Exercise 2.5.2 i - xv, xxi - xxv
Sample proofs of the valid sequents

In doing these proofs, I generally make use of Neg->, MTT, BP, BT and DM.  Of course, there are lots other ways to do the proofs.

#2 ~P v Q, ~Q v R, ~R |- ~P

1     (1) ~P v Q    A
2     (2) ~Q v R    A
3     (3) ~R        A
2,3   (4) ~Q        2,3 vE
1,2,3 (5) ~P        1,4 vE
 

#4 (Q -> P) -> R, ~Q v S, ~S |- ~R -> T

1       (1) (Q -> P) -> R    A
2       (2) ~Q v S           A
3       (3) ~S               A
4       (4) ~R               A [for ->I]
5       (5) ~T               A [for RAA]
2,3     (6) ~Q               2,3 vE
1,4     (7) ~(Q -> P)        1,4 MTT
1,4     (8) Q & ~P           7 Neg->
1,4     (9) Q                8 &E
1,2,3,4 (10) T               6,9 RAA (5)
1,2,3   (11) ~R -> T         10 ->I (4)

Note: Since T does not appear in the premises, we cannot get it directly.  So the strategy used here is to assume ~T and aim for a contradiction.
 

#5 P & (Q ->R), Q v ~P, R v S -> T |- T v U

1     (1) P & (Q ->R)    A
2     (2) Q v ~P         A
3     (3) R v S -> T     A
1     (4) P              1 &E
1,2   (5) Q              2,4 vE
1     (6) Q -> R         1 &E
1,2   (7) R              5,6 ->E
1,2   (8) R v S          7 vI
1,2,3 (9) T              3,8 ->E
1,2,3 (10) T v U         9 vI

Notice that in this case there is no need to go indirect!
 

#6 P <-> ~Q, R v ~Q, R <-> S |- S v P

1        (1) P <-> ~Q      A
2        (2) R v ~Q        A
3        (3) R <-> S       A
4        (4) ~(S v P)      A [for RAA]
4        (5) ~S & ~P       4 DM
4        (6) ~P            5 &E
1,4      (7) Q             1,6 BT
1,2,4    (8) R             2,7 vE
1,2,3,4  (9) S             3,8 BP
4       (10) ~S            5 &E
1,2,3   (11) S v P         9,10 RAA (4)
 

#9 ~R <-> ~Q, P v ~Q, P <-> S |- S v ~R

1     (1) ~R <-> ~Q     A
2     (2) P v ~Q        A
3     (3) P <-> S       A
4     (4) ~(S v ~R)     A [for RAA]
4     (5) ~S & R        4 DM
4     (6) ~S            5 &E
3,4   (7) ~P            3,6 BT
2,3,4 (8) ~Q            2,7 vE
4     (9) R             5 &E
1,4   (10) Q            1,9 BT
1,2,3 (11) S v ~R       8,10 RAA (4)
 

#11  Valid - will be discussed in class on Tuesday, 3/12

#14  P & Q, Q -> (P -> R), R -> (~S -> ~T v ~W), ~S & T |- ~W

1       (1) P & Q                A
2       (2) Q -> (P -> R)        A
3       (3) R -> (~S -> ~T v ~W) A
4       (4) ~S & T               A
1       (5) Q                    1 &E
1,2     (6) P -> R               2,5 ->E
1       (7) P                    1 &E
1,2     (8) R                    6,7 ->E
1,2,3   (9) ~S -> ~T v ~W        3,8 ->E
4       (10) ~S                  4 &E
1,2,3,4 (11) ~T v ~W             9, 10 ->E
4       (12) T                   4 &E
1,2,3,4 (13) ~W                  11,12 vE
 

#15 P v Q -> R v S, ~(T v R) -> S, (T -> P) & (R -> Q), ~S |- R

1         (1) P v Q -> R v S      A
2         (2) ~(T v R) -> S       A
3         (3) (T -> P) & (R -> Q) A
4         (4) ~S                  A
2,4       (5) T v R               2,4 MTT
6         (6) ~R                  A [for RAA]
2,4,6     (7) T                   5,6 vE
3         (8) T -> P              3 &E
2,3,4,6   (9) P                   7,8 ->E
2,3,4,6   (10) P v Q              9 vI
1,2,3,4,6 (11) R v S              1,10 ->E
1,2,3,4,6 (12) S                  6,11 vE
1,2,3,4   (13) R                  6,12 RAA (6)
 

[I've skipped 16 - 20 for now]

#21. P <-> Q, R v ~P, T & Q -> ~R |- ~S & T -> ~(P v Q)
 
1 (1) P <-> Q A
2 (2) R v ~P A
3 (3) T & Q -> ~R A
4 (4) ~S & T A [for ->I]
5 (5) P v Q A [for RAA]
6 (6) ~P A [for RAA]
1,6 (7) ~Q 1,6 BT
5,6 (8) Q 5,6 vE
1,5 (9) P 7,8 RAA (6)
1,2,5 (10) R 2,9 vE
4 (11) T 4 &E
1,5 (12) Q 1,9 BP
1,4,5 (13) T & Q 11,12 &I
1,3,4,5 (14) ~R 3,13 ->E
1,2,3,4 (15) ~(P v Q) 10,14 RAA (5)
1,2,3 (16) ~S & T -> ~(P v Q) 15 ->I (3)

#22.  P & Q -> (R <-> S), ~P -> ~T, ~(~R v S) |- Q -> ~T
 
 
1 (1) P & Q -> (R <-> S) A
2 (2) ~P -> ~T A
3 (3) ~(~R v S)  A
4 (4) Q A [for ->I]
5 (5) T A [for RAA]
2,5 (6) P 2,5 MTT
2,4,5 (7) P & Q 4,6 &I
1,2,4,5 (8) R <-> S 1,7 ->E
3 (9) R & ~S 3 DM
3 (10) R 9 &E
3 (11) ~S 9 &E
1,2,3,4,5 (12) S 8,10 BP
1,2,3,4 (13) ~T 11,12 RAA (5)
1,2,3 (14) Q -> ~T 13 ->I (4)

#23.  P & Q -> R, P & ~R <-> Q v ~S, T & (~Q & ~R -> P),
        (T -> S) v (T -> R) |- S & R

I hate this one.  A lot.  Any suggestions for shorter proofs are welcome.
 
 
1 (1) P & Q -> R A
2 (2) P & ~R <-> Q v ~S A
3 (3) T & (~Q & ~R -> P) A
4 (4) (T -> S) v (T -> R) A
5 (5) ~S A [for RAA; 1st conjunct]
5 (6) Q v ~S 5 vI
2,5 (7) P & ~R 2,6 BP
2,5 (8) ~R 7 &E
3 (9) T 3 &E
2,3,5 (10) T & ~R 8,9 &I
2,3,5 (11) ~(T -> R) 10 Neg->
2,3,4,5 (12) T -> S 4, 11 vE
2,3,4,5 (13) S 9,12 ->E
2,3,4 (14) S 5,13 RAA (5)
15 (15) ~R A [for RAA, 2nd conjunct]
16 (16) P A [for RAA]
15,16 (17) P & ~R 15, 16 &I
2,15,16 (18) Q v ~S 2,17 BP
2,3,4,15,16 (19) Q 14,18 vE
2,3,4,15,16 (20) P & Q 16,18 &I
1,2,3,4,15,16 (21) R 1,20 ->E
1,2,3,4,15 (22) ~P 15,21 RAA (16)
3 (23) ~Q & ~R -> P 3 &E
1,2,3,4,15 (24) ~(~Q & ~R) 22,23 MTT
1,2,3,4,15 (25) Q v R 24 DM
1,2,3,4,15 (26) Q 15,25 vE
1,2,3,4,15 (27) Q v ~S 26 vI
1,2,3,4,15 (28) P & ~R 2,27 BP
1,2,3,4,15 (29) P 28 &E
1,2,3,4 (30) R 22,29 RAA (15)
1,2,3,4 (31) S & R 14,30 &I

#24.  R v (P -> S), T & ~W, (~T v W) -> ~R, (S -> Q) & ~Q |- ~P

Invalidating assignment:
P:T, Q:F, R:T, S:F, T:T, W:F
 

#25. R v (P v S), T & ~W, ~(~T v W) -> ~R, (S -> Q) & ~Q |- P
 
1 (1) R v (P v S) A
2 (2) T & ~W A
3 (3) ~(~T v W) -> ~R A
4 (4) (S -> Q) & ~Q A
4 (5) S -> Q 4 &E
4 (6) ~Q 4 &E
4 (7) ~S 5,6 MTT
2 (8) ~(~T v W) 2 DM
2,3 (9) ~R 3,8 ->E
1,2,3 (10) P v S 1,9 vE
1,2,3,4 (11) P 7,10 vE