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Abstract

We compute ruin probabilities, in both infinite-time and finite-time, for a Gambler’s Ruin prob-
lem with both catastrophes and windfalls in addition to the customary win/loss probabilities. For
constant transition probabilities, the infinite-time ruinprobabilities are derived using difference equa-
tions. Finite-time ruin probabilities of a system having constant win/loss probabilities and vari-
able catastrophe/windfall probabilities are determined using lattice path combinatorics. Formulae
for expected time till ruin and the expected duration of gambling are also developed. The ruin
probabilities (in infinite-time) for a system having variable win/loss/catastrophe probabilities but no
windfall probability are found. Finally, the infinite-timeruin probabilities of a system with variable
win/loss/catastrophe/windfall probabilities are determined.

AMS Subject Classification: 60J10

Key-words: Gambler’s Ruin, Catastrophe, Birth-Death Process.

1. Introduction

The Gambler’s Ruin problem is over 350 years old and has been traced back to letters be-
tween Blaise Pascal and Pierre Fermat; see, for example, Edwards (1983). In the traditional
∗1559-8608/08-2/$5 + $1pp – see inside front cover
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Gambler’s Ruin problem, with two playersP andQ having a total ofH dollars between
them, playerP starts with j-dollars, 1≤ j ≤ H −1, and makes a series of independent one
dollar bets each having probabilityp of winning a dollar and probabilityq of losing a dollar.
PlayerP’s fortune at any point in time may be visualized as a state in the Markov chain
diagram in Figure 1.

j0 1 … … H-1 H

q q q q q

p p p p p 1

1

Figure 1. The state diagram of the traditional Gambler’s Ruin problem

The game ends when playerP loses all of his money or when he reaches his goal of
winning H dollars. The objective is to determineP’s ruin probability, that is, the chance
of reaching state 0 assuming playerP begins with j-dollars. The most well-known version
of this problem allows play to continue indefinitely until player P reaches state 0 orH.
A related problem asks for the ruin probabilities allowing only, at most, a specified, finite
number of bets. Solutions to both versions of the gambler’s ruin problem date back at least to
the late 1600’s. In addition to Pascal and Fermat, solutionswere obtained by C. Huygens, J.
Bernoulli, A. de Moivre, P. de Montmort and N. Bernoulli; see, for example, Edwards (1983)
and Takacs (1969). Nicely presented discussions of Gambler’s Ruin problems may also be
found in the books by Ash (1970), Feller (1968), and Hoel, Port, and Stone (1987). An
interesting article by Harper and Ross (2005) reports some recent extensions of gambler’s
ruin probabilities to different state transition diagrams.

In this article, some natural generalizations of classicalGambler’s Ruin problems are
considered. In Sections 2 and 3, the problem of determining ruin probabilities is solved
when constant catastrophe/windfall probabilities occur in addition to the customary, con-
stant win/loss probabilities. In Section 2, the infinite-time, ruin probability problem for
the chain of Figure 2 is solved using difference equations while in Section 3, lattice path
combinatorics is utilized to obtain ruin probabilities whenever a specific, finite number
of transitions is allowed in Figure 2. Comparisons between finite-time and infinite-time
ruin probabilities are graphed. By taking the limit of thesefinite-time ruin probabilities, a
trigonometric expression for the infinite-time ruin probabilities is obtained. It is interesting
to contrast these apparently dissimilar (yet equivalent) formulae for the infinite-time ruin
probabilities obtained by the different methods describedin Sections 2 and 3.

In Section 4, ruin probabilities (in infinite-time) of a system having variable win/loss/
catastrophe probabilities but no windfall probabilities are found. In Section 5, the distri-
bution functions of the time at which ruin occurs, when stateH is reached or when play
terminates, presuming that gambling began from statej, are presented. Formulae for the
expected time of ruin conditioned upon ruin occurring and the expected duration of play
are derived and tabulated. In Section 6, the infinite-time ruin probabilities of a system
having variable win/loss/catastrophe/windfall probabilities are determined. The recursive



Gambler’s Ruin with Catastrophes and Windfalls 201

q+c

0 1 j… … HH-1

q q q q

p p p p p+w

1
1

c

w w w w

ccc

Figure 2. Transition state diagram of Gambler’s Ruin with constant catastrophe
and windfall probabilities

approaches in Sections 4 and 6 generalize the known ruin probability formula in Hoel, Port,
and Stone (1987) for general birth-death chains. If the systems described in Sections 2, 4
and 6 are changed to include return transition probabilities (loops), then the same recursive
methods, suitably modified, still produce formulae for computing ruin probabilities. This
result and some related problems and directions for furtherstudy are mentioned in Section 7.

2. Infinite-time Gambler’s ruin probabilities with catastr ophes and windfalls

Suppose that in each round of a Gambler’s Ruin game playerP wins with probability
p, loses with probabilityq, experiences a catastrophe taking him or her to state 0 with
probabilityc, and gains a windfall taking him or her to stateH with probabilityw, where
p+q+c+w= 1, as shown in the Markov chain state diagram in Figure 2.

Let infinite-time ruin probabilities be given by

rk = Prob(P is eventually ruined| P is initially at statek).

Suppose that playerP currently hask dollars, where 1≤ k ≤ H − 1. Conditioning on the
next round of play, with probabilityc playerP will go directly to state 0 and be ruined; with
probabilityq playerP will go to statek−1, from which he or she has probabilityrk−1 of
eventual ruin; with probabilityp playerP will go to statek+ 1, from which he or she has
probabilityrk+1 of eventual ruin; and with probabilityw playerP will go directly to stateH,
from which he or she has no chance of being ruined.
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Thus, for 1≤ k≤ H −1,

rk = cr0 +qrk−1 + prk+1+wrH

= c+qrk−1+ prk+1,

where we have used the fact thatr0 = 1 (since the player is already ruined in this case) and
rH = 0 (since upon reaching stateH the player stops playing the game). That is,

r0 = 1

r1 = c+qr0+ pr2

r2 = c+qr1+ pr3

...

rk = c+qrk−1+ prk+1 (2.1)
...

rH−1 = c+qrH−2+ prH

rH = 0.

This is a set of linear constant-coefficient difference equations with “boundary values”
r0 = 1 andrH = 0. In other words, we are looking for the solution of

prk+1− rk +qrk−1 = −c (2.2)

subject to the “boundary values”r0 = 1 andrH = 0. The general solution of (2.2) may be
found as a sum of the general solution of the associated homogeneous equation

prk+1− rk +qrk−1 = 0 (2.3)

and a particular solution of the non-homogeneous equation (2.2), see Goldberg (1986) and
Marcus (1998).

To find a particular solution of (2.2), we will assumerk = A whereA is a constant. Then
substituting into (2.2),

pA−A+qA= −c

and we obtainrk = c
c+w, for all k.

For the homogeneous equation (2.3), the characteristic polynomial is px2− x+ q. The
roots of the characteristic polynomial are(1±√

1−4pq)/(2p). Thus, forpq 6= 1/4, the
general solution of the non-homogeneous equation (2.2) is

rk = C1

[

1+
√

1−4pq
2p

]k

+C2

[

1−√
1−4pq
2p

]k

+
c

c+w
. (2.4)

Applying the initial conditions,r0 = 1 andrH = 0, we have that the ruin probabilities (for
pq 6= 1

4) are given by

rk =
c

c+w
+

[

− c(2p)H +w(1−√
1−4pq)H

(c+w)[(1+
√

1−4pq)H − (1−√
1−4pq)H ]

]

·
[

1+
√

1−4pq
2p

]k
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+

[

1− c
c+w

+
c(2p)H +w(1−√

1−4pq)H

(c+w)[(1+
√

1−4pq)H − (1−√
1−4pq)H ]

]

·
[

1−√
1−4pq
2p

]k

. (2.5)

In the special case of catastrophes but no windfalls (w = 0), again assumingpq 6= 1
4, this

result reduces to

rk = 1−

[

1+
√

1−4pq
2p

]k

−
[

1−√
1−4pq
2p

]k

[

1+
√

1−4pq
2p

]H

−
[

1−√
1−4pq
2p

]H , for w = 0. (2.6)

We can use the Binomial Theorem to re-write thisw = 0 result without using radicals:

(

1+
√

x
)k

=
k

∑
i=0

(

k
i

)

(√
x
)i

(

1−
√

x
)k

=
k

∑
i=0

(−1)i
(

k
i

)

(√
x
)i

(

1+
√

x
)k−

(

1−
√

x
)k

= 2
k

∑
i=1
i odd

(

k
i

)

(√
x
)i

= 2
√

x
⌊ k−1

2 ⌋

∑
j=0

(

k
2 j +1

)

x j

where⌊y⌋ denotes the greatest integer≤ y. The resulting alternative form for the ruin prob-
abilities withw = 0 (and still assumingpq 6= 1/4) is

rk = 1−















(2p)H−k ·

⌊ k−1
2 ⌋

∑
j=0

(

k
2 j +1

)

(1−4pq) j

⌊H−1
2 ⌋

∑
j=0

(

H
2 j +1

)

(1−4pq) j















, for w = 0, pq 6= 1/4. (2.7)

In the special case of no catastrophes or windfalls (c = w = 0), for the moment still
assumingpq 6= 1

4, the result in (2.6) reduces even further. The roots of the characteristic
polynomial becomeqp and 1, and we obtain ruin probabilities

rk =

(

q
p

)H
−
(

q
p

)k

(

q
p

)H
−1

, for c = w = 0, pq 6= 1
4
. (2.8)

Finally, in the special case in whichp= q= 1
2, the characteristic polynomial has a double

root of 1. In this case, the general solution has the form

rk = C1 +C2k. (2.9)
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Figure 3. Infinite-time ruin probabilities withH = 16 for several sets ofp,
q, c, w values withp+q+c+w = 1

Applying the initial conditions, we obtain ruin probabilities

rk = 1− k
H

, for p = q =
1
2
. (2.10)

We have thus fully characterized the ruin probabilities in infinite time with constant-rate
catastrophes and windfalls.

In Figure 3, we illustrate infinite-time ruin probabilitieswith H = 16 for several sets of
p, q, c, w values withp+ q+ c+ w = 1. Note the effects of loss of symmetry as shown
in the uppermost and lowest curves, as well as the effects of introducing catastrophes and
windfalls in a symmetric manner as shown in the middle non-linear curve. We turn next to
ruin probabilities in finite time.

3. Finite-time ruin probabilities with catastrophes and windfalls

Let finite-step ruin probabilities be given by

r(n)
k = Prob(P is ruined in firstn steps| P is initially at statek).

In this section, we continue to assume thatp+q+c+w= 1.

Let

L(n)
k, j = number of paths from statek to statej in n steps,

where 1≤ j ≤H−1 and 1≤ k≤H−1 and the paths are restricted from hitting the absorbing
states at 0 andH. It is shown in Mohanty (1979) and Narayana (1979) that

L(n)
k, j =

H+1

∑
i=1

[(

n
n− j+k

2 − i(H +1)

)

−
(

n
n+ j+k−2

2 + i(H +1)+1

)]

(3.1a)
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and in Kriniket al. (2005) and Takacs (1969) that

L(n)
k, j =

2
H

H

∑
u=1

sin

(

uπ j
H

)

sin

(

uπk
H

)

[

2cos
(uπ

H

)]n
. (3.1b)

We use the convention that binomial coefficients
(a

b

)

are defined to be 0 ifb > a or b < 0 or
if neithera norb is integer-valued.

While it is not even obvious that (3.1b) is integer-valued, it does in fact count the number
of paths.

Let

P(n)
k, j = Prob(P is at statej at nth step| P is initially at statek).

Assuming 1≤ j ≤ H −1 and 1≤ k≤ H −1,

P(n)
k, j = L(n)

k, j p(n+ j−k)/2q(n− j+k)/2, (3.2)

where the exponents onp andq ensure thatn steps are taken in such a way that the net
change in position isj − k. That is,(n+ j − k)/2+(n− j + k)/2 = n and(n+ j − k)/2−
(n− j +k)/2= j −k. Substituting (3.1b) into (3.2),

P(n)
k, j =

2
H

p( j−k)/2q(k− j)/2
H

∑
u=1

sin

(

uπ j
H

)

sin

(

uπk
H

)

[

2
√

pqcos
(uπ

H

)]n
(3.3)

for 1≤ j ≤ H −1 and 1≤ k≤ H −1.

Now, for n > 0,

r(n)
k =

n−1

∑
i=0

P(i)
k,1 ·q+

n−1

∑
i=0

H−1

∑
j=1

P(i)
k, j ·c. (3.4)

This follows from the fact that in order to reach state 0, either a) after some number of
steps we reached state 1 and then took an immediate step down to state 0, or b) after some
number of steps we reached statej and then experienced a catastrophe taking us to state 0;
see Hunter (2005) for more details. Using (3.3) in (3.4) we obtain, for 1≤ k ≤ H −1, the
finite-time ruin probabilities

r(n)
k =

n−1

∑
i=0

2
H

p(i−k+1)/2q(i+k−1)/2
H

∑
u=1

sin
(uπ

H

)

sin

(

uπk
H

)

[

2cos
(uπ

H

)]i
·q

+
n−1

∑
i=0

H−1

∑
j=1

2
H

p(i+ j−k)/2q(i+k− j)/2
H

∑
u=1

sin

(

uπ j
H

)

sin

(

uπk
H

)

[

2cos
(uπ

H

)]i
·c (3.5)

For completeness we may also give the trivial resultsr(n)
0 = 1 andr(n)

H = 0.

In the limit asn→ ∞, the result in (3.5) should reduce to the result in (2.5). While this
appears difficult to prove analytically, in what follows we derive one form for (3.5) in the
limit as n → ∞. We assumepq 6= 1

4 (that is, pq< 1
4 sincep+ q+ c+ w= 1) as this was

assumed in (2.5).
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As a first step, we change the order of summations and rearrange factors in (3.5):

r(n)
k =

2
√

pq

H

(
√

q
p

)k

·
H

∑
u=1

sin
(uπ

H

)

sin

(

uπk
H

)n−1

∑
i=0

[

2
√

pqcos
(uπ

H

)]i

+
2c
H

(
√

q
p

)k

·
H−1

∑
j=1

(
√

p
q

)j H

∑
u=1

sin

(

uπ j
H

)

sin

(

uπk
H

)n−1

∑
i=0

[

2
√

pqcos
(uπ

H

)]i
(3.6)

Now, in the limit asn → ∞, the summation with respect toi is a convergent geometric
series since 2

√
pqcos

(

uπ
H

)

< 1 for pq 6= 1
4. Thus, we obtain a new form for the infinite-time

ruin probabilities for 1≤ k≤ H −1 with pq 6= 1
4:

rk = lim
n→∞

r(n)
k

=
2
√

pq

H

(
√

q
p

)k

·
H

∑
u=1

sin
(

uπ
H

)

sin
(

uπk
H

)

1−2
√

pqcos
(

uπ
H

) (3.7)

+
2c
H

(
√

q
p

)k

·
H−1

∑
j=1

(
√

p
q

) j H

∑
u=1

sin
(

uπ j
H

)

sin
(

uπk
H

)

1−2
√

pqcos
(

uπ
H

)

We have confirmed numerically that (3.7) is equivalent to (2.5).

In the example illustrated in Figure 4, we see that the finite-time ruin probabilities with
catastrophes and windfalls (equation (3.5)) converge to the infinite-time ruin probabilities
(equation (2.5)) as the number of steps,n, is increased. In the example we letp = 0.1,
q = 0.65,c = 0.13,w = 0.12 andH = 16. Figure 4 shows the computed finite and infinite-
time ruin probabilities for the above-mentioned parameters. The finite ruin probabilities
are shown for number of steps of 2,4,6,8,10 and 20. As the number of steps increases,
the finite-time ruin probabilities converge to the infinite-time ruin probabilities. Within the

resolution of the graph,r(20)
k andrk are indistinguishable.

4. Infinite-time Gambler’s ruin probabilities with variabl e win/loss/catastrophe
probabilities and no windfalls

Suppose now that the transition probabilities are state-dependent withpk, qk, ck, andwk

representing probabilities associated with statek. Suppose also that there are no windfalls
(wk = 0 for all k) so that for 1≤ k ≤ H −1, pk + qk + ck = 1. The corresponding Markov
chain diagram is shown in Figure 5.

As before, let infinite-time ruin probabilities be given by

rk = Prob(P is eventually ruined| P is initially at statek).

Also define “success” probabilities by

sk = Prob(P is eventually absorbed at stateH | P is initially at statek) = 1− rk.

The difference equations corresponding tork or sk no longer involve constant transition
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Figure 4. Finite and Infinite-time ruin probabilities

probabilities. Nevertheless, we will be able to find an expression forsk, andrk = 1−sk.

In what follows we will prove that, for 1≤ k≤ H,

sk =

[

1−
k−2

∑
i=1

piqi+1 +
k−4

∑
i=1

piqi+1

[

k−4

∑
j=i

p j+2q j+3

]

−
k−6

∑
i=1

piqi+1

[

k−6

∑
j=i

p j+2q j+3

[

k−6

∑
l= j

pl+4ql+5

]]

+ . . .

]

s1/

[

k−1

∏
i=1

pi

]

, (4.1)

with the convention that summations are set equal to zero if they have an upper limit of
summation that is less than the lower limit and products are set equal to one if they have an
upper limit that is less than the lower limit.

Multiplying equation (4.1) by∏k−1
i=1 pi ,

sk ·
k−1

∏
i=1

pi = s1 ·
[

1−
k−2

∑
i=1

piqi+1+
k−4

∑
i=1

piqi+1

[

k−4

∑
j=i

p j+2q j+3

]

−
k−6

∑
i=1

piqi+1

[

k−6

∑
j=i

p j+2q j+3

[

k−6

∑
l= j

pl+4ql+5

]]

+ . . .

]

.

Solving fors1,

s1 = sk ·
k−1

∏
i=1

pi +s1 ·
[

k−2

∑
i=1

piqi+1−
k−4

∑
i=1

piqi+1

[

k−4

∑
j=i

p j+2q j+3

]

+
k−6

∑
i=1

piqi+1

[

k−6

∑
j=i

p j+2q j+3

[

k−6

∑
l= j

pl+4ql+5

]]

− . . .

]

. (4.2)
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Figure 5. Transition state diagram of Gambler’s Ruin with variable win,
loss, and catastrophe probabilities and no windfalls

We will prove (4.1) by first proving (4.2). The quantitys1 on the left-hand side of (4.2) is the
probability of eventual success starting from state 1, where “success” consists of reaching
stateH. We will prove that the right hand side of (4.2) also gives theprobability of eventual
success starting from state 1.

Let k be fixed, with 1≤ k≤ H. The term

sk ·
k−1

∏
i=1

pi

gives the probability of eventual success from state 1 with only upward motion before reach-
ing statek. To see this, note that the product∏k−1

i=1 pi is the probability of “walking” directly
from state 1 to state 2, . . . , to statek by winning each of the firstk−1 rounds. The factorsk

then gives the probability of eventual success starting from statek.

The other terms on the right hand side of (4.2) give the probability of eventual success
from state 1 with one or more “up-and-down” motions before reaching statek. We are
defining “up-and-down from statei,” with 1 ≤ i ≤ k−2, as movement from statei directly
to statei + 1 and directly back to statei. That is, “up and down” is a win immediately
followed by a loss.

For 1≤ i ≤ k− 2, the probability that a randomly-chosen path is eventually successful
but involves movement from the first occurrence of statei directly to statei +1 and directly
back to statei is given bys1piqi+1, a type of product that appears in many places in (4.2).
To see this, we will look at several equivalent probabilities. Note that the following three
probabilities are equivalent:

(a) Prob(starting from state 1, playerP reaches statei for the first time by some means,
then does an “up-and-down,” and continues, eventually reaching stateH)

(b) Prob(starting from state 1, playerP reaches statei for the first time by some means
and from there reaches stateH by some means)· Prob(from the first occurrence of
statei, the next two steps are “up-and-down”)

(c) Prob(starting from state 1, playerP reachesH by some means)· Prob(when playerP
reaches statei for the first time, the next two steps are “up-and-down”)
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Note that (a), (b), and (c) are all equal tos1piqi+1 sinces1 is the probability of eventual
successful movement to stateH from initial state 1 andpiqi+1 is the probability that from
the first occurrence of statei the next two steps are “up-and-down.”

Now the sum multiplyings1 on the right-hand side of (4.2),

k−2

∑
i=1

piqi+1−
k−4

∑
i=1

piqi+1

[

k−4

∑
j=i

p j+2q j+3

]

+
k−6

∑
i=1

piqi+1

[

k−6

∑
j=i

p j+2q j+3

[

k−6

∑
l= j

pl+4ql+5

]]

− . . . ,

is simply an application of the Inclusion/Exclusion Principle giving the probability of even-
tual success from state 1 with some “up-and-down” motion before reaching statek, wherek
is fixed with 1≤ k≤ H. The first summation in this sum,

k−2

∑
i=1

piqi+1,

gives the sum of the probabilities that from statei, the next two steps are “up-and-down,” for
statesi from 1 tok−2. (If we let i reachk−1, the “up-and-down” would take us to statek
on its “up,” resulting in this “up-and-down” not being completed before the first occurrence
of statek.) However, for non-adjacent statesi, j, it is possible for a path to success to have
an “up-and-down” motion at the first occurrence of both statei and statej. The double
summation

k−4

∑
i=1

piqi+1

[

k−4

∑
j=i

p j+2q j+3

]

is subtracted, since it is the sum of probabilities of “up-and-down” motions at the first oc-
currences of two different (non-adjacent) states. The upper limit of summation has been
decreased tok−4 to allow “space” for both “up-and-downs” to occur at states≤ k−2. The
triple summation

k−6

∑
i=1

piqi+1

[

k−6

∑
j=i

p j+2q j+3

[

k−6

∑
l= j

pl+4ql+5

]]

then is added back, since it is the sum of probabilities of “up-and-downs” occurring at the
first occurrences of three different (pairwise non-adjacent) states. This Inclusion/Exclusion
is continued in order to compute correctly a quantity that, when multiplied bys1, gives
the probability of eventual success from state 1 with some “up-and-down” motions before
reaching statek for the first time. Adding the first term on the right hand side of (4.2), we
obtain the total probability of success from initial state 1, with or without “up-and-down”
motions before reaching statek for the first time, as given on the left-hand side of (4.2). This
completes the proof of (4.2), and thus also of (4.1).



210 B. Hunter, A.C. Krinik, C. Nguyen, J.M. Switkes & H.F. von Bremen

Now, settingk = H in (4.1) and recalling thatsH = 1,

sH =

[

1−
H−2

∑
i=1

piqi+1 +
H−4

∑
i=1

piqi+1

[

H−4

∑
j=i

p j+2q j+3

]

−
H−6

∑
i=1

piqi+1

[

H−6

∑
j=i

p j+2q j+3

[

H−6

∑
l= j

pl+4ql+5

]]

+ . . .

]

s1/

[

H−1

∏
i=1

pi

]

= 1.

This allows us to solve fors1, obtaining

s1 =

[

H−1

∏
i=1

pi

]

/

[

1−
H−2

∑
i=1

piqi+1 +
H−4

∑
i=1

piqi+1

[

H−4

∑
j=i

p j+2q j+3

]

−
H−6

∑
i=1

piqi+1

[

H−6

∑
j=i

p j+2q j+3

[

H−6

∑
l= j

pl+4ql+5

]]

+ . . .

]

.

Finally, this in turn implies by (4.1) that

sk =











1−
k−2
∑

i=1
piqi+1 +

k−4
∑

i=1
piqi+1

[

k−4
∑
j=i

p j+2q j+3

]

− . . .

1−
H−2
∑

i=1
piqi+1 +

H−4
∑

i=1
piqi+1

[

H−4
∑
j=i

p j+2q j+3

]

− . . .











·
H−1

∏
i=k

pi .

The ruin probabilities, for 1≤ k≤ H, are therefore given by

rk = 1−











1−
k−2
∑

i=1
piqi+1 +

k−4
∑

i=1
piqi+1

[

k−4
∑
j=i

p j+2q j+3

]

− . . .

1−
H−2
∑

i=1
piqi+1 +

H−4
∑

i=1
piqi+1

[

H−4
∑
j=i

p j+2q j+3

]

− . . .











·
H−1

∏
i=k

pi .

We turn next to questions of duration of play.

5. Duration of play in Gambler’s ruin with variable catastro phe and windfall
probabilities

Let Rk be a random variable denoting the trial on which a player is ruined assuming the
player starts at statek. Then

P[Rk = n] = qP(n−1)
k,1 +

H−1

∑
j=1

cP(n−1)
k, j for n = 1, 2, 3, . . ..

If we assume now that the catastrophe and windfall probabilities are variable, withp+q+
ci +wi = 1, for i = 1, 2, . . . ,H −1, as shown in Figure 6, then

P[Rk = n] = qP(n−1)
k,1 +

H−1

∑
j=1

c jP
(n−1)
k, j for n = 1, 2, 3, . . .. (5.1)
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q+c1

0 1 j… … HH-1

q q q q

p p p p

1
1

w1 wj-1 wj wH-2

p+wH-1

c2 cj cj+1 cH-1

Figure 6. Transition state diagram of Gambler’s Ruin with constant win and
loss probabilities and variable catastrophe and windfall probabilities

and ifSk is the random variable representing the time when one reachesH assumingk is the
starting point, then

P[Sk = n] = pP(n−1)
k,H−1 +

H−1

∑
j=1

wj P
(n−1)
k, j . (5.2)

SupposeDk represents the duration time of the gambling. That is,Dk is the trial when the
gambling terminates assuming we began at state k. Then

P[Dk = n] = P[Rk = n]+P[Sk = n] . (5.3)

Now

rk =
∞

∑
n=1

P[Rk = n] = q
∞

∑
n=1

P(n−1)
k,1 +

H−1

∑
j=1

c j

∞

∑
n=1

P(n−1)
k, j .

Proceeding as in the derivation of (3.7), this time with variable catastrophe probabilities,

rk =
2
√

pq

H

(√

q
p

)k

·
H

∑
u=1

sin
(

uπ
H

)

sin
(

uπk
H

)

1−2
√

pqcos
(

uπ
H

)

+
2
H

(
√

q
p

)k

·
H−1

∑
j=1

c j

(
√

p
q

) j H

∑
u=1

sin
(

uπ j
H

)

sin
(

uπk
H

)

1−2
√

pqcos
(

uπ
H

)

.
(5.4)
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Note that (5.4) still applies ifp = q = 1/2.

Similarly,

sk =
∞

∑
n=1

P[Sk = n]

= p
∞

∑
n=1

P(n−1)
k,H−1 +

H−1

∑
j=1

wj

∞

∑
n=1

P(n−1)
k, j .

After a derivation similar to that used in obtaining (3.7), we find

sk =
2
√

pq

H

(
√

q
p

)k

·
(
√

p
q

)H

·
H

∑
u=1

sin
(

uπ(H−1)
H

)

sin
(

uπk
H

)

1−2
√

pqcos
(

uπ
H

)

+
2
H

(
√

q
p

)k

·
H−1

∑
j=1

wj

(
√

p
q

) j H

∑
u=1

sin
(

uπ j
H

)

sin
(

uπk
H

)

1−2
√

pqcos
(

uπ
H

) . (5.5)

Note that if p+ q+ ci + wi = 1 for i = 1, 2, . . . ,H −1, then 1− rk = sk. However, equa-
tions (5.1), (5.2), (5.3), (5.4), (5.5) still hold in Figure6 whenp+q+ci +wi < 1 for i = 1,
2, . . . , H − 1. We note again that whenci = c andwi = w for i = 1, 2, . . . ,H − 1, and
p+q+c+w= 1, equation (5.4) provides an alternative expression forrk found (in Section
2) by the difference equation approach leading to equation (2.5).

An interesting question concerns the expected time of ruin assuming a gambler is going
to be ruined eventually. This conditional expectation may be computed as follows:

E [Rk|eventual ruin] =
∞

∑
n=1

nP[Rk = n|eventual ruin]

=
∞

∑
n=1

n
P[Rk = n]

rk

=
1
rk

∞

∑
n=1

n

[

qP(n−1)
k,1 +

H−1

∑
j=1

c jP
(n−1)
k, j

]

where we have used equation (5.1). Continuing in a manner similar to that used in the
derivation of equations (3.7) and (5.4),

E [Rk|eventual ruin] =
2
√

pq

H

(
√

q
p

)k

· 1
rk

·
H

∑
u=1

sin
(uπ

H

)

sin

(

uπk
H

)

·
∞

∑
n=1

n
[

2
√

pqcos
(uπ

H

)]n−1

+
2
H

(
√

q
p

)k

· 1
rk

·
H−1

∑
j=1

c j

(
√

p
q

) j H

∑
u=1

sin

(

uπ j
H

)

sin

(

uπk
H

)

·
∞

∑
n=1

n
[

2
√

pqcos
(uπ

H

)]n−1
.
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But 1
1−x =

∞
∑

n=1
xn implies 1

(1−x)2 =
∞
∑

n=1
nxn−1 for |x| < 1. Thus,

E [Rk|eventual ruin]

=
2
√

pq

H

(
√

q
p

)k

· 1
rk

·
H

∑
u=1

sin
(

uπ
H

)

sin
(

uπk
H

)

(

1−2
√

pqcos
(

uπ
H

))2

+
2
H

(
√

q
p

)k

· 1
rk

·
H−1

∑
j=1

c j

(
√

p
q

) j H

∑
u=1

sin
(

uπ j
H

)

sin
(

uπk
H

)

(

1−2
√

pqcos
(

uπ
H

))2 . (5.6)

A similar formula may be derived forE[Sk|eventual success] and conditional variances
may also be computed. The average durationE[Dk] may now be calculated as

E[Dk] =
∞

∑
n=1

nP[Dk = n]

=
∞

∑
n=1

n(P[Rk = n]+P[Sk = n])

=
∞

∑
n=1

n

(

qP(n−1)
k,1 +

H−1

∑
j=1

c jP
(n−1)
k, j

)

+
∞

∑
n=1

n

(

pP(n−1)
k,H−1 +

H−1

∑
j=1

wj P
(n−1)
k, j

)

where we have used equation (5.3). After a derivation similar to that used to obtain (5.6),
we find that

E [Dk] =
2
√

pq

H

(
√

q
p

)k

·
H

∑
u=1

sin
(

uπ
H

)

sin
(

uπk
H

)

(

1−2
√

pqcos
(

uπ
H

))2

+
2
√

pq

H

(
√

q
p

)k

·
(
√

p
q

)H

·
H

∑
u=1

sin
(

uπ(H−1)
H

)

sin
(

uπk
H

)

(

1−2
√

pqcos
(

uπ
H

))2

+
2
H

(
√

q
p

)k

·
H−1

∑
j=1

(c j +wj) ·
(
√

p
q

) j

·
H

∑
u=1

sin
(

uπ j
H

)

sin
(

uπk
H

)

(

1−2
√

pqcos
(

uπ
H

))2 . (5.7)

The preceding calculation assumes thatp+q+ci +wi = 1 for i = 1, 2, . . . ,H−1. In this
case,c j +wj in equation (5.7) may be replaced by(1− p−q). This makes sense as, for the
sake of computing the expected duration of the game, the states 0 andH may be combined
into a single state.

Note that ifp+q+ci +wi < 1 for somei then the conditional expected duration of play
assuming play comes to an end isE[Dk]

rk+sk
given by equations (5.4), (5.5), and (5.7).

In Table 1, we illustrate the expected duration of play withH = 16 for various pairs ofp,
q values, assuming again thatp+q+ci +wi = 1 for i = 1, 2, . . . , 15. For specific values of
p andq, the expected duration time does not depend on the individual values ofci andwi .
However, the expected duration is sensitive to changes in the combined probability ofp+q.
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Table 1. Expected duration of playDk with H = 16 for several pairs ofp, q values
with p+q+ci +wi = 1 for i = 1, 2, . . . , 15. For fixedp andq, the expected duration
time does not depend on the individual values ofci andwi

k p=0.5, q=0.5 p=0.45, q=0.45 p=0.3, q=0.6 p=0.2, q=0.4 

0 0 0 0 0 

1 15 3.73 2.152 1.4039 

2 28 6.06 3.842 2.0194 

3 39 7.52 5.167 2.2893 

4 48 8.42 6.207 2.4076 

5 55 8.97 7.024 2.4595 

6 60 9.30 7.664 2.4822 

7 63 9.47 8.165 2.4922 

8 64 9.52 8.556 2.4966 

9 63 9.47 8.857 2.4984 

10 60 9.30 9.079 2.4991 

11 55 8.97 9.214 2.4984 

12 48 8.42 9.222 2.4941 

13 39 7.52 8.980 2.4736 

14 28 6.06 8.156 2.3798 

15 15 3.73 5.894 1.9519 

16 0 0 0 0 

6. Infinite-time ruin probabilities with all probabilities variable

Assume now that all probabilities are state-dependent as inFigure 7, withpi +qi +ci +
wi = 1, for i = 1, 2, . . . ,H −1. The system of difference equations in (2.1) now looks like

r0 = 1
r1 = c1 +q1r0 + p1r2

r2 = c2 +q2r1 + p2r3
...

rk = ck +qkrk−1 + pkrk+1 (6.1)
...

rH−1 = cH−1 +qH−1rH−2 + pH−1rH

rH = 0.

Sincec1 andq1 are both probabilities from state 1 to state 0, we will without loss of gener-
ality setq1 = 0. That is, in what follows one may replacec1 with c1 + q1 if one wishes to
exhibit explicitly both these probabilities. Solving forrk, k = 2, 3, . . . ,H−1, in terms ofr1,
the first few results are

r2 =
1
p1

[r1−c1]

r3 =
1

p1p2
[(1− p1q2) r1− (c1 + p1c2)]
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q1+c1

0 1 j… … HH-1

q2

p1

1
1

w1 wj-1 wj wH-2

pH-1+wH-1

c2 cj cj+1 cH-1

pj-1 pj

qj qj+1 qH-1

pH-2

Figure 7. Transition state diagram of Gambler’s Ruin with all probabilities state-dependent

r4 =
1

p1p2p3
[(1− p1q2− p2q3) r1− [(1− p2q3)c1 + p1c2 + p1p2c3]]

r5 =
1

p1p2p3p4
[(1− p1q2− p2q3− p3q4 + p1q2p3q4) r1

− [(1− p2q3− p3q4)c1 +(1− p3q4) p1c2 + p1p2c3 + p1p2p3c4]] .

In order to describe the emerging pattern more compactly, weintroduce new notation. Given
the sequences{pn} and{qn} describing the state-dependent win and loss probabilities, de-
fine Tk( j) as follows:

T1(1) = 1

T2(1) = 1

T3(1) = 1− p1q2

T4(1) = 1− p1q2− p2q3

T5(1) = 1− p1q2− p2q3− p3q4 + p1q2p3q4.

...

In general,

Tk+2(1) = Tk+1(1)− pkqk+1Tk(1). (6.2)
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The argumentj of Tk( j) will describe the starting subscript in the win probabilities appear-
ing in Tk( j), k > 2. That is, fork = 3,

T3(1) = 1− p1q2

T3(2) = 1− p2q3

T3(3) = 1− p3q4

...

T3( j) = 1− p jq j+1.

The recursion relation (6.2) becomes

Tk+2( j) = Tk+1( j)− pk+ j−1qk+ jTk( j).

with

T1( j) = T2( j) = 1, for all j > 0.

With this notation,

rk =
1

p1p2 · · · pk−1

[

Tk(1)r1−
k−1

∑
i=1

Ti(k− i +1)p0p1p2 · · · pk−(i+1)ck−i

]

(6.3)

follows inductively where we definep0 = 1 for notational convenience.

From (6.1), usingrH = 0,

rH−1 = cH−1 +qH−1rH−2. (6.4)

Using (6.3) to substitute into (6.4) forrH−1 andrH−2, and solving forr1, we obtain

r1 =

[

H−2
∑

i=1
Ti(H − i)p0p1 · · · pH−i−2cH−i−1

]

+ p1p2 · · · pH−2cH−1

TH−1(1)− pH−2qH−1TH−2(1)

−

[

qH−1pH−2

H−3
∑

i=1
Ti(H − i −1)p0p1 · · · pH−i−3cH−i−2

]

TH−1(1)− pH−2qH−1TH−2(1)
(6.5)

=

H−3
∑

i=1
[Ti+1(H − i −1)− pH−2qH−1Ti(H − i −1)] · [p0p1 · · · pH−i−3cH−i−2]

TH(1)

+
p1p2 · · · pH−3 [pH−2cH−1 +cH−2]

TH(1)
(6.6)

where we again recall that for notational convenience we have combined the effects ofc1

andq1 by assumingq1 = 0; c1 can be replaced byc1 + q1 in order to keep the two effects
separate. Substituting this formula into (6.3) gives an expression forrk, k = 1, 2, . . . ,H−1.
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0 1 j… … HH-1
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1
1

w w w w

p+w

c c c c

p p

q q q

p

rrr

Figure 8. Transition state diagram of Gambler’s Ruin with constant catastrophe,
windfall, and return probabilities.

For completeness, as in Section 4, the following explicit expression forTa(b), a,b = 1,
2, 3, . . . , is given:

Ta(b) = 1−
a+b−3

∑
i=b

piqi+1+
a+b−5

∑
i=b

piqi+1

(

a+b−5

∑
j=i

p j+2q j+3

)

−
a+b−7

∑
i=b

piqi+1

(

a+b−7

∑
j=i

p j+2q j+3

[

a+b−7

∑
k= j

pk+4qk+5

])

+ . . .

with the convention that summations are set equal to zero when the upper limit of the sum-
mation is less than the lower limit.

7. Related problems and future work

A natural follow-up question is: how would the preceding ruin probabilities change if
the transition diagram included return probabilities? Thesimplest example of this may be
seen by altering the model described in Figure 2 into the model shown in Figure 8, where
p+q+ r +c+w= 1. The reader is welcome to verify that the difference equation approach
that led to equation (2.2) in Section 2 still applies. This time the roots of the characteristic
polynomial and the coefficients have changed but the particular solution remains the same
as before.

More generally, the recursive algorithm method developed within Section 6 still produces
expressions for the ruin probabilities when applied to the transition diagram in Figure 9,
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q1+c1

0 1 j… … HH-1

q2

p1

1
1

w1 wj-1 wj wH-2

pH-1+wH-1

c2 cj cj+1 cH-1

pj-1 pj

qj qj+1 qH-1

pH-2

rH-1rjr1

Figure 9. Transition state diagram of Gambler’s Ruin with state-dependent win, loss,
catastrophe, windfall and return probabilities.

wherepi +qi + r i +ci +wi = 1 for i = 1, 2, . . .H −1 with equation (6.2) replaced by

Tk+2(1) = (1− rk+1)Tk+1(1)− pkqk+1Tk(1). (7.1)

The remaining details are left to the reader.

Including constant return probabilities in the finite-timemodels of Sections 3 and 5 would
require a lattice path combinatoric analysis which we do notexplore here.

The finite-time ruin probability of equation (5.4) suggeststhat the chance of being ruined
by a catastrophe may be analyzed separately. More specifically, rk is seen to be the sum of
two terms. The first term represents the probability that ruin occurs by means of a classical
ruin path,i.e., a path having 1 up or 1 down transitions only. The second termis the prob-
ability that ruin will occur by way of a catastrophe. Questions concerning the size of the
contributions of these terms or conditional probabilities(or expectations) of catastrophes
assuming eventual ruin may now be studied further.

Our expressions from Section 5 concerning the expected timeto ruin or the expected
duration of play may next be analyzed whenp and q are variable (or state dependent).
Lattice path combinatoric arguments will be needed to develop results in this direction.

Finally, we note that the recursive approach to find infinite-time ruin probabilities pre-
sented in Sections 4 and 6 generalizes to other transition diagrams. For example, an expres-
sion for the (infinite-time) ruin probability of a system having 1 step up or 2 steps down
transitions has been derived and will appear elsewhere.
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8. Conclusion

The main results in this article consist of recursive approaches to compute ruin probabil-
ities in a variety of Gambler’s Ruin problems which have beengeneralized to include catas-
trophe and windfall probabilities as well as the traditional win and loss probabilities. Ruin
probabilities of these systems, in both infinite-time and finite-time, have been obtained using
different methods of solution including difference equations, lattice path combinatorics and
pattern recognition. Numerical examples illustrating these ruin probabilities are presented.
Solutions to questions concerning the expected duration ofplay and the expected time to
ruin (conditioned upon the assumption that ruin will occur)have been developed along the
way. Some of the recursive methods are robust and provide ruin probability solutions for
even more generalized types of transition diagrams.
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