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Constant Transition Rates

Consider the one-step transition matrix

A =




1 0 0 0 0 . . . 0 0 0
b + c 0 a 0 0 . . . 0 0 0

c b 0 a 0 . . . 0 0 0
c 0 b 0 a . . . 0 0 0
c 0 0 b 0 . . . 0 0 0
...

. . .
...

c 0 0 0 0 . . . 0 a 0
c 0 0 0 0 . . . b 0 a
0 0 0 0 0 . . . 0 0 1




on the state space {0, 1, 2, . . . , N + 1}. This Markov chain represents the
“Gambler’s Ruin” problem with catastrophe, as shown in Figure 1. Each
entry aij gives the probability of moving from state i to state j in a single
step, given that the current state is i. The probability of moving in one step
from state 1 to state 0, for instance, is b + c while the probability of moving
in one step from state 1 to state 2 is a; there is no probability of moving
anywhere else in one step from state 1. By assumption, a + b + c = 1 since
we must move somewhere.

Let

pk = Prob(eventual absorption at state N + 1 | initially at state k).

The ruin probabilities are then

πk = Prob(eventual ruin | initially at state k) = 1− pk.
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Figure 1: “Gambler’s Ruin” Markov Chain with Constant Transition Rates.
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Difference Equation Approach

Conditioning on the first step,

p0 = 0

p1 = (b + c)p0 + ap2 = bp0 + ap2

p2 = cp0 + bp1 + ap3 = bp1 + ap3

...

pN = bpN−1 + apN+1

pN+1 = 1

where in several places we have used p0 = 0. For instance, p2 is the probability
of eventual absorption at state N + 1 given that we are initially in state 2.
After one step, with probability c we will be in state 0, from which we have
no chance to escape; with probability b we will be in state state 1, from
which we have probability p1 of eventual absorption at state N +1; and with
probability a we will be in state 3, from which we have probability p3 of
eventual absorption at state N + 1.

Thus, for k = 1, . . . , N ,

apk+1 − pk + bpk−1 = 0. (1)

This is a linear constant-coefficient difference equation. The roots of the
characteristic polynomial are

r1,2 =
1±√1− 4ab

2a
,

and so

pk = C1

[
1 +

√
1− 4ab

2a

]k

+ C2

[
1−√1− 4ab

2a

]k

.
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Applying the conditions p0 = 0 and pN+1 = 1,

pk =

[
1+
√

1−4ab
2a

]k

−
[

1−√1−4ab
2a

]k

[
1+
√

1−4ab
2a

]N+1

−
[

1−√1−4ab
2a

]N+1

and so the ruin probabilities are

πk = 1− pk = 1−

[
1+
√

1−4ab
2a

]k

−
[

1−√1−4ab
2a

]k

[
1+
√

1−4ab
2a

]N+1

−
[

1−√1−4ab
2a

]N+1
. (2)

We can use the Binomial Theorem to re-write this result without using
radicals:

(
1 +

√
x
)k

=
k∑

i=0

(
k
i

) (√
x
)i

(
1−√x

)k
=

k∑
i=0

(−1)k

(
k
i

) (√
x
)i

(
1 +

√
x
)k − (

1−√x
)k

= 2
k∑

i = 0
i odd

(
k
i

)
xi

= 2
√

x

b k−1
2
c∑

j=0

(
k

2j + 1

)
xj

where byc denotes the greatest integer ≤ y. The resulting alternative form
for the ruin probabilities is

πk = 1− pk = 1−


(2a)N+1−k ·

∑b k−1
2
c

j=0

(
k

2j + 1

)
(1− 4ab)j

∑bN
2
c

j=0

(
N + 1
2j + 1

)
(1− 4ab)j


 . (3)

System of Linear Equations

In the previous section we found that, for k = 1, . . . , N ,

apk+1 − pk + bpk−1 = 0,

along with p0 = 0 and pN+1 = 1.
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Rather than using difference equation techniques, we can solve for the
probabilities pk by solving the related system




1 0 0 0 0 . . . 0 0 0
b −1 a 0 0 . . . 0 0 0
0 b −1 a 0 . . . 0 0 0
0 0 b −1 a . . . 0 0 0
0 0 0 b −1 . . . 0 0 0
...

. . .
...

0 0 0 0 0 . . . −1 a 0
0 0 0 0 0 . . . b −1 a
0 0 0 0 0 . . . 0 0 1







p0

p1

p2

p3

p4
...

pN−1

pN

pN+1




=




0
0
0
0
0
...
0
0
1




. (4)

For any specific value of N + 1, this system may be solved using a forward
substitution technique to solve for p2, p3, . . ., pN+1 in terms of p1, after which
we can set pN+1 = 1 to solve for p1.

For general N + 1, the pattern in the formula for pk as a function of p1

is not easy to find. However, we can find this pattern by our work in the
previous section.

Consider our result from the previous section,

pk = (2a)N+1−k ·
∑b k−1

2
c

j=0

(
k

2j + 1

)
(1− 4ab)j

∑bN
2
c

j=0

(
N + 1
2j + 1

)
(1− 4ab)j

.

Upon substituting k = 1 and simplifying we have that

p1 =
aN

1
2N

∑bN
2
c

j=0

(
N + 1
2j + 1

)
(1− 4ab)j

.

If we were to use the forward substitution idea to solve the system, we would
eventually obtain

pN+1 = f(N + 1)p1 = 1

for some function f . Now we can solve explicitly for f :

f(N + 1) · aN

1
2N

∑bN
2
c

j=0

(
N + 1
2j + 1

)
(1− 4ab)j

= 1

and so

f(N + 1) =

1
2N

∑bN
2
c

j=0

(
N + 1
2j + 1

)
(1− 4ab)j

aN
.

4



In general, then,

pk = f(k)p1

=

1
2k−1

∑b k−1
2
c

j=0

(
k

2j + 1

)
(1− 4ab)j

ak−1
· p1

and so the ruin probabilities are related through

1− πk = f(k)(1− π1)

Solving for πk as a function of π1,

πk = 1−
1

2k−1

∑b k−1
2
c

j=0 .

(
k

2j + 1

)
(1− 4ab)j

ak−1
· (1− π1). (5)

Given that we already had a closed-form solution for πk from our work in
the previous section, our reason for solving for πk as a function of π1 here
was to look at this special case of state-independent transition rates using a
structure that will prove to be helpful in investigating state-dependent rates.

State-Dependent Transition Rates

Suppose now that the transition rates are state-dependent. Consider the
transition matrix

A =




1 0 0 0 0 . . . 0 0 0
b1 + c1 0 a1 0 0 . . . 0 0 0

c2 b2 0 a2 0 . . . 0 0 0
c3 0 b3 0 a3 . . . 0 0 0
c4 0 0 b4 0 . . . 0 0 0
...

. . .
...

cN−1 0 0 0 0 . . . 0 aN−1 0
cN 0 0 0 0 . . . bN 0 aN

0 0 0 0 0 . . . 0 0 1




.

representing the Markov chain shown in Figure 2.
The corresponding difference equation is no longer constant-coefficient.

However, the corresponding linear system
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Figure 2: “Gambler’s Ruin” with State-Dependent Transition Rates.
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1 0 0 0 0 . . . 0 0 0
b1 −1 a1 0 0 . . . 0 0 0
0 b2 −1 a2 0 . . . 0 0 0
0 0 b3 −1 a3 . . . 0 0 0
0 0 0 b4 −1 . . . 0 0 0
...

. . .
...

0 0 0 0 0 . . . −1 aN−1 0
0 0 0 0 0 . . . bN −1 aN

0 0 0 0 0 . . . 0 0 1







p0

p1

p2

p3

p4
...

pN−1

pN

pN+1




=




0
0
0
0
0
...
0
0
1




.

can still be solved using a forward substitution technique to solve for p2, p3,
. . ., pN+1 in terms of p1, after which we can again set pN+1 = 1 to solve for
p1.

Below, we will prove that, for k ≥ 1,

pk =

[
1−

k−2∑
i=1

aibi+1 +
k−4∑
i=1

aibi+1

[
k−4∑
j=i

aj+2bj+3

]
(6)

−
k−6∑
i=1

aibi+1

[
k−6∑
j=i

aj+2bj+3

[
k−6∑

l=j

al+4bl+5

]]
+ . . .

]
p1/

[
Πk−1

i=1 ai

]
,

with the convention that summations are set to zero if they have an upper
limit of summation that is less than the lower limit.
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Multiplying equation (6) by Πk−1
i=1 ai,

pk · Πk−1
i=1 ai = p1 ·

[
1−

k−2∑
i=1

aibi+1 +
k−4∑
i=1

aibi+1

[
k−4∑
j=i

aj+2bj+3

]

−
k−6∑
i=1

aibi+1

[
k−6∑
j=i

aj+2bj+3

[
k−6∑

l=j

al+4bl+5

]]
+ . . .

]
.

Solving for p1,

p1 = pk · Πk−1
i=1 ai + p1 ·

[
k−2∑
i=1

aibi+1 −
k−4∑
i=1

aibi+1

[
k−4∑
j=i

aj+2bj+3

]
(7)

+
k−6∑
i=1

aibi+1

[
k−6∑
j=i

aj+2bj+3

[
k−6∑

l=j

al+4bl+5

]]
− . . .

]
.

We will prove (6) by proving (7). The quantity p1 on the left-hand side of (7)
is the probability of eventual success starting from state 1, where “success”
is reaching state N + 1. I will prove the identity by showing that the right
hand side of (7) also gives the probability of eventual success starting from
state 1.

The term
pk · Πk−1

i=1 ai

gives the probability of eventual success from state 1 with no “up-and-down”
before reaching state k. To see this, note that Πk−1

i=1 ai is the probability of
“walking” directly from state 1 to state 2, . . . , to state k. The factor pk then
gives the probability of success from state k.

The other terms on the right hand side give the probability of eventual
success from state 1 with one or more incidents of “up-and-down” before
reaching state k. I am defining “up-and-down from state i,” with i ≤ k − 2,
as movement from state i directly to state i + 1 and directly back to state i.

For i ≤ k − 2, the probability that a randomly-chosen path is eventually
successful but involves movement from the first occurrence of state i directly
to state i + 1 and directly back to state i is given by p1aibi+1. To see this,
note that, starting from state 1,

Prob(a randomly-chosen path reaches state i for the first time by some
means, then does an “up-and-down,” and then continues on to eventually
reach state N + 1)

is equal to
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Prob(a randomly-chosen path reaches state i for the first time by some
means and from there reaches state N + 1 by some means)· Prob(from state i,
the first two steps are an “up-and-down”)

which is equal to

Prob(a randomly-chosen path reaches state N + 1 by some means)· Prob(when
the path reaches state i for the first time, the first two steps are an “up-and-
down”)

which is equal to

p1aibi+1

since p1 is the probability of eventual successful movement to state N + 1
from initial state 1 and aibi+1 is the probability that from state i the next
two steps are an “up-and-down.”

Now,

k−2∑
i=1

aibi+1 −
k−4∑
i=1

aibi+1

[
k−4∑
j=i

aj+2bj+3

]
+

k−6∑
i=1

aibi+1

[
k−6∑
j=i

aj+2bj+3

[
k−6∑

l=j

al+4bl+5

]]
− . . .

is simply an application of the Inclusion/Exclusion Principle. The summation

k−2∑
i=1

aibi+1

gives the sum of the probabilities that from state i, the next two steps are
an “up-and-down,” for states i from 1 to k − 2. However, for non-adjacent
states i, j, it is possible for a path to have an “up-and-down” occur at the
first occurrence of both of these. The double summation

k−4∑
i=1

aibi+1

[
k−4∑
j=i

aj+2bj+3

]

is subtracted off since it is the sum of probabilities of “up-and-downs” oc-
curring at the first occurrences of two different (non-adjacent) states. The
upper limit of summation has been decreased to k − 4 to allow “space” for
both “up-and-downs” to occur at states ≤ k − 2. The triple summation

k−6∑
i=1

aibi+1

[
k−6∑
j=i

aj+2bj+3

[
k−6∑

l=j

al+4bl+5

]]
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then is added back in since it is the sum of probabilities of “up-and-downs”
occurring at the first occurrences of three different (pairwise non-adjacent)
states. This Inclusion/Exclusion is continued in order to compute correctly a
quantity that, when multiplied by p1, gives the probability of eventual success
from state 1 with some “up-and-down” before reaching state k. Adding in
the first term on the right hand side of (7), we obtain the total probability of
success from initial state 1, with or without “up-and-down” before reaching
state k, as given on the left hand side of (7). This completes the proof of (7),
and thus (6) is proven.

Now, setting k = N + 1 in (6) and recalling that pN+1 = 1,

pN+1 =

[
1−

N−1∑
i=1

aibi+1 +
N−3∑
i=1

aibi+1

[
N−3∑
j=i

aj+2bj+3

]

−
N−5∑
i=1

aibi+1

[
N−5∑
j=i

aj+2bj+3

[
N−5∑

l=j

al+4bl+5

]]
+ . . .

]
p1/

[
ΠN

i=1ai

]

= 1.

This allows us to solve for p1, obtaining

p1 =
[
ΠN

i=1ai

]
/

[
1−

N−1∑
i=1

aibi+1 +
N−3∑
i=1

aibi+1

[
N−3∑
j=i

aj+2bj+3

]

−
N−5∑
i=1

aibi+1

[
N−5∑
j=i

aj+2bj+3

[
N−5∑

l=j

al+4bl+5

]]
+ . . .

]

Finally, this in turn implies that

pk =


 1−∑k−2

i=1 aibi+1 +
∑k−4

i=1 aibi+1

[∑k−4
j=i aj+2bj+3

]
− . . .

1−∑N−1
i=1 aibi+1 +

∑N−3
i=1 aibi+1

[∑N−3
j=i aj+2bj+3

]
− . . .


 · ΠN

i=kai.

Setting a0 = 0, this formula holds for k = 0 as well as for k = 1, . . . , N + 1.
The ruin probabilities therefore are given by

πk = 1−

 1−∑k−2

i=1 aibi+1 +
∑k−4

i=1 aibi+1

[∑k−4
j=i aj+2bj+3

]
− . . .

1−∑N−1
i=1 aibi+1 +

∑N−3
i=1 aibi+1

[∑N−3
j=i aj+2bj+3

]
− . . .


 · ΠN

i=kai.

Gallery of Plots for Gambler’s Ruin with Catastrophe

The plots below show some Gambler’s Ruin results for various parameter
sets. In Figure 3, we assume constant transition rates with no catastrophes.
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Figure 3: Gambler’s ruin with constant transition rates and no catastrophes.
Values on the x-axis represent initial state and values on the y-axis represent
corresponding ruin probabilities. In each plot, state 0 represents “ruin” and
state 11 represents “success.” In plot (a.), the “win” probability is a = 0.5
and the “loss” probability is b = 0.5. In plot (b.), the “win” probability
is a = 0.6 and the “loss” probability is b = 0.4. In plot (c.), the “win”
probability is a = 0.4 and the “loss” probability is b = 0.6. In plot (d.), the
“win” probability is a = 0.2 and the “loss” probability is b = 0.8.
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In Figure 4, we assume constant transition rates with catastrophes. Finally,
in Figure 5 we give two examples of state-dependent transition rates.
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Figure 4: Gambler’s ruin with constant transition rates and catastrophes. In
plot (a.), the “win” probability is a = 0.45, the “loss” probability is b = 0.45,
and the catastrophe rate is c = 0.1. In plot (b.), the “win” probability
is a = 0.8, the “loss” probability is b = 0.18, and the catastrophe rate is
c = 0.02.
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Figure 5: Gambler’s ruin with state-dependent transition rates. In plot (a.),
the “win” probability is aj = j/(j + 1), the “loss” probability is bj =
0.9 − j/(j + 1), and the catastrophe rate is cj = 0.1. In plot (b.), the
“win” probability is aj = 0.05j, the “loss” probability is bj = 0.05j, and the
catastrophe rate is cj = 1− 0.1j.
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