Prof. Asuman Aksoy Math Analysis I HW 4 Due 02/21/2013

- 1. For each of the following sets S, find $\sup(S)$, $\inf(S)$ if they exist:
 - a) $\{.3, .33, .333, \cdots\}$
 - b) $\{\frac{1}{n}: n, \text{ an integer}, n > 0\}$
 - c) $\{\frac{-1}{n}: n, \text{ an integer}, n > 0\}$ d) $\{x \in \mathbb{R}: x^2 < 5\}$

 - e) $\{x \in \mathbb{R} : x^2 > 5\}$
- 2. Let S and T are nonempty bounded subsets of Rwith If $S \subset T$. Prove that:

 $\inf T \le \inf S \le \sup S \le \sup T$

Let $\{I_n\}$ be a decreasing sequence of nonempty closed intervals in \mathbb{R} , i.e. $I_{n+1}\subset I_n$ for all $n \geq 1$. Show that $\bigcap I_n$ is a nonempty closed interval. When is this intersection is a single $n \ge 1$ point?

- 3. Suppose (x_n) and (y_n) are Cauchy sequences, then show that
 - 1. $(x_n + y_n)$ is a Cauchy sequence.
 - 2. $(x_n y_n)$ is a Cauchy sequence.
- 4. Show that if a subsequence of a Cauchy sequence converges to x, then the sequence itself converges to x.
- 5. Let x and y be two different real numbers. Show that there exist a neighborhood X of x and a neighborhood Y of y such that $X \cap Y = \emptyset$.

Hint: You must choose your $\varepsilon > 0$ so that the intersection of $X = (x - \varepsilon, x + \varepsilon)$ and $Y = (y - \varepsilon, y + \varepsilon)$ is empty.

6. If α and β are in \mathbb{R} and $\alpha < \beta$, then every sequence of points in the interval

$$[\alpha, \beta] = \{x : \ \alpha \le x \le \beta\}$$

has a subsequence that converges to some point in $[\alpha, \beta]$

7. (Cesaro Average) Let $\{x_n\}$ be a real sequence which converges to l. Show that the sequence

$$y_n = \frac{x_1 + x_2 + \dots + x_n}{n}$$

also converges to l. What about the converse?

Hint: Notice that

$$y_n - l = \frac{x_1 + x_2 + \dots + x_n}{n} - l = \frac{(x_1 - l) + (x_2 - l) + \dots + (x_n - l)}{n}.$$

For the converse take $x_n = (-1)^n$.