2000 Final Exam, Sample Answers

Symbolizations

1. Ca & (Wa -> ~Na)

2. (Wa -> Pa) & ~(Pa -> Wa)

3. (Pa -> ~Na) -> ~Wa

4. $x(Cx & Wx) -> ~Na

5. $x((Cx & ~Nx) & @y(Qy -> Axy))

6. @x(Cx -> (Wx -> Px)

7. @x(Cx & @y(Qy -> Axy) -> ~Nx)

8. @x(Cx -> (Wx <-> (@y(Qy -> Axy)))

Indirect Truth Tables

9. Invalid. P: T; Q: F; R: F; S: F  

10. Valid

11. Valid

12. Invalid. P: T; Q: F; R: F; S: F

Expansions

13. ((Ha & Fa) & ~Ga) v ((Hb & Fb) & ~Gb)  True 

14. P <-> (Ha -> ~Ga) & (Hb -> ~Gb)  False

15. Ha & Hb -> (Fa v Fb) & (Ga v Gb)  True

16. (Ga & (Ha & Hb)) v (Gb & (Ha & Hb))  True

Countermodels

17. U: {a,b} F: {a} G: { }

18. U: {a,b} F: {a} G: {a,b} H: {a}

19. U: {a} B: { } C: { } D: {a}

20. U: {a,b,c} M: {b} N: {a} P:{a,c}

Proofs

#21.

~S -> T & U, ~R -> ~(T v U), (T <-> U) -> S & R |- S & R

Normally, we prove a conjunction one conjunct at a time by RAA.  If you do the proof this way, it is not hard but it is very long. 

              1  (1)  ~S->T&U              .A

              2  (2)  ~R->~(TvU)           .A

              3  (3)  (T<->U)->S&R         .A

              4  (4)  ~S                   .A

            1,4  (5)  T&U                  .1,4 ->E

              4  (6)  ~Sv~R                .4 VI

              4  (7)  ~(S&R)               .6 DM

            3,4  (8)  ~(T<->U)             .3,7 MTT

            3,4  (9)  ~T<->U               .8 NEG<->

            1,4  (10) U                    .5 &E

            1,4  (11) T                    .5 &E

          1,3,4  (12) ~T                   .9,10 BP

            1,3  (13) S                    .11,12 RAA(4)

             14  (14) ~R                   .A

           2,14  (15) ~(TvU)               .2,14 ->E

           2,14  (16) ~T&~U                .15 DM

           2,14  (17) ~T                   .16 &E

           2,14  (18) ~U                   .16 &E

             14  (19) ~Sv~R                .14 VI

             14  (20) ~(S&R)               .19 DM

           3,14  (21) ~(T<->U)             .3,20 MTT

           3,14  (22) ~T<->U               .21 NEG<->

         2,3,14  (23) U                    .17,22 BP

            2,3  (24) R                    .18,23 RAA(14)

          1,2,3  (25) S&R                  .13,24 &I

 Here’s a much shorter way to do the same sequent.

              1  (1)  ~S->T&U              .A

              2  (2)  ~R->~(TvU)           .A

              3  (3)  (T<->U)->S&R         .A

              4  (4)  ~(S&R)               .A

            3,4  (5)  ~(T<->U)             .3,4 MTT

            3,4  (6)  ~T<->U               .5 NEG<->

            3,4  (7)  ~T->U                .6 <->E

            3,4  (8)  TvU                  .7 V->

          2,3,4  (9)  R                    .2,8 MTT

            3,4  (10) T<->~U               .5 NEG<->

            3,4  (11) T->~U                .10 <->E

            3,4  (12) ~(T&U)               .11 NEG->

          1,3,4  (13) S                    .1,12 MTT

        1,2,3,4  (14) S&R                  .9,13 &I

          1,2,3  (15) S&R                  .4,14 RAA(4)

 

#22.

~(@xFx -> $xBx), $x~Cx -> $xBx, @x(Fx & Cx -> Da) |- Da

              1  (1)  ~(@xFx->$xBx)        .A

              2  (2)  $x~Cx->$xBx          .A

              3  (3)  @x(Fx&Cx->Da)        .A

              1  (4)  @xFx&~$xBx           .1 NEG->

              1  (5)  @xFx                 .4 &E

              1  (6)  Fb                   .5 @E

              1  (7)  ~$xBx                .4 &E

            1,2  (8)  ~$x~Cx               .2,7 MTT

            1,2  (9)  @xCx                 .8 QE

            1,2  (10) Cb                   .9 @E

            1,2  (11) Fb&Cb                .6,10 &I

              3  (12) Fb&Cb->Da            .3 @E

          1,2,3  (13) Da                   .11,12 ->E

 

#23.

@x(Px -> $yMxy), @x~Px -> @xFx |- $x~Fx -> $y$xMyx

              1  (1)  @x(Px->$yMxy)        .A

              2  (2)  @x~Px->@xFx          .A

              3  (3)  $x~Fx                .A [for ->I]

              3  (4)  ~@xFx                .3 QE

            2,3  (5)  ~@x~Px               .2,4 MTT

            2,3  (6)  $xPx                 .5 QE

              1  (7)  Pa->$yMay            .1 @E

              8  (8)  Pa                   .A [for $E on 6, a]

            1,8  (9)  $yMay                .7,8 ->E

             10  (10) Mab                  .A [for $E on 9, b]

             10  (11) $xMax                .10 $I

             10  (12) $y$xMyx              .11 $I

            1,8  (13) $y$xMyx              .9,12 $E(10)

          1,2,3  (14) $y$xMyx              .6,13 $E(8)

            1,2  (15) $x~Fx->$y$xMyx       .14 ->I(3)

 

#24

(@xHx -> $xGx) -> ~$y(Fy v $zTz), ~@xFx -> $xGx, @xHx -> $x~Fx

|- $x~Tx

              1  (1)  (@xHx->$xGx)->~$y(Fyv$zTz) .A

              2  (2)  ~@xFx->$xGx          .A

              3  (3)  @xHx->$x~Fx          .A

              4  (4)  @xHx                 .A [for ->I]

Note that our old strategies from sentential logic suggest that we assume this to prove the antecedent of the antecedent of premise 1

            3,4  (5)  $x~Fx                .3,4 ->E

            3,4  (6)  ~@xFx                .5 QE

          2,3,4  (7)  $xGx                 .2,6 ->E

            2,3  (8)  @xHx->$xGx           .7 ->I(4)

          1,2,3  (9)  ~$y(Fyv$zTz)         .1,8 ->E

          1,2,3  (10) @y~(Fyv$zTz)         .9 QE

          1,2,3  (11) ~(Fav$zTz)           .10 @E

          1,2,3  (12) ~Fa&~$zTz            .11 DM

          1,2,3  (13) ~$zTz                .12 &E

          1,2,3  (14) @z~Tz                .13 QE

          1,2,3  (15) ~Ta                  .14 @E

          1,2,3  (16) $x~Tx                .15 $I

Another strategy for doing the same proof.

              1  (1)  (@xHx->$xGx)->~$y(Fyv$zTz) .A

              2  (2)  ~@xFx->$xGx          .A

              3  (3)  @xHx->$x~Fx          .A

              4  (4)  Ta                   .A [for RAA]

              4  (5)  $zTz                 .4 $I

              4  (6)  Fav$zTz              .5 VI

              4  (7)  $y(Fyv$zTz)          .6 $I

            1,4  (8)  ~(@xHx->$xGx)        .1,7 MTT

            1,4  (9)  @xHx&~$xGx           .8 NEG->

            1,4  (10) @xHx                 .9 &E

          1,3,4  (11) $x~Fx                .3,10 ->E

          1,3,4  (12) ~@xFx                .11 QE

        1,2,3,4  (13) $xGx                 .2,12 ->E

            1,4  (14) ~$xGx                .9 &E

          1,2,3  (15) ~Ta                  .13,14 RAA(4)

          1,2,3  (16) $x~Tx                .15 $I

 

#25

@x(Hx -> Bx v ~Fx), @x$y(~Bx & Fy)|-$x~Hx

Yes, this one is a looping problem.

              1  (1)  @x(Hx->Bxv~Fx)       .A

              2  (2)  @x$y(~Bx&Fy)         .A

              1  (3)  Ha->Bav~Fa           .1 @E

              2  (4)  $y(~Ba&Fy)           .2 @E

              5  (5)  ~Ba&Fb               .A [for $E on 4]

              2  (6)  $y(~Bc&Fy)           .2 @E

              7  (7)  ~Bc&Fa               .A [for $E on 6]

              8  (8)  Ha                   .A [for RAA]

            1,8  (9)  Bav~Fa               .3,8 ->E

              5  (10) ~Ba                  .5 &E

          1,5,8  (11) ~Fa                  .9,10 VE

              7  (12) Fa                   .7 &E

          1,5,7  (13) ~Ha                  .11,12 RAA(8)

          1,5,7  (14) $x~Hx                .13 $I

          1,2,7  (15) $x~Hx                .4,14 $E(5)

            1,2  (16) $x~Hx                .6,15 $E(7)

You must discharge 5 before 7 here.