.0002    0.0000    0.0005    0.0000    0.9575 
          2.0000   0.1114    0.0000    0.0006    0.0000    0.0005    0.8876 
          3.0000   0.2416    0.0003    0.0000    0.0006    0.0000    0.7576 
          4.0000   0.4957    0.0000    0.0003    0.0000    0.0002    0.5038 
n = 30 
         1.0000   0.0418    0.0000    0.0000    0.0000    0.0000    0.9581 
          2.0000   0.1116    0.0000    0.0000    0.0000    0.0000    0.8884 
          3.0000   0.2417    0.0000    0.0000    0.0000    0.0000    0.7582 
          4.0000   0.4959    0.0000    0.0000    0.0000    0.0000    0.5041 
n = 50 
          1.0000   0.0418    0.0000    0.0000    0.0000    0.0000    0.9582 
          2.0000   0.1116    0.0000    0.0000    0.0000    0.0000    0.8884 
          3.0000   0.2417    0.0000    0.0000    0.0000    0.0000    0.7583 
          4.0000   0.4959    0.0000    0.0000    0.0000    0.0000    0.5041     
 
The numbers on this table are round to four significant digits. 
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Summarizing the last corollary and the two past theorems, the n-step transition 

probability functions of the gambler’s ruin problem with catastrophes (Figure 5) starting 

at state j where  are: 11 −≤≤ Hj
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whenever . 1≤++ rqp
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Section 1-3 

Gambler’s Ruin with Catastrophes and Windfalls in Finite Time 

 

In this section, we generalize the methods of Section 2 to determine the ruin probabilities 

of a gambler’s ruin system having both catastrophes and windfalls. The method discussed 

in Theorem 1-2.3 applies directly to give an explicit, analytic expression for the ruin 

probabilities of a system having catastrophes and windfalls in addition to the usual 

win/lose transitions. As before, our approach is built upon the path counting result of 

Proposition 1-1.3 in Section 1.  The main idea is that an eventual catastrophe or windfall, 

when it occurs, will only happen at the end of a journey.  This allows us to consider 

walks on Figure 8 below to be essentially lattice paths until the end of the walk.  

Proposition 1-1.3 tells us how to count such paths.  Consider 

 

Figure 8 - Gambler’s Ruin with Catastrophes and Windfalls 
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with transition matrix 
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then  has entries .  Note:  and  are the probabilities of being absorbed by 

time n.  Consider that at any step k=1,2 , … ,H-1 there is a probability r of a catastrophe 

taking you to state zero and that there is probability s of a windfall taking you to state H 

with  ,  

nΡ ( )
,
n

j kP ( )
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j HP

1=+++ srqp 1,,0 ≤≤ rqp ,  and 11 −≤≤ Hj .  As before we wish to find an 

explicit representation for .   )(
,
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kjP
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Figure 9 Gambler’s Ruin with Catastrophes P  in the box )(
,
n
kj
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The transition probability functions are determined for two distinct cases by the following 

corollary. 

Corollary 1-3.1 

Case 1  For 1,1 −≤≤ Hkj  
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Proof. 

For Case 1, the proof follows as before from Proposition 1-1.3.  Case 2 follows from the 

previous path counting result discussed in Theorem 1-2.3.   

□ 

In a similar way, this path counting technique allows a direct approach for finding the 

probability of reaching your goal, , in n steps. This time )(
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n
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In summary, the general n-step transition probability functions of the gambler’s ruin with 

catastrophes and windfalls are, starting from state j, 11 −≤≤ Hj , to k, 11 −≤≤ Hk , 
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The ruin probability, starting from state j, 11 −≤≤ Hj , is 
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The goal probability, starting from state j, 11 −≤≤ Hj , is 
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As far as we know, these formulae are new in the catastrophe and windfall setting.
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Chapter 2 

Gambler’s Ruin in Infinite Time 

 

Introduction 

 

In this chapter, we again consider the classical gambler’s ruin problem but with an 

infinite amount of time.  More generally, we reconsider each of the three models 

presented in Chapter 1 under the assumption of having an indefinite amount of time until 

absorption.  This time, our techniques do not explicitly use path counting.  The problem 

is addressed as solving a system of recurrence relations under appropriate boundary 

conditions.  Two techniques are employed: difference equations and probability 

generating functions.  In particular, the infinite time gambler’s ruin with catastrophes 

problem is solved in Section 2 using the theory of second order, constant coefficient 

recurrence relations and some calculus and probability theory to hold it all together.  This 

result and the method are then generalized in Section 3 to solve the gambler’s ruin with 

both catastrophes and windfalls in infinite time using difference equation techniques.  An 

interesting probability generating function approach may also be used to determine the 

ruin probabilities in the catastrophe and windfall case.  This solution method is also 

presented in Section 3.  
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Section 2-1 

The Gambler’s Ruin Problem  

We reconsider the classical gambler’s ruin Problem but now with an infinite amount of 

time, 

…    j 0 1 … H-1 H-1

q q q q q

 p p p p p 1

1

 

Figure 10 - The state diagram for the gambler’s ruin problem 

 

where  , p + q = 1 and1,0 << qp 11 −≤≤ Hj . The ruin probability is the chance of 

eventually reaching state “0” before state “H”.  The classical gambler’s ruin problem in 

infinite time has the following elegant solution, see [4, 11].   
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The problem has been solved in many ways ([11]). 
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Section 2-2 

Gambler’s Ruin with Catastrophes in Infinite Time 

 

This section looks at the same set-up as in Section 1-2 but with infinite time.  We are 

looking for the ruin probabilities, that is, probabilities of eventual absorption at state zero.    

In this section, we derive expressions for both the ruin probabilities and the probability of 

reaching our goal, H, given that you start at state j.  These are obtained using the theory 

of linear, constant coefficient recurrence relations. 

 

For infinite time, recall this Markov chain was first described in Section 2 of Chapter 1. 

0 1 2 j … … H-1 H

q+r q q q q q 

 p p p p p p 

1

1

r 

 

Figure 11 - Gambler’s Ruin with Catastrophes 

Let  

jR = Prob(eventual absorption at state zero | initially at state j) 

and 

jP = Prob(eventual absorption at state H | initially at state j). 
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The main result of this section is given in the following theorem which is reproduced 

here from some joint work appearing in [5].  

Theorem  2-2.1  For 11 −≤≤ Hj  
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Proof . 

Conditioning on the first step, 
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If you start in state k the chance of being ruined can be found by seeing where you are 

after one step.  After one step you could be at state k+1 with probability p then get ruined, 

at k-1 with probability q then get ruined or at state zero with probability r then get ruined. 

The probability after one step of being absorbed at H given that you began at state zero is 

zero since zero is an absorbing state.  The equations form a system of second order, 

linear, constant-coefficient difference equations.   
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Thus for  ,1,...,3,2,1 −= Hk

011 =+− −+ kkk qPPpP  

with characteristic equation,  

02 =+− qxpx . 

The roots of this equation are 
p

pq
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.  Note that these roots are distinct since r 

is positive. Hence the general solution of the recurrence is of the form (see [8]) 
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So, 

kk PR −= 1 ,  

completing the proof. 

 

 

 

32 



Section 2-3 

Gambler’s Ruin with Catastrophes and Windfalls in Infinite Time 

 

In this section, we consider a system of linear constant coefficient recurrence relations for 

the ruin probabilities of Figure 12 given that you start at state j.  We present two methods 

of solution.  The first approach uses probability generating functions.  Our second 

solution method (which we gratefully acknowledge was suggested by thesis committee 

member, Dr. Randall J. Swift) is a difference equation approach which essentially 

generalizes the arguments presented in the previous section.  

 

Reconsider the Markov chain illustrated in Figure 12. 

q+r 

0 1 j … … HH-1

q q q q q 

 p p p p p+s 
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Figure 12 - Gambler’s Ruin with Catastrophes and Windfalls 
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We seek the probability of eventually being ruined, = Prob(eventual absorption at state 

zero | initially at state j).  

jR

 

 

Theorem 2-3.1   For the Markov chain described by Figure 12, the  are given below.               jR
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Proof. 

Conditioning on the first step gives, 
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where  .  So 1=+++ srqp

rpRqRR iii ++= +− 11  

for  with initial conditions, 1,...,2,1 −= Hi 10 =R  and 0=HR . 

rqRRpR nnn −=+− −+ 11  

The ruin probabilities, ,can be found using the technique of generating functions (see 

page 10 of [13]). 
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The roots of the quadratic on the left hand side of the preceding equation are, 
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Take αβ == BandA  to obtain the expression in Theorem 2-3.1.  The ruin 

probabilities, , may now be picked off as the coefficients of the generating function  jR
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Solving for the ruin probabilities makes it possible to find the goal probabilities, ’s, 

using the fact that as time runs off to infinity, 
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at either of the two absorbing states is 1. That is there is 100 percent probability of being 
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An alternative way to solve the recurrence relation is using a difference equation 

technique, [2].  Recall the recurrence relation found earlier, 
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The constants  are determined by the initial conditions, 21 ,cc 10 =R  and : 0=HR
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where  is the greatest integer less than or equal to x. ⎣ ⎦x

So  can be rewritten as  21 ,cc
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Chapter 3 

The General Three State Markov Process 

 

Introduction 

In Markov processes, the simplest basic example is the two state Markov process whose 

transient probability functions are solved in complete detail in most books on the subject, 

cf. [3, 4].  The next step up in complexity is the three state Markov process.  However, to 

our knowledge, the transient probability functions of this process have not been treated in 

full generality.  If the three state Markov process is addressed at all, only certain special 

cases are presented (see, for example, the problem section of Chapter 3 in [4]).  It turns 

out that the three state Markov process has three mathematical distinct forms that the 

transient probability functions may take and that these solutions include trigonometric 

functions that did not appear in the two state Markov process case.  Therefore, for the 

preceding pedagogically and mathematically interesting reasons, a detailed solution of 

the transient probability functions for the general three state Markov process is developed 

here.   
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Section 3-1 

The General Three State Markov Process 

 

In this section the transient probability functions, , of the general three state 

Markov process are explicitly determined.  These transient probability functions are 

found to have three distinct forms of solution which are fully described.   The section 

concludes by illustrating examples of each solution form.  

)(, tP ji

 

Consider the general three state Markov process pictured below, 

γ 

μ 1 

λ 0 λ 1 

μ 2 

0 21

β 

 

Figure 13 - General three state transition rate diagram 

 

having transition rate matrix 

( )
)

)
Q

0 0

1 1 1 1

2 2

− λ +β λ β⎡ ⎤
⎢ ⎥= μ −(λ +μ λ⎢ ⎥
⎢ ⎥γ μ −(γ +μ⎣ ⎦
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We also denote each entry of Q by , the transition rate of moving from state i to state 

j.  According to the theory of Markov processes,  

jiq ,

0
)(

=
′=

tijij tPq  

for i,j = 0, 1, 2, 3.  The matrix Q will also be written as 

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=

2,21,20,2

2,11,10,1

2,01,00,0

qqq
qqq
qqq

Q  

Moving from state zero to state one, for example occurs at a rate 0λ  = , and moving 

from state zero to state two occurs at rate β = .  Since no other transitions out of state 

zero occur the rate of staying in state zero is the negative sum of the departing rates, [4], 

that is, 

1,0q

2,0q

( )βλ +− 0  =  .  The rows of Q add up to zero.  Diagonal entries are non-

positive.  Off diagonal terms are non-negative.  We are interested in finding the transition 

probability functions, , where  i , j = 0,1,2.   is found by solving the 

Kolmogorov forward or backwards equations,   

0,0q

)(, tP ji )(, tP ji

QtPtPQtP ⋅=⋅=′ )()()(   

with , where I)0( =P

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=

)()()(
)()()(
)()()(

)(

2,21,20,2

2,11,10,1

2,01,00,0

tPtPtP
tPtPtP
tPtPtP

tP  

is the matrix of transition probability functions and Q is as above.  The solution of the 

Kolmogorov backwards equation can be written [4] as  
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QtetP =)(  

and the steady state distribution is given by the following distribution. 

 

Lemma 3-1.1     The steady state distribution of the general three state Markov process 

pictured in Figure 13 is  

 

C

C

C

1110
2

2020
1

1121
0

βμβλλλ
π

βμγλμλ
π

γμγλμμ
π

++
=

++
=

++
=

 

 

where  

122010110211 )()( μμμλλλμλλγμμλβ ++++++++=C  

 

 

Proof 

The stationary (and steady state) distribution π  may be found see [3] or [4] by solving  

[ ]000=Qπ  

or 
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[ ] [ 000

22

1111

00

210 =
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

−−
−−

−−

μγμγ
λλμμ
βλβλ

πππ ]  

This gives the following system of equations, 

0)(

0)(

0)(

22110

2211100

21100

=−−++

=+−−+

=++−−

πμγπλβπ

πμπλμπλ

γππμπβλ

 

which may be solved for 210 ,, πππ  provided we require π  to be a distribution, 

that is,  1210 =++ πππ .  Rather than reproducing all the algebraic details to solve this 

system, since the steady state distribution π  is unique it is enough to verify that 

[ ]0,0,0=Qπ  

when 

122010110211

1110
2

122010110211

2020
1

122010110211

1121
0

)()(

)()(

)()(

μμμλλλμλλγμμλβ
βμβλλλ

π

μμμλλλμλλγμμλβ
βμγλμλ

π

μμμλλλμλλγμμλβ
γμγλμμ

π

++++++++
++

=

++++++++
++

=

++++++++
++

=

 

or 

 

CCC
1110

2
2020

1
1121

0
βμβλλλπβμγλμλπγμγλμμπ ++

=
++

=
++

=  
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where  

122010110211 )()( μμμλλλμλλγμμλβ ++++++++=C  

This straight forward check is left to the reader and completes the proof. 

 

Since the solutions to QtPtPQtP ⋅=⋅=′ )()()( , are known, [13], to have the form 

tr
ij

tr
ij

tr
ijij ebeaectP 210)( ++=  

when  are distinct eigenvalues of  Q  with constant coefficients (and solution 

form   when, for example,  is a double root), we now turn 

our attention to finding the eigenvalues of  Q.  To determine the eigenvalues of Q, recall 

that the characteristic equation of Q is 

210 ,, rrr

tr
ij

tr
ij

tr
ijij tebeaectP 110)( ++= 1r

[ ]

0det

0det

22

1111

00

=
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

−−−
−−−

−−−

=−

x
x

x

xIQ

μγμγ
λλμμ
βλβλ

 

Notice that vector  is an eigenvector of Q since .  This follows since each 

of the rows of Q add up to zero. Thus 0 is an eigenvalue of Q.  This means the 

characteristic equation of Q may be written as 

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

1
1
1

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
⋅

0
0
0

1
1
1

Q

0)( 2 =++ CBxxx  

 

where 
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122010110211

2110

)()( μμμλλλμλλγμμλβ

μμλλγβ

++++++++=

+++++=

C

B

 

This is the same C that appears in Lemma 3-1.1.  If  are the roots of  

, then 0 and 

21, rr

02 =++ CBxx
2

4,
2

21
CBBrr −±−

=  are the eigenvalues of Q.   There are 

three distinct cases to consider: 

1.  2 4 0B C− >  

2.  2 4 0B C− =  

3.  2 4 0B C− <  

 

Case 1   2 4 0B C− >

Since it follows that 0>C 0, 21 ≤rr and 21 rr ≠  since 2 4B C 0− >  .  In particular,  

are three non-positive eigenvalues of Q, which are distinct if zero is not a multiple root 

that is, if .  If zero is a multiple root then the Markov process effectively becomes a 

process having transitions between two or fewer of its three states.  Therefore, we 

henceforth assume  are three non-positive, distinct eigenvalues of Q.  Then, by 

[13] for example, 

0,, 21 rr

0>C

0,, 21 rr

tr
ij

tr
ijjij ebeatP 21)( ++= π      (3.1) 

where jπ  is the steady state distribution for state j given in Lemma 3-1.1 (note that as 

, ∞→t jij tP π→)( ) and  and  are constants which we now determine. ija ijb

50 



Substituting t = 0 into equation (3.1) produces,  

ijijjijij baP ++== πδ)0(  

or      ijijjij ba +=−πδ  

where     is the Kronecker delta function 
⎭
⎬
⎫

⎩
⎨
⎧

=
≠

=
ji
ji

ij for1
for0

δ

For any specific , 2,1,0, =ji

02010
21)(

===
+=′=

t

tr
ijt
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ijtijij erberatPq  

 

or     21 rbraq ijijij +=  

 

Then  and 21 rbraq ijijij += ijijjij ba +=−πδ  can be used to determine  and : ija ijb
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In summary,  becomes, for Case 1, tr
ij

tr
ijjij ebeatP 21)( ++= π 2 4 0B C− >  

 

trijjijtrjijij
jij e
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qr

e
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tP 21
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⎦
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with 
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122010110211

2110
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μμλλγβ
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+++++=
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B

 

2
4,

2

21
CBBrr −±−

=  

where the ijδ  and   are all known. ijq

 

Case 2  , double root 2 4B C− = 0

In this case, 

22
0

2
42 BBCBBr −

=
±−

=
−±−

=  

are double roots of the characteristic equation, where 0<r  and  

2110 μμλλγβ +++++=B . 

The transient probability functions for double roots are (see [14]), 

rt
ij

rt
ijjij tedectP ++= π)(    (3.2) 
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where jπ  is again the steady state distribution for state j given in Lemma 3-1.1.   

Hence,  and  are once again constants which may now be determined.   ijc ijd

Substituting  into (3.2) gives, 0=t

jijij

ijjijij

c

cP

πδ

πδ

−=

+== )0(
 

where 

⎭
⎬
⎫

⎩
⎨
⎧

=
≠

=
ji
ji

ij for1
for0

δ  

Differentiating (3.2) and evaluating at t =0 gives 
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)()()(
=
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t
rtrt

ij
rt

ijtijij rteederctPq  

ijijij drcq +−= )(  

Using jijijc πδ −=  we find to be ijd

ijjijij qrd +−= )( πδ  

Thus the transient probability functions, rt
ij
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ijjij tedectP ++= π)(  for  

become, for Case 2 , 

2,1,0, =ji
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with 
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where  ijδ  and   are all known. ijq

 

Case 3   2 4 0B C− <

Here, 

2
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2
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where   
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Let  and ibar +=1 ibar −=2  where 
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Hence, 
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eefeee

efee
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Using Euler’s relation,  θθθ sincos iei +=

( ) ( )btibtefbtibteetP at
jk

at
jkkjk sincossincos)( −+++= π  

which may be rewritten as 

btiehbtegtP at
jk

at
jkkjk sincos)( ++= π   (3.3) 

Setting t = 0 in equation (3.3) gives 

kjkjkjkkjk gg πδπδ −=→+=  

Since kπ  is real and jkδ  is real, that makes  real. Differentiating (3.3) with respect  jkg

to t and setting t = 0, 

ibhgaqtP jkjkjktjk ⋅⋅+⋅==′
=0

)(  
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But we know  is real,  is real,  is real, and i  is the imaginary unit so that makes 

 pure imaginary, since otherwise we would get a complex number for  the 

transition rate which can’t happen. So, 

jkq jkg b

jkh jkq

 

jkjkjk qgaibh −⋅=⋅⋅−  
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Thus the transient probability function, for Case 3, 2 4 0B C− <  is 
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where  ijδ  and   are all known. ijq

 

In summary, the transient probability functions for the general three state Markov process 

with transition rate matrix  

( )
)

)
Q

0 0

1 1 1 1

2 2

− λ +β λ β⎡ ⎤
⎢ ⎥= μ −(λ +μ λ⎢ ⎥
⎢ ⎥γ μ −(γ +μ⎣ ⎦

  

are given by 
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Case 2       For   2 4 0B C− =
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Examples 

 Example 1  

Case 1    2 4 0B C− >

γ = 2 

μ 1 = 1 

λ 0 = 1 λ 1 = 1 

μ 2 = 1 

0 21

β = 2 

 

Figure 14 

Here, 

3 1 2
1 2 1
2 1 3

Q
−⎡ ⎤
⎢ ⎥= −⎢ ⎥
⎢ ⎥−⎣ ⎦

 

and 

[ ]2 24 8 4 2 3 2 3 3
64 60 4

B C− = − ⋅ + ⋅ +

− =
 

So the roots are,  

1 2
8 2 , 3
2

r r − ±
= = − , 5−  

The steady state distribution is  
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For  and ,  0=i 0=j

100 =δ  and  300 −=q

tt eetP 53
00 2

1
6
1

3
1)( −− ++=  

For  and ,  0=i 1=j

001 =δ  and  101 =q

tetP 3
01 3

1
3
1)( −−=  

 For  and ,  0=i 2=j

002 =δ  and  002 =q

tt eetP 53
02 2

1
6
5

3
1)( −− +−=  
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Example 2  

Case 2   2 4 0B C− =

γ = 1 

λ 0 = 1 λ 1 = 1 

0 21

β = 1 

 

Figure  15 

Here 

2 1 1
0 1 1
1 0 1

Q
−⎡ ⎤
⎢ ⎥= −⎢ ⎥
⎢ ⎥−⎣ ⎦

 

The roots of the characteristic equation are 

2
2

4444,
2
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−=

⋅−±−
=rr   

So,  -2  is a double.  

 

The steady state distribution is 

2
1 and  ,

4
1  ,

4
1

210 === πππ  
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with  and 4=C 4=B  

and 
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4
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1
4
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4
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2
1)( −− +−=  

 

 

62 



Example 3  

Case 3   2 4 0B C− <

γ = 1 

λ 0 = 1 λ 1 = 1 

0 21

 

Figure 16 

Here, 

1 1 0
0 1 1
1 0 1

Q
−⎡ ⎤
⎢ ⎥= −⎢ ⎥
⎢ ⎥−⎣ ⎦

 

The roots of the characteristic equation are 
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The steady state distribution is 

3
1

210 === πππ  

with  and  3=C 3=B
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Conclusion  

 

In this thesis, ruin probabilities are determined for the gambler’s ruin with catastrophes 

and windfalls.  For the finite time problem, lattice path combinatorics described in 

Chapter 1 play a key role in determining the ruin probabilities by providing us a formula 

for counting sample paths of the Markov chain.  In the infinite time case (Chapter 2), the 

ruin probability recurrence relations have been solved using probability generating 

functions and the theory of difference equations.  These problems generalize and include 

the well-known, classical gambler’s ruin problem as a special case of the solutions 

developed within this thesis.  A preliminary literature search indicates that the solutions 

determined in this thesis appear new.  However, the gambler’s ruin problem dates back so 

many years (over three centuries) that a more extensive literature search still needs to be 

undertaken.  At the same time, further generalizations of the gambler’s ruin problems 

have been progressing at Cal Poly Pomona, see, for example [5] where ruin probabilities 

having state dependent probabilities are being studied.  The gambler’s ruin may also be 

extended along the lines of a batch queueing system, that is, having a transition diagram 

where a player moves down by two steps instead of one step. 

 

In Chapter 3, the transient probability functions of the general three state Markov process 

is determined.  Our method of solution involves obtaining general, explicit formulae for 

the eigenvalues of Q and the steady state distribution of the three state Markov process.  

After this, a categorization of the (distinct) solution function forms is given in Chapter 3.   
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Even though this approach to determining transient probability functions is well known, 

so far, we have not seen the solution of the three state Markov process carried out in such 

complete generality.  Our general solution raises some interesting questions that are not 

yet completely understood.  For example, why does the quantity 

122010110211 )()( μμμλλλμλλγμμλβ ++++++++=C  

appear in both the steady state distribution of the system and the eigenvalues of Q ?  

What is the significance of C? The hope is that our general form of solution reveals new 

insights into the patterns of how transient probability functions look in general.  The next 

step of future research might be to perform a similar analysis for the four state Markov 

process.  The eigenvalues of Q once again may be determined explicitly in terms of the 

entries of Q -this time by using the formula for the roots of a cubic equation.  The steady 

state distribution is again solvable but not obvious. Since the four state Markov process 

contains the three and two state Markov process as special cases, again one may hope to 

learn more about how the general N-state Markov process transient probability looks.   In 

short, the range of future work on this topic is endless. 
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