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Abstract

We compute ruin probabilities, in both infinite-time and téatime, for a Gambler’s Ruin prob-
lem with both catastrophes and windfalls in addition to thstomary win/loss probabilities. For
constant transition probabilities, the infinite-time rpirobabilities are derived using difference equa-
tions. Finite-time ruin probabilities of a system havingnstant win/loss probabilities and vari-
able catastrophe/windfall probabilities are determineuhg lattice path combinatorics. Formulae
for expected time till ruin and the expected duration of ghmgbare also developed. The ruin
probabilities (in infinite-time) for a system having vari@hvin/loss/catastrophe probabilities but no
windfall probability are found. Finally, the infinite-timmiin probabilities of a system with variable
win/loss/catastrophe/windfall probabilities are detiere.

AMS Subject Classificatio®0J10

Key-words Gambler’s Ruin, Catastrophe, Birth-Death Process.

1. Introduction

The Gambler’s Ruin problem is over 350 years old and has aeed back to letters be-
tween Blaise Pascal and Pierre Fermat; see, for examplearidd{1983). In the traditional
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Gambler's Ruin problem, with two playe®andQ having a total oH dollars between
them, playelP starts withj-dollars, 1< j <H — 1, and makes a series of independent one
dollar bets each having probabilipyof winning a dollar and probabilitg of losing a dollar.
PlayerP’s fortune at any point in time may be visualized as a statd@Nlarkov chain
diagram in Figure 1.

P p P p P 1
q q q q q
Figure 1. The state diagram of the traditional Gambler’s Ruin problem

The game ends when playErloses all of his money or when he reaches his goal of
winning H dollars. The objective is to determif®s ruin probability, that is, the chance
of reaching state 0 assuming playebegins withj-dollars. The most well-known version
of this problem allows play to continue indefinitely untilagker P reaches state 0 di.

A related problem asks for the ruin probabilities allowingyo at most, a specified, finite
number of bets. Solutions to both versions of the gambleirsproblem date back at least to
the late 1600’s. In addition to Pascal and Fermat, solutimre obtained by C. Huygens, J.
Bernoulli, A. de Moivre, P. de Montmort and N. Bernoulli; sé& example, Edwards (1983)
and Takacs (1969). Nicely presented discussions of Gaisliein problems may also be
found in the books by Ash (1970), Feller (1968), and HoeltPamnd Stone (1987). An

interesting article by Harper and Ross (2005) reports s@oent extensions of gambler’s
ruin probabilities to different state transition diagrams

In this article, some natural generalizations of classtgambler’s Ruin problems are
considered. In Sections 2 and 3, the problem of determining probabilities is solved
when constant catastrophe/windfall probabilities oceuaddition to the customary, con-
stant win/loss probabilities. In Section 2, the infinitewd, ruin probability problem for
the chain of Figure 2 is solved using difference equationsenth Section 3, lattice path
combinatorics is utilized to obtain ruin probabilities wieser a specific, finite number
of transitions is allowed in Figure 2. Comparisons betweritefitime and infinite-time
ruin probabilities are graphed. By taking the limit of thdiséte-time ruin probabilities, a
trigonometric expression for the infinite-time ruin probiiles is obtained. It is interesting
to contrast these apparently dissimilar (yet equivalemtinfilae for the infinite-time ruin
probabilities obtained by the different methods describeSlections 2 and 3.

In Section 4, ruin probabilities (in infinite-time) of a sgst having variable win/loss/
catastrophe probabilities but no windfall probabilities found. In Section 5, the distri-
bution functions of the time at which ruin occurs, when stdtés reached or when play
terminates, presuming that gambling began from statee presented. Formulae for the
expected time of ruin conditioned upon ruin occurring anel ¢éxpected duration of play
are derived and tabulated. In Section 6, the infinite-timia probabilities of a system
having variable win/loss/catastrophe/windfall probiieis are determined. The recursive
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Figure 2. Transition state diagram of Gambler’'s Ruin with constamastophe
and windfall probabilities

approaches in Sections 4 and 6 generalize the known ruirapilitl formula in Hoel, Port,
and Stone (1987) for general birth-death chains. If theesystdescribed in Sections 2, 4
and 6 are changed to include return transition probalsl{fi@ops), then the same recursive
methods, suitably modified, still produce formulae for catig ruin probabilities. This
result and some related problems and directions for fudtuely are mentioned in Section 7.

2. Infinite-time Gambler’s ruin probabilities with catastr ophes and windfalls

Suppose that in each round of a Gambler's Ruin game playeins with probability
p, loses with probabilityg, experiences a catastrophe taking him or her to state 0 with
probability c, and gains a windfall taking him or her to statewith probabilityw, where
p+g+c+w=1, as shown in the Markov chain state diagram in Figure 2.

Let infinite-time ruin probabilities be given by
rx = Prob is eventually ruined P is initially at statek).

Suppose that playd? currently hask dollars, where K k < H — 1. Conditioning on the
next round of play, with probabilitg playerP will go directly to state 0 and be ruined; with
probability q playerP will go to statek — 1, from which he or she has probability ; of
eventual ruin; with probabilityp playerP will go to statek+ 1, from which he or she has
probabilityry, 1 of eventual ruin; and with probability playerP will go directly to stateH,
from which he or she has no chance of being ruined.
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Thus, for 1< k< H -1,
gk = Cro+Qrk—1+ Pris1+Wry

= C+Qrk—1+ Pret1,
where we have used the fact thigt= 1 (since the player is already ruined in this case) and
ry = 0 (since upon reaching stdtethe player stops playing the game). That is,

=1

ri c+qQro+ prz

[ = C+Qri+prs

Nk = C+Qr—1+ Prest (2.1)

’H-1 = C+QrH—2-+ Pry
rH = 0.

This is a set of linear constant-coefficient difference ¢igna with “boundary values”
ro =1 andry = 0. In other words, we are looking for the solution of

Prkt1 —re+Qrg-1= —C (2.2)

subject to the “boundary valuesg = 1 andry = 0. The general solution of (2.2) may be
found as a sum of the general solution of the associated heneayis equation

Prep1—re+are-1 =0 (2.3)

and a particular solution of the non-homogeneous equazi@),(see Goldberg (1986) and
Marcus (1998).
To find a particular solution of (2.2), we will assume= A whereA is a constant. Then
substituting into (2.2),
pA—-A+gA=—C
and we obtaimy, = =, for all k.
For the homogeneous equation (2.3), the characteristimpotial is px2 — x+ . The

roots of the characteristic polynomial afe+ /1—4pq)/(2p). Thus, forpg+# 1/4, the
general solution of the non-homogeneous equation (2.2) is

k k
fc=C [1+7 V21p_4pq] +C2{1_ Vzlp_4pq} +C£W. (2.4)

Applying the initial conditionstg = 1 andry = 0, we have that the ruin probabilities (for
pg# 1) are given by

Mk

c c2p)t +w(1— /I—4pg" 1+/I—4pq*
“orw [_(c+w)[(1+s/1—4p H_(1-,1-4p H]} [ 2p }
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1 C c(2p)H +w(1-/I—4pg" 1—/1—4pq
+{_c+w+(c+w)[(1+mH—(l—mH]]'[ 2p

In the special case of catastrophes but no windfalls-(0), again assumingq # %, this
result reduces to

r. (2.5)

[1+\/1—74pqr_ [PW]"
re=1-— 2p 2p forw

me]“_ F—mr’
2p 2p

We can use the Binomial Theorem to re-write this- O result without using radicals:

R = 3 () R

0. (2.6)

- = 5 0 () R

I
N

@@~ a-vi* = 23 (K (v

N
= 2X . X/
VX JZO <21+1>

where|y| denotes the greatest integer. The resulting alternative form for the ruin prob-
abilities withw = 0 (and still assumingq# 1/4) is

155

£ (st )

H-1
5%

JZ)J (517 a) 0 200

In the special case of no catastrophes or windfalls-w = 0), for the moment still
assumingpq # %, the result in (2.6) reduces even further. The roots of tteatteristic
polynomial becom% and 1, and we obtain ruin probabilities

ne=1—[(2p)t*. , forw=0, pq#1/4. (2.7)

H k
a)y _(a
_ (P) (p) for C—w—0 1 58
rg = o F , or c=w= ,pq7é4. (2.8)
() -1
Finally, in the special case in whigh=q= % the characteristic polynomial has a double

root of 1. In this case, the general solution has the form

re = C1 +Cok. (2.9)
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—0—p=0.4, g=0.6

—0—p=0.5, g=0.5

Ik
—A—p=0.45, q=0.45,
w=0.1

——p=0.4, 4=0.4,
¢=0.1, w=0.1

A A A A A

1234567 8 9 1011213141516

Figure 3. Infinite-time ruin probabilities wittH = 16 for several sets df,
g, ¢, wvalues withp+q+c+w=1

Applying the initial conditions, we obtain ruin probabidis
k 1
=1-— f =q==. 2.10
Mk i orp=a=5 (2.10)

We have thus fully characterized the ruin probabilitiesrifinite time with constant-rate
catastrophes and windfalls.

In Figure 3, we illustrate infinite-time ruin probabiliti@gth H = 16 for several sets of
p, g, ¢, w values withp+ g+ c+w = 1. Note the effects of loss of symmetry as shown
in the uppermost and lowest curves, as well as the effectstifducing catastrophes and
windfalls in a symmetric manner as shown in the middle naedr curve. We turn next to
ruin probabilities in finite time.

3. Finite-time ruin probabilities with catastrophes and windfalls

Let finite-step ruin probabilities be given by

rﬁn) = Prob@ is ruined in firstn stepg P is initially at statek).

In this section, we continue to assume thatq+c+w= 1.
Let

L‘((nj) = number of paths from stateto statej in n steps

where 1< j <H —1and 1< k < H —1 and the paths are restricted from hitting the absorbing
states at 0 anHl. It is shown in Mohanty (1979) and Narayana (1979) that

Lﬁ’n‘?_EK %“—?(HH) )_< %“Mn(HH)Hﬂ (3-12)
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and in Krinik et al. (2005) and Takacs (1969) that

Lﬁnj) = % % sin <%) sin<%k) {Zcos(%[)} " (3.1b)

We use the convention that binomial coeﬁicie(ﬁ}:are definedtobe Ol >aorb<0or
if neithera norb is integer-valued.

While it is not even obvious that (3.1b) is integer-valué¢dges in fact count the number
of paths.

Let
Plﬁf}) = Prob@ is at statej atnth step| P is initially at statek).
Assuming I< j<H-land I<k<H -1,
Pé”) _ l((j>p k) 2g(n-j+k)/2 (3.2)

where the exponents gmandq ensure thah steps are taken in such a way that the net
change in position i$ — k. Thatis,(n+ j—k)/24+ (n—j+k)/2=nand(n+ j—k)/2—
(n—j+k)/2=j—k. Substituting (3.1b) into (3.2),

! .
M _ 2 (0/2g0 )2 T o (“"J) ( ) "
PV = Zp q sin( —= | sin 2,/pqcos (3.3)
= 215 on{ 1)) o 2

forl<j<H-land1<k<H-1.
Now, forn > 0,

n-1H- 1 .
rk —ijkl q+Z;J 2 " (3.4)

This follows from the fact that in order to reach state 0, eith) after some number of
steps we reached state 1 and then took an immediate step dataté O, or b) after some
number of steps we reached stat@nd then experienced a catastrophe taking us to state O;
see Hunter (2005) for more details. Using (3.3) in (3.4) wiaanh for 1< k <H — 1, the
finite-time ruin probabilities

B Z) = —k+1)/2g(i+k-1)/2 % sin(%) sin (%k) [zcos(%ﬂi -q

u=1
n—1H- 1

o3, 3 e g sl sl oo )] ¢ e

For completeness we may also give the trivial resuéﬂ)s: 1 andrﬁln> =0.

In the limit asn — oo, the result in (3.5) should reduce to the result in (2.5). M/this
appears difficult to prove analytically, in what follows wertve one form for (3.5) in the
limit asn — . We assumepq # 5 (that is, pg < 3 sincep+q-+ c+w= 1) as this was
assumed in (2.5).
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As a first step, we change the order of summations and reafangprs in (3.5):

0 = 2P )5 an(San (1) S v mocos()]

1

FET ) Eol ) ) et oo

Now, in the limit asn — o, the summation with respect tas a convergent geometric
series sinceg/pqcos(%) < 1forpg# %1. Thus, we obtain a new form for the infinite-time
ruin probabilities for 1< k <H — 1 with pg# %:

n

e = Ml;rk
_2ypa/ @\ & sin(ff)sin(F)
B T(\/%) uzll 2,/pocos( ) 3.7)

2¢ [ [q\K A=t i H sm( )sm (UK
- H <\/;) ;1 <\/;> u; 1- 2\/_‘1005(%)
We have confirmed numerically that (3.7) is equivalent t&).2.

In the example illustrated in Figure 4, we see that the fitiites ruin probabilities with
catastrophes and windfalls (equation (3.5)) convergeedrtfinite-time ruin probabilities
(equation (2.5)) as the number of steps,s increased. In the example we let= 0.1,
q=0.65,c=0.13,w=0.12 andH = 16. Figure 4 shows the computed finite and infinite-
time ruin probabilities for the above-mentioned parangeterhe finite ruin probabilities
are shown for number of steps 0f£6,8,10 and 20. As the number of steps increases,
the finite-time ruin probabilities converge to the infinftee ruin probabilities. Within the

resolution of the graph‘(fo) andry are indistinguishable.

4. Infinite-time Gambler’'s ruin probabilities with variabl e win/loss/catastrophe
probabilities and no windfalls

Suppose now that the transition probabilities are stapeeéent withpy, gk, Ck, andwy
representing probabilities associated with stat&uppose also that there are no windfalls
(W = O for all k) so that for 1< k <H — 1, px + gk + ¢k = 1. The corresponding Markov
chain diagram is shown in Figure 5.

As before, let infinite-time ruin probabilities be given by
rx = Prob@ is eventually ruined P is initially at statek).
Also define “success” probabilities by
s« = Prob@ is eventually absorbed at stadte| P is initially at statek) = 1 —ry.

The difference equations correspondingroor ¢ no longer involve constant transition
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Figure 4. Finite and Infinite-time ruin probabilities

probabilities. Nevertheless, we will be able to find an egpien fors,, andry = 1 — 5.
In what follows we will prove that, for K k <H,

k-2 - k-4
1-% pidici+ ) Pidic Pj+20j+3
i; idi+ i; idi+ J; j+20j+

SK:

+...

k-6 k-6 k-6 k-1
- Zl Pidi+1| Y Pj+2Gj43| > Pialies s1/ rl pil, (4.1)
i= = I=] i=

with the convention that summations are set equal to zeroelf have an upper limit of
summation that is less than the lower limit and products eregual to one if they have an
upper limit that is less than the lower limit.

Multiplying equation (4.1) by pi,

k—1

k—2 k—4 k—4
S«-B D= S [1—; piQi+1+i; piQi+lLZ| Pj+20j+3

k—6

k-6 k-6
- Zi PiCi+1 [Z Pj+20j+3 [Z PI4401+5
i= J=l =]

+..

Solving fors,

k-2 k—4 k—4

i; PiGi+1— i; PiGi+1 LZI Dj+2qj'+3]
k=6 k=6 k=6

+ Zl PiCi+1 lz Pj+20j+3 lz D|+4Q|+5H —] : (4.2)
i= J=i =]

k-1
s = s []pi+se
e
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Figure 5. Transition state diagram of Gambler’s Ruin with variabl@wi
loss, and catastrophe probabilities and no windfalls

We will prove (4.1) by first proving (4.2). The quanti#yon the left-hand side of (4.2) is the
probability of eventual success starting from state 1, @lisuccess” consists of reaching
stateH. We will prove that the right hand side of (4.2) also givesphabability of eventual
success starting from state 1.

Letk be fixed, with 1< k < H. The term

k—1
- i|:| pi

gives the probability of eventual success from state 1 witly opward motion before reach-
ing statek. To see this, note that the prodtp?[;:f;ll pi is the probability of “walking” directly
from state 1 to state 2, ..., to st&béy winning each of the firdt — 1 rounds. The factosi
then gives the probability of eventual success startingnfstatek.

The other terms on the right hand side of (4.2) give the priibabf eventual success
from state 1 with one or more “up-and-down” motions beforacteng statek. We are
defining “up-and-down from stai¢ with 1 <i < k— 2, as movement from statalirectly
to statei + 1 and directly back to state That is, “up and down” is a win immediately
followed by a loss.

For 1<i < k-2, the probability that a randomly-chosen path is evenguaiccessful
but involves movement from the first occurrence of statieectly to state + 1 and directly
back to state is given bys; pigi. 1, a type of product that appears in many places in (4.2).
To see this, we will look at several equivalent probab#iti®ote that the following three
probabilities are equivalent:

(a) Prob(starting from state 1, playrreaches statefor the first time by some means,
then does an “up-and-down,” and continues, eventuallyhiegcstateH)

(b) Prob(starting from state 1, playBrreaches statefor the first time by some means
and from there reaches stdteby some meansProb(from the first occurrence of
statei, the next two steps are “up-and-down”)

(c) Prob(starting from state 1, playreachesd by some meanspProb(when playeP
reaches statiefor the first time, the next two steps are “up-and-down”)
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Note that (a), (b), and (c) are all equal¥mp;g;;1 sinces; is the probability of eventual
successful movement to stdtefrom initial state 1 andq;1 is the probability that from
the first occurrence of statéhe next two steps are “up-and-down.”

Now the sum multiplyings; on the right-hand side of (4.2),
k—2 k—4 k—4
Pidi+1— ) Pidi+1 Pj+20j+3
i; idi+ i; idi+ JZI j+24j+
k-6 k-6 k-6
+ leiqwl lz Pj+2Qj+3 lz IO|+4Q|+5H —
i= J=1 =]

is simply an application of the Inclusion/Exclusion Priplei giving the probability of even-
tual success from state 1 with some “up-and-down” motiooteefeaching state wherek
is fixed with 1< k < H. The first summation in this sum,

k-2
PiGi+1,
i; 141+

gives the sum of the probabilities that from statihe next two steps are “up-and-down,” for
states from 1 tok— 2. (If we leti reachk — 1, the “up-and-down” would take us to stdte
on its “up,” resulting in this “up-and-down” not being corepgd before the first occurrence
of statek.) However, for non-adjacent statieg, it is possible for a path to success to have
an “up-and-down” motion at the first occurrence of both stad@d statej. The double
summation

k-4 k-a
i; Pii+1 JZ. Pj420j+3

is subtracted, since it is the sum of probabilities of “uglalown” motions at the first oc-
currences of two different (non-adjacent) states. The upmét of summation has been
decreased tk— 4 to allow “space” for both “up-and-downs” to occur at statek— 2. The
triple summation

k—6 k—6 k—6
Zl Pigi+1 z Pj+2dj+3 Z Pr+4945
i= J=I =]

then is added back, since it is the sum of probabilities of&nd-downs” occurring at the
first occurrences of three different (pairwise non-adj#cgtates. This Inclusion/Exclusion
is continued in order to compute correctly a quantity thatew multiplied bys;, gives
the probability of eventual success from state 1 with sonpednd-down” motions before
reaching staté for the first time. Adding the first term on the right hand sid¢42), we
obtain the total probability of success from initial statenith or without “up-and-down”
motions before reaching statdor the first time, as given on the left-hand side of (4.2).sThi
completes the proof of (4.2), and thus also of (4.1).
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Now, settingk = H in (4.1) and recalling thagq = 1,

H-2 H-4 H-4
1-) pigdisa+ ) Pidisa Pj+20j+3
i; iGi+ i; iCi4- JZI j+20j+
H-6 H-6 H-6
- Zi Pidi+1| Y Pi+20i+3| > Piradiss
i= J=i =)

=1

SH

H-1
| s/ pi
e
This allows us to solve fog;, obtaining
H-1

rl ] ll— Zl Pidi+1+ Zl Pidi+1 [ z szqu]
H—6 H—6 H—6

- zi Pidi+1 [ z Pj+2Qj+3 [ z Pi+401+5
i= J=I =]

Finally, this in turn implies by (4.1) that

S].:

k—4 k—4
1- Z Pidi+1+ > Pidi+1 { Zi pj+2Qj+3} —...

i=1 i=1

H-1
= H 2 H—a [H4 } 'D( Pi-

1- Z Pidi+1+ Z Pidi+1 jzi Pj+20dj+3| —

The ruin probabilities, for X k < H, are therefore given by

k—2 k—4 k—4
1- Z Pidi+1+ z Pidi+1 { Zi pj+2Qj+3] —...

fk=1- 2 2

2
1- Z PiGi+1+ Z Pidi+1 [ > pj+2Qj+3} —
=i

H-1
|D< Pi.

We turn next to questions of duration of play.

5. Duration of play in Gambler's ruin with variable catastro phe and windfall
probabilities

Let R¢ be a random variable denoting the trial on which a playeriisadiassuming the
player starts at state Then

P[Rc= qu1 ZCPkJ V' forn=1,23,...

If we assume now that the catastrophe and windfall prolisgsilare variable, withp+ g+
c+w=1fori=1,2,...,H—1, as shown in Figure 6, then

P[R¢=n]=aR} +ZC,PkJ) for n=1,2,3,... (5.1)
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Figure 6. Transition state diagram of Gambler's Ruin with constant amnd
loss probabilities and variable catastrophe and windfalbabilities

and if §¢ is the random variable representing the time when one re&tlgsumind is the
starting point, then

P[S=n] _pPkH l+ZWJPkJ : (5.2)

SupposeDy represents the duration time of the gambling. Thabisis the trial when the
gambling terminates assuming we began at state k. Then

P[Dxk=n]=P[R«=n]+P[S=n]. (5.3)
Now
e A T A
e = le[Rk:n] =q lek’l + Zlcj lek’i .
n= n= i= n=

Proceeding as in the derivation of (3.7), this time with &ble catastrophe probabilities,

Y

(DS (D) S B e
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Note that (5.4) still appliesip=q=1/2.

Similarly,
% = ) P[S=n|
n=1
S ey o2
=Py BRnit > W R
n=1 =1 n=1

After a derivation similar to that used in obtaining (3.7% find
_ 2 g)k ( B)H o sin( 5 ) sin
- H p q u; 1—2,/pacos(
5 K H-1 i H sin sin(4%)
(/D) S (D) g R ©9
H P/ &= q/ & 1-2y/pacos(iy)

Note thatifp+q+c¢ +w; =1fori=1, 2,...,H—1, then 1-ry = 5. However, equa-
tions (5.1), (5.2), (5.3), (5.4), (5.5) still hold in FiguBewvhenp+q+c¢j+w; < 1 fori =1,
2, ...,H—1. We note again that whex) = candw; =wfori=1, 2,...,H—1, and
p+g+c+w=1, equation (5.4) provides an alternative expressionféound (in Section
2) by the difference equation approach leading to equafids) (

An interesting question concerns the expected time of rssu@ing a gambler is going
to be ruined eventually. This conditional expectation mayxbmputed as follows:

C/\

)
7)

8

E [R¢|eventual ruifh = nP[R« = n|eventual ruif
n=1
(<) P —
_ & PR
n=1 Mk

—:||_\

Z lqpk(’l +ZCJPKJ ]

where we have used equation (5.1). Continuing in a mannefasito that used in the
derivation of equations (3.7) and (5.4),

E [Re/eventual ruif = \/_q(\/j>kr—1k i ( )5|n<u:k>

=1

2 n[zvmeos( )]

)2 () B ()l

SOl

n=1
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But %5 2 X" |mpI|es—>2 Z nx~1for x| < 1. Thus,

E [R«|eventual ruih

R
)

+E(\/§)k.l.ch.<\/?)J% sn( )sm( |
H p) Ik J; "\Va (1-2,/pgcos(¥ ))2

A similar formula may be derived fdE[S|eventual succepsnd conditional variances
may also be computed. The average durad,] may now be calculated as

I;L

(5.6)

5| T

8

E[Dk] = nP[Dk = n]

>
I
fal

8

= ) n(P[R«=n]+P[S=n])
) (qpknl Yy Z CJPKJ >>
+ Zln<pPkH 1+ Z WJPkJ )

where we have used equation (5.3). After a derivation smidldhat used to obtain (5.6),
we find that

E[Dy] = ZX/TW%\/%)‘( ui (15'”2(\/%30'2;1%)
(o) (o) g s
)

2 k H-1 i H sin H‘ sin (4
E B (8 & e
=1 1(1—2,/pgcos(4))
The preceding calculation assumes thatq+c +w; =1fori=1,2,...,H—1. Inthis
casec; +wj in equation (5.7) may be replaced @y— p—q). This makes sense as, for the
sake of computing the expected duration of the game, thessteandH may be combined
into a single state.
Note that ifp+ g+ ¢ +w; < 1 for some then the conditional expected duration of play
assuming play comes to an encﬁi% given by equations (5.4), (5.5), and (5.7).
In Table 1, we illustrate the expected duration of play witk- 16 for various pairs op,
g values, assuming again that- g+ ¢ +w; = 1fori=1, 2, ..., 15. For specific values of
p andq, the expected duration time does not depend on the individiaes ofc; andw;.
However, the expected duration is sensitive to change®indmbined probability op+ qg.

I
=}
8
it

>
Il

I;L

(5.7)

5| T
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6. Infinite-time ruin probabilities with all probabilities variable
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Table 1. Expected duration of plafp, with H = 16 for several pairs op, q values
with p+qg+c+w; =1fori=1, 2, ..., 15. For fixegh andq, the expected duration
time does not depend on the individual values;aindw;

k p=0.5, q=0.5 p=0.45, q=0.45 p=0.3, q=0.6 p=0.2, q=0.4
0 0 0 0 0

1 15 3.73 2.152 1.4039
2 28 6.06 3.842 2.0194
3 39 7.52 5.167 2.2893
4 48 8.42 6.207 2.4076
5 55 8.97 7.024 2.4595
6 60 9.30 7.664 2.4822
7 63 9.47 8.165 2.4922
8 64 9.52 8.556 2.4966
9 63 9.47 8.857 2.4984
10 60 9.30 9.079 2.4991
11 55 8.97 9.214 2.4984
12 48 8.42 9.222 2.4941
13 39 7.52 8.980 2.4736
14 28 6.06 8.156 2.3798
15 15 3.73 5.894 1.9519
16 0 0 0 0

Assume now that all probabilities are state-dependent Bgjure 7, withp; + g + ¢ +
w; =1, fori=1,2,...,H—1. The system of difference equations in (2.1) now looks like

o =1

ri = C1+0iro+ pirz

r2 = Co+0Qary+ pars

Nk = Ck+Oklk—1+ Prlkr1 (6.1)

-1 = CH-1+0H-1rH-—2+ PH-1IH

rH = 0.

Sincec; andq; are both probabilities from state 1 to state 0, we will withlmss of gener-
ality setg; = 0. That is, in what follows one may replacewith ¢; + g if one wishes to
exhibit explicitly both these probabilities. Solving far, k=2, 3, ...,H —1, in terms ofr4,

the first few results are

r fi[r—c]
2= G

1
r3 = —— [(1—p192)r1 — (c1+ pac2)]
p1p2
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Figure 7. Transition state diagram of Gambler’'s Ruin with all proliities state-dependent

1

rg = [(1— p102 — P203) r1 — [(1 — P203) C1 + P1C2 + P1P2C3]]
P1P2P3

rs = ;[(1—pq — P203 — P304 + P102P304)

5—p1p2p3p4 142 243 344 142P344) 11

— [(1— p203 — P3da) €1+ (1 — P3ta) P1C2 + P1P2C3 + P1P2P3C4a]] -

In order to describe the emerging pattern more compacthnr@duce new notation. Given
the sequencelspn} and{qn} describing the state-dependent win and loss probabjldies
fine Ty(j) as follows:

T(1) =1

T2(1) =1

T3(1) = 1-m@

Ta(1) = 1— 02— P2Qs

T5(1) = 1— pa02 — P20s — Pads + P102P3da.

In general,

Tir2(1) = Ty 2(1) — PrOk+ 2 T(2)- (6.2)
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The argumeni of Ty(j) will describe the starting subscript in the win probalektiappear-
ing in Tx(j), k> 2. Thatis, fork = 3,

T3(1) = 1-pao2

T3(2) = 1—p03

T3(3) = 1—pstia

Ta(j) = 1-pjgj1-
The recursion relation (6.2) becomes

Tir2(i) = Tiera (§) = Prerj—1Gk+j Te(J)-
with

Ti(j) =Ta(j) =1, forall j > 0.

With this notation,

1 k—1
ry=————|T(Dr1— Y Tik—i+1 “ o Pr—(i+1) Ck_i 6.3
K P2 Pt [ k(Dra i; i )PoPLP2: - Pr—(i+1)Ck-i | (6.3)

follows inductively where we definpg = 1 for notational convenience.
From (6.1), usingy =0,

fH-1=CH-1+0OH-1"H_2. (6.4)

Using (6.3) to substitute into (6.4) fog; 1 andry_», and solving forr1, we obtain

H-2
{Zl Ti(H—1)popz--- pHiZCHil} + P1P2° - PH—2CH-1
i=
Th-1(1) — pH—20H-1TH-2(1)

H-3
[QHlpHZ _Zl Ti(H—i—1)pop1--- DHiscHiz]
i=

— 6.5
Th-1(1) — PH—20H-1TH—2(1) 65
H-3
> [MsaH—=i1—1) = py—20n-1Ti(H —i—1)]- [poP1- " PH-i—3CH—i-2]
_ 1=
- Tu(1)
n P1P2- - PH-3[PH-2CH-1+CH 2] (6.6)

Th(1)

where we again recall that for notational convenience we ltammbined the effects @f
andq; by assumingy; = 0; ¢, can be replaced bgy + gz in order to keep the two effects
separate. Substituting this formula into (6.3) gives arresgion for,, k=1, 2, ... ,H—1.
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Figure 8. Transition state diagram of Gambler's Ruin with constartas@ophe,
windfall, and return probabilities.

For completeness, as in Section 4, the following explicfiression forTy(b), a,b=1,
2,3,...,isgiven:

at+b—-3 a+b-5 at+b-5
Ta(b) = 1- Pidit1+ Pidit1 Pj+20j+3
a( iZb iYi+ iZb iYi+ JZI J+24)+

at+b-7 at+b-7 a+b-7
- Eb piQi+1< z pj+2Qj+3l Z Pk+40k+5 >+
i= = K=

with the convention that summations are set equal to zermwieeupper limit of the sum-
mation is less than the lower limit.

7. Related problems and future work

A natural follow-up question is: how would the precedingnrprobabilities change if
the transition diagram included return probabilities? Emaplest example of this may be
seen by altering the model described in Figure 2 into the insftmvn in Figure 8, where
p+qg+r+c+w=1. The readeris welcome to verify that the difference equedpproach
that led to equation (2.2) in Section 2 still applies. Thisdithe roots of the characteristic
polynomial and the coefficients have changed but the péatiaolution remains the same
as before.

More generally, the recursive algorithm method developigimSection 6 still produces
expressions for the ruin probabilities when applied to tlamgition diagram in Figure 9,
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Figure 9. Transition state diagram of Gambler’s Ruin with state-aejgait win, loss,
catastrophe, windfall and return probabilities.

wherep,+q +ri+c+w =1fori=1,2,.. H—1with equation (6.2) replaced by
Tir2(1) = (1= ri1) T2 (1) — POk 1 Tk(1). (7.1)

The remaining details are left to the reader.

Including constant return probabilities in the finite-timedels of Sections 3 and 5 would
require a lattice path combinatoric analysis which we doexplore here.

The finite-time ruin probability of equation (5.4) suggesiat the chance of being ruined
by a catastrophe may be analyzed separately. More spdyifigalt seen to be the sum of
two terms. The first term represents the probability that agcurs by means of a classical
ruin path,i.e., a path having 1 up or 1 down transitions only. The second teffme prob-
ability that ruin will occur by way of a catastrophe. Quessaoncerning the size of the
contributions of these terms or conditional probabilitjes expectations) of catastrophes
assuming eventual ruin may now be studied further.

Our expressions from Section 5 concerning the expected tiimain or the expected
duration of play may next be analyzed whprand q are variable (or state dependent).
Lattice path combinatoric arguments will be needed to agvetsults in this direction.

Finally, we note that the recursive approach to find infitiibee ruin probabilities pre-
sented in Sections 4 and 6 generalizes to other transitagratins. For example, an expres-
sion for the (infinite-time) ruin probability of a system liag 1 step up or 2 steps down
transitions has been derived and will appear elsewhere.
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8. Conclusion

The main results in this article consist of recursive apphea to compute ruin probabil-
ities in a variety of Gambler’s Ruin problems which have bgeneralized to include catas-
trophe and windfall probabilities as well as the traditilbwan and loss probabilities. Ruin
probabilities of these systems, in both infinite-time andditime, have been obtained using
different methods of solution including difference eqaas, lattice path combinatorics and
pattern recognition. Numerical examples illustratingstineuin probabilities are presented.
Solutions to questions concerning the expected duratigriayf and the expected time to
ruin (conditioned upon the assumption that ruin will occuaye been developed along the
way. Some of the recursive methods are robust and provideprabability solutions for
even more generalized types of transition diagrams.
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