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NOTES 
Edited by William Adkins 

The Wave Equation, Mixed Partial 
Derivatives, and Fubini's Theorem 

Asuman Aksoy and Mario Martelli 

In a recent paper [1] the two authors of this note have shown that Fubini's theorem 
on changing the order of integration and Schwarz's lemma on the equality of mixed 
partial derivatives are equivalent when standard assumptions of continuity and differ- 
entiability are made. The proof relies heavily upon the fundamental theorem of inte- 
gral calculus as usually presented in calculus textbooks. Fubini's theorem is regarded 
as intuitive and easy to prove. Therefore, the equivalence established in [1] with a 
straightforward argument provides a simple proof of Schwarz's lemma. 

However, there are many cases in which the standard assumptions from which the 
equality of the mixed partials is derived do not hold. A typical scenario is offered by 
some cases of the one-dimensional wave equation. 

Example 1. In the subset U = (-oo, +oo) x [0, 00) of R2 (= the (x, t)-plane) con- 
sider the initial value problem 

Uxx = Utt (-00 < X < 00, 0 < t < 00), 
u (X, 0) = g(x), (1) 
ut(, 0) = 0, 

where g is the periodic extension to R of the function f(x) = x - x defined for x 
in [-1, 1] (see Figure 1). Since f"(1) = -f"(-l) = 6, the second derivative of g 
fails to exist at each point x, = 2n + 1 for n = 0, 

-1, ..... 
We neglect, for the time 

being, any potential problem arising from this lack of differentiability, and we apply 
D'Alembert's strategy to (1). Thus, we make the substitution rq = x + t, = x - t and 
invoke the chain rule in conjunction with Schwarz's lemma to transform the differential 
equation uxx = u,, into u. = 0. 

0.4 

0. 

-4 -2 4 

-0.2 

-0.4 

Figure 1. The initial position (t = 0) of the wave. 
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We easily derive the solution and revert to the original variables to obtain 

1 
u(x, t) = (g(x + t) + g(x - t)). (2) 

Unfortunately, from the properties of g mentioned before, we see that u,, and ux 
do not exist when (x, t) belongs to F = {(x, t) E U : t > 0, x ? t = ?2n + 1, 
n = 0, 1, ... } (see Figure 2). Therefore, one wonders whether D'Alembert's method 
can in fact be used to solve (1), since formula (2) is obtained assuming the continuity 
and the equality of the mixed partials of u in U. However, it can be shown that the func- 
tion u(x, t) given by (2) is the unique solution of (1). Because D'Alembert's method 
provides it, we are led to the suspicion that Schwarz's lemma can be generalized. 

Figure 2. The lines where the second order partial derivatives of u (x, t) do not exist. 

This brings us to the purpose of our note. We want to achieve three goals: 

* to enlarge the class S of functions for which Schwarz's lemma is valid to include all 
functions having the same properties of u(x, t) given by (2); 

* to enlarge the class F of functions for which Fubini's theorem is valid so that the 
intuitive character of the theorem is preserved; 

* to obtain a simple proof of the equivalence between Fubini's theorem for the class F 
and Schwarz's lemma for the class S. 

All three goals are achieved with Theorem 6. We explicitly state, however, that The- 
orem 6 proves neither Fubini's theorem for the functions of class F nor Schwarz's 
lemma for the functions of class S. It simply establishes the equivalence of the two 
results. The appropriate extension of the fundamental theorem of integral calculus and 
some of its consequences that are needed in the proof of Theorem 6 are furnished by 
Theorems 3 and 5. 

The astute reader will realize that the three goals impose limitations on membership 
in S or F. However, we did not list a proof of the most general result on the equivalence 
between Fubini's theorem and Schwarz's lemma as one of our goals. Moreover, the 
methods we use are very elementary and the generality we achieve is appropriate for 
many situations. Hence, the result we obtain, although not the most general, is worth 
the effort. 
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To understand the direction we should take, we first recall some facts regarding the 
basic equality 

f (x) = f (a) + f'(s) ds. (3) 

It is well known (see, for example, [4]) that there exist functions f : [a, b] -- R that 
are differentiable at each point of [a, b], with f' bounded, but not Riemann integrable 
over [a, b]. Hence, the Riemann integrability of f' is necessary for the validity of 
(3). However, the integrability of f' is not sufficient. For example, the Cantor ternary 
function t is not differentiable at any point of the Cantor middle-third set K in [0, 1], 
and t'(x) = 0 for every x in [0, 1] n Kc, where Kc denotes the complement of K. 
Since K is negligible (i.e., has Lebesgue measure zero) we know that t' is Riemann 
integrable over [0, 1]. However, 

=1 1 - 
t (1) - t :(0) t '(x) dx. 

The question naturally arises: In what cases is equality (3) valid? The continuity of 
f' guarantees (3), but we cannot always count on this property. Theorem 3 provides 
an answer that, although not as general as possible, is sufficient for our purposes. 
There are alternatives. For example, one could use Henstock's integral and establish 
the following result (see [5, Theorem 9.6]): 

Theorem 1. Let F : [a, b] -- R be continuous in [a, b]. Assume that F is differen- 
tiable in [a, b] except possibly on a countable set. Then F' is Henstock integrable and 

J F'(s) ds = F(x) - F(a). 
a 

However, as mentioned earlier, we prefer not to follow this path, for it would force 
us to provide a version of Fubini's theorem in the context of Henstock integration. 
We feel that this version would not have the intuitive appeal that we seek to preserve. 
Hence, we use a less general but more elementary approach. 

In what follows, a subset A of the real line is termed admissible if its closure is at 
most countable. Recall that the closure of A is the union of A and its boundary. When 
A is admissible and f : [a, b] n Ac -- R is continuous, any extension of f to [a, b] 
is continuous except possibly on a countable set. The following result, whose proof is 
elementary, can be found in [3]. 

Theorem 2. Let A be an admissible set, and let f : [a, b] n AC 
_- 

R be bounded and 
continuous. If fE is a bounded extension of f to the interval [a, b], then fE is Riemann 
integrable in [a, b] and the value of the integral is independent of the extension. 

We now obtain a generalization of the fundamental theorem of integral calculus that 
is suitable for our purposes. 

Theorem 3. Let A be an admissible set, and let f : [a, b] n AC -+ R be bounded and 
continuous. Extend f to the entire interval [a, b] so that the extension fE is bounded, 
and define F : [a, b] -- R by 

F(x) =-- fE(s) ds. 
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Then F is continuous on [a, b], and F'(x) = f (x) holds for every x in [a, b] n Ac. 

Proof Theorem 2 ensures the Riemann integrability of fE and the independence of F 
from the choice of extension. Standard properties of the Riemann integral imply that 

IF(x) - F(y) l < Mix - yl 

where M = sup{fE(x) : x E [a, b]}. Hence F is continuous. 
To establish the equality F'(x) = f(x) in [a, b] n Ac, let xo be a point of the set 

[a, b] n Ac. Then f is continuous at xo. Hence, for each r > 0 there exists d with 
0 < IdI < r such that 

f(xo)-r < f(x) f(xo)+ r 

whenever x lies in (xo - Idl, xo + Idl). Consider the extension of f to [a, b] that has 
f(x) = f(xo) for all x in A, and denote it again by f. Integrating the functions in- 
volved in the foregoing inequality between xo and xo + d and dividing by d, we obtain 
(regardless of whether d is positive or negative) 

F (xo + d) - F(xo) 1 xo+d f (xo) - r f(s) ds < f (xo) + r. (4) 

Letting r 
-- 

0 we see that F'(xo) = f (xo). U 

In addition to Theorem 3 we need a suitable extension of the second part of the fun- 
damental theorem of integral calculus, the part that allows one to evaluate a definite 
integral once an antiderivative of its integrand is found. Recall that in its proof one 
needs the property (derived from the mean value theorem) that two continuous func- 
tions f, g : [a, b] -- R such that f'(x) = g'(x) for all x in (a, b) differ by a constant. 
We now extend this result to functions that may not be differentiable at all points of 
(a, b). 

Theorem 4. Let f, g : [a, b] -- R be continuous, and let A be an admissible set. If f 
and g are differentiable with f'(x) = g'(x) for each x in (a, b) n Ac, then f - g is 
constant. 

Proof Let h = f - g. Clearly h([a, b]) = h(A) U h([a, b] n Ac). By known theo- 
rems (see, for example, Lemmas 2 and 3 in [6]), neither h(A) nor h([a, b] n Ac) has 
interior points. Hence, h is constant. N 

Let A be admissible, and let f : [a, b] n Ac --+ R be bounded and continuous. We 
call a continuous function G : [a, b] -- R that is differentiable in (a, b) n Ac and has 
the property that G'(x) = f(x) for all x in (a, b) n Ac a generalized antiderivative 
of f. By Theorem 3 the set of generalized antiderivatives of f is not empty. Moreover, 
from Theorems 3 and 4 we derive the following important result: 

Theorem 5. Let A be an admissible set, and let f : [a, b] n Ac - R be bounded and 
continuous. Extend f to the entire interval [a, b] so that the extension is bounded, and 
denote this extension by fE. If G is any generalized antiderivative of f, then 

fE(x) dx = G (b) - G(a). 
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Proof Let 

F(x)= f fE(s) ds. 

By Theorem 3, F is a generalized antiderivative of f and 

J fE(x) dx = F(b). 

Let G be another generalized antiderivative of f. By Theorem 4, G - F is constant in 
[a, b]. From F(a) = 0 we obtain G(b) - G(a) = F(b). U 

We are now ready to obtain the equivalence between Fubini's theorem and Schwarz's 
lemma in a context where continuity may fail in certain subsets. Introducing some con- 
venient notation will expedite the discussion. 

Let U be an open set in R2, and let ai : [0, 1] -- U (i = 1, 2,....) be a countable 
collection of continuously differentiable functions. Define F = Ui fi, where Fi is the 
image of ai. Assume that F is closed and locally finite (i.e., each point of F has a 
neighborhood that intersects only finitely many of the sets Fi) and that the intersection 
of r with any vertical or horizontal line is at most countable. Denote by BC(U n Fc, R) 
the vector space of functions g : U -+ R that are bounded and continuous in each 
bounded subset of U n Fc. Consider the following two statements: 

(i) (Fubini's theorem) If g E BC(U n Fc, R) and [a, b] x [c, d] C U, then 

/c g(x, y) dy dx = / g(x, y) dx dy. (5) 

(ii) (Schwartz's lemma) If f E C(U, R), f,, f, fy, E BC(U n Fc, R), and fx is 
continuous with respect to the second variable, then f, is continuous with re- 
spect to the first variable, fyx, exists in U n Fc, and 

fyx (x, y) = fy(x, y) 

for all (x, y) in U n c. 

Theorem 6. The statements (i) and (ii) are equivalent. 

Proof To see that (i) =- (ii) consider a point (x, y) in U. Since U is open we can find 
r > 0 such that the open disk D of radius r centered at (x, y) is contained in U. Fix 
a point (a, c) in D. Since fxy belongs to BC(U n Fc, R) and fx is continuous with 
respect to the second variable, we obtain that fx is a generalized antiderivative of fxy. 
Hence, a straightforward application of Theorem 5 gives 

f(x, y) - f(x, c) = f (x, v) dv. fx(x, y) - fx (x, c) --fx,(x, v) d v. 

Moreover, since f is in C(U, R) and fx(x, y) belongs to BC(U n FC, R), the same 
theorem implies that 

Sfu 
(u, y)du = f (x, y) - f (a, y) 
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and 
x 

Sf, (u, c)du = f(x, c) - f(a, c). 

Therefore, 

Sfc fuv(u, 
v) d du = f (x, y) - f(a, y) - f(x, c) + f(a, c). 

By (i) the order of integration can be reversed to give 

I 
fax 

f(u,v)dudv 
= f (x, y) - f (a, y) - f (x, c) + f (a, c). (6) 

To (6) we now apply Theorem 3 twice. First we differentiate both sides with respect to 
y to obtain 

Sfuy(u, 
y)du = 

y(f (x, y) - f (a, y)). 

Since f is in C(U, R) and fy(x, y) belongs to BC(U n Fc, R), the right-hand side 

gives fy(x, y) - df(a, y)/dy. Hence, f, is continuous with respect to the first vari- 
able. We then differentiate with respect to x. On the left-hand side we obtain fy (x, y) 
and on the right-hand side fyx (x, y). Hence, fyx,(x, y) exists and 

fy x (x, y) = fxy (x, y) 

for all (x, y) in U n Fc. 
To see that (ii) =- (i), let g belong to BC(U n 1c, R). Extend g to U by setting 

g(x, y) = 1 for (x, y) in I, and denote the extension by gE. Given a closed rectangle 
Q = [a, b] x [c, d] we can choose bounded open intervals I and J such that Q C 
V = I x J C U. Define h, f : V -- R by 

h(x, y) = jgE(x, v)dv, f (x, y) = j h(u, y) du. 

Theorem 3 and the properties of gE ensure that h is a member of BC(V n F1, R) and 
is continuous with respect to the second variable. Moreover, f belongs to C(V, R). In 
fact, 

If(x + w, y + z) - f(x, y)I If(x + w, y + z) - f(x + w, y)l 

+ I f(x + w, y) - f(x, y)I 
< M(lz(x + w - a)l + Iw(y - c)l), 

where M = sup{IgE(x, y)I : (x, y) E V}. From Theorem 3 we learn that fx = h and 

h, = g in V n 1C. Hence fxy 
= h, there, and both fx and fxy are in BC(V n Fc, R). 

Proving that fy is a member of BC(V n c, R) is a bit more delicate. First notice 
that the intersection of each vertical line with I is a closed set that is at most countable. 
Hence, whenever (x, y) does not lie in F, we can find an open neighborhood of (x, y) 
in which h is continuous and has a continuous partial derivative with respect to y. 
Thus, we can use the mean value theorem to show that fy is continuous at every point 
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of V n F'. Moreover, f, is bounded in V n Ae, since J is a bounded open interval and 

h, belongs to BC(V n Fc, R). Therefore f, is in BC(V n 1', R). 
By (ii) fy is continuous with respect to the first variable, fyx, exists in V n 1c, and 

fy (X, y) = fxy(x, y) = g(x, y) there. The result now follows easily from Theorem 5. 
In fact, since fx is a generalized antiderivative of fxy with respect to y and f is a 
generalized antiderivative of fx with respect to x, we obtain 

I b d db 
a g(x, y) dy dx = 

fb(xy(x, y) dy dx 

= f (b, d) - f (a, d) - f (b, c) + f (a, c). 

For similar reasons (namely, that fy is a generalized antiderivative of fyx with respect 
to x and f is a generalized antiderivative of f, with respect to y) we conclude that 

f fdfb d 

g(x, y) dy dx 
-- f=yx(x, y) dx dy 

= f (b, d) - f (b, c) - f (a, d) + f (a, c). 

Hence, 

f g(x, y) dy dx = f g(x, y) dx dy. 

We conclude this paper with two important remarks. 

Remark 1. Let us return to D'Alembert's method for solving problem (1). First, we 
observe that Fubini's theorem for the class F of functions described by (i) is intuitive 
and easy to prove. It is natural to consider solutions of (1) that belong to F. By The- 
orem 6, Schwarz's lemma is valid for the class S of (ii). We can easily check that the 
function u(x, t) provided by (2) satisfies all assumptions of (ii). Hence, the application 
of D'Alembert's method to problem (1) is legitimate. 

Remark 2. Theorem 6 can be generalized in many ways. For example, in [2] the au- 
thors obtained it from the point of view of Schwartz distributions. However, the most 
intriguing possibility is probably the one based on the use of the Henstock integral. 
Many experts today advocate the replacement of the Riemann integral with the Hen- 
stock integral in regular calculus courses. One rationale for this is the well-known 
fact that the Henstock integral is more general than either the Riemann integral or the 
Lebesgue integral. Another is that Henstock integration does not require any measure 
theory. A third is the fundamental property expressed by Theorem 1. 

In a recent paper E. Talvila [7] gave necessary and sufficient conditions for differ- 
entiating under the integral sign using the Henstock integral. The equivalence holds 
(see [7, Theorem 4]) when for almost all y in [c, d] the function f(., y) is absolutely 
continuous in the generalized sense (i.e., belongs to the class ACG, for almost all y in 
[c, d]). Talvila mentions that the class ACG. is contained in the class of functions that 
are differentiable almost everywhere and properly contains the class of functions that 
are differentiable except possibly on a countable set. In particular, ACG, encompasses 
the class S. 

We have already explained our reasons for choosing S and for using the Riemann 
integral. We should add that problems in the solution of the wave equation (as in (1)) 
to which Theorem 6 can be applied do not require any greater generality than this. 
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DEDICATION. This paper is dedicated to the memory of our dear friend Barbara Beechler. 

REFERENCES 

1. A. Aksoy and M. Martelli, Mixed partial derivatives and Fubini's theorem, College Math. J. 33 (2002) 
126-130. 

2. D. D. Ang, K. Schmitt, and L. K. Vy, A multidimensional analogue of the Denjoy-Perron-Henstock- 
Kurzweil integral, Bull. Belg. Math. Soc. Simon Stevin 4 (1997) 355-371. 

3. M. W. Botsko, An elementary proof that a bounded a.e. continuous function is Riemann integrable, this 
MONTHLY 65 (1988) 249-252. 

4. C. Goffman, Real Functions, Rinehart, New York, 1953. 
5. R. A. Gordon, The Integrals ofLebesgue, Denjoy, Perron, and Henstock, Graduate Studies in Mathematics, 

vol. 4, American Mathematical Society, Providence, 1994. 
6. M. Martelli and M. Dang, The derivative of a continuous nonconstant function, Appl. Math. Let. 7 (1994) 

81-84. 
7. E. Talvila, Necessary and sufficient conditions for differentiability under the integral sign, this MONTHLY 

108 (2001) 544-549. 

One Observation behind 
Two-Envelope Puzzles 

Dov Samet, Iddo Samet, and David Schmeidler 

1. TWO PUZZLES ON THE THEME "WHICH IS LARGER?" In two famous 
and popular puzzles a participant is required to compare two numbers of which she is 
shown only one. Although the puzzles have been discussed and explained extensively, 
no connection between them has been established in the literature. We show here that 
there is one simple principle behind these puzzles. In particular, this principle sheds 
new light on the paradoxical nature of the first puzzle. 

According to this principle the ranking of several random variables must depend on 
at least one of them, except for the trivial case where the ranking is constant. Thus, in 
the nontrivial case there must be at least one variable the observation of which conveys 
information about the ranking. 

A variant of the first puzzle goes back to the mathematician Littlewood [7], who 
attributed it to the physicist Schritdinger. See [6], [3], [2] and [1] for more detail on the 
historical background and for further elaboration on this puzzle. Here is the common 
version of the puzzle, as first appeared in [5]: 

To switch or not to switch? There are two envelopes with money in them. 
The sum of money in one of the envelopes is twice as large as the other 
sum. Each of the envelopes is equally likely to hold the larger sum. You are 

assigned at random one of the envelopes and may take the money inside. 
However, before you open your envelope you are offered the possibility of 

switching the envelopes and taking the money inside the other one. It seems 
obvious that there is no point in switching: the situation is completely symmetric 
with respect to the two envelopes. The argument for switching is also simple. 
Suppose you open the envelope and find a sum x. Then, in the other envelope 
the sum is either 2x or x/2 with equal probabilities. Thus, the expected sum is 

April 2004] NOTES 347 


	Article Contents
	p. 340
	p. 341
	p. 342
	p. 343
	p. 344
	p. 345
	p. 346
	p. 347

	Issue Table of Contents
	The American Mathematical Monthly, Vol. 111, No. 4 (Apr., 2004), pp. 281-376
	Front Matter
	Alice through Looking Glass after Looking Glass: The Mathematics of Mirrors and Kaleidoscopes [pp. 281-298]
	Stochastic Apportionment [pp. 299-307]
	Evaluation of Ill-Behaved Power Series [pp. 308-321]
	Fermat's Last Theorem for Rational Exponents [pp. 322-329]
	Two Exams Taken by Ramanujan in India [pp. 330-339]
	Notes
	The Wave Equation, Mixed Partial Derivatives, and Fubini's Theorem [pp. 340-347]
	One Observation behind Two-Envelope Puzzles [pp. 347-351]
	On the "Reducibility" of Arctangents of Integers [pp. 351-354]
	Kepler's First Law: A Remark [pp. 355-356]
	An Elementary Proof of Krull's Intersection Theorem [pp. 356-357]
	Lattices in ℂ and Finite Subsets of a Circle [pp. 357-360]

	Problems and Solutions
	Problems
	11075 [p. 361]
	11076 [p. 361]
	11077 [p. 361]
	11078 [p. 361]
	11079 [pp. 361-362]
	11080 [p. 362]
	11081 [p. 362]

	Solutions
	A Sequence of Composite Numbers: 10947 [pp. 362-363]
	A Sticky Problem: 10951 [pp. 363-364]
	The Tower of Stanford: 10956 [pp. 364-365]
	Sliding Dominoes: 10960 [pp. 365-366]
	A Nontrivial Zero.: 11020 [pp. 366-367]
	A Limit Problem: 11024 [pp. 367-368]


	Reviews
	Review: untitled [pp. 369-372]
	Review: untitled [pp. 373-375]

	Back Matter [pp. 376-376]



