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Abstract

In the topos approach to quantum physics, a functor known as the spec-

tral presheaf of a von Neumann algebra plays the role of a generalized

state space. Mathematically, the spectral presheaf also provides an inter-

esting generalization of the Gelfand spectrum, which is only defined for

abelian von Neumann algebras, to the nonabelian case. A partial dual-

ity result, analogous to Gelfand duality, exists for this spectral presehaf.

This dissertation will begin to explore generalizations of the notion of

a spectral presheaf and work towards a duality theory for certain non-

distributive lattices. Specifically, we will define the spectral presheaf of

an orthomodular lattice, which is a generalization of the Stone space of

a Boolean algebra, and prove that it is a complete invariant: two ortho-

modular lattices are isomorphic if and only if their spectral presheaves

are. The analogous result also holds for complete orthomodular lattices.

We will map the elements of a complete orthomodular lattice L to the

algebra of clopen subobjects of the spectral presheaf of L; using the right

adjoint of this map, we show that these clopen subobjects, modulo an

equivalence relation, form a complete lattice isomorphic to L. This can

be seen as a generalization of Stone’s representation theorem for Boolean

algebras. We conclude by discussing some other possible generalizations

of the spectral presheaf, including Lie groups.



Contents

1 Introduction 1

1.1 Motivation and results . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 State spaces in classical and quantum physics . . . . . . . . . . . . . 2

1.3 The topos approach and the spectral presheaf . . . . . . . . . . . . . 4

1.4 Orthomodular lattices and quantum logic . . . . . . . . . . . . . . . . 7

1.5 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2 Category Theory Background 10

2.1 Categories, functors, and natural transformations . . . . . . . . . . . 10

2.2 Functor categories . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.3 Topoi . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

3 Lattice Theory Background 17

3.1 Posets and lattices . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

3.2 Ortholattices and orthomodular lattices . . . . . . . . . . . . . . . . . 18

3.3 Boolean algebras . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

3.4 Stone duality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

3.4.1 Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

4 Distributive substructure of an orthomodular lattice 26

4.1 The context category B(L) . . . . . . . . . . . . . . . . . . . . . . . . 28

4.2 The partial orthomodular lattice Lpart . . . . . . . . . . . . . . . . . 32

4.3 Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

5 The Spectral Presheaf of an Orthomodular Lattice 36

5.1 Defining the spectral presheaf . . . . . . . . . . . . . . . . . . . . . . 36

5.1.1 Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

5.2 Maps between spectral presheaves . . . . . . . . . . . . . . . . . . . . 38

5.2.1 Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

i



5.3 The category of D-valued presheaves . . . . . . . . . . . . . . . . . . 43

5.4 The category of C-valued copresheaves . . . . . . . . . . . . . . . . . 47

5.5 Dual equivalences and Stone duality . . . . . . . . . . . . . . . . . . . 50

5.6 Presheaf and copresheaf isomorphisms . . . . . . . . . . . . . . . . . 53

5.7 Spectral presheaf isomorphisms . . . . . . . . . . . . . . . . . . . . . 56

5.8 Impact of Theorem 5.7.3 . . . . . . . . . . . . . . . . . . . . . . . . . 66

6 The Spectral Presheaf of a Complete Orthomodular Lattice 68

6.1 Complete orthomodular lattices and their Boolean substructure . . . 69

6.2 Stonean spaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

6.3 Spectral presheaf isomorphisms . . . . . . . . . . . . . . . . . . . . . 75

7 Representing a Complete Orthomodular Lattice 78

7.1 Clopen subobjects of the spectral presheaf . . . . . . . . . . . . . . . 78

7.2 Bi-Heyting algebras . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

7.3 Daseinisation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

7.4 The adjoint of daseinisation . . . . . . . . . . . . . . . . . . . . . . . 89

7.5 Representing L in the clopen subobjects of its spectral presheaf . . . 91

8 Conclusion: Generalizing the Spectral Presheaf 96

8.1 Compact Lie groups . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

8.2 Sober spaces and spatial frames . . . . . . . . . . . . . . . . . . . . . 98

Bibliography 99

ii



Chapter 1

Introduction

1.1 Motivation and results

The spectral presheaf is a key object in the topos approach to quantum physics [9],

where it serves as a generalized state space for a quantum system, an analogy to

the state space of a classical system. The construction of the spectral presheaf is of

mathematical interest as well, as it provides a new notion of spectrum for nonabelian

von Neumann algebras. It generalizes the Gelfand spectrum, which is only defined for

abelian von Neumann algebras, and more generally, abelian C⇤- and Banach algebras.

There is a dual equivalence between abelian von Neumann algebras and their Gelfand

spectra; an partial duality type result exists for the spectral presheaf as well. Two

von Neumann algebras with no type I2 summand have isomorphic spectral presheaves

if and only if they are isomorphic as weakly closed Jordan ⇤-algebras [11].

The spectral presheaf of an orthomodular lattice. These results strongly sug-

gest that we consider generalizations of the spectral presheaf to other noncommutative

and nondistributive structures, in particular those that would yield potential gener-

alizations of classical dualities. This direction has never been explored, and in this

dissertation we take the first steps to generalize the spectral presheaf beyond the case

of operator algebras. Concretely, the notion of a spectral presheaf is generalized to

orthomodular lattices, which are a nondistributive analog of Boolean algebras. Ortho-

modular lattices have a connection to quantum logic and to von Neumann algebras;

the projection lattice of a von Neumann algebra is a complete orthomodular lattice.

The first main result is Theorem 5.7.3, which states that two orthomodular lattices

L and M are isomorphic if and only if their spectral presheaves ⌦(L) and ⌦(M) are

isomorphic. The analogous result also holds for complete orthomodular lattices, see

Theorem 6.3.6. These results show that the spectral presheaf is a complete invariant
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of an orthomodular lattice. Our results can be seen as steps towards a generalization

of Stone duality to orthomodular lattices. Missing from a full duality result is an

independent characterization of the category of spectral presheaves of orthomodular

lattices. Currently, we regard them as presheaves over posets with values in Stone

spaces (Stonean spaces in the complete case), but this category contains more objects

than those of the form ⌦(L) for some orthomodular lattice L.

An analog of the Stone representation theorem. One may wonder if the Stone

representation theorem, which states that each Boolean algebra is isomorphic to the

algebra of clopen subsets of its Stone space [20], also has a generalization for or-

thomodular lattices. To this end, we consider clopen subobjects (subfunctors) of

the spectral presheaf of a complete orthomodular lattice and show that they form

a complete bi-Heyting algebra. We cannot expect to have a lattice isomorphism

from a nondistributive orthomodular lattice L to the distributive bi-Heyting algebra

Subcl⌦(L) of clopen subobjects of its spectral presheaf. However, we define an injec-

tive, join-preserving map �o : L ! Subcl⌦(L) and its meet-preserving right adjoint

✏ : Subcl⌦(L) ! L and show that Subcl⌦(L), modulo an equivalence relation defined

in terms of ✏, is a complete lattice isomorphic to L. This is Theorem 7.5.4, our analog

of Stone’s representation theorem for orthomodular lattices.

These results show that it is of interest to generalize the construction of the spec-

tral presheaf to further nonabelian and nondistributive structures. The techniques

developed here will be useful in such future explorations. In the concluding section,

we briefly discuss some potential generalizations.

In the rest of this introductory section, we first sketch the physical motivation

behind the topos approach to quantum theory, which provides a new mathematical

formalism to describe quantum systems. We then briefly describe some aspects of

the topos approach including its main tool, the spectral presheaf of a von Neumann

algebra. Finally, we consider quantum logic and its relation to orthomodular lattices

in order to justify our choice of orthomodular lattices as a first generalization of the

spectral presheaf.

1.2 State spaces in classical and quantum physics

In classical physics, including mechanics, electromagnetism, and relativity theory, any

physical system can be described by its state space. The state space can be thought

of as a set, with some additional structure, containing all possible states that a system
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Figure 1.1: A classical state space S, for which observable A is represented by function
fA : S ! R.

can be in. Measurable physical properties of the system, such as position, momentum,

energy, etc., are called observables. Observables can be represented by functions from

the state space to the real numbers; these functions map each state to the value of

the observable when the system is in that state. A graphical interpretation of this

can be seen in Figure 1.1, where fA is the function corresponding to observable A.

In classical physics, any observable of a given system can be measured concurrently

with any other observable; when a physical system is in some given state s, it is

possible to simultaneously know the value of every one of its observables. These values

are simply the numbers fA(s), for A varying over the set of observables. Though this

may seem quite obvious, such statements do not hold for quantum systems.

During the late 19th and early 20th centuries, various researchers began to no-

tice that certain unexplainable e↵ects did not fit in with the traditional concepts

of classical physics; these results are summarized in the first chapter of [25]. While

Young’s 1802 double-slit experiment demonstrated the wave-like properties of elec-

tromagnetic radiation, studies in the late 1800s of black-body radiation and atomic

spectra, as well Einstein’s 1905 investigation of the photoelectric e↵ect, all indicated

that electromagnetic radiation also behaved as though it consisted of particles. Fur-

ther di↵raction experiments indicated that quantum particles, such as electrons, also

exhibited wave-like behavior. This wave-particle duality contradicted many of the

accepted assumptions of classical physics. For example, wave-particle duality as in-

terpreted mathematically by the Heisenberg uncertainty principle indicates that it is

not possible to know both the position and momentum of a quantum particle at the

same time.

Such results suggested that classical physics was not su�cient to describe certain

physical phenomena, and led to the development of quantum theory and the Hilbert

space formalism. This mathematical formalism, originally presented in full by von

Neumann in 1932 [32], replaces the classical state space picture with the more abstract

Hilbert space H, a complex linear space with an inner product. States are unit

vectors in H, or, more generally, density matrices. Observables are represented by
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linear operators A : H ! H. In general, an observable A does not have a definite

value in a given state, unless that state happens to be an eigenstate of A. However,

definite values arise when measurements are taken. The eigenvalues of a self-adjoint

operator A are the possible outcomes of the measurement, and when the measurement

is made the state changes into the eigenstate corresponding to the outcome of the

measurement.

For quite a while, the question remained open whether quantum theory could be

explained by, or absorbed into, an underlying classical state space theory, in analogy

to the step from thermodynamics to statistical mechanics. The impossibility of such

a construction was shown explicitly by Kochen and Specker in 1967; they proved that

a quantum system cannot have a state space that is a set [23].

The Hilbert space formalism has served as the mathematical underpinning of

quantum mechanics since its introduction by von Neumann, and it is extremely useful

in describing many processes of quantum systems. However, one drawback of the

Hilbert space formalism is that it does not actually describe quantum systems as

they are, but merely gives predictive probability distributions for measurements. An

external observer and the measurement that observer performs often play a central

role. For quantum mechanics in the laboratory, where the quantum systems are very

small, such a description may be su�cient. However, when considering a theory of

quantum gravity or quantum cosmology, systems can be as large as the universe,

and it makes no sense to talk about measuring such systems. Thus, if one hopes to

develop a justifiable theory of quantum gravity or quantum cosmology, it is reasonable

to seek an alternate formalism of quantum physics, one which doesn’t depend on

measurements in a fundamental way for its interpretation. This is what the topos

approach seeks to do, and one central aspect is a generalized state space formulation,

in analogy to classical physics. Of course, one must take into account the obstacle

provided by the Kochen-Specker theorem.

1.3 The topos approach and the spectral presheaf

The topos approach considers a generalized state space of a quantum system that is

not a set, but, being an object in a topos, still has some desirable set-like properties.

This generalized state space is not subject to the Kochen-Specker theorem, but at

the same time can still serve the same purpose as a state space. We now give a brief

overview of this generalized state space, called the spectral presheaf of a von Neumann

algebra, and the intuition behind it, and mention some of its important properties.
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This discussion is not mathematically rigorous, but is intended to introduce and

explain the intuition behind the spectral presheaf.

The spectral presheaf was originally defined in [19], and subsequently explored in

[5], [16], and [6]. A comprehensive overview of the topos approach can be found in

[9], and a more complete description of the spectral presheaf and its role in quantum

physics can be found in [10].

As in the Hilbert space formalism, observables are represented by self-adjoint

operators in a Hilbert space. Two self-adjoint operators commute when the two

observables they represent are co-measurable, implying that their values can be known

simultaneously. For example, a quantum particle’s total spin and its spin in a certain

coordinate direction can be known simultaneously. Two self-adjoint operators do not

commute when the observables are not co-measurable and their values cannot be

known simultaneously; an example is a quantum particle’s position and momentum.

The bounded linear operators of a given Hilbert spaceH, including the self-adjoint

ones that correspond to observables, form an algebra B(H). More generally, one can

consider a von Neumann algebra, which is a weakly closed subalgebra of B(H). The

algebra B(H) itself is a von Neumann algebra and is not abelian unless H is one-

dimensional because not all observables are co-measurable. However, B(H) has von

Neumann subalgebras that are abelian. Within such an abelian subalgebra, all self-

adjoint operators commute and thus all observables of the abelian subalgebra are

co-measurable. For this reason, such an abelian subalgebra is sometimes called a

classical context, because observables act as they would in a classical system.

These abelian subalgebras can be ordered by inclusion to form a partially ordered

set whose elements are the classical contexts of the quantum system; we call this

poset the context category. For each classical context, the associated observables

can be assigned values simultaneously because they are co-measurable; in this way,

it is possible to get a space of ‘local valuations,’ also called local states, on classical

contexts. In order to obtain some sort of global state space, it only remains to combine

these local valuations in some way. This is precisely what the spectral presheaf does.

The spectral presheaf ⌃(N ) of von Neumann algebra N is a contravariant func-

tor with domain the context category of N . The functor maps each abelian von

Neumann subalgebra V of N to its Gelfand spectrum, which is the set of algebra

homomorphisms from V to C with a certain topology that makes it into a compact

Hausdor↵ space. The Gelfand spectrum can be interpreted as the set of local valua-

tions on the classical context V which assign values to observables of V , a ‘local state

space’ of sorts. To each inclusion iV 0V : V 0 ,! V of abelian subalgebras, the spectral
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presheaf assigns the canonical restriction map from ⌃(N )
V
to ⌃(N )

V 0 , which acts as

� 7! �|V 0 . This map is continuous, surjective, closed, and open. This is how the local

state spaces are linked together.

Most importantly, while the spectral presheaf provides a sort of global state space,

it is not a set. It gives a way of using local spaces of valuations to construct a sort

of global state space for all of N = B(H) in a way that doesn’t violate the Kochen-

Specker theorem. In fact, the Kochen-Specker theorem is equivalent to the fact that

the spectral presheaf has no global sections [19, 16], which means that none of the

local valuations can be extended to a global one. Instead of a set, the spectral presheaf

is a set-valued functor, whose codomain consists of topological spaces linked together

by continuous maps. This functor is in fact an object in a topos, specifically the topos

of presheaves over the context category of B(H). A topos is a special kind of category

whose objects have several set-like properties.

One can show that if N and M are two von Neumann algebras with no type

I2 summand such that there is an isomorphism between their spectral presheaves,

then there is a Jordan ⇤-isomorphism between N and M [11]. This shows how much

algebraic information the spectral presheaf of a von Neumann algebra encodes.

In classical physics, propositions about the values of observables are represented

by subsets of the state space. For example, consider the proposition “the position

observable, denoted Q, has a value between �1 and 5 (in suitable units)”, which

for short we will denote “Q"[�1, 5]”, and let fQ be the real-valued function on the

state space representing position. Then the subset f (�1)
Q ([�1, 5]) of the state space

represents this proposition. As all objects in a topos have subobjects, one can also talk

about the subobjects of the spectral presheaf. Via a process known as daseinisation,

from a proposition such as “Q"[�1, 5]”, one can construct a subobject of the spectral

presheaf that is a ‘best approximation’ to this proposition. In this way the spectral

presheaf captures one of the most important properties of a classical state space, the

existence of subsets corresponding to propositions.

Beyond its use as a state space in quantum physics, the spectral presheaf is an in-

teresting mathematical structure itself. The spectral presheaf utilizes the well-known

mathematical duality between abelian von Neumann algebras and their Gelfand spec-

tra. It also provides a new sort of spectrum and a partial duality result for nonabelian

von Neumann algebras, associating with it not a simple Gelfand spectrum (which does

not exist for nonabelian algebras), but a collection of Gelfand spectra linked together

by continuous maps. The notion of a spectrum of a nonabelian operator algebra and
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duality results, even partial ones, are of interest in noncommutative geometry and

potentially in other areas of mathematics.

The use of abelian subalgebras, called contexts, and a classical duality for each

context, suggest that the idea of a spectral presheaf may have broader applications

beyond representing a generalized state space of a quantum system. This dissertation

begins to explore such a notion of generalized spectral presheaves, beginning with the

spectral presheaf of an orthomodular lattice.

1.4 Orthomodular lattices and quantum logic

As we saw in the previous section, in classical physics propositions of the form “ob-

servable A has a value in the Borel set �” are represented by (Borel) subsets of the

state space. The Borel subsets form a complete Boolean algebra, so one can take the

conjunction ^, disjunction _, and negation ¬ of these propositions. In particular,

conjunction and disjunction of propositions distribute over each other.

However, in the Hilbert space formalism of quantum theory, a similarly straight-

forward kind of algebra of propositions does not exist. As originally proposed by

Birkho↵ and von Neumann in 1936, a proposition about a quantum system corre-

sponds to a closed linear subspace of a Hilbert space [2]. Equivalently, it corresponds

to the projection operator that projects onto that subspace. Conjunction, disjunction,

and negation can be defined for these propositions as the intersection, closure of span,

and orthogonal complement of the corresponding subspaces. However, these opera-

tions do not satisfy distributivity, meaning that quantum logic is nondistributive and

cannot be modeled by a Boolean algebra as classical logic can. Instead, the closed

subspaces of a separable Hilbert space with these operations form an orthomodular

lattice, a nondistributive analog of a Boolean algebra [27].

A von Neumann algebra can be seen as a mathematical abstraction of the algebra

of bounded operators on a Hilbert space, and its lattice of projections is an abstrac-

tion of the lattice of projections of a Hilbert space [10]. This lattice is in fact an

orthomodular lattice, and is closely connected to the interpretation of quantum logic

given above where projections correspond to propositions about the quantum system

[22]. In considerations of the spectral presheaf of a von Neumann algebra, its lattice

of projections plays an essential role.

The spectral presheaf of an orthomodular lattice is in this sense a natural gen-

eralization of the spectral presheaf of a von Neumann algebra, as we will consider
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arbitrary orthomodular lattices instead of only the orthomodular lattices of projec-

tions of a von Neumann algebra. Exploring the spectral presheaf of an orthomodular

lattice can yield an alternate interpretation of quantum logic that is similar to the

spectral presheaf interpretation of the state space of a quantum system given by the

topos approach.

We will prove in Section 5 that orthomodular lattices are isomorphic if and only if

their spectral presheaves are (Theorem 5.7.3). This shows that the alternative ‘state

space picture’ of quantum logic is at least as rich as the traditional orthomodular

lattice representation. Thus, when considering spectral presheaves instead of ortho-

modular lattices, no information is lost. These results lend further support to one of

the central claims of the topos approach, that the notion of a spectral presheaf is of

critical value for an alternate formalism of quantum physics.

1.5 Overview

Chapter 2 provides the necessary background in category theory. Of particular rel-

evance is Section 2.2, which introduces morphisms between functors with di↵erent

domains but a common codomain. These definitions and results will play a central

role in our arguments about morphisms between spectral presheaves, also seen in Sec-

tions 5.2–5.4. Chapter 3 presents some basic results on lattice theory, while Chapter

4 presents some non-standard lattice constructions such as the context category of an

orthomodular lattice (Section 4.1) and partial orthomodular lattices (Section 4.2).

In Chapter 5, we define the spectral presheaf of an orthomodular lattice, and after

exploring some categorical machinery, prove that two orthomodular lattices are iso-

morphic if and only if their spectral presheaves are isomorphic (Theorem 5.7.3). This

result is stronger than the corresponding result for von Neumann algebras, where

an isomorphism between spectral presheaves gives only a Jordan ⇤-isomorphism be-

tween the algebras. In Chapter 6, we restate the results of Chapter 5 for complete

orthomodular lattices; the relevant classical duality is that between complete Boolean

algebras and Stonean spaces.

In Chapter 7, we consider clopen subobjects of the spectral presheaf of a complete

orthomodular lattice, defined in analogy to the clopen subsets of a Stonean space.

We prove that the clopen subobjects form a bi-Heyting algebra and present a map

�o : L ! Subcl⌦(L) called daseinisation from a complete orthomodular lattice L to the

bi-Heyting algebra Subcl⌦(L) of clopen subobjects of its spectral presheaf. This map

8



is injective and preserves joins. Using the right adjoint ✏ : Subcl⌦(L) ! L of daseini-

sation, we define an equivalence relation on Subcl⌦(L), equip the set E of equivalence

classes with a meet operation, and show that E becomes a complete lattice that is

isomorphic to the orthomodular lattice L. This generalization of Stone’s representa-

tion theorem to complete orthomodular lattices, presented as Theorem 7.5.4, is the

second main result of this dissertation.

Chapter 8 concludes by discussing some other possible generalizations of the spec-

tral presheaf and states some goals of future work.
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Chapter 2

Category Theory Background

2.1 Categories, functors, and natural transforma-
tions

Basic familiarity with categories, functors, and natural transformations will be as-

sumed. For those not familiar with these concepts and others discussed in this sub-

section, [24] and [26] provide good references. We now briefly discuss the notation

that will be used throughout.

The collection of objects of a category C will be denoted Ob(C), while its collec-

tion of morphisms will be Morph(C); the terms ‘morphism’ and ‘arrow’ will be used

interchangeably. The collection of morphisms in C from object A to object B will

be written C(A,B). Familiarity with the notions of monic arrow, opposite category

Cop, small category, subcategory, faithful subcategory, and full subcategory will also

be assumed.

The action of a functor F : C ! D on an object A will be denoted FA, and

occasionally as F (A) when the latter notation provides a much greater degree of

clarity. The action of (covariant) functor F on an arrow a : A ! B will be denoted

F (a) : FA ! FB. A contravariant functor F : C ! D is a functor from C to Dop,

or, equivalently, a functor from Cop to D. These two definitions of a contravariant

functor will be used interchangeably. Familiarity with full functors, faithful functors,

and inclusion functors will be assumed.

A natural transformation from functor F : C ! D to functor G : C ! D will be

written as ⌧ : F ) G, as will often be depicted graphically as

10



F

G

⌧C D

The component of this natural transformation at object A 2 C will be denoted ⌧A :

FA ! GA. Every functor has an associated identity natural transformation, of which

each component is simply an identity arrow in the codomain category.

We now proceed to define some additional categorical concepts that will play an

important role in our investigations.

Definition 2.1.1. A presheaf is a contravariant functor with codomain Set, the

category whose objects are all small sets and whose morphisms are all functions

between those sets.

Dual to the notion of a presheaf is that of a copresheaf.

Definition 2.1.2. A copresheaf is a covariant Set-valued functor.

Though the traditional definitions of a presheaf and a copresheaf, above, require that

they be Set-valued, we often instead consider presheaves and copresheaves where

the codomain is not quite Set, but rather some collection of sets with additional

structure (i.e., a certain topology) and structure-preserving maps between them (i.e.,

continuous maps). There is always a forgetful functor from these more structured

categories into Set, however, and postcomposing any presheaf that is not Set-valued

with this forgetful functor yields a presheaf in the strict sense.

Definition 2.1.3. Given categories C and D, an equivalence of categories between

C and D consists of covariant functors f : C ! D and g : D ! C such that there

are natural isomorphisms ✏C : IdC ) g � f and ✏D : IdD ) f � g, where IdC and

IdD denote the identity functors on categories C and D, respectively. There is a dual

equivalence of categories if f and g are both contravariant; dual equivalences will be

written

C Dop

f

g

?
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2.2 Functor categories

In an additional layer of abstraction, the collection of functors between two categories

is itself a category.

Definition 2.2.1. Let C and D be categories. The functor category DC has functors

F : C ! D as objects and natural transformations ⌧ : F ) G between such functors

as morphisms. If ⌧ : F ) G and ⇢ : G ) H, then ⇢�⌧ is given by vertical composition,

that is, it is the natural transformation with components, for each A 2 Ob(C),

(⇢ � ⌧)A = ⇢A � ⌧A : FA ! GA ! HA.

The following exploration of maps between functor categories with a common

codomain, related to content in [11], is not standard will prove useful for later results.

Let H : K ! J be a functor between small categories. For the sake of simplicity of

notation later in this section, the action of H on an object K of K will be written as

H(K) rather than as HK . Then, for any category L, H induces a map H⇤ between

the functor categories LJ and LK which acts by precomposing by H. On objects,

that is, on a functor R : J ! L,

H⇤R = R �H : K ! L.

This is captured by the following commutative diagram for each R 2 LJ :
J

K

L

R

H⇤R

H H⇤

It will be useful to note that on objects K 2 K,

(H⇤R)K = (R �H)K = RH(K).

An arrow in the functor category LJ is a natural transformation ⌧ : R ) R0, for

R,R0 : J ! L. The mapH⇤ then yields a natural transformationH⇤⌧ : H⇤R ) H⇤R0

in LK, where components are defined for each object K 2 K by

(H⇤⌧)K = ⌧H(K).
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Checking the necessary diagram shows that H⇤⌧ is a valid natural transformation

precisely because ⌧ is. It only remains to show that H⇤ is a functor, that is, to show

that it preserves identity arrows and composition.

Proposition 2.2.2. H⇤ : LJ ! LK is a functor.

Proof. First consider identity arrows in functor category LJ . The identity arrow on

functor R is the natural transformation IdR : R ) R, where each component (IdR)J

for J 2 J is given by idRJ
, the identity arrow of object RJ in D. Under the action of

H⇤ on arrows as given above, H⇤(IdR) is the natural transformation with components

for each K 2 K given by

(H⇤(IdR))K = (IdR)H(K) = idRH(K)
= id(H⇤R)K .

Thus H⇤(IdR) is in fact the identity natural transformation IdH⇤R : H⇤R ) H⇤R,

meaning that H⇤ preserves identities and thus satisfies the first requirement necessary

to be a functor.

Next, consider composition of natural transformations in functor category LJ . By

the definition of vertical composition, for natural transformations ⌘ : R ) R0 and

⌘̃ : R0 ) R00, ⌘̃ � ⌘ is defined to be the natural transformation with components, for

all J 2 J ,

(⌘̃ � ⌘)J = ⌘̃J � ⌘J : RJ ! R00
J .

Then, it follows that for all K 2 K,

(H⇤(⌘̃ � ⌘))K = (⌘̃ � ⌘)H(K) = ⌘̃H(K) � ⌘H(K) = (H⇤⌘̃)K � (H⇤⌘)K

Thus, H⇤(⌘̃ � ⌘) = (H⇤⌘̃) � (H⇤⌘), meaning H⇤ preserves composition and thus is a

functor.

The following elementary facts about H⇤ will be useful in later proofs.

Fact 2.2.3. For functor H : J 0 ! J , functor category map H⇤ : LJ ! LJ 0
, functor

H̃ : J 00 ! J 0, and functor category map H̃⇤ : LJ 0 ! LJ 00
,

(H � H̃)⇤ = H̃⇤ �H⇤.

Proof. First, consider the actions of these two functors on presheaf R : J ! L.

(H � H̃)⇤R = R � (H � H̃) = (R �H) � H̃ = (H⇤R) � H̃ = H̃⇤(H⇤R) = (H̃⇤ �H⇤)R.
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Thus, the two functors act the same on objects R of LJ . It only remains to show

that they act the same on morphisms, that is, on natural transformations in LJ .

Let ⌧ : R ) R0 be a natural transformation in LJ . For an object J 2 J 00,

h

(H̃⇤ �H⇤)⌧
i

J
=
h

H̃⇤(H⇤⌧)
i

J
= (H⇤⌧)H̃(J) = ⌧H(H̃(J)) = ⌧(H�H̃)(J) =

h

(H � H̃)⇤⌧
i

J
.

As (H̃⇤ � H⇤)⌧ and (H � H̃)⇤⌧ have the same component at each J 2 J 00, the two

natural transformations are equal.

Fact 2.2.4. Suppose H : K ! J , R : J ! L, and S : L ! M. Then

H⇤(S �R) = S � (H⇤R).

That is, the right triangle of the following diagram commutes:

J

K

L MR

H⇤R
H

S

H⇤(S �R)

Proof. This fact follows immediately from the associativity of functor composition

and the definition of H⇤.

S � (H⇤R) = S � (R �H) = (S �R) �H = H⇤(S �R)

Fact 2.2.5. Let Id : J ! J be the identity functor on category J . Let R,R0 2 LJ ,

and let ⌘ : R ) R0 be a natural transformation. Then Id⇤R = R, Id⇤R0 = R0, and

Id⇤⌘ = ⌘ : R ) R0.

Proof. First, note that Id⇤R = R � Id = R, and similarly for R0. Components of

natural transformation Id⇤⌘ are given by

(Id⇤⌘)J = ⌘Id(J) = ⌘J

As Id⇤⌘ and ⌘ have the same components for each J 2 J , they are the same natural

transformation.
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2.3 Topoi

A topos is a category whose objects have many set-like properties. For example, every

object has ‘subobjects’ that form a distributive lattice, just as every set has subsets

that also form a distributive lattice. Though this dissertation is motivated by the

topos approach to quantum computer science, very little knowledge of topoi will be

required. We briefly define a topos and consider an important example; more about

topoi can be found in [15].

Definition 2.3.1. Let E be a category. A subobject classifier for E is an object ⌦

and an arrow true : 1 ! ⌦ such that for each monic arrow f : A ⇢ D, there is a

unique arrow �f : D ! ⌦ such that the following is a pullback square:

A D

1 ⌦

f

!

true

�f

Definition 2.3.2. A topos is a category E that is finitely complete, finitely co-

complete, has exponentiation, and has a subobject classifier.

The most important fact about topoi for our purposes is the existence of sub-

objects. Specifically, in a topos, a subobject of object A is a monic morphism with

codomian A. Every object has a collection of subobjects which can be ordered to form

a Heyting algebra, just as every set has a collection of subsets that form a Boolean

algebra. This illuminates why an object in a topos is a good choice for a generalized

state space that is set-like but not a set.

One important example to consider is the functor category SetC. For any small

category C, this functor category is in fact a topos. One can thus consider the subob-

jects of any functor from C to Set. As the spectral presheaf, of both a von Neumann

algebra and an orthomodular lattice, is a functor from a small category to Set, this

allows us to consider subobjects of the spectral presheaf in the topos SetC.

Of note, if H : K ! J is a functor between small categories, then H⇤ : SetJ !
SetK is in fact a functor between topoi. Further investigation shows that H⇤ is the

inverse image part of the essential geometric morphism induced by H : K ! J [21].
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Definition 2.3.3. Let E and F be topoi. A geometric morphism f : F ! E consists

of a pair of functors f ⇤ : E ! F and f⇤ : F ! E such that f ⇤ preserves all finite

limits and is left adjoint to f⇤. The functor f ⇤ is called the inverse image of f and f⇤

is called the direct image of f .

Definition 2.3.4. A geometric morphism is essential if its inverse image part f ⇤ has

a left adjoint, that is, it is right adjoint to some other functor g : F ! E .

More details on this can be found in [21], Section A4.1. While we will use the

functoriality ofH⇤ in later arguments, we will not need to know thatH⇤ is an essential

geometric morphism.
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Chapter 3

Lattice Theory Background

For background in general lattice theory that will be useful for our purposes, [8] is a

good reference. For orthomodular lattices specifically, consider [22].

3.1 Posets and lattices

Definition 3.1.1. A partially ordered set, or poset, is a set with a reflexive, transitive,

antisymmetric binary relation .

A poset is also a category, where the elements of the poset are objects and there is a

single morphism with domain a and codomain b whenever a  b. It then makes sense

to consider functors between categories, that is, structure-preserving maps between

posets. In this case, the structure to be preserved is the relation , and such functors

are called monotone maps.

Definition 3.1.2. A monotone map between two posets P and Q is a function

f : P ! Q such that whenever a  b in P , then f(a)  f(b) in Q.

In an additional layer of abstraction, posets and monotone maps form a category

Pos.

Definition 3.1.3. A lattice is a poset P in which any two elements a and b have a

greatest lower bound a^ b, called the meet of a and b, as well as a least upper bound

a _ b, called the join of a and b. A lattice is bounded if it has a least element 0 and a

greatest element 1.

The definitions above of meets and joins have a close relationship to the relation 
of P .
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Fact 3.1.4. For any lattice P and a, b 2 P , the following are equivalent:

a  b a ^ b = a a _ b = b

Some common examples of lattices include the power set of a set X, with subsets

partially ordered by inclusion; open sets of a topological space X, again ordered by

inclusion; and factors of a given natural number x, ordered by divisibility. Any total

orders are also lattices.

Definition 3.1.5. A sublattice S of a lattice L is a subset of L such that whenever

a, b 2 S, then a^ b and a_ b are also in S. That is, S is closed under meets and joins.

All sublattices discussed throughout will be assumed to be nonempty.

Just as monotone maps are structure-preserving maps between posets, it is pos-

sible to define structure-preserving maps between lattices. In this case, the structure

that must be preserved is meets and joins.

Definition 3.1.6. A lattice homomorphism ' : P ! Q is a function from P to Q

such that for all a, b 2 P ,

'(a ^ b) = '(a) ^ '(b) and '(a _ b) = '(a) _ '(b)

By Fact 3.1.4, lattice homomorphisms are also monotone maps. Just as with posets,

all lattices and lattice homomorphisms between them form a category Lat, which is

a faithful subcategory of Pos.

3.2 Ortholattices and orthomodular lattices

We now consider a specific subcategory of Lat, that of orthomodular lattices.

Definition 3.2.1. An orthocomplementation function on a bounded lattice L is a

map (�)0 : L ! L, acting on each a 2 L as a 7! a0, satisfying

1. a0 _ a = 1, a0 ^ a = 0 (Complement Law)

2. a00 = a (Involution Law)

3. If a  b, then b0  a0 (Order-Reversing)

Definition 3.2.2. An orthocomplemented lattice, also called an ortholattice, is a

bounded lattice with an orthocomplementation function.
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Figure 3.1: Four ortholattices. An arrow a ! b means a  b.

Definition 3.2.3. An orthomodular lattice L is an ortholattice such that for any

x, y 2 L with x  y, it holds that x _ (x0 ^ y) = y. This is the orthomodularity

property.

Figure 3.1 depicts four small ortholattices. Ortholattices (i), (iii), and (iv) have a

unique orthocomplementation function, as shown. The second has three valid or-

thocomplementation functions; a’s orthocomplement could be any of b, c, or d, and

each of these three options determines a di↵erent orthocomplementation function. In

general, we assume that an ortholattice comes with a specified orthocomplementa-

tion function to avoid such ambiguity. Of these ortholattices, (i), (ii), and (iv) are

orthomodular lattices. In (iii), elements b0 and a satisfy b0  a, but

b0 _ (b ^ a) = b0 _ 0 = b0 6= a.

Another example of an ortholattice that is also orthomodular is the lattice of

subspaces of any inner product space, with the orthogonal complement operation

on these subspaces as the orthocomplementation function. Additionally, the closed

subspaces of a separable Hilbert space form an orthomodular lattice; as discussed

in Chapter ??, such lattices are useful for representing quantum logic, where the

closed subspaces represent quantum propositions [22]. Boolean algebras are also or-

thomodular lattices, specifically orthomodular lattices that are distributive, and will

be considered in the next subsection. It will be useful to note that de Morgan’s Laws,

which are an important property of Boolean algebras, hold in the more general case

for all ortholattices (and thus all orthomodular lattices).
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Fact 3.2.4 ([22]). For any ortholattice L and a, b 2 L,

(a ^ b)0 = a0 _ b0

(a _ b)0 = a0 ^ b0

Definition 3.2.5. An ortholattice homomorphism ' : L ! M is a lattice homomor-

phism preserving orthocomplementation; for all a 2 L,

'(a0) = '(a)0.

Just as in the previous subsections, ortholattices and structure-preserving morphisms

between them form a faithful subcategory OLat of Lat.

Definition 3.2.6. An orthomodular lattice homomorphism ' : L ! M is an ortho-

lattice homomorphism in which both the domain and codomain are orthomodular

lattices.

Note that there are no additional constraints placed on an orthomodular lattice ho-

momorphism when compared to an ortholattice homomorphism. This is because the

orthomodularity property can be expressed solely in terms of meets, joins, and ortho-

complements, which are already preserved by all ortholattice homomorphisms. As

above, there is a category OML of orthomodular lattices and orthomodular lattice

homomorphisms between them. OML is a full and faithful subcategory of OLat.

3.3 Boolean algebras

Definition 3.3.1. A Boolean lattice, also called a Boolean algebra, is a bounded

complemented distributive lattice L. That is, every element a 2 L has a complement

a0 such that a ^ a0 = 0 and a _ a0 = 1, and for any a, b, c 2 L,

a ^ (b _ c) = (a ^ b) _ (a ^ c). (3.1)

The number of elements in any finite Boolean algebra must be 2n for some n, and any

two Boolean algebras with the same number of elements are isomorphic [30]. Thus, we

can talk about the two-element Boolean algebra, the four-element Boolean algebra,

the eight-element Boolean algebra, etc. The two-element Boolean algebra consists of

only a top element and a bottom element, and will be denoted by its set of elements

{0, 1} or as B0. The four-element Boolean algebra is pictured in (i) of Figure 3.1,

and such a Boolean algebra will be denoted Ba. The eight-element Boolean algebra is

pictured in (iv) of the same figure, and such a Boolean algebra will be denoted Ba,b,c.
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All distributive ortholattices are Boolean algebras, with complements given by the

orthocomplementation function. In Figure 3.1, (i) and (iv) are distributive. For (ii),

elements a, b, and c do not satisfy (3.1), while for (iii) elements a, b0, and a0 do not

satisfy (3.1). Additionally, both the lattice of subspaces on an inner product space

and the lattice of closed subspaces of a separable Hilbert space are nondistributive

and thus are not Boolean algebras.

The definition of a Boolean algebra only requires the existence of a complement

for each element and not the existence of an orthocomplementation function, which

might suggest that there are some Boolean algebras which are not ortholattices. How-

ever, one can show that the distributivity property of a Boolean algebra ensures that

complementation in any Boolean algebra is in accordance with a valid orthocom-

plementation function, meaning every Boolean algebra is an ortholattice. Further

investigation shows that every Boolean algebra is an orthomodular lattice as well,

with distributivity ensuring that the orthomodularity property always holds.

Definition 3.3.2. A Boolean algebra homomorphism ' : B ! B0 is a lattice homo-

morphism which preserves complements.

That is, a Boolean algebra homomorphism is an ortholattice homomorphism where

both the domain and codomain are Boolean algebras. As distributivity is expressed

only in terms of meets and joins, it is not necessary to place an additional constraint

on Boolean algebra homomorphisms to ensure distributivity is preserved. There is a

category BA of Boolean algebras and Boolean algebra homomorphisms, which is a

full and faithful subcategory of OML.

Because Boolean algebras are distributive, it is generally simpler to work with

Boolean algebras instead of ortholattices or orthomodular lattices. In particular, there

is a useful dual equivalence between the category BA and the topological category

Stone, which we now discuss.

3.4 Stone duality

There is a well-known duality between Boolean algebras and Stone spaces. The

existence of this duality is a main motivation for considering Boolean substructures of

an orthomodular lattice, as no such duality exists in the nondistributive setting. The

details of this subsection are phrased in terms of Boolean algebra homomorphisms,

adapted from [4] where the equivalent definitions are stated in terms of ultrafilters.

Definition 3.4.1. A Stone space is a compact totally disconnected Hausdor↵ space.
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There is a category Stone whose objects are Stones spaces and whose arrows are

continuous functions between these topological spaces. As we will soon see, this cat-

egory is closely related to the category BA of Boolean algebras and Boolean algebra

homomorphisms.

There is a specific Stone space associated with each Boolean algebra, defined

as follows. Let {0, 1} denote the two-element Boolean algebra consisting of only a

bottom element 0 and a top element 1.

Definition 3.4.2. The Stone space of Boolean algebra B is the compact totally

disconnected Hausdor↵ space with set of elements

⌦B = {� : B ! {0, 1} | � is a Boolean algebra homomorphism,

also called a state or an ultrafilter in B}

and topology generated by a basis of all sets of the form

Ub = {� 2 ⌦B : �(b) = 1},

where b 2 B.

In a slight abuse of notation, ⌦B will denote both the set of elements of the Stone

space of B as well as the Stone space itself with its additional topological structure.

This definition of the Stone space of a Boolean algebra gives rise to a contravariant

functor ⌦ from the category BA of Boolean algebras and the category Stone of Stone

spaces. On objects (Boolean algebras B), ⌦ is simply the Stone space of B,

⌦B = ⌦(B).

On a Boolean algebra homomorphisms ' : B0 ! B,

⌦(') : ⌦B ! ⌦B0

� 7! � � '

The functoriality of this map ⌦ is easy to verify. Note that if B0 is a subalgebra of B

and ' is the inclusion homomorphism incB0,B : B0 ,�! B, then

⌦(incB0,B)(�) = � � incB0,B = �|B0 = rB,B0(�),

where rB,B0 is defined to be the map that restricts functions with domain B to the

smaller domain B0. That is, ⌦(incB0,B) = rB,B0 .
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One can also define a contravariant functor cl from Stone to BA. The subsets of

a Stone space that are both closed and open form a Boolean algebra under inclusion,

with meets defined as intersections and joins defined as unions of subspaces. On a

Stone space X, clX is this Boolean algebra of clopen subsets of X, by convention

written cl(X), where a clopen subset is one that is both closed and open. On a con-

tinuous map of Stone spaces h : X 0 ! X, cl(h) is a Boolean algebra homomorphsism

from cl(X) to cl(X 0) that acts on each clopen subset S as

[cl(h)] (S) = h(�1)(S) := {x 2 X 0 | h(x) 2 S} 2 cl(X 0).

Because h is a continuous function, h(�1)(S) is open. Additionally, because S is

closed the complement S 0 of S is open; h(�1)(S 0) is then open and its complement

h(�1)(S) is closed, meaning h(�1)(S) is clopen. Note that in this context, the exponent

(�1) denotes the inverse image rather than the inverse. Throughout, inverse image

functions will be denoted h(�1) to di↵erentiate from inverse morphisms, which will be

written as h�1.

The two functors ⌦ and cl give rise to a dual equivalence between the categories

BA and Stone:

BA Stone

⌦

cl

?

That is, there are natural isomorphisms Bo : Id
BA

) cl�⌦ in BA and St : Id
Stone

)
⌦ � cl in Stone. In particular, the components of these isomorphisms are given as

follows:

BoB : B ! cl(⌦B)

b 7! {� 2 ⌦B | �(b) = 1}
StX : X ! ⌦(cl(X))

x 7! �x

where �x : cl(X) ! {0, 1} is given by

�x(S) =

⇢

1 : x 2 S
0 : x /2 S

Later, it will be of use to know the explicit components of Bo�1 : cl �⌦ ) Id
BA

.

Each component Bo�1
B is a map from cl(⌦B) to B. Let S be any clopen subset in
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cl(⌦B). As S is closed and it is a subspace of compact space ⌦B, then S is compact.

As S is open, it can be written as a union of basic open sets. Compactness then

implies this open cover of S has a finite subcover consisting of open sets in the basis

of ⌦B, which are of the form Ub = {� 2 ⌦B : �(b) = 1}. That is, for some finite index

set J ✓ B,

S =
[

b2J

Ub.

Let

s⇤ :=
_

b2J

b 2 B

This meet is defined because J is finite. Then, the action of Bo�1
B is as follows.

Bo�1
B : cl(⌦B) ) B

S 7! s⇤

3.4.1 Examples

Consider the Boolean algebra Ba consisting of four elements {0, a, a0, 1} and shown

in Figure 3.1 (i). Any Boolean algebra homomorphism from Ba to B0 = {0, 1} must

map 0 to 0 and must map 1 to 1. It must also map a0 to the orthocomplement of the

value that a is assigned, meaning such a homomorphism is completely determined by

its action on element a. Thus there are two Boolean algebra homomorphisms from

Ba to {0, 1}. The first, which we will call �a, has �a(a) = 1, while the second, which

we will call �a0 , has �a0(a) = 0. Thus the stone space ⌦Ba has two elements, �a and

�a0 , and has a basis given by the open sets:

U0 = {� 2 ⌦Ba | �(0) = 1} = ;
Ua = {� 2 ⌦Ba | �(a) = 1} = {�a}
Ua0 = {� 2 ⌦Ba | �(a0) = 1} = {�a0}
U1 = {� 2 ⌦Ba | �(1) = 1} = {�a,�a0}

These four subsets are precisely the clopen subsets of ⌦Ba , and they form a Boolean

algebra under inclusion that is isomorphic to Ba, shown in Figure 3.2 (i).

For a more involved example, consider the Boolean algebra Ba,b,c shown in Figure

3.1 (iv). Careful examination shows that any Boolean algebra homomorphism from

Ba,b,c to {0, 1}must map exactly two of a, b, and c to 1 and the other to 0, with actions

on a0, b0, and c0 determined actions on a, b, and c. We will refer the homomorphism
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Figure 3.2: The algebra of clopen subsets of the Stone space of (i) four-element
Boolean algebra Ba and (ii) eight-element Boolean algebra Ba,b,c.

from Ba,b,c to {0, 1} that maps a and b to 1 and maps c to 0 as �a,b. We can define

�a,c and �b,c similarly. Thus the Stone space of Ba has three elements, and a basis is

given by the open sets:

U0 = {� 2 ⌦Ba,b,c
| �(0) = 1} = ;

Ua0 = {� 2 ⌦Ba,b,c
| �(a0) = 1} = {�b,c}

Ub0 = {� 2 ⌦Ba,b,c
| �(b0) = 1} = {�a,c}

Uc0 = {� 2 ⌦Ba,b,c
| �(c0) = 1} = {�a,b}

Ua = {� 2 ⌦Ba,b,c
| �(a) = 1} = {�a,b,�a,c}

Ub = {� 2 ⌦Ba,b,c
| �(b) = 1} = {�a,b,�b,c}

Uc = {� 2 ⌦Ba,b,c
| �(c) = 1} = {�a,c,�b,c}

U1 = {� 2 ⌦Ba,b,c
| �(1) = 1} = {�a,b,�a,c,�b,c}

These subsets are all clopen, and comprise all clopen subsets of ⌦Ba,b,c
. When ordered

by inclusion, as in Figure 3.2 (ii), they form a Boolean algebra that is isomorphic to

Ba,b,c. It is easy to see that in both of these examples the clopen subspaces of the

Stone space of B form a Boolean algebra that is isomorphic to B.
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Chapter 4

Distributive substructure of an
orthomodular lattice

Having completed the above review of lattice theory and Stone duality, we now move

on to less standard explorations of the Boolean substructure of an orthomodular

lattice. This material will play an important role in our considerations of the spectral

presheaf of an orthomodular lattice. In particular, we will be concerned with the

distributive substructures of orthomodular lattice L given in the following definition.

Definition 4.0.3. A Boolean sublattice, also called a Boolean subalgebra, of an ortho-

modular lattice L is a complemented distributive sublattice with complements given

by the orthocomplementation function of L.

It is important to note that for our purposes, we consider only those subalgebras

which are Boolean algebras with complementation inherited from L. Consequently,

Boolean subalgebras must be closed under L’s orthocomplementation. This means

that for any Boolean subalgebra B of L containing some element a, also a0 2 B and

thus a ^ a0 = 0 and a _ a0 = 1 are both in B. The following propositions illustrate

two important properties of Boolean subalgebras.

Proposition 4.0.4. Every element a of an orthomodular lattice L is in some Boolean

subalgebra of L.

For a 6= 0, 1, one Boolean subalgebra of L that contains a is the four-element Boolean

subalgebra Ba, shown in Figure 4.1 (i).

Proposition 4.0.5 ([22]). In an orthomodular lattice L, for any elements a, b 2 L

satisfying a  b there is Boolean subalgebra of L containing both a and b.
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Figure 4.1: (i) A Boolean subalgebra of L that contains element a, for a 6= 0, 1, and
(ii) a Boolean subalgebra of L that contains elements a and b with a  b, for distinct
a, b 6= 0, 1.

When a and b with a  b are distinct and not equal to 0 or 1, the eight-element

Boolean algebra Ba0,b,a_b0 , shown in Figure 4.1 (ii), contains both a and b.

Proposition 4.0.5 does not hold for all ortholattices; ortholattice (iii) of Figure 3.1

is a counterexample. In fact, this proposition is true if and only if L is orthomodular.

Proposition 4.0.6 ([22]). Let L be an ortholattice. L is orthomodular if and only

if for all elements a, b 2 L with a  b there is a Boolean subalgebra of L containing

both a and b.

Proof. The forward implication is Proposition 4.0.5. We also prove the converse to

get bidirectional implication; assume that for all a  b in L there is some Boolean sub-

algebra of L containing both a and b. Then elements a and b and their complements

satisfy distributivity, meaning

a _ (a0 ^ b) = (a _ a0) ^ (a _ b) = 1 ^ b = b.

This is precisely the orthomodularity condition, so as it holds for all a  b then L is

orthomodular.

This is precisely the reason why we consider orthomodular lattices instead of ortholat-

tices. Proposition 4.0.5 plays a key role in the proofs of Lemma 4.2.3 and subsequently
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Lemma 4.2.4 and Theorem 5.7.2, which says that an isomorphism between the spec-

tral presheaves of two orthomodular lattices induces an isomorphism between the

orthomodular lattices, a main result of Chapter 5.

Beyond the standard definitions and facts above, one can consider two di↵erent

structures based on the Boolean subalgebras of an orthomodular lattice L. These will

be described in the next two sections.

4.1 The context category B(L)
Definition 4.1.1. For any orthomodular lattice L, B(L) denotes the poset of Boolean

subalgebras of L, partially ordered by inclusion. B(L) is also called the context category

of L.

The poset category B(L) has a unique arrow from Boolean subalgebra B0 to Boolean

subalgebra B whenever B0 ✓ B. This arrow will be denoted iB0,B, and simply means

that B0 ✓ B.

Additionally, whenever B0 ✓ B, one can define an inclusion map between Boolean

subalgebras incB0,B : B0 ! B given by incB0,B(b) = b for all b 2 B0. As B0 is closed

under meets, joins, and orthocomplements, it follows that incB0,B is a Boolean algebra

homomorphism. That is, for any b1, b2 in B0,

incB0,B(b1 ^ b2) = b1 ^ b2 = incB0,B(b1) ^ incB0,B(b2),

and similarly for joins and orthocomplements. Thus, it is also possible to consider

B(L) as a subcategory of BA, where objects are Boolean algebras that are Boolean

subalgebras of L with inclusion Boolean algebra homomorphisms incB0,B between

them. To clarify when B(L) is being considered as a poset and when it is being

considered as a subcategory of BA, iB0,B will denote an arrow in the poset and

incB0,B will denote an arrow in the subcategory. For the majority of the subsequent

sections, it is only necessary to consider B(L) as a poset.

It may be informative to note that as the bottom element 0 and the top element

1 of L are both in every nonempty Boolean subalgebra of L, then the two-element

Boolean subalgebra B0 = {0, 1} is contained in every Boolean subalgebra of L. Thus,

the context category B(L) has B0 as a bottom element.

Proposition 4.1.2. For any orthomodular lattice L, B(L) is a poset in which any

two elements have a well-defined unique meet, where the meet ^ is defined as follows

for B,B0 2 B(L):
B ^ B0 := B \ B0
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Note that \ simply denotes set intersection.

Proof. First, it is necessary to show that the meet as defined above is in fact a Boolean

algebra. Note that as meets, joins and orthocomplementation in both B and B0 are

inherited from L, then these operations coincide on B \B0. Clearly B \B0 is closed

under these three operations, as both B and B0 are. All of the axioms that define a

Boolean algebra hold in both B and B0; because B \B0 inherits the same meet, join,

and orthocomplementation operations as well as the same top and bottom elements

as both B and B0, then B \ B0 satisfies all Boolean algebra axioms as well. Thus,

B ^ B0 is a Boolean subalgebra of L, so B ^B0 2 B(L).
Next, in order to see that B ^ B0 is the greatest lower bound of B and B0 in the

poset B(L) ordered by inclusion, first note that clearly B \B0 ✓ B and B \B0 ✓ B0,

so it is a lower bound. Additionally, any other Boolean algebra which is a lower

bound for both B and B0 must be contained in both B and B0, and thus is contained

in B \ B0. Thus, B \ B0 is the greatest lower bound of B and B0 in the poset B(L).

The proposition above proves that B(L) is in fact a meet-semilattice, that is, a poset

in which the meet of any two elements exists. It is possible to show (with little

modification) that B(L) is a complete meet-semilattice, meaning arbitrary (infinite)

meets exist, which we discuss in Chapter 6 as it is not necessary for our purposes at

this point. However, meets are not necessarily preserved by the homomorphisms '̃

that will be considered; see Note 4.1.5. We will instead consider B(L) more generally

as a poset, though the fact that every two Boolean algebras have a meet in B(L) will
prove useful in the proof of Theorem 5.7.2.

Of interest, any orthomodular lattice homomorphism ' : L ! M induces a map

'̃ : B(L) ! B(M), where on each Boolean subalgebra B of L,

'̃(B) := {'(b) : b 2 B}.

As ' is an orthomodular lattice homomorphism, meets, joins, and orthocomplemen-

tation are preserved. It follows from this that '̃(B) is in fact a Boolean subalgebra

of M , meaning that '̃ is well-defined.

Proposition 4.1.3. Let ' : L ! M be an orthomodular lattice homomorphism.

For every B 2 B(L), '̃(B) 2 B(M) and '|B : B ! '̃(B) is a Boolean algebra

homomorphism. If ' is an orthomodular lattice isomorphism, then '|B is a Boolean

algebra isomorphism.
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Proof. As ' is an orthomodular lattice homomorphism and B is closed under meets,

joins, and orthocomplementation, then '|B : B ! '̃(B) also preserves these meets,

joins, and orthocomplements. This means '|B is an orthomodular lattice homomor-

phism, and its codomain '̃(B) ✓ M is also closed under these operations. As B is

distributive, a condition expressed solely in terms of meets and joins, then as '|B is

surjective and preserves meets and joins, '̃(B) is also distributive and thus a Boolean

subalgebra in B(M). As '|B is an orthomodular lattice homomorphism with Boolean

algebras as both domain and codomain, '|B is a Boolean algebra homomorphism.

If ' : L ! M is an isomorphism of orthomodular lattices, it has an inverse

 : M ! L. In this case it clearly follows that  |'̃(B) : '̃(B) ! B is an inverse of

'|B, meaning '|B is an isomorphism of Boolean algebras.

In fact, the following results holds.

Lemma 4.1.4. '̃ is a monotone map between posets.

Proof. First, it must be demonstrated that '̃ is order-preserving. Suppose that B0 ✓
B holds in B(L). Then

'̃(B0) = {'(b) | b 2 B0}
'̃(B) = {'(b) | b 2 B}

Clearly, B0 ✓ B implies '̃(B0) ✓ '̃(B), meaning '̃ is a monotone map.

Note 4.1.5. If ' is injective, then '̃ preserves meets and is in fact a meet-semilattice

homomorphism. In this case,

'̃(B0 ^ B) = {'(b) 2 L | b 2 B0 ^B}
= {'(b) 2 L | b 2 B0 \B}
= {'(b) | b 2 B0} \ {'(b) | b 2 B}
= '̃(B0) \ '̃(B)

= '̃(B0) ^ '̃(B)

In the general case, however, the third line above does not necessarily hold; it could

be that b0 2 B0 \B and b 2 B \B0 such that '(b0) = '(b) /2 {'(b) 2 L | b 2 B0 \B}.
Such an example is orthomodular lattices L and M and homomorphism ' of Section

5.2.1, which we discuss in the next chapter.
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Lemma 4.1.4 implies that '̃ is in fact a functor between two posets B(L) and B(M).

It can even be considered more generally as an arrow in the category Pos, consisting

of posets and monotone maps between them.

There is a functor from OML to Pos, sending each orthomodular lattice to its

context category each each homomorphism ' to '̃. Call this functor B : OML !
Pos, where for orthomodular lattice L and orthomodular lattice homomorphism ' :

L ! M ,

BL = B(L)
B(') = '̃ : B(L) ! B(M)

Proposition 4.1.6. B : OML ! Pos is a functor.

Proof. In order to show that B is a functor, it is necessary to show that it preserves

identities and composition. First, consider the identity orthomodular lattice homo-

morphism i : L ! L. Then ĩ : B(L) ! B(L) is a monotone map in Pos. For each

B 2 B(L),
ĩ(B) = {i(b) | b 2 B} = {b | b 2 B} = B.

Thus ĩ is the identity arrow on B(L), meaning that B preserves identities.

Suppose ' : L ! M and ⇠ : M ! N are orthomodular lattice homomorphisms.

Then, for each B 2 B(L),
(⇠̃ � '̃)(B) = ⇠̃({'(b) | b 2 B}) = {⇠('(b)) | b 2 B} = (̂⇠ � ')(B)

Thus, B also preserves composition and thus is a valid functor.

Proposition 4.1.7. If ' : L ! M is an isomorphism of orthomodular lattices, then

'̃ : B(L) ! B(M) is an order isomorphism in Pos.

Proof. Functors preserve isomorphisms, and B is a functor.

Reference [17] also considers the context category B(L) of an orthomodular lattice

L. They prove the converse of Proposition 4.1.7, that any isomorphism f : B(L) !
B(M) determines an isomorphism of orthomodular lattices f ⇤ : L ! M . How-

ever, their isomorphism f ⇤ is unique if and only if L has no maximal four-element

Boolean subalgebras. Instead of considering simply isomorphisms between the context

categories of orthomodular lattices, instead in Chapter 5 we consider isomorphisms

between the spectral presheaves of orthomodular lattices, which consist of an an iso-

morphism of context categories as well as some additional data. This additional data

allows us to construct a bijection between orthomodular lattices isomorphisms and

spectral presheaf isomorphisms, a stronger result.
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4.2 The partial orthomodular lattice Lpart

The Boolean subalgebras of an orthomodular lattice can also be used to generate a

second structure, called the partial orthomodular lattice associated with L.

Definition 4.2.1. Let L be an orthomodular lattice. The partial orthomodular lattice

Lpart associated with L has the same elements and orthocomplements as L and lattice

operations _ and ^ inherited from L, but only defined for families of elements (ai)i2I

in L such that there is a Boolean subalgebra B 2 B(L) that contains ai for all i 2 I.

Such families of elements are called compatible elements.

Definition 4.2.2. A morphism of partial orthomodular lattices is a function p :

Lpart ! Mpart that preserves orthocomplements and existing meets and joins.

The following lemma illustrates the necessity of the orthomodularity condition to our

endeavors.

Lemma 4.2.3. If a  b in orthomodular lattice L and p : Lpart ! Mpart is a partial

orthomodular lattice homomorphism, then p(a)  p(b).

Proof. Suppose a, b 2 L and a  b. By Proposition 4.0.5, there is some Boolean sub-

algebra of L that contains both a and b. This means that the meet a^b = a is defined

in Lpart, and thus is preserved by any partial orthomodular lattice homomorphism p:

p(a) = p(a ^ b) = p(a) ^ p(b).

From this it follows that p(a)  p(b).

Just as in the previous sections, partial orthomodular lattices associated with ortho-

modular lattices and partial orthomodular lattice homomorphisms form a category

POML. The motivation for considering partial ortholattices comes from the Bohri-

fication of an orthomodular lattice, to be defined in Chapter 5.

Lemma 4.2.4. Let L and M be orthomodular lattices, and Lpart and Mpart their

associated partial orthomodular lattices.There is a bijective correspondence between

isomorphisms L ! M in OML and isomorphisms Lpart ! Mpart in POML.

Proof. Let ' : L ! M be an isomorphism in OML. As a homomorphism between

orthomodular lattices, it preserves orthocomplements and finite meets and joins. In

particular, it preserves all meets and joins that are defined in Lpart, meaning that it
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induces a homomorphism ' : Lpart ! Mpart. As ' : L ! M is an isomorphism, so is

' : Lpart ! Mpart.

Conversely, let p : Lpart ! Mpart be an isomorphism of partial ortholattices in

POML. Let (ai)i2I be any finite family of elements in L; our goal is to show that

p

 

_

i2I

ai

!

=
_

i2I

p(ai),

which implies that p preserves all joins, not just those joins that are defined in Lpart.

The same result for meets then follows by taking orthocomplements and using de

Morgan’s Law (Fact 3.2.4).

First, suppose that there is some Boolean subalgebra B of L such that ai 2 B

for all i 2 I. Thus
W

i2I ai is defined in Lpart, and as partial orthomodular lattice

homomorphism p preserves all joins that are defined in Lpart,

p

 

_

i2I

ai

!

=
_

i2I

p(ai),

as desired.

Now, assume that there is no B 2 B(L) such that ai 2 B for all i 2 I. Consider

the element
W

i2I ai of L. Note that for each i, ai 
W

i2I ai, meaning that by Lemma

4.2.3,

p(ai)  p

 

_

i2I

ai

!

.

As this is true for all i, it follows that

_

i2I

p(ai)  p

 

_

i2I

ai

!

, (4.1)

where the join on the left hand side is taken in M .

Let p�1 : Mpart ! Lpart be the inverse of partial orthomodular lattice isomorphism

p, which it is easy to see is also a partial orthomodular lattice isomorphism. Note

that for all i,

p(ai) 
_

i2I

p(ai).

Again by Lemma 4.2.3, p�1 preserves inequalities, so this equation becomes

ai = p�1(p(ai))  p�1

 

_

i2I

p(ai)

!

.
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As this is true for all i 2 I, it follows that

_

i2I

ai  p�1

 

_

i2I

p(ai)

!

,

where the join on the left hand side is taken in L. Applying p to the above equation

and invoking Lemma 4.2.3 one last time, the above equation becomes

p

 

_

i2I

ai

!

 p

 

p�1

 

_

i2I

p(ai)

!!

=
_

i2I

p(ai) (4.2)

Equations 4.1 and 4.2 together imply

p

 

_

i2I

ai

!

=
_

i2I

p(ai),

showing that p preserves all joins in L, not only those joins which are defined in Lpart,

as desired.

Showing that p preserves all meets in L follows easily. Let (ai)i2I be any family

of elements in L. Then (a0i)i2I is also a family of elements in L, and we know

p

 

_

i2I

a0i

!

=
_

i2I

p(a0i).

Recall that orthocomplementation is preserved by p and satisfies de Morgan’s laws.

Then,

p

 

^

i2I

ai

!

= p

 "

_

i2I

a0i

#0!

=

"

p

 

_

i2I

a0i

!#0

=

"

_

i2I

p(a0i)

#0

=
^

i2I

[p(a0i)]
0 =
^

i2I

p(a00i ) =
^

i2I

p(ai).

Thus, as p preserves all meets and joins in L, as well as all orthocomplements, p is in

fact an isomorphism of orthomodular lattices, p : L ! M .

Note that p : Lpart ! Mpart and p : L ! M are the same on every element of L

and ' : L ! M and the induced ' : Lpart ! Mpart are the same on every element of

L. Thus there is a bijective correspondence between isomorphisms ' : L ! M and

isomorphisms p : Lpart ! Mpart.

Note that it is in the construction of an isomorphism of orthomodular lattices from

an isomorphism of partial orthomodular lattices that the orthomodularity condition

(in the form of Lemma 4.2.3) is essential. This result does not hold for arbitrary

ortholattices, and is the reason we consider orthomodular lattices instead of the more

general class of ortholattices.
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b

a0 b0
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0

1

d

d0 e0

e

Ba,b,c Bc,d,e

Ba Bb Bc Bd Be

B0

L⇤ B(L⇤)

Figure 4.2: An orthomodular lattice L⇤ with twelve elements and its context category
B(L⇤).

a, d a0, d b, d b0, d
a, d0 a0, d0 b, d0 b0, d0

a, e a0, e b, e b0, e
a, e0 a0, e0 b, e0 b0, e0

Table 4.1: Pairs of elements that are not compatible in L⇤; that is, pairwaise meets
and joins between these elements are not defined in L⇤

part.

4.3 Example

We now consider a small orthomodular lattice L⇤, and examine B(L⇤) and L⇤
part. Let

L⇤ be as in Figure 4.2. Consider the Boolean subalgebras of L⇤. The two-element

Boolean algebra B0 = {0, 1} is a sublattice of L⇤, as it is for all orthomodular lattices.

The four-element Boolean algebra Ba that is (i) of Figure 3.1 appears as a sublattice

of L five times, as Ba, Bb, Bc, Bd, and Be. The eight-element Boolean algebra Ba,b,c

that is (iv) of Figure 3.1 appears twice, as Ba,b,c and Bc,d,e. This yields the context

category shown shown in Figure 4.2.

The partial ortholattice L⇤
part has the same elements as L⇤ but meets and joins

only defined for compatible elements. Table 4.1 lists all pairs of elements in L that do

not have a well-defined meet or join. For L⇤, larger families of elements are compatible

precisely when they contain none of the pairs in Table 4.1, though this is not the case

in general. To see this, consider L⇤ with additional elements f and f 0 such that Be,f,a

is the eight-element Boolean algebra. Then, for elements a, c, and e, all pairwise

meets and joins are defined but not the meet or join of all three elements.
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Chapter 5

The Spectral Presheaf of an
Orthomodular Lattice

We now proceed to define the spectral presheaf of an orthomodular lattice in an

analogous way to the spectral presheaf of a von Neumann algebra.

5.1 Defining the spectral presheaf

Given any orthomodular lattice L, the spectral presheaf ⌦(L) is a contravariant functor

from poset category B(L) to Set. This functor maps an object (Boolean subalgebra)

B of B(L) to the set of elements of Stone space ⌦B of B, without its topological

structure:

⌦(L)
B
= ⌦B = {� : B ! {0, 1} | � is a Boolean algebra homomorphism}.

On inclusion arrows iB0,B : B0 ! B in poset B(L), the contravariant action of the

spectral presheaf ⌦(L) is defined by restriction:

⌦(L)(iB0,B) : ⌦(L)
B
! ⌦(L)

B0

� 7! �|B0

Let rB,B0 : ⌦B ! ⌦B0 be the function that restricts homomorphisms in ⌦B which

have domain B to the smaller domain B0. Then,

⌦(L)(iB0,B) = rB,B0 .

Note the contravariance here. One can easily check that ⌦(L) is a valid contravariant

functor. Thus the presheaf ⌦(L) lives in the topos SetB(L)
op

of contravariant functors

from B(L) to Set, and its image is a subcategory of Set.
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Of note, we will also at times consider the spectral presheaf alternately as a functor

with codomain Stone; ⌦(L)
B
in this case is the Stone space of B instead of its set of

elements, and it can be shown that with the Stone topology the rB,B0 as defined above

are continuous maps. This interpretation will useful for generalizing Stone duality to

spectral presheaves in Section 5.5. However, the functor category StoneB(L)
op

is not

a topos, so in order to talk about topos structure such as subobjects it is necessary

to consider the spectral presheaf as a functor with codomain Set.

Just as the spectral presheaf of a von Neumann algebra can be interpreted as a

generalized Gelfand spectrum, the spectral presheaf of an orthomodular lattice can

be interpreted as a generalized Stone space.

Recall that the elements of an orthomodular lattice can correspond to quantum

propositions. A Boolean subalgebra B of an orthomodular lattice is distributive,

meaning it behaves similarly to logical structures of classical physics with respect to

conjunction, disjunction, and complementation of propositions. Consider a Boolean

algebra homomorphism from B to {0, 1}. Interpreting those propositions mapped to 1

as ‘true’ and those propositions mapped to 0 as ‘false’, one can interpret the elements

of the Stone space of B as possible local valuation functions for the propositions

(elements) that comprise B. These local valuation functions are ‘classical’ because

logic in B is distributive (in fact, Boolean), as it is in classical settings. The spectral

presheaf of an orthomodular lattice can then be interpreted as taking these spaces

of local valuations for classical contexts and linking them together with restriction

maps.

5.1.1 Example

Consider the orthomodular lattice L⇤ from Section 4.3. This lattice and its context

category are shown in Figure 4.2. The spectral presheaf of L⇤ is a functor from B(L)
to Set. Each Boolean subalgebra B of L⇤ is mapped to its Stone space ⌦B. The

Stone spaces of all the Boolean subalgebras of L can be found in Section 3.4.1.

We now consider the action of the spectral presheaf on an inclusion map in B(L).
We know that Ba ✓ Ba,b,c, meaning there is an arrow iBa,Ba,b,c

in B(L). Recall from

Section 3.4.1 that the Stone space of Ba has two elements, called �a and �a0 , where

�a(a) = 1 and �a0(a) = 0. Additionally, the Stone space of Ba,b,c has three elements

�a,b, �a,c, and �b,c, where the subscripts denote the two elements out of a, b, and c

that are mapped to 1. Then, ⌦(L⇤)(iBa,Ba,b,c
) is a map r from ⌦Ba,b,c

to ⌦Ba whose

action on elements of ⌦Ba,b,c
simply restricts the domains of the homomorphisms to
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Ba:

r(�a,b) = �a,b|Ba = �a

r(�a,c) = �a,c|Ba = �a

r(�b,c) = �b,c|Ba = �a0

Note that as the inverse image of any open set of ⌦Ba is open in ⌦Ba,b,c
, then this

map r is in fact a continuous map when ⌦Ba and ⌦Ba,b,c
are considered as topological

spaces rather than simply as sets. The images of other inclusion arrows under the

spectral presheaf of L⇤ can be determined similarly, and are also continuous maps

between topological spaces.

5.2 Maps between spectral presheaves

The next obvious step is to consider maps between spectral presheaves of orthomod-

ular lattices. Specifically, if L and M are orthomodular lattices and ' : L ! M is

an orthomodular lattice homomorphism, then we want to define some map, that is

determined by ', from ⌦(M) to ⌦(L). This is done in two steps, below. The first

step transforms ⌦(M) into a contravariant functor from B(L) to Set, while the sec-

ond step then gives a natural transformation within SetB(L)
op

from this new functor

to ⌦(L). In particular, such a map will be used to show that L ⇠= M if and only

if ⌦(L) ⇠= ⌦(M), the goal of this section. This result will imply that the spectral

presheaf determines up to isomorphism the orthomodular lattice it comes from.

Step 1. Recall from Section 4.1 that homomorphism ' : L ! M induces a

monotone map '̃ : B(L) ! B(M). This map '̃ then induces a map between functor

categories '̃⇤ : SetB(M)op ! SetB(L)
op

as in Section 2.2. Specifically, '̃⇤ is the inverse

image part of the essential geometric morphism between presheaf topoi that arises

from functor '̃ between the base categories B(L) and B(M) [21].

Recall from Section 2.2 that on functors in SetB(M)op , '̃⇤ acts by precomposi-

tion by '̃. Specifically, for the spectral presheaf ⌦(M) or orthomodular lattice M ,

'̃⇤(⌦(M)) = ⌦(M) � '̃ is a functor in the topos SetB(L)
op

. The action of this functor

on objects B 2 B(L) is given by

'̃⇤(⌦(M))B = (⌦(M) � '̃)B = ⌦(M)
'̃(B)

= ⌦'̃(B).
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On arrows, this functor acts as

'̃⇤(⌦(M))(iB0,B) = (⌦(M) � '̃)(iB0,B) = ⌦(M)(i'̃(B0),'̃(B)) = r'̃(B),'̃(B0).

Thus, '̃⇤ maps ⌦(M) to some functor from B(L) to Set, which is not necessarily

⌦(L). However, since a map from ⌦(M) to ⌦(L) is desired, it is now necessary to

define a way to transform '̃⇤(⌦(M)) to ⌦(L) within the functor category SetB(L)
op

.

This is done via a natural transformation as follows.

Step 2. By Proposition 4.1.3, for each B 2 B(L), orthomodular lattice homo-

morphism ' : L ! M induces a Boolean algebra homomorphism '|B : B ! '̃(B).

This in turn gives a morphism as follows:

⇣',B : '̃⇤(⌦(M))B = ⌦(M)
'̃(B)

! ⌦(L)
B

(� : '̃(B) ! {0, 1}) 7! (� � '|B : B ! '̃(B) ! {0, 1})

In fact, these maps ⇣',B are the components of a natural transformation ⇣'.

Lemma 5.2.1. The ⇣',B are the components of a natural transformation between

functors in SetB(L)
op

:

⇣' : '̃⇤(⌦(M)) ) ⌦(L).

Proof. Recall

⌦(L)
B
= ⌦B

⌦(L)(iB0,B) = rB0B

'̃⇤(⌦(M))B = ⌦(M)
'̃(B)

= ⌦'̃(B)

'̃⇤(⌦(M))(iB0,B) = ⌦(M)(i'̃(B0),'̃(B)) = r'̃(B),'̃(B0)

For B0, B 2 B(L), where iB0,B is an inclusion arrow, to show ⇣' is a natural transfor-

mation it is su�cient to show that the following diagram commutes:

⌦'̃(B0) ⌦'̃(B)

⌦B0 ⌦B

r'̃(B),'̃(B0)

rB,B0

⇣',B0 ⇣',B
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Let � : '̃(B) ! {0, 1} be any element of ⌦'̃(B). Then,

⇥

⇣',B0 � r'̃(B),'̃(B0)

⇤

(�) = ⇣',B0(�|'̃(B0))

= �|'̃(B0) � '|B0

= (� � ')|B0

[rB,B0 � ⇣',B] (�) = rB,B0(� � '|B)
= (� � '|B)|B0

= (� � ')|B0 .

Thus, the diagram commutes and ⇣' is a natural transformation.

The two maps '̃⇤ and ⇣' defined above can be combined to give, for any homomor-

phism ' : L ! M , a map from ⌦(M) to ⌦(L), written h'̃⇤, ⇣'i. As '̃⇤ is completely

determined by '̃, this can also equivalently be written h'̃, ⇣'i, and we will follow this

second convention. Note that the process described above is not a standard composi-

tion ⇣' � '̃⇤, as these two maps are not within the same category; '̃⇤ is a map between

topoi SetB(M)op and SetB(L)
op

, while ⇣' is a natural transformation within SetB(L)
op

:

B(M)

B(L)

Setop

⌦(M)

'̃⇤⌦(M)

'̃ '̃⇤

⌦(L)

'̃⇤⌦(M)

⇣' SetopB(L)

Step 1 Step 2

However, a perhaps more intuitive way of understanding the action of h'̃⇤, ⇣'i is
to consider it as a relation between the images in Set of B(M) under ⌦(M) and of

B(L) under ⌦(L). The image in Set of B(M) under ⌦(M) will be denoted ⌦(M)
B(M)

,

not to be confused with ⌦(M)
B
for an object B of B(M). This is a subcategory of

Set, because it is the image of a functor.

First, '̃⇤ acts on ⌦(M)
B(M)

by restricting it to the image of only those Boolean

subalgebras of M that are the image of some Boolean subalgebra of L under '̃. That

is, if

'̃(B(L)) := {'̃(B) | B 2 B(L)} ✓ B(M),

then '̃⇤ restricts ⌦(M)
B(M)

to ⌦(M)
'̃(B(L))

. Then, natural transformation ⇣' gives

a relation between ⌦(M)
'̃(B(L))

and ⌦(L)
B(L)

, both of which are subcategories of
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⌦(L)

rBc,Bo

Bc

c

1

rBd,Bo

Im(⌦(M)) ⇢ SetM

⌦(M)

B0

Bd

B(M)

c0

⌦Bd

iBo,Bc

d0

⌦Bc

0

iBo,Bd

⌦B0

d

Figure 5.1: Two orthomodular lattices L and M , their context categories, and the
images of those context categories under their spectral presheaves.

Set. Thus, h'̃⇤, ⇣'i can be viewed as a relation from ⌦(M)
B(M)

to ⌦(L)
B(L)

. If

'̃ : B(L) ! B(M) is surjective, then this relation is defined on all of ⌦(M)
B(M)

, while

if '̃ is injective, then this relation is functional.

5.2.1 Example

Consider orthomodular lattices L and M as given in Figure 5.1. The same figure also

shows their context categories and their spectral prsheaves.

Suppose ' : L ! M is an orthomodular lattice homomorphism, characterized by

'(a) = c and '(b) = c0 (note this is su�cient to determine the action of ' on all

elements of L). This homomorphism is neither injective nor surjective, but is clearly

a valid orthomodular lattice homomorphism. Then '̃ : B(L) ! B(M) is given by:

'̃(Ba) = Bc

'̃(Bb) = Bc0 = Bc

'̃(B0) = B0

Applying '̃⇤ to ⌦(M) involves precomposition by '̃. Thus, '̃⇤(⌦(M)) is the map
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from B(L) to Set given on objects by:

'̃⇤(⌦(M)) : B(L) ! B(M) ! Set

Ba 7! Bc 7! ⌦Bc

Bb 7! Bc 7! ⌦Bc

B0 7! B0 7! ⌦B0

Note that the image of B(L) under '̃⇤(⌦(M)) consists of only ⌦Bc , ⌦B0 , and the

restriction map between them.

Now we apply natural transformation ⇣' to this functor '̃⇤(⌦(M)). This functor

has three components, one each for the three Boolean subalgebras of L, and each

component acts by precomposition by ' with an appropriate domain restriction:

⇣' : '̃⇤(⌦(M)) ) ⌦(L)

⇣',Ba : ⌦Bc ! ⌦Ba

⇣',Bb
: ⌦Bc ! ⌦Bb

⇣',B0 : ⌦B0 ! ⌦B0

Recall from Section 3.4.1 that ⌦Ba has two elements, called �a and �a0 , where �a(a) =

1 and �a0(a) = 0, and similarly for ⌦Bb
and ⌦Bc . ⌦B0 simply has one element, �0.

Using these facts, the action of the three components of ⇣' can be specified explicitly:

⇣',Ba : ⌦Bc ! ⌦Ba

�c 7! �c � '|Ba = �a

�c0 7! �c0 � '|Ba = �a0

⇣',Bb
: ⌦Bc ! ⌦Bb

�c 7! �c � '|Bb
= �b0

�c0 7! �c0 � '|Bb
= �b

⇣',B0 : ⌦B0 ! ⌦B0

�0 7! �0 � '|B0 = �0

Thus, we have shown how to use an orthomodular lattice homomorphism to define

a map between spectral presheaves. As every orthomodular lattice has a spectral

presheaf and every orthomodular lattice homomorphism determines a map between

spectral presheaves, this suggests that it might be possible to define a functor from

OML to spectral presheaves and maps between them. First, it is necessary to find
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some category in which the spectral presheaves of orthomodular lattices are objects

and maps between spectral presheaves are morphisms. This leads to the definitions

in the next section.

5.3 The category of D-valued presheaves

The rather unintuitive definition of a map between spectral presheaves, above, is in

fact simply an arrow in a category Presh(Stone). This category is defined and ex-

plored here in order to give more intuition about the definition of a spectral presheaf

map. Additionally, this more general framework will provide us with the necessary

tools to show that the spectral presheaf of an orthomodular lattice is a complete

invariant, determining its associated orthomodular lattice up to isomorphism. Defi-

nitions and explorations of this category appeared in [11].

Recall from Section 2.2 that for categories J , J 0, and D, a functor H : J ! J 0

induces a functor H⇤ : (Dop)J
0 ! (Dop)J whose action on objects is precomposition

by H. We proceed to define the following.

Definition 5.3.1. The category Presh(D) of D-valued presheaves has as its objects

functors (presheaves) of the form P : J ! Dop, where J is a small category. Arrows

are pairs

hH, ⌘i : (P 0 : J 0 ! Dop) ! (P : J ! Dop),

where H : J ! J 0 is a functor and ⌘ : H⇤P 0 ) P is a natural transformation in

(Dop)J :

J 0

J

Dop

⌘

P 0

H⇤P 0

P

H

Let P i : Ji ! Dop, for i = 1, 2, 3, be functors; let hH̃, ⌘̃i : P 3 ! P 2 and

hH, ⌘i : P 2 ! P 1 be two arrows:
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J3

J2

J1

Dop⌘̃

⌘

H̃

H

P 3

H̃⇤P 3

P 2

H⇤P 2

P 1

The composition hH, ⌘i � hH̃, ⌘̃i : P 3 ! P 1 is given by

hH, ⌘i � hH̃, ⌘̃i = hH̃ �H, ⌘ �H⇤⌘̃i,

where ⌘ �H⇤⌘̃ denotes vertical composition of natural transformations.

Lemma 5.3.2. Presh(D) is a category.

Proof. First, it is necessary to show that composition as given above is well-defined,

that is, that hH, ⌘i�hH̃, ⌘̃i is a valid arrow from P 3 to P 1. Consider the diagram above.

Clearly H̃�H is a functor from J1 to J3, as required. Then, the natural transformation

⌘ � H⇤⌘̃ is from H⇤(H̃⇤P 3) to H⇤P 2 to P 1 in (Dop)J1 . As H⇤ � H̃⇤ = (H̃ � H)⇤ by

Fact 2.2.3, it follows that ⌘ �H⇤⌘̃ : (H̃ �H)⇤P 3 ) P 1, as required.

It is also necessary to show that this composition is associative, which will be

done algebraically. Suppose P 4 : J4 ! Dop is a presheaf, Ĥ : J3 ! J4 is a functor,

and hĤ, ⌘̂i is an arrow from P 4 to P 3. Then, by the definition of composition, the

functoriality of H⇤, the associativity of functors and natural transformations, and

Fact 2.2.3,

⇣

hH, ⌘i � hH̃, ⌘̃i
⌘

� hĤ, ⌘̂i = hH̃ �H, ⌘ �H⇤⌘̃i � hĤ, ⌘̂i
= hĤ �

⇣

H̃ �H
⌘

, (⌘ �H⇤⌘̃) � (H̃ �H)⇤⌘̂i
= hĤ �

⇣

H̃ �H
⌘

, ⌘ �
⇣

H⇤⌘̃ � (H⇤ � H̃⇤)⌘̂
⌘

i
= h
⇣

Ĥ � H̃
⌘

�H, ⌘ �H⇤
⇣

⌘̃ � H̃⇤⌘̂
⌘

i
= hH, ⌘i � hĤ � H̃, ⌘̃ � H̃⇤⌘̂i
= hH, ⌘i �

⇣

hH̃, ⌘̃i � hĤ, ⌘̂i
⌘
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Finally, it remains only to show that every object P : J ! Dop of Presh(D) has

an identity arrow. But, if IdJ : J ! J is the identity functor on J and idP : P ) P

is the identity natural transformation on P , then hIdJ , idP i is the appropriate identity
arrow on P , which can be easily verified using the definitions above. Thus, Presh(D)

is a valid category.

It is possible to view spectral presheaves and spectral presheaf maps as defined in

the previous subsection as a subcategory of Presh(Stone). Note that we will now

assume that the spectral presheaf of an orthomodular lattice has codomain Stone

rather than codomain Set. Specifically, it is the subcategory with objects and arrows

determined as follows.

Objects: {⌦(L) : B(L) ! Set | L is an orthomodular lattice.}
Morphisms: {h'̃, ⇣'i | ' is a orthomodular lattice homomorphism.}

The latter is an arrow in Presh(Stone), depicted here:

B(M)

B(L)

Stone

⇣'

⌦(M)

'̃⇤⌦(M)

⌦(L)

'̃

In fact, this subcategory is the image of a functor; there is a contravariant functor

SP : OML ! Presh(Stone), which acts as follows for all orthomodular lattices L

and all orthomodular lattice homomorphisms ' : L ! M :

SP (L) = ⌦(L)

SP (') = h'̃, ⇣'i : ⌦(M) ! ⌦(L)

Proposition 5.3.3. SP is a functor.

Proof. First, we must check that SP preserves identities. Suppose i : L ! L is the

identity orthomodular lattice homomorphism on L. Then, ĩ : B(L) ! B(L) is also

the identity functor on category B(L). Further, ⇣i has components given by

⇣i,B : ⌦(L)
B
! ⌦(L)

B

� 7! � � i = �
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Thus, as each ⇣i,B is just the identity map on ⌦(L)
B
in Stone, it follows that ⇣i is the

identity natural transformation on ⌦(L). Thus, h̃i, ⇣ii is the identity arrow of ⌦(L)

in category Presh(Stone).

Next, it is necessary to show that SP preserves composition. Suppose ' : L ! M

and ⇢ : M ! N are orthomodular lattice homomorphisms. Recalling that SP is

contravariant, we wish to show that SP (⇢ � ') = SP (') � SP (⇢). Consider the

following diagram, which depicts arrows SP (') : ⌦(M) ! ⌦(L) and SP (⇢) : ⌦(N) !
⌦(M) in Presh(Stone):

B(N)

B(M)

B(L)

Stone⇣⇢

⇣'

⇢̃

'̃

⌦(N)

⇢̃⇤⌦(N)

⌦(M)

'̃⇤⌦(M)

⌦(L)

Recall the definition of composition in Presh(Stone):

SP (') � SP (⇢) = h'̃, ⇣'i � h⇢̃, ⇣⇢i = h⇢̃ � '̃, ⇣' � '̃⇤⇣⇢i

Note also that the map from B(L) to B(N) induced by the composition ⇢ � ' is

precisely ⇢̃ � '̃, which follows from the definition in Section 4.1 of such induced maps.

Thus,

SP (⇢ � ') = h⇢̃ � '̃, ⇣⇢�'i
It simply remains to show that the natural transformations ⇣' � '̃⇤⇣⇢ and ⇣⇢�' from

presheaf '̃⇤⇢̃⇤⌦(N) to presheaf ⌦(L) in StoneB(L)
op

are equal. Consider any element

B 2 B(L). Recall, from Fact 2.2.3 and previous definitions, that

('̃⇤⇢̃⇤⌦(N))B = ((⇢̃ � '̃)⇤⌦(N))B = ⌦(N)
(⇢̃�'̃)(B)

= ⌦(⇢̃�'̃)(B).

The action of the component at B of natural transformation ⇣⇢�' is, by the definition
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of ⇣,

⇣⇢�',B : ⌦(⇢̃�'̃)(B) ! ⌦B

� 7! � � (⇢ � ')|B
Now consider natural transformation ⇣' � '̃⇤⇣⇢.

(⇣' � '̃⇤⇣⇢)B = ⇣',B � ('̃⇤⇣⇢)B = ⇣',B � ⇣⇢,'̃(B)

The action of this composition is given as follows.

⇣',B � ⇣⇢,'̃(B) : ⌦(N)
(⇢̃�'̃)(B)

! ⌦(M)
'̃(B)

!⌦(L)
B

� 7! � � ⇢|'̃(B) 7!� � ⇢|'̃(B) � '|B
= � � (⇢ � ')|B

As the two natural transformations ⇣⇢�' and ⇣' � '̃⇤⇣⇢ have the same component for

every B 2 B(L), then they must be the same natural transformation, implying SP

preserves composition and is a functor.

Thus, the image in Presh(Stone) of functor SP , consisting of the spectral

presheaves of orthomodular lattices and the spectral presheaf maps between them, is

a category. Of note, functor SP is neither full nor faithful.

5.4 The category of C-valued copresheaves

Dual to the notion of a presheaf is that of a copresheaf. This definition yields another

category Copresh(C) as follows.

Definition 5.4.1. Let C be a category. The category Copresh(C) of C-valued co-

presheaves has as its objects functors (copresheaves) of the form Q : J ! C, where
J is a small category. Arrows are pairs

hI, ✓i : (Q : J ! C) ! (Q
0
: J 0 ! C),

where I : J ! J 0 is a functor and ✓ : Q ) I⇤Q
0
is a natural transformation in CJ :

J 0

J

C

✓

Q
0

I⇤Q
0

Q

I

47



Let Qi : Ji ! C, for i = 1, 2, 3, be functors. Consider two arrows hI, ✓i : Q1 ! Q2

and hĨ , ✓̃i : Q2 ! Q3:

J3

J2

J1

C✓̃

✓

Ĩ

I

Q3

Ĩ⇤Q3

Q2

I⇤Q2

Q1

The composition hĨ , ✓̃i � hI, ✓i : Q1 ! Q3 is given by

hĨ , ✓̃i � hI, ✓i = hĨ � I, (I⇤✓̃) � ✓i,

where (I⇤✓̃)�✓ denotes vertical composition of natural transformations within functor

category CJ1 .

Just as with category Presh(D), it follows from the above that Copresh(C) is a

well-defined category, though this proof is omitted due to its similarities to the proof

above.

Reference [11] explores the relationship between Presh(D) and Copresh(C) and
proves the following result.

Lemma 5.4.2 ([11]). Let C, D be two categories that are dually equivalent,

C Dop

f

g

?

Then there is a dual equivalence

Copresh(C) Presh(D)op

F

G

?

The action of F and G is defined in the proof of the above theorem in the following

way. First, consider G : Presh(D)op ! Copresh(C). If P : J ! Dop is an object
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of Presh(D)op, then G(P ) : J ! C is the (covariant) functor g � P . That is, for all

objects J and arrows a : J 0 ! J in J ,

G(P )J = (g � P )J = g(P J) 2 Ob(C)
G(P )(a) = (g � P )(a) 2 Morph(C)

It is now time to consider the action of G on morphisms on Presh(D). Let

hH, ⌘i : (P 0 : J 0 ! Dop) ! (P : J ! Dop)

be an arrow in Presh(D). Then, as G is contravariant, G(hH, ⌘i) is an arrow in

Copresh(C) from G(P ) = g�P to G(P 0) = g�P 0. Specifically, G(hH, ⌘i) = hH, g(⌘)i,
where g(⌘) : g � P ) H⇤(g � P 0) is a natural transformation with components

g(⌘)J = g(⌘J) : (g � P )J ! (g �H⇤P 0)J .

Recall from Fact 2.2.4 that g � H⇤P 0 = H⇤(g � P 0), so the above definition of g(⌘)J

does in fact have the correct codomain. It may be useful to note that because g

is a contravariant functor, components g(⌘)J are arrows in the opposite direction

of components ⌘J . The following diagram is not a commutative diagram, but is

intended to give some visual intuition behind the definitions above and the reason

why hH, g(⌘)i : G(P ) ! G(P 0) is in fact a morphism in Copresh(C).

J 0 Dop

CJ

⌘

g(⌘)

g
H

g � P

H⇤(g � P 0)

P 0

H⇤P 0

P

In [11], the action of functor F : Copresh(C) ! Presh(D)op is defined as follows.

On an object Q : J ! C of Copresh(C), F acts as postcomposition by f : C ! Dop.

That is,

F (Q) = f �Q : J ! C ! Dop.

On morphisms hI, ✓i : (Q : J ! C) ! (Q
0
: J 0 ! C) in Copresh(C), contravariant

functor F acts as follows.

F (hI, ✓i) = hI, f(✓)i,
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where f(✓) : I⇤(F (Q
0
)) ) F (Q) is a natural transformation with components, for

each J 2 J , given by

f(✓)J = f(✓J) : (f � I⇤Q0
)J ! (f �Q)J

By Fact 2.2.4 and the definition of F on objects, these components f(✓)J have the

appropriate domain and codomain. It may be useful to note that as functor f : C !
Dop is contravariant, natural transformations f(✓) and ✓ are in opposite directions.

The following is again not a commutative diagram, but captures the intuition behind

this definition of F .

J 0 C

DopJ f(✓)

✓ f
I

f �Q

I⇤(f �Q0
)

Q
0

I⇤Q
0

Q

5.5 Dual equivalences and Stone duality

The above construction of F and G from f and g holds for any dual equivalence

of categories. In particular, recall from Section 3.4 that there is a dual equivalence

between the categoryBA of Boolean algebras and the category Stone of Stone spaces:

BA Stone

⌦

cl

?

This duality is witnessed by natural isomorphisms:

St : IdStone ) ⌦ � cl
Bo : IdBA ) cl � ⌦

The components of these natural isomorphisms are given in Section 3.4. By Lemma

5.4.2, there is then a duality
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Copresh(BA) Presh(Stone)

⌃

CL

?

The definitions of functors F and G that appear in Lemma 5.4.2 will now be used to

describe the actions of CL and ⌃ on Bohrifications in Copresh(BA) and spectral

presheaves in Presh(Stone), respectively. The Bohrification of an orthomodular

lattice is the tautological inclusion copresheaf, defined as follows in analogy to [18],

where the term Bohrification was first used.

Definition 5.5.1. For an orthomodular lattice L, the Bohrification L of L is the

copresheaf from B(L) to BA given by:

On objects: LB = B

On morphisms: L(iB0,B) = incB0,B, the inclusion homomorphism

Recall that iB0,B denotes the arrow in poset B(L) from B0 to B which signifies that

B0 ✓ B, while incB0,B denotes the Boolean algebra homomorphism B0 ,�! B that maps

each element in B0 to the same element of B. We now proceed to describe functors

CL and ⌃ of the above dual equivalence of Copresh(BA) and Presh(Stone).

Functor ⌃: First consider the action of functor ⌃ on the Bohrification L of ortho-

modular lattice L, which is an object in Copresh(BA). ⌃ acts by postcomposition

with ⌦, that is,

⌃(L) = ⌦ � L : B(L) ! BA ! Stone

Specifically, on objects B of B(L), the resulting functor acts as follows:

⌃(L)B = (⌦ � L)B = ⌦(LB) = ⌦B.

On arrows iB0,B in B(L), this functor has the following action:

⌃(L)(iB0,B) = (⌦ � L)(iB0,B) = ⌦(incB0,B) = rB,B0 ,

where r denotes the restriction map, that is, precomposition with the inclusion map.

Note that as ⌦ � L is a presheaf from B(L) to Stone with the exact same action on

both objects and arrows of B(L) as ⌦(L), then in fact ⌦ � L = ⌦(L). That is,

⌃(L) = ⌦(L). (5.1)
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Now consider the action of functor ⌃ on morphisms between Bohrifications, that

is, on arrows hI, ✓i : L ! M. From above,

⌃(hI, ✓i) = hI,⌦(✓)i,

where ⌦(✓) is the natural transformation with components ⌦(✓)B = ⌦(✓B) for all

B 2 B(L).

Functor CL: We now describe the action of functor CL on a spectral presheaf

⌦(L) 2 Presh(Stone), for some orthomodular lattice L. This action is the compo-

sition cl � ⌦(L), which is now a functor with domain B(L) in Copresh(BA). The

action of this functor on objects B 2 B(L) is given by

(cl � ⌦(L))B = cl(⌦(L)
B
) = cl(⌦B),

where cl(⌦B) is the Boolean algebra of clopen subsets of ⌦B, the Stone space of B.

On inclusion arrows iB,B0 : B0 ! B in B(L), the action of this functor is given by

(cl � ⌦(L))(iB0,B) = cl(rB,B0) : cl(⌦B0) ! cl(⌦B).

Recall that the action of functor cl on morphisms is given by the inverse image map,

denoted by exponent (�1). For any clopen subset S of ⌦B0 ,

cl(rB,B0)(S) = r(�1)
B,B0(S) = {� 2 ⌦B : �|B0 2 S},

which is a clopen subset of ⌦B.

Now, consider how map CL acts on spectral presheaf morphisms h'̃, ⇣'i : ⌦(M) !
⌦(L) in Presh(Stone). From the definition of the action of functor G on arrows that

is given above,

CL(h'̃, ⇣'i) = h'̃, cl(⇣')i
where cl(⇣') is a natural transformation from functor cl�⌦(L) to functor cl�'̃⇤(⌦(M)).

Map cl(⇣') has components for each B 2 B(L) that map from cl(⌦(L)
B
), which is

equal to cl(⌦B), to cl(('̃⇤⌦(M))B), which is equal to cl(⌦'̃(B)), given by:

cl(⇣')B = cl(⇣',B) = ⇣(�1)
',B : cl(⌦B) ! cl(⌦'̃(B)).

Again, here the exponent denotes the inverse image function, rather than an inverse

function. Specifically, the action of cl(⇣')B on a clopen subset S of ⌦(L)
B
is given by

cl(⇣')B(S) = ⇣(�1)
',B (S) = {� 2 ⌦'̃(B) : ⇣',B(�) 2 S} = {� 2 ⌦'̃(B) : � � '|B 2 S}.
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5.6 Presheaf and copresheaf isomorphisms

Now that the action of functors ⌃ and CL has been defined, this duality can be

used to explore the relationship between spectral presheaves in Presh(Stone) and

Bohrifications in Copresh(BA). We first proceed to show that L and CL(⌦(L)) =

cl � ⌦(L) are isomorphic in the functor category BAB(L). That is, there is a natural

isomorphism between them, which will be defined below. For each B 2 B(L), note
that the component of this natural transformation must be an isomorphism from LB

to (cl � ⌦(L))B. Recall that

LB = B and (cl � ⌦(L))B = cl(⌦(L)
B
) = cl(⌦B).

The duality between BA and Stone from Section 3.4 yields a natural isomorphism

with components BoB : B ! cl(⌦B). Using these maps as components gives a map

{BoB}B2B(L) : L ) cl�⌦(L), which we now show is a natural isomorphism as desired.

Lemma 5.6.1. The map {BoB}B2B(L) : L ) cl � ⌦(L) is a natural isomorphism.

That is, these two functors are isomorphic in the functor category BAB(L).

Proof. First it is necessary to show that this map is a natural transformation, that

is, that the following diagram commutes for every B0, B 2 B(L) such that B0 ✓ B

and thus iB0,B exists:

(cl � ⌦(L))B(cl � ⌦(L))B0

LBLB0

(cl � ⌦(L))(iB0,B)

BoB0 BoB

L(iB0,B)

Recall that

(cl � ⌦(L))B = cl(⌦(L)
B
) = cl(⌦B) = (cl � ⌦)B.

Additionally, note that

(cl � ⌦(L))(iB0,B) = cl(⌦(L)(iB0,B)) = cl(rB,B0) = cl(⌦(incB0,B)) = (cl � ⌦)(incB0,B).

Thus, also applying the definition of L, the above diagram can be rewritten as
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(cl � ⌦)B(cl � ⌦)B0

BB0

(cl � ⌦)(incB0,B)

BoB0 BoB

incB0,B

The above diagram commutes because incB0,B : B0 ! B is a morphism in category

BA and because Bo : Id
BA

! cl�⌦ is a natural transformation. Thus, the collection

{BoB}B2B(L) : L ) cl�⌦(L) is a valid natural transformation. It follows that as each

arrow BoB is an isomorphism then it is in fact a natural isomorphism.

Natural isomorphism {BoB}B2B(L) will now simply be written in a slight abuse of

notation as Bo, and we will remember this natural isomorphism only has components

for all B 2 B(L). This will greatly simplify subsequent proofs.

While the above lemma presents an interesting result, it will be more useful to

know that the functors L and cl�⌦(L) are isomorphic in category Copresh(BA), as

this would imply some results about isomorphisms in Presh(Stone), our ultimate

goal.

Lemma 5.6.2. The morphism hIdB(L), Boi : L ! cl � ⌦(L) is an isomorphism in

Copresh(BA).

Proof. Natural isomorphism Bo = {BoB}B2B(L) has an inverse natural isomorphism

{Bo�1
B }B2B(L) : cl � ⌦ ) L, which will simply be denoted Bo�1. We now use Fact

2.2.5 to show that morphism hIdB(L), Bo�1i : cl�⌦(L) ! L is an inverse to morphism

hIdB(L), Boi in Copresh(BA):

hIdB(L), Boi � hIdB(L), Bo�1i = hIdB(L) � IdB(L), (Id⇤B(L)Bo) �Bo�1i
= hIdB(L), Bo �Bo�1i
= hIdB(L), Idcl�⌦(L)i

hIdB(L), Bo�1i � hIdB(L), Boi = hIdB(L) � IdB(L), (Id⇤B(L)Bo�1) �Boi
= hIdB(L), Bo�1 �Boi
= hIdB(L), IdLi

Thus, hIdB(L), Boi is an isomorphism in Copresh(BA), meaning L and cl �⌦(L) are
isomorphic in this category of copresheaves.
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The main result of this section is the following theorem, which results from the pre-

vious lemma using the dual equivalence between Copresh(BA) and Presh(Stone).

Theorem 5.6.3. Let L and M be orthomodular lattices, ⌦(L) and ⌦(M) their spec-

tral presheaves, and L and M their Bohrifications. Then there is an isomorphism

⌦(M) ! ⌦(L) in Presh(Stone) if and only if there is an isomorphism L ! M
in Copresh(BA), and these isomorphisms can be explicitly constructed from each

other.

Proof. Suppose there is an isomorphism hH, ⌘i : ⌦(M) ! ⌦(L) in Presh(Stone).

Then, as functors preserve isomorphisms, there is an isomorphism

CL(hH, ⌘i) : CL(⌦(L)) ! CL(⌦(M))

in Copresh(BA). Specifically, recall that CL(⌦(L)) = cl � ⌦(L), similarly for M ,

and that

CL(hH, ⌘i) = hH, cl(⌘)i,
where cl(⌘) is the natural transformation with components cl(⌘)J = cl(⌘J) = ⌘(�1)

J ,

where the exponent (�1) denotes the inverse image function. By the previous lemma,

there are isomorphisms in Copresh(BA)

hIdB(L), Boi : L ! cl � ⌦(L)
hIdB(M), Bo�1i : cl � ⌦(M) ! M

Composing these two isomorphisms on either side of hH, cl(⌘)i gives an isomorphism

from L to M, as desired. Specifically, this composition evaluates as follows:

hIdB(M), Bo�1i � hH, cl(⌘)i � hIdB(L), Boi
= hIdB(M), Bo�1i � hH � IdB(L), (Id⇤B(L)cl(⌘)) �Boi
= hIdB(M) �H � IdB(L), (H⇤Bo�1) � (Id⇤B(L)cl(⌘)) �Boi
= hH, (H⇤Bo�1) � cl(⌘) �Boi

By construction, each component of natural transformation (H⇤Bo�1) � cl(⌘) � Bo

is an isomorphism in category BA, and thus is a Boolean algebra isomorphism. To

be even more explicit about this composition, the actions of natural transformations

Bo and Bo�1 are given in Section 3.4. Some visual intuition for this composition is

provided below:
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B(M)

B(L) BA

Bo�1

cl(⌘)

H

M

CL(⌦(M))

H⇤CL(⌦(M))

L
BoCL(⌦(L))

Thus, whenever there is an isomorphism hH, ⌘i : ⌦(M) ! ⌦(L) in Presh(Stone),

then hH, (H⇤Bo�1) � cl(⌘) � Boi : L ! M is an isomorphism in Copresh(BA),

completing the first half of this proof.

Now, suppose that there is an isomorphism hI, ✓i : L ! M in Copresh(BA).

Recall there is a functor ⌃ : Copresh(BA) ! Presh(Stone) that is dual to CL.

Then, as functors preserve isomorphisms, there is an isomorphism in Presh(Stone)

from ⌃(M) to ⌃(L), given by

⌃(hI, ✓i) = hI,⌦(✓)i,

where ⌦(✓) is the natural transformation with components ⌦(✓)B = ⌦(✓B) for all B

in B(L). Recalling from (5.1) that

⌃(M) = ⌦ �M = ⌦(M) and ⌃(L) = ⌦ � L = ⌦(L),

it follows that hI,⌦(✓)i is an isomorphism in Presh(Stone) from ⌦(M) to ⌦(L),

meaning the two spectral presheaves are isomorphic, as desired.

The above theorem represents a major step towards the goal of this section, which

is showing that two orthomodular lattices are isomorphic if and only if their spectral

presheaves are.

5.7 Spectral presheaf isomorphisms

The main result of this subsection is that two orthomodular lattices are isomorphic if

and only if their spectral presheaves are. Equipped with Theorem 5.6.3, we are now

able to prove this main result, which is separated into the following two theorems.
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Theorem 5.7.1. Let L and M be orthomodular lattices. If ' : L ! M is an

isomorphism in OML, then there is an isomorphism h'̃, ⇣'i : ⌦(M) ! ⌦(L) in

Presh(Stone), where natural transformation ⇣' has components ⇣',B = ⌦('|B) for

all B in B(L).

Proof. Suppose ' : L ! M is an isomorphism of orthomodular lattices, with inverse

 = '�1. Then, by Proposition 4.1.7, '̃ : B(L) ! B(M) is an order isomorphism

of posets, with inverse  ̃. Additionally, for each B 2 B(L), '|B : B ! '(B) is an

isomorphism of Boolean algebras by Proposition 4.1.3, with inverse  |'̃(B).

By Stone duality, applying functor ⌦ to Boolean algebra isomorphism '|B : B !
'̃(B) yields a continuous isomorphism ⌦('|B) : ⌦'̃(B) ! ⌦B in category Stone,

where objects are Stone spaces and morphisms are continuous maps between them.

Note that as '̃(B) 2 B(M), then

⌦'̃(B) = ⌦(M)
'̃(B)

= (⌦(M) � '̃)B = ('̃⇤⌦(M))B.

Additionally, as B 2 B(L), then ⌦B = ⌦(L)
B
. Thus, ⌦('|B) is in fact a Stone space

morphism from ('̃⇤⌦(M))B to ⌦(L)
B
. Let isomorphism ⌦('|B) be denoted

⌦('|B) := ⇣',B : ('̃⇤⌦(M))B ! ⌦(L)
B
.

Note that this coincides exactly with the definition of ⇣',B given in Step 2 of Section

5.2, where the action of ⇣',B on a homomorphism � : '̃(B) ! {0, 1} is given by

precomposition with '|B.
We first check that the components (⇣',B)B2B(L) form a natural isomorphism from

'̃⇤⌦(M) to ⌦(L). For every B0 ✓ B in B(L), that is, for every arrow iB0,B in poset

B(L), the following diagram must commute:

⌦(M)
'̃(B0)

⌦(M)
'̃(B)

⌦(L)
B0 ⌦(L)

B

⌦(M)(i'̃(B0),'̃(B))

= r'̃(B),'̃(B0)

⌦(L)(iB0,B)

= rB0,B

⇣',B0 ⇣',B

This is precisely the same diagram that was shown to commute in Step 2 of Section

5.2. Thus, the ⇣',B are the components of a natural isomorphism ⇣' from presheaf

'̃⇤⌦(M) to presheaf ⌦(L).
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Since '̃ : B(L) ! B(M) is an isomorphism and ⇣' : '̃⇤⌦(M) ! ⌦(L) is a natural

isomorphism, then the composite

h'̃, ⇣'i : ⌦(M) ! ⌦(L)

is an arrow in Presh(Stone), depicted here:

B(M)

B(L)

Stone

⇣'

⌦(M)

'̃⇤⌦(M)

⌦(L)

'̃

It only remains to show that this arrow has an inverse, that is, that it is an isomor-

phism in Presh(Stone). Recall that  ̃ : B(M) ! B(L) is the inverse of '̃, and

consider the arrow

h ̃,  ̃⇤(⇣�1
' )i : ⌦(L) ! ⌦(M).

This arrow is depicted in the following diagram:

B(M)

B(L)

Stone

 ̃⇤(⇣�1
' )

⇣�1
'

⌦(M)

 ̃⇤⌦(L)

'̃⇤⌦(M)

⌦(L)

'̃  ̃

That both compositions of arrow h'̃, ⇣'i with its inverse give the identity mor-

phism is now checked algebraically, using the functoriality of '̃⇤ and  ̃⇤, Fact 2.2.3,
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and Fact 2.2.5:

h ̃,  ̃⇤(⇣�1
' )i � h'̃, ⇣'i = h'̃ �  ̃,  ̃⇤(⇣�1

' ) �  ̃⇤⇣'i
= hIdB(M),  ̃

⇤(Id'̃⇤⌦(M))i
= hIdB(M), Id ̃⇤'̃⇤⌦(M)i
= hIdB(M), Id⌦(M)i

h'̃, ⇣'i � h ̃,  ̃⇤(⇣�1
' )i = h ̃ � '̃, ⇣' � '̃⇤( ̃⇤(⇣�1

' ))i
= hIdB(L), ⇣' � ( ̃ � '̃)⇤(⇣�1

' ))i
= hIdB(L), ⇣' � (IdB(L))⇤(⇣�1

' )i
= hIdB(L), ⇣' � ⇣�1

' i
= hIdB(L), Id⌦(L)i

Thus, h'̃, ⇣'i : ⌦(M) ! ⌦(L) is an isomorphism in Presh(Stone), as desired.

In order to prove the next result, recall from Section 4.2 the definition of a partial

orthomodular lattice. Note that a partial orthomodular lattice captures all aspects of

lattice structure within each boolean subalgebra of L, as well as capturing inclusion

relations between Boolean subalgebras. This is precisely the same data about L that

can be recovered from the Bohrification of L, which is an object in a topos. This makes

Lpart a topos-external description of the Bohrification L of orthomodular lattice L,

useful for switching our focus from presheaves and copresheaves to back to lattices.

Theorem 5.7.2. Let L and M be orthomodular lattices. If there is an isomorphism

hH, ⌘i : ⌦(M) ! ⌦(L) in Presh(Stone), then there is an isomorphism from L to

M in OML that can be explicitly constructed from hH, ⌘i.

Proof. Let hH, ⌘i : ⌦(M) ! ⌦(L) be an isomorphism between spectral presheaves of

orthomodular lattices. By Theorem 5.6.3, there exists a isomorphism from L to M
in Copresh(BA), specifically,

hH, (H⇤Bo�1) � cl(⌘) �Boi : L ! M.

For simplicity, define

⇢ := (H⇤Bo�1) � cl(⌘) �Bo : L ) H⇤M.
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This natural transformation ⇢ has components for each B 2 B(L) that map from

LB = B to (H⇤M)B = MH(B) = H(B), where H(B) is an element of B(M), that is,

a Boolean subalgebra of M :

⇢B : B ! H(B).

By the construction of ⇢ in the proof of Theorem 5.6.3, each component ⇢B is a

Boolean algebra isomorphism.

Let a 2 L, and suppose that a 2 B0 and a 2 B, where B0, B 2 B(L) with B0 ✓ B.

That is, iB0,B is an arrow in B(L). Recall that L(iB0,B) = incB0,B, the inclusion

Boolean algebra homomorphism from B0 to B. Additionally, H(iB0,B) is an arrow in

B(M) from H(B0) to H(B); as poset categories have at most one arrow with a given

domain and codomain, it must be that H(iB0,B) = iH(B0),H(B). Then,

(M �H)(iB0,B) = incH(B0),H(B).

The naturality of ⇢ then means that the following diagram commutes:

B0 H(B0)

B H(B)

⇢B0

incB0,B incH(B0),H(B)

⇢B

That is,

⇢B(a) = (⇢B � incB0,B)(a) = (incH(B0),H(B) � ⇢B0)(a) = ⇢B0(a).

From this, it follows that if element a is in any two Boolean subalgebras B1, B2 of L

(not necessarily related by containment), then

⇢B1(a) = ⇢B1\B2(a) = ⇢B2(a).

Note that as all Boolean subalgebras of L contain both 0 and 1, the Boolean subal-

gebra B1 \ B2 is nonempty. This yields a well-defined map as follows:

' : Lpart ! Mpart

a 7! ⇢B(a), where B 2 B(L) is any Boolean subalgebra containing a

This is well defined because ⇢B(a) is the same regardless of which Boolean subalgebra

containing a is chosen, and because every element of L is in at least one Boolean
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subalgebra. This map ' is a partial orthomodular lattice homomorphism because on

each Boolean subalgebra of L, ⇢B is a Boolean algebra homomorphism and thus pre-

serves all meets, joins, and orthocomplements within that sublattice. As each Boolean

subalgebra is closed under orthocomplementation, this means that ' preserves ortho-

complements on all of L as well. It remains to check that ' is an isomorphism of

partial orthomodular lattices.

As ⇢ is a natural isomorphism, each component ⇢B is an isomorphism of Boolean

algebras and has an inverse ⇢�1
B : H(B) ! B. Just as above, for any m 2 M , it can

be shown that ⇢�1
B1
(m) = ⇢�1

B2
(m) for any B1, B2 2 B(M) that contain m. Thus, it is

possible to define a partial orthomodular lattice homomorphism

 : Mpart ! Lpart

m 7! ⇢�1
B (m), where B 2 B(M) is any Boolean subalgebra containing m

One can now verify that  is an inverse to '. Let a 2 L, and let B 2 B(L) contain
a. Then,

( � ')(a) = (⇢�1
B � ⇢B)(a) = IdB(a) = a

Similarly, for any m 2 M contained in some Boolean algebra B 2 B(M),

(' �  )(m) = (⇢H�1(B) � ⇢�1
H�1(B))(m) = IdB(m) = m

Clearly  is an inverse to ', meaning that ' is a partial orthomodular lattice isomor-

phism. By Lemma 4.2.4, ' preserves all meets and joins, not just those within Boolean

subalgebras, and as it also already preserves orthocomplementation this means that

' : L ! M is an isomorphism of orthomodular lattices.

Specifically, for any element a 2 L, the action of ' on a as constructed in the

proof above is given as follows. Let B 2 B(L) be any Boolean subalgebra containing

a. Then,

'(a) = ⇢B(a) = ((H⇤Bo�1) � cl(⌘) �Bo)B(a) = ((H⇤Bo�1
B ) � cl(⌘)B �BoB)(a)

= (Bo�1
H(B) � cl(⌘B) �BoB)(a).

Recall that BoB : B ! cl(⌦(B)) is the component at B of the natural transformation

that witnesses Stone duality; Bo�1
H(B) is the component atH(B) 2 B(M) of the inverse

of this same natural transformation; and cl : Stone ! BA is one functor the dual

equivalence of Stone duality. Specific actions of these maps are given in Section 3.4.

In practice, to calculate '(a) it is simplest to choose B = Ba = {0, a, a0, 1}, the

Boolean algebra with four elements, as we will do in the later proofs of Theorems

5.7.4 and 5.7.5.
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Theorem 5.7.3. Two orthomodular lattices L and M are isomorphic in OML if and

only if their spectral preserves ⌦(L) and ⌦(M) are isomorphic in Presh(Stone).

Proof. Theorems 5.7.1 and 5.7.2.

The above is the main result of this section; the impact of this theorem is discussed

in Section 5.8.

In fact, it is possible to prove an even stronger result about isomorphisms of

orthomodular lattices and their spectral presheaves. For orthomodular lattice iso-

morphism ' : L ! M , denote the spectral presheaf isomorphism constructed in the

proof of Theorem 5.7.1 by SP (') : ⌦(M) ! ⌦(L). For spectral presheaf isomorphism

hH, ⌘i : ⌦(M) ! ⌦(L), denote the orthomodular lattice isomorphism constructed in

the proof of Theorem 5.7.2 by OML(hH, ⌘i) : L ! M .

Theorem 5.7.4. For all orthomodular lattice isomorphisms ' : L ! M ,

OML(SP (')) = '.

Proof. Consider orthomodular lattice isomorphism ' : L ! M . Then, h'̃, ⇣'i is an

isomorphism in Presh(Stone), where ⇣' is a natural isomorphism with components

given by

⇣',B : ⌦'̃(B) ! ⌦B

� 7! � � '|B

Each component ⇣',B is an isomorphism of Stone spaces.

To construct OML(h'̃, ⇣'i), consider natural isomorphism in Copresh(BA):

⇢ = ('̃⇤Bo�1) � cl(⇣') �Bo : L ) '̃⇤M.

Each component of this natural isomorphism is a Boolean algebra isomorphism from

B to '̃(B) given by

⇢B =
�

('̃⇤Bo�1) � cl(⇣') �Bo
�

B

= ('̃⇤Bo�1)B � cl(⇣')B �BoB

= Bo�1
'̃(B) � ⇣(�1)

',B �BoB

Now, let a 2 L. The four-element Boolean algebra Ba with elements {0, a, a0, 1}
is a Boolean subalgebra of L that contains a. OML(h'̃, ⇣'i) is the homomorphism

from L to M whose action on element a is ⇢Ba(a), which we will now calculate. First,
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recall from Section 3.4.1 that the Stone space of Ba has two elements, called �a and

�a0 , where �a(a) = 1 and �a0(a) = 0. Thus,

BoBa(a) = {� 2 ⌦Ba | �(a) = 1} = {�a}.

Note that as '|B is a Boolean algebra isomorphism, then '̃(B) is the four-element

Boolean algebra with elements {0,'(a),'(a)0, 1}, which we will denote B'(a). The

Stone space of B'(a) has two elements, which we will denote as �'(a) and �'(a)0 , where

�'(a)('(a)) = 1 and �'(a)0('(a)) = 0. Then,

⇣(�1)
',B (BoB(a)) = ⇣(�1)

',B ({�a})
= {� 2 ⌦'̃(Ba) | (� � '|Ba)(a) = 1}
= {�'(a)}

In order to calculate ⇢Ba(a) = Bo�1
'̃(B)({�'(a)}, recall the definition for the components

of Bo�1 given in Section 3.4. We must write {�'(a)} as a finite union of basic open sets

of ⌦'̃(B). As {�'(a)} = U'(a) is itself a basic open set, then Bo�1
'̃(B)({�'(a)}) = '(a).

Thus,

⇢Ba(a) =
⇣

Bo�1
'̃(B) � ⇣(�1)

',B �BoB
⌘

(a) = Bo�1
'̃(B)({�'(a)}) = '(a)

Thus, OML(h'̃, ⇣'i) is the orthomodular lattice homomorphism from L to M map-

ping a to ⇢Ba(a) = '(a), meaning that ' = OML(h'̃, ⇣'i) = (OML � SP )(').

Theorem 5.7.5. Let hH, ⌘i : ⌦(M) ! ⌦(L) be an isomorphism in Presh(Stone)

between the spectral presheaves of two orthomodular lattices M and L. Then

SP (OML(hH, ⌘i)) = hH, ⌘i.

Proof. Consider an isomorphism hH, ⌘i : ⌦(M) ! ⌦(L) in Presh(Stone). To con-

struct OML(hH, ⌘i), consider natural isomorphism in Copresh(BA):

⇢ = (H⇤Bo�1) � cl(⌘) �Bo : L ) H⇤M.

Each component of this natural isomorphism is a Boolean algebra isomorphism from

B to H(B) given by

⇢B = Bo�1
H(B) � ⌘(�1)

B �BoB.

Let a 2 L. Then the four-element Boolean Ba contains a. We first want to calculate

OML(hH, ⌘i)(a) = ⇢Ba(a).
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Note that H(Ba) is also a four-element Boolean algebra because H is an order iso-

morphism of posets; as there is no B 2 B(L) such that {0, 1} ⇢ B ⇢ Ba, then this

also holds true for H(Ba) in B(M), meaning H(Ba) is also a four-element Boolean

subalgebra. We will name its elements {0, h(a), h(a)0, 1}. Note that we are not defin-
ing some function h : L ! M , but rather simply using function notation to indicate

that the elements of H(Ba) depend on the chosen element a. This will minimize the

use of subscripts in the following argument. We now calculate

(⌘(�1)
Ba

�BoBa)(a) = ⌘(�1)
Ba

({�a})
= {� 2 ⌦H(Ba) | ⌘Ba(�) = �a}
= {� 2 ⌦H(Ba) | ⌘Ba(�)(a) = 1}

As ⌘Ba is an isomorphism of Stone spaces, it must be that exactly one of the two

elements �h(a) and �h(a)0 of ⌦H(Ba) satisfies ⌘Ba(�)(a) = 1, which is equivalent to

⌘Ba(�) = �a. If (⌘(�1)
Ba

� BoBa)(a) = {�h(a)} = Uh(a), then applying Bo�1
H(Ba)

yields

h(a), while the other case yields h(a)0. Thus,

⇢Ba(a) =

⇢

h(a) : ⌘Ba(�h(a)) = �a
h0(a) : ⌘Ba(�h(a)0) = �a

Thus, OML(hH, ⌘i) is a homomorphism ' : L ! M given by '(a) = ⇢Ba(a) as above.

We now want to show that SP (') = hH, ⌘i. First, consider '̃, and let B be

any element of B(L). We want to show that '̃(B) = H(B). First, let a 2 L and

consider the four-element Boolean subalgebra Ba = {0, a, a0, 1}. Recall that H(Ba)

has four elements which we call {0, h(a), h0(a), 1}, and note that either '(a) = h(a)

and '(a0) = h(a)0, or '(a) = h(a)0 and '(a0) = h(a). In either case,

'̃(Ba) = {'(x) | x 2 Ba} = {0, h(a), h(a)0, 1} = H(Ba).

Now, let B be an arbitrary Boolean subalgebra of L. Let '(a) be any element in

'̃(B), where a is some element of B. Then, '(a) 2 '̃(Ba) = H(Ba). As Ba ✓ B,

then H(Ba) ✓ H(B), meaning '(a) 2 H(B) and thus '̃(B) ✓ H(B).

Conversely, let h 2 H(B). Then Bh = {0, h, h0, 1} ✓ H(B), implying that

H�1(Bh) ✓ H�1(H(B)) = B.

As H�1(Bh) is a four-element Boolean subalgebra of B because H is an order iso-

morphism, then

'̃(H�1(Bh)) = H(H�1(Bh)) = Bh
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because '̃ and H are the same on four-element Boolean subalgebras. Thus h 2 Bh is

equal to some element '(a) in

'̃(H�1(Bh)) = {'(a) | a 2 H�1(Bh) ✓ B}.

As a is thus also an element of B, then h 2 '̃(B) as desired. So, '̃(B) = H(B) for

all B 2 B(L), meaning '̃ = H.

It only remains to show that ⇣' = ⌘, and this will follow from the fact that

each component of these natural isomorphisms is the same. Fix some B 2 B(L).
Recall that ⇣',B and ⌘B are both isomorphisms from ⌦'̃(B) = ⌦H(B) to ⌦B. Fix

� 2 ⌦'̃(B) = ⌦H(B) and fix a 2 B; we want to show that ⇣',B(�)(a) = ⌘B(�)(a).

As described in the proof of Theorem 5.7.1, component ⇣',B acts on an element

� 2 ⌦B by precomposing by '|B:

⇣',B : ⌦'̃(B) ! ⌦B

� 7! � � '|B

Thus,

⇣',B(�)(a) = �('(a)). (5.2)

As ⌘ is a natural transformation, then as Ba is a Boolean algebra contained in B,

it follows that the following diagram commutes:

⌦'̃(B)⌦'̃(Ba)

⌦B⌦Ba

r'̃(B),'̃(Ba)

rB,Ba

⌘B⌘Ba

In particular, this implies that

⌘B(�)(a) = ⌘B(�)|Ba(a) = ⌘Ba(�|'̃(Ba))(a). (5.3)

Recall the definition of map ', where the elements ofH(Ba) are denoted {0, h(a), h(a)0, 1}
and the two elements of ⌦H(Ba) are denoted �h(a) and �h(a)0 :

'(a) =

⇢

h(a) : ⌘Ba(�h(a)) = �a , ⌘Ba(�h(a))(a) = 1
h(a)0 : ⌘Ba(�h(a)0) = �a , ⌘Ba(�h(a))(a) = 0
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Specifically, for any �|'̃(B) 2 ⌦H(B) = {�h(a),�h(a)0}, whether �|'̃(B) = �h(a) or

�|'̃(B) = �h(a)0 , an exhaustive check shows that

�('(a)) = �|'̃(Ba)('(a)) = ⌘Ba(�|'̃(B))(a).

Combining this with Equations 5.2 and 5.3,

⇣',B(�)(a) = �('(a)) = ⌘Ba(�|'̃(B))(a) = ⌘B(�)(a)

Thus, ⇣' = ⌘, meaning

SP (OML(hH, ⌘i)) = hH, ⌘i.

Theorem 5.7.6. There are bijections SP and OML between orthomodular lattice

isomorphisms ' : L ! M and spectral presheaf isomorphisms hH, ⌘i : ⌦(M) ! ⌦(L).

Proof. Theorems 5.7.4 and 5.7.5.

5.8 Impact of Theorem 5.7.3

Theorem 5.7.3 is of considerable mathematical interest. While the duality between

Stone spaces and Boolean algebras has been well-known in the mathematical commu-

nity for many years, we are not familiar with any attempts to generalize this duality

to orthomodular lattices. The spectral presheaf of an orthomodular lattices provides

a new notion of duality between orthomodular lattices and a functor whose image

is, rather than a single Stone space, a collection of Stone spaces linked together by

continuous restriction maps. Theorem 5.7.3 implies that this duality preserves all

structure of an orthomodular lattice, as we would want such a duality result to do.

In the case where orthomodular lattice L is in fact a Boolean algebra, this notion of

duality does not quite restrict to Stone duality, as the spectral presheaf considers all

Boolean subalgebras of L while Stone duality does not. This is necessary to avoid

certain no-go theorems about extending classical dualities [31].

Theorem 5.7.3 demonstrates that the spectral presheaf of an orthomodular lattice

is a complete invariant, determining the orthomodular lattice up to isomorphism and

vice versa. This is stronger than the corresponding result for von Neumann algebras,

where a spectral presheaf determines a von Neumann algebra only up to Jordan

⇤-isomorphism rather than up to isomorphism [11].

The fact that the spectral presheaf of an orthomodular lattice is a complete in-

variant means that instead of modeling quantum logic with an orthomodular lattice,
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one can model quantum logic with the spectral presheaf of an orthomodular lattice

without losing any information. This shows that there is a ‘state space’ picture of

quantum logic that is of a similar form to the generalized state space of a quan-

tum system given by the spectral presheaf of a von Neumann algebra. This further

validates the topos approach to quantum physics by demonstrating that its main

principles apply to other aspects of quantum theory as well.

Reference [17] proves that an isomorphism of context categories yields an isomor-

phism of orthomodular lattices, though this isomorphism is only unique when the

orthomodular lattices have no maximal four-element Boolean subalgebras. We con-

sidered not just the context category but rather a functor on the context category; an

isomorphism between spectral presheaves hH, ⌘i consists of not only an isomorphism

H between context categories but also a natural isomorphism ⌘. The additional data

of ⌘ enables the proof of Theorem 5.7.6, that there is a bijection between orthomodu-

lar lattice isomorphisms and spectral presheaf isomorphisms. This result is not true of

orthomodular lattice isomorphisms and context category isomorphisms as considered

in [17]. Additionally, Theorem 5.7.2 provides a way to construct an isomorphism of

orthomodular lattices from an isomorphism of their spectral presheaves by only con-

sidering four-element Boolean subalgebras; it is precisely when considering maximal

four-element Boolean subalgebras that the process employed by [17] fails to construct

a unique isomorphism.
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Chapter 6

The Spectral Presheaf of a
Complete Orthomodular Lattice

The spectral presheaf of an orthomodular lattice is an object in the topos SetB(L)
op

.

As an object in a topos, one can talk about its subobjects as a next logical step.

Though this should be possible to do for any orthomodular lattice, some of our

constructions currently only apply to the case of complete orthomodular lattices. For

this reason, we will focus on complete orthomodular lattices from now on, though

it is hoped that future research will extend the results of this section to arbitrary

orthomodular lattices. Recall that a complete orthomodular lattice is one in which

all infinite meets and joins exist.

Of note, the isomorphism result of Theorem 5.7.3 doesn’t immediately apply to

complete orthomodular lattices. This is because, among other nuances, the isomor-

phism between orthomodular lattices L and M constructed from an isomorphism

from Lpart to Mpart in the proof of Theorem 5.7.2 is not necessarily a complete ortho-

modular lattice homomorphism, that is, it may only preserve finite meets and joins,

not arbitrary meets and joins. Related to this, it is not obvious (although true) that

the clopen subsets of the Stone space of a complete Boolean algebra form a complete

Boolean algebra themselves, which is necessary for any sort of Stone duality result

involving complete orthomodular lattices. For these reasons and to provide additional

insights into complete orthomodular lattices and their Stone spaces, the results about

the spectral presheaf of an orthomodular lattice from Chapter 5 are rephrased below

for complete orthomodular lattices. These results are presented largely without proof,

as the proofs are nearly identical to those for orthomodular lattices in the previous

section. Often the only change needed is inserting the word ‘complete’ and requir-

ing morphisms to preserve arbitrary meets and joins rather than finite meets and
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joins. First, we consider some background information about complete orthomodular

lattices.

6.1 Complete orthomodular lattices and their Boolean
substructure

Definition 6.1.1. A complete lattice L is one for which every (possibly infinite)

family (ai)i2I of elements of L has a well-defined meet and join, that is, a greatest

lower bound and a least upper bound.

Definition 6.1.2. A complete lattice homomorphism ' : L ! M is one which pre-

serves the meet and join of every (possibly infinite) family (ai)i2I of elements of L:

'

 

_

i2I

ai

!

=
_

i2I

'(ai)

'

 

^

i2I

ai

!

=
^

i2I

'(ai)

While homomorphisms preserving arbitrary meets and arbitrary joins will cer-

tainly be of interest, monotone maps satisfying just one of these conditions will be

useful as well because of the role they play in Galois connections, which we now take

a brief moment to explore. All of the following results on Galois connections can be

found in [8], Chapter 7.

Definition 6.1.3. Let P and Q be posets. A pair of monotone maps f : P ! Q and

g : Q ! P is a Galois connection between P and Q if, for all p 2 P and all q 2 Q,

f(p)  q i↵ p  g(q).

A Galois connection is written (f, g), where f is called the lower adjoint (or left

adjoint) of g and g is called the upper adjoint (or right adjoint) of f .

The importance of Galois connections to our explorations comes from the following

result, which is also known as the Adjoint Functor Theorem for Posets. Here we state

it for complete lattices, however, as it is complete lattices that will be of interest for

our investigations.

Proposition 6.1.4. Let P and Q be complete lattices and f : P ! Q a monotone

map. Then,
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1. f preserves arbitrary joins if and only if f has an upper adjoint g, meaning

(f, g) is a Galois connection. For all q 2 Q, this map g is given by

g(q) =
_

{p 2 P | f(p)  q}

2. f preserves arbitrary meets if and only if f has a lower adjoint h, meaning

(h, f) is a Galois connection. For all q 2 Q, this map h is given by

h(q) =
^

{p 2 P | q  f(p)}

Galois connections have several interesting properties that will be of use to us.

Proposition 6.1.5. Let P and Q be complete lattices and f : P ! Q and g : Q ! P

such that (f, q) is a Galois connection. The following hold:

1. f preserves arbitrary joins

2. g preserves arbitrary meets

3. For all p 2 P , p  (g � f)(p)

4. For all q 2 Q, (f � g)(q)  q

5. For all p 2 P , (f � g � f)(p) = f(p)

6. For all q 2 Q, (g � f � g)(q) = g(q)

Returning to complete lattices and complete lattice homomorphisms, one can con-

sider both complete orthomodular lattices and complete Boolean lattices, also called

complete Boolean algebras. There is a category cOML of complete orthomodular

lattices and complete orthomodular lattice homomorphisms between them, and a

category cBA of complete Boolean algebras and complete Boolean algebra homo-

morphisms between them.

It is straightforward to show that Propositions 4.0.4 and 4.0.5 about Boolean sub-

algebras of an orthomodular lattices also hold in the complete case, and the Boolean

algebras stated to exist are the same as in Figure 4.1.

Proposition 6.1.6. Every element a of a complete orthomodular lattice L is in some

complete Boolean subalgebra of L.

Proposition 6.1.7. In a complete orthomodular lattice L, for any elements a, b 2 L

satisfying a  b there is complete Boolean subalgebra of L containing both a and b.
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On can also define complete analogs of B(L) and Lpart.

Definition 6.1.8. The context category of a complete orthomodular lattice L, de-

noted Bc(L), is the poset of complete Boolean subalgebras of L, ordered by inclusion.

Note Bc(L) can alternately be considered a poset category or as a subcategory of

cBA, the category of complete Boolean algebras. As before, arrows in poset Bc(L)

will be denoted iB0,B, while inclusion Boolean algebra homomorphisms that are arrows

in the subcategory Bc(L) of cBA will be denoted incB0,B.

Proposition 4.1.2 can also be proved in the complete case.

Proposition 6.1.9. For any complete orthomodular lattice L, Bc(L) is a poset in

which any non-empty family of elements has a well-defined unique meet, where the

meet
V

is defined as follows for family (Bi 2 Bc(L))i2I :

^

i2I

Bi :=
\

i2I

Bi

Note that
T

simply denotes set intersection.

As before, any complete orthomodular lattice homomorphism ' : L ! M induces

a map '̃ : Bc(L) ! Bc(M), where on each complete Boolean subalgebra B of L,

'̃(B) := {'(b) : b 2 B}.

Consider the following facts about '̃.

Proposition 6.1.10. For every B 2 Bc(L), '̃(B) 2 Bc(M) and '|B : B ! '̃(B) is

a complete Boolean algebra homomorphism.

Proposition 6.1.11. '̃ is a monotone map between posets, and thus a morphism in

category Pos.

Proposition 6.1.12. If ' : L ! M is an isomorphism of complete orthomodular

lattices, then '̃ : Bc(L) ! Bc(M) is an order isomorphism in Pos and for each

B 2 Bc(L),

'|B : B ! '̃(B)

is an isomorphism of complete Boolean algebras.
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There is a functor from cOML, the category of complete orthomodular lattices,

to Pos, sending each complete orthomodular lattice to its context category and each

homomorphism ' to '̃. Call this functor cB : cOML ! Pos, where for complete

orthomodular lattice L and complete orthomodular lattice homomorphism ' : L !
M ,

cBL = Bc(L)

cB(') = '̃ : Bc(L) ! Bc(M)

Proposition 6.1.13. cB : cOML ! Pos is a functor.

One can also consider a complete version of the partial orthomodular lattice Lpart

associated with an orthomodular lattice L.

Definition 6.1.14. Let L be a complete orthomodular lattice. The partial complete

orthomodular lattice Lc
part associated with L has the same elements and orthocom-

plements as L and lattice operations
W

and
V

inherited from L, but only defined

for (possibly infinite) families of elements (ai)i2I in L such that there is a complete

Boolean subalgebra B 2 Bc(L) that contains ai for all i 2 I. Such families of elements

are called compatible elements.

Definition 6.1.15. A morphism of partial complete orthomodular lattices is a func-

tion p : Lc
part ! M c

part that preserves orthocomplements and existing meets and joins.

There is a category cPOML of partial complete orthomodular lattices and partial

complete orthomodular lattice homomorphisms between them.

Lemma 6.1.16. If a  b in complete orthomodular lattice L and p : Lpart ! Mpart

is a partial complete orthomodular lattice homomorphism, then p(a)  p(b).

Lemma 6.1.17. Let L and M be complete orthomodular lattices, and Lpart and Mpart

their associated partial complete orthomodular lattices. There is a bijective correspon-

dence between isomorphisms L ! M in cOML and isomorphisms Lpart ! Mpart in

cPOML.

Just as before, it is Lemmas 6.1.16 and 6.1.17 that critically depend on the ortho-

modularity condition and do not hold for arbitrary complete ortholattices.
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6.2 Stonean spaces

Just as there is a duality between Boolean algebras and Stone spaces, there is a

duality between complete Boolean algebras and Stonean spaces.

Definition 6.2.1. A Stonean space is an extremely disconnected compact Hausdor↵

space.

In an extremely disconnected topological space, the closure of every open subspace is

open and the interior of every closed subspace is closed. It is in part this fact, which

holds for Stonean spaces but not for Stone spaces, that motivates our investigation

of complete orthomodular lattices.

Recall that a Stone space is a totally disconnected compact Hausdor↵ space.

As ‘extremely disconnected’ is a stronger condition than ‘totally disconnected,’ all

Stonean spaces are also Stone spaces but not vice versa. The following lemmas

characterize the relation between Stonean spaces and complete Boolean algebras.

Proposition 6.2.2 ([20]). A Boolean algebra is complete if and only if its Stone space

is Stonean.

Proposition 6.2.3 ([14]). The clopen subsets of a Stonean space form a complete

Boolean algebra. Complementation is given by set-theoretic complementation, and

meets and joins for a family of clopen subsets {Si | i 2 I} are given by:

_

i2I

Si = cls(
[

i2I

Si)

^

i2I

Si = int(
\

i2I

Si)

Here cls denotes the closure and int denotes the interior of a subset.

It is simple to verify that this join is precisely the smallest clopen set containing all

Si and this meet is precisely the largest clopen set contained in all of the Si.

The correspondence between complete Boolean algebras and Stonean spaces can

be extended to a dual equivalence of categories. There is a category Stonean, whose

objects are Stonean spaces and whose morphisms are continuous open maps. Just

as with the category cBA, where we consider only those Boolean algebra homomor-

phisms which are complete, for Stonean we consider only those continuous maps

which are open.
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Proposition 6.2.4 ([1]). There is a dual equivalence of categories between cBA and

Stonean:

cBA Stonean

⌦

cl

?

This duality is witnessed by the natural isomorphisms Bo : Id
cBA

) cl � ⌦ and

St : Id
Stonean

) ⌦ � cl, which we will call by the same names as the natural trans-

formations that witness Stone duality. Propositions 6.2.2 and 6.2.3, above, are con-

sequences of this dual equivalence, but the references listed above provide explicit

proofs that give more intuition as to why such results are true. As corollaries of

Proposition 6.2.4, we also have the following facts that will be essential for extending

the isomorphism result of Theorem 5.7.3 to complete orthomodular lattices.

Fact 6.2.5. For every B 2 Ob(cBA), the component BoB of natural isomorphism

Bo is a complete Boolean algebra isomorphism.

Proof. BoB : B ! cl(⌦B) is an arrow in cBA.

Fact 6.2.6. If ⌘ : X ! Y is any continuous open map between Stonean spaces, then

cl(⌘) is a complete Boolean algebra homomorphism.

Proof. cl(⌘) : cl(Y ) ! cl(X) is an arrow in cBA.

By Lemma 5.4.2, there is then a duality:

Copresh(cBA) Presh(Stonean)

⌃

CL

?

In order to consider the actions of ⌃ and CL on the Bohrifications of complete or-

thomodular lattices in Copresh(cBA) and the spectral presheaves of complete or-

thomodular lattices in Presh(Stonean), it is first necessary to define the spectral

presheaf and the Bohrification of a complete orthomodular lattice.
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6.3 Spectral presheaf isomorphisms

The spectral presheaf of a complete orthomodular lattice is defined in an analogous

way to the spectral presehaf of an orthomodular lattice. Let L be a complete ortho-

modular lattice. Then the spectral presheaf of L is a functor ⌦(L) from Bc(L) to

Stonean which sends each complete Boolean subalgebra of L to its Stone space. As

the Stone space of a complete Boolean algebra is always Stonean, then ⌦(L) is indeed

a functor in Presh(Stonean). Specifically, for B,B0 in Bc(L) with B0 ✓ B,

⌦(L)
B
= ⌦(B)

⌦(L)(iB0,B) = ⌦(incB0,B) = rB,B0 : ⌦(B) ! ⌦(B0).

Note that as ⌦ is the map of the dual equivalence between cBA and Stonean, it maps

complete Boolean algebra homomorphisms to continuous open maps. In particular,

as the inclusion incB0,B is a complete Boolean algebra homomorphism, the map rB,B0

is continuous and open.

The Bohrification of a complete orthomodular lattice can also be defined in an

analogous way. For complete orthomodular lattice L, the Bohrification L is a functor

from Bc(L) to cBA satisfying:

LB = B

L(iB0,B) = incB0,B

As Bc(L) only contains complete Boolean subalgebras of L, the codomain of L is in

fact contained in cBA, meaning L is a functor in Copresh(cBA) as desired.

Now it is possible to consider the action of functors ⌃ and CL of the dual equiva-

lence between Copresh(cBA) and Presh(Stonean) on Bohrifications and spectral

presheaves, respectively. A brief check shows that they are just as for the general

case of arbitrary orthomodular lattices in Section 5.5.

⌃(L) = ⌦(L)

⌃(hI, ✓i) = hI,⌦(✓)i
CL(⌦(L)) = cl � ⌦(L)

CL(h'̃, ⇣'i) = h'̃, ⇣(�1)
' i

The lemmas and theorems of Sections 5.6 and 5.7 also have analogous versions for

the complete case.
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Lemma 6.3.1. The map {BoB}B2Bc(L) : L ) cl � ⌦(L) is a natural isomorphism.

That is, these two functors are isomorphic in the functor category cBABc(L).

Natural isomorphism {BoB}B2Bc(L) will now simply be written in a slight abuse of

notation as Bo for the sake of simplicity.

Lemma 6.3.2. Morphism hIdBc(L), Boi : L ! cl � ⌦(L) is an isomorphism in Co-

presh(cBA).

Theorem 6.3.3. Let L and M be complete orthomodular lattices, ⌦(L) and ⌦(M)

their spectral presheaves, and L and M their Bohrifications. Then there is an iso-

morphism ⌦(M) ! ⌦(L) in Presh(Stonean) if and only if there is an isomorphism

L ! M in Copresh(cBA), and these isomorphisms can be explicitly constructed

from each other.

If hH, ⌘i is an isomorphism between the spectral presheaves of complete ortho-

modular lattices L and M , then the corresponding isomorphism from L to M in

Copresh(cBA) is:

⇢ := hIdB(M), Bo�1i � hH, cl(⌘)i � hIdB(L), Boi = hH, (H⇤Bo�1) � cl(⌘) �Boi.

In particular, each component of natural isomorphism (H⇤Bo�1) � cl(⌘) � B is an

isomorphism in cBA, that is, it is a complete Boolean algebra isomorphism. This

follows from Proposition 6.2.4, and in particular, Facts 6.2.5 and 6.2.6. That this iso-

morphism (renamed ⇢ in the proof of Theorem 5.7.2 as it is above) preserves arbitrary

meets and joins is essential for being able to construct a complete orthomodular lattice

isomorphism from an isomorphism of spectral presheaves in Theorem 6.3.5 below.

Theorem 6.3.4. Let L and M be complete orthomodular lattices. If ' : L ! M is

an isomorphism in cOML, then there is an isomorphism h'̃, ⇣'i : ⌦(M) ! ⌦(L) in

Presh(Stonean), where natural transformation ⇣' has components ⇣',B = ⌦('|B)
for all B in Bc(L).

Theorem 6.3.5. Let L and M be complete orthomodular lattices. If there is an

isomorphism hH, ⌘i : ⌦(M) ! ⌦(L) in Presh(Stonean), then one can construct an

isomorphism from L to M in cOML.

The proof of this theorem for complete orthomodular lattices is made possible by

the fact that ⇢ is a complete Boolean algebra isomorphism and thus induces a par-

tial complete orthomodular lattice isomorphism, which can be used to construct a

complete orthomodular lattice isomorphism.
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Theorem 6.3.6. Two complete orthomodular lattices L and M are isomorphic in

cOML if and only if their spectral preserves ⌦(L) and ⌦(M) are isomorphic in

Presh(Stonean).
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Chapter 7

Representing a Complete
Orthomodular Lattice

Now that a spectral presheaf isomorphism result has been presented for complete

orthomodular lattices, we can proceed with our exploration of the subobjects of the

spectral presheaf of a complete orthomodular lattice. The goal of this section is to

find a ‘representation’ of a complete orthomodular lattice by clopen subobjects of

its spectral presheaf, in analogy to the Stone representation of a Boolean algebra

by clopen subsets of its Stone space. In Section 7.1, we define and describe the

clopen subobjects of the spectral presheaf of an orthomodular lattice and in Section

7.2 show that they form a complete bi-Heyting algebra. In Section 7.3, we define a

‘daseinisation’ map from a complete orthomodular lattice to the clopen subobjects

of its spectral presheaf. If we interpret the elements of the orthomodular lattice as

quantum propositions, then this map can be seen as a ‘translation’ of the quantum

propositions into clopen subobjects of a generalized space. In Sections 7.4 and 7.5,

we use the adjoint of this daseinisation map to relate the lattice structure of the

clopen subobjects of the spectral presheaf to the lattice structure of the original

orthomodular lattice.

For the remainder of this chapter, assume that L is a complete orthomodular

lattice and ⌦(L) is its spectral presheaf.

7.1 Clopen subobjects of the spectral presheaf

Definition 7.1.1. Let F : C ! Set be a functor. A functor G : C ! Set is a

subfunctor of F if for all C 2 Ob(C), GC ✓ FC and for all a : C ! D in Morph(C),
G(a) is the restriction of F (a) to domain GC .

Note that this implies that for all c 2 GC , [G(a)] (c) = [F (a)] (c) 2 GD.
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Definition 7.1.2. A subobject of ⌦(L) is a subfunctor S : Bc(L)op ! Set of ⌦(L).

This is the same definition of a subobject of ⌦(L) as in the topos sense. That is,

recalling the definition of a subobject in a topos, subfunctors of ⌦(L) correspond

precisely to monic arrows with codomain ⌦(L) in the functor category SetB(L)
op

[15].

Definition 7.1.3. A subobject S of ⌦(L) is clopen if for all B 2 Bc(L), the component

SB is a clopen subset of ⌦(L)
B
. The set of clopen subobjects of ⌦(L) will be denoted

Subcl⌦(L).

It is possible to define a partial order of Subcl⌦(L) in an obvious way. Let S and

T be clopen subobjects in Subcl⌦(L). Then define S  T if and only if for each B in

Bc(L), SB ✓ TB. Thus, Subcl⌦(L) is a partially ordered set.

One can also define the join of a (possibly infinite) family of clopen subobjects

(Si) for all i in index set I in the following way. This join will be a functor from

Bc(L) to Stonean, and its action on objects B 2 Bc(L) is
 

_

i2I

Si

!

B

:= cls

 

[

i2I

Si,B

!

.

Note that cls denotes taking the closure of a subset of Stonean space ⌦B in the Stone

topology. Each Si;B is a clopen subset of ⌦B. The arbitrary union of open sets is open,

but the arbitrary union of closed sets is not necessarily closed. To obtain a clopen

set, it is then necessary to take the closure of this union; because ⌦B is Stonean,

the closure of any open set is clopen, as desired. Note that it is the smallest clopen

subobject of ⌦(L) that is larger than all of the subobjects Si, as desired.

On the morphisms iB0,B in Bc(L),
 

_

i2I

Si

!

(iB0,B) = rB,B0

�

�

�

�

(
W

i2I Si)B

A brief topological argument shows that any continuous map between topological

spaces, such as rB,B0 , maps the closure of a set X to within the closure of the image

of X, meaning that that this restriction of rB,B0 above is well defined.

One can also define the meet of a (possibly infinite) family of clopen subobjects

of ⌦(L) in a similar way. Let (Si)i2I be a family of subobjects of Subcl⌦(L). Then

the meet of all of the subobjects of this family is a functor from Bc(L) to Stonean,

and its action on objects B in Bc(L) is defined to be:
 

^

i2I

Si

!

B

:= int

 

\

i2I

Si,B

!

.
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Here int denotes taking the interior in the Stone topology. The intersection above

is necessarily open, and because ⌦B is a Stonean space, taking its interior yields a

clopen subset of ⌦B, as desired. This meet is the largest clopen subobject that is less

than all of the Si.

In order to show that the meet defined above is a well-defined subobject of the

spectral presheaf, it remains to show that for B0 ✓ B, the image of
�

V

i2I Si

�

B
under

rB,B0 is contained in
�

V

i2I Si

�

B0 . For this it is su�cient to know that rB,B0 is an open

map between topological spaces, which follows from the dual equivalence between

cBA and Stonean as described above because rB,B0 is an arrow in Stonean. As

int
�

T

i2I Si,B

�

=
�

V

i2I Si

�

B
is an open set, then its image under rB,B0 is an open

set that is contained
�

T

i2I Si,B0
�

. Thus, this image is contained in int
�

T

i2I Si,B0
�

=
�

V

i2I Si

�

B0 , meaning
V

i2I Si is a valid subobject of ⌦(L).

With the definitions of meet and join above, Subcl⌦(L) is a complete lattice. It

is also possible to show that Subcl⌦(L) is distributive by considering its components.

For each B 2 Bc(L),

[S ^ (T _R)]B = SB \ (T _R)B

= SB \ (TB [RB)

= (SB \ TB) [ (SB \RB)

= (S ^ T )B [ (S ^R)B

= [(S ^ T ) _ (S ^R)]B

Thus, the two subfunctors S ^ (T _R) and (S ^ T ) _ (S ^R) are the same on every

object B 2 Bc(L). On each arrow iB0,B both functors are simply the restriction of

rB,B0 to the same domain. Thus,

S ^ (T _R) = (S ^ T ) _ (S ^R),

meaning Subcl⌦(L) is a distributive lattice.

While the above argument shows that binary mets distributive over binary joins,

in a complete Boolean algebra it is also true that finite meets distribute over arbitrary

joins and finite joins distribute over arbitrary meets. Thus, a similar argument will

show that this also holds in Subcl⌦(L). First, we will need two brief topological

lemmas.

Lemma 7.1.4. Let X be a clopen subset and Y an open subset of some topological

space. Then

X \ cls(Y ) = cls(X \ Y ).
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Proof. We show both directions of containment. First, note that as both X and

cls(Y ) are closed, then X \ cls(Y ) is closed. As X \ cls(Y ) also clearly contains

X \ Y , then

cls(X \ Y ) ✓ X \ cls(Y ).

Now, consider any element x 2 X \ cls(Y ); we want to show that x 2 cls(X \Y ).

Let U be any neighborhood of x. As x 2 X and X is open, there is some open set

V ✓ U with x 2 V such that V ✓ X. Additionally, as x 2 cls(Y ) then any open

neighborhood of x contains some point that is in Y . In particular, open neighborhood

V of x contains some point y such that y 2 Y . Because V ✓ X then y 2 X \ Y . As

V ✓ U , then y is a point in U such that y 2 X \ Y . As this holds for an arbitrary

neighborhood U of x, then x 2 cls(X \ Y ) and

X \ cls(Y ) ✓ cls(X \ Y ).

Lemma 7.1.5. Let X be a clopen subset and Y a closed subset of some topological

space. Then,

X [ int(Y ) = int(X [ Y ).

Proof. We show both directions of containment. First, note that as X and int(Y )

are both open then X [ int(Y ) is open. As it is clearly contained in X [ Y , then

X [ int(Y ) ✓ int(X [ Y ).

Now, let t 2 int(X [Y ). If t 2 X, then t 2 X [ int(Y ) and we are done. Suppose

t /2 X. By the definition of int(X [ Y ), there exists an open neighborhood V of t

such that V ✓ X [ Y . Let X 0 denote the complement of X in this topological space,

and note that X 0 is clopen and by assumption t 2 X 0, so t 2 V \X 0, which is open.

Note also that

V \X 0 ✓ (X [ Y ) \X 0 = Y \X 0 ✓ Y

As V \X 0 is an open set containing t that is contained in Y , then t 2 int(Y ) meaning

t 2 X [ int(Y ) and thus

int(X [ Y ) ✓ X [ int(Y ).

Armed with the previous two lemmas, we can now prove the following.
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Lemma 7.1.6. In Subcl⌦(L), finite meets distribute over arbitrary joins and finite

joins distribute over arbitrary meets.

Proof. In any complete Boolean algebra, finite meets distribute over arbitrary joins

and finite joins distribute over arbitrary meets [29]. Using this and Lemma 7.1.4, for

functors S and (T i)i2I in Subcl⌦(L) and for all B 2 Bc(L),

"

S ^
 

_

i2I

T i

!#

B

= SB \
 

_

i2I

T i

!

B

= SB \ cls

 

[

i2I

T i,B

!

= cls

 

SB \
 

[

i2I

T i,B

!!

= cls

 

[

i2I

�

SB \ T i,B

�

!

= cls

 

[

i2I

(S ^ T i)B

!

=

"

_

i2I

(S ^ T i)

#

B

.

Thus, functors S^ (
W

i2I T i) and
W

i2I(S^T i) are the same on every object B in their

domain Bc(L). On each arrow iB,B, both functors are simply the restriction of rB,B0

to the same domain. Thus,

S ^
 

_

i2I

T i

!

=
_

i2I

(S ^ T i).

Similarly, using Lemma 7.1.5, one can easily show that

S _
 

^

i2I

T i

!

=
^

i2I

(S _ T i).

Inductively, these results can be extended from binary meets and joins to all finite

meets and joins.

Before continuing with our explorations, we will take a brief moment to define

and discuss bi-Heyting algebras before demonstrating that Subcl⌦(L) is a bi-Heyting

algebra.
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7.2 Bi-Heyting algebras

The information on bi-Heyting algebras that is relevant for our purposes can be found

in [13] and [29].

A Heyting algebra is an alternate generalization of a Boolean algebra. While

an orthomodular lattice generalizes a Boolean algebra by relaxing the distributivity

condition, a Heyting algebra generalizes a Boolean algebra by relaxing the requirement

that the join of an element and its complement is 1, the top element of the lattice.

Formally, a Heyting algebra can be defined as follows.

Definition 7.2.1. A Heyting algebra is a bounded lattice H such that for all elements

a, b 2 H, there is a greatest element x 2 H such that a^ x  b. Such an element x is

called the relative pseudocomplement of a with respect to b or the Heyting implication

from a to b and is denoted a ) b. The pseudocomplement of a, also called the Heyting

negation of a, is the element ¬a := a ) 0.

In the above definition, the element ¬a is called a pseudocomplement of a because

a ^ ¬a = 0 but it is not necessarily true that a _ ¬a = 1.

Definition 7.2.2. A Heyting algebra is complete if it is complete as a lattice.

In a complete Heyting algebra, finite meets distribute over arbitrary joins [29].

One can also define the dual notion of a co-Heyting algebra, also called a Brouwer

algebra.

Definition 7.2.3. A co-Heyting algebra is a bounded lattice H such that for all

elements a, b 2 H, there is a least element x 2 H such that a  b _ x. Such an

element x is called the co-Heyting implication from a to b, and is denoted a ( b. The

co-Heyting negation of a is the element ⇠ a := 1 ( a.

In the dual to that above, the co-Heyting negation satisfies a_ ⇠ a = 1 but it might

not necessarily be true that a^ ⇠ a = 0.

Definition 7.2.4. A co-Heyting algebra is complete if it is complete as a lattice.

In a complete co-Heyting algebra, finite joins distribute over arbitrary meets [29].

Definition 7.2.5. A bi-Heyting algebra is a bounded lattice that is both a Heyting

algebra and a co-Heyting algebra. A bi-Heyting algebra is complete if it is complete

as a lattice.
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A bi-Heyting algebra is distributive, but generalizes a Boolean algebra by splitting

up the notion of complementation into two separate notions, Heyting negation and

co-Heyting negation. Heyting negation is intuitionistic, satisfying a^¬a = 0 but not

necessarily a _ ¬a = 1; logically, this means that the law of excluded middle need

not hold and a proposition may be neither true not false. Co-Heyting negation is

paraconsistent, satisfying a_ ⇠ a = 1 but not necessarily a^ ⇠ a = 0; logically, this

means that the law of noncontradiction need not hold and a proposition may be both

true and false.

Now that we have defined a complete bi-Heyting algebra, we proceed to show that

Subcl⌦(L) is a complete bi-Heyting algebra.

Proposition 7.2.6. Subcl⌦(L) is a complete bi-Heyting algebra.

Proof. Consider the following map on complete lattice Subcl⌦(L):

S ^ (�) : Subcl⌦(L) !Subcl⌦(L)

T 7! S ^ T

Simple lattice properties imply that this is a monotone map. By Lemma 7.1.6,

this monotone map preserves arbitrary joins. Then, by Proposition 6.1.4, because

Subcl⌦(L) is complete and the functor S ^ (�) preserves arbitrary joins, it has an

upper adjoint which we will call S ) (�) given by:

S ) (�) : Subcl⌦(L) ! Subcl⌦(L)

T 7! (S ) T ) :=
_

{R 2 Subcl⌦(L) | S ^R  T}

Additionally, by Proposition 6.1.5, this map satisfies

S ^ (S ) T )  T . (7.1)

In the construction of this map it is necessary to know that arbitrary joins exist in

Subcl⌦(L) in order to apply Proposition 6.1.4, necessitating the use of Stonean spaces

and thus complete orthomodular lattices.

This maps yields a well-defined Heyting implication in distributive lattice Subcl⌦(L).

For each pair of elements S and T of Subcl⌦(L), by definition S ) T is larger than

any clopen subobject R of ⌦(L) satisfying S^R  T , and by Equation 7.1 the object

S ) T satisfies this equation as well. Thus, Subcl⌦(L) is a Heyting algebra. It is
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complete as Subcl⌦(L) is a complete lattice. The Heyting negation of this algebra

will be denoted ¬, and is given by

¬ : Subcl⌦(L) ! Subcl⌦(L)

S ! ¬S := (S ) 0)

Here 0 is the clopen subobject of ⌦(L) with 0B = ; for all B 2 Bc(L), the bottom

element of Subcl⌦(L).

Analogously, Lemma 7.1.6 implies that the following monotone map preserves

arbitrary meets:

S _ (�) : Subcl⌦(L) !Subcl⌦(L)

T 7!S _ T

Thus, by Proposition 6.1.4, it has a lower adjoint which we will call (�) ( S given

by:

(�) ( S : Subcl⌦(L) ! Subcl⌦(L)

T 7! (T ( S) :=
^

{R 2 Subcl⌦(L) | T  S _R}

By Proposition 6.1.5, this map satisfies

T  S _ (T ( S) (7.2)

It is clear by the definition of this map and Equation 7.2 that this gives a co-Heyting

implication for Subcl⌦(L), demonstrating that Subcl⌦(L) is a complete co-Heyting

algebra and thus a complete bi-Heyting algebra. The co-Heyting negation is given by

⇠: Subcl⌦(L) ! Subcl⌦(L)

S !⇠ S := (⌦(L) ( S)

7.3 Daseinisation

In this subsection we define a map from complete orthomodular lattice L to Subcl⌦(L),

called the daseinisation map. This can be interpreted as an approximation map, which

for each element a of L ‘brings into existence’ an approximation of a as a subspace

of each of the Stonean spaces ⌦B for B 2 Bc(L).
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Let L be a complete orthomodular lattice, let a 2 L, and let B 2 Bc(L) be a

complete Boolean subalgebra of L, not necessarily containing a. Then, we define

�oB(a) :=
^

{b 2 B | b � a},

the smallest element of B that is greater than or equal to a. If a 2 B, then �oB(a) = a.

Note that the superscript of o denotes that this is outer daseinisation, that is, ap-

proximating element a in B from above. It is precisely at this step that completeness

of orthomodular lattice L is required to define daseinisation; we need to know that

the infinite meet in the definition of �oB(a) exists.

By Stone duality, we know that there is an isomorphism between complete Boolean

algebra B and the clopen subobjects of its Stone space, which is Stonean because B

is complete. From Section 3.4, this isomorphism is given by

BoB : B ! cl(⌦B) = cl(⌦(L)
B
)

b 7! {� 2 ⌦(L)
B
| �(b) = 1}

Recall cl is the functor which maps a Stone space to its Boolean algebra of clopen

subsets; if the Stone space is Stonean, this Boolean algebra is complete. In fact, this

BoB is a complete Boolean algebra isomorphism. In particular, element �oB(a) of B

corresponds to the clopen subset of ⌦(L)
B
given by:

�oB(a) := BoB(�
o
B(a)) = {� 2 ⌦(L)

B
| �(�oB(a)) = 1}.

The reason for naming this clopen subset in such a manner will become clear shortly.

For now, simply note that the clopen subsets in cl(⌦B) = cl(⌦(L)
B
) are precisely the

possible images of B under some clopen subfunctor S of ⌦(L).

Suppose that B0 ✓ B in Bc(L). Clearly, it holds that �oB(a)  �oB0(a). Then,

� 2 �oB(a) , �(�oB(a)) = 1

) �(�oB0(a)) = 1

, �|B0(�oB0(a)) = 1

, �|B0 2 �oB0(a)

We conjecture that this result can be strengthened to show that � 2 �oB(a) if and

only if �|B0 2 �oB0(a), but such a result is not necessary for our purposes so we do not

pursue this line of investigation. Note that this result implies that for every inclusion

arrow iB0,B in Bc(L), the restriction of ⌦(L)(iB0,B) = rB,B0 to domain �oB(a) ✓ ⌦(L)
B

has codomain contained in �oB0(a) ✓ ⌦(L)
B0 . This means that the functor from Bc(L)
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to Set which sends B to �oB(a) is a valid subfunctor of ⌦(L); we will call this functor

�o(a). Clearly this functor

�o(a) := (�oB(a))B2Bc(L)

is thus also a subobject of the spectral presheaf. It is a clopen subobject because for

each B 2 Bc(L), the subset �oB(a) of ⌦B is clopen.

We are now ready to define the daseinisation map for complete orthomodular

lattice L and discuss its properties.

Definition 7.3.1. The map

�o : L ! Subcl⌦(L)

a 7! �o(a)

from the complete orthomodular lattice L to the complete bi-Heyting algebra Subcl⌦(L)

is called outer daseinisation, or more simply daseinisation.

The daseinisation map can be seen as a process by which an element a in complete

orthomodular lattice L is approximated in each classical context B and subsequently

each Stone space ⌦B, ultimately yielding a clopen subobject of ⌦(L). Returning

to the notion of an orthomodular lattice as a quantum logic whose elements are

propositions, for each classical context B the daseinisation process first associates to

proposition a the strongest proposition within B that must be true if proposition a is

true, which above we called �oB(a). The next step of daseinisation associates to each of

these strongest propositions the collection of local valuations (elements of the Stone

space of B, i.e., Boolean algebra homomorphisms from B to {0, 1}) for which the

proposition holds, which we called �oB(a). These sets of local valuations are clopen

and are linked together by restriction maps to create a clopen subobject �o(a). This

analysis shows that the daseinisation process associates to each quantum proposition

a subobject of the spectral presheaf of the complete orthomodular lattice to which it

belongs, just as a classical proposition corresponds to a subset of the state space of

the classical system.

Lemma 7.3.2. The daseinisation map �o : L ! Subcl⌦(L) has the following proper-

ties:

1. �o(0) = 0, �o(1) = ⌦(L),

2. �o is monotone, that is, a  b in L implies �o(a)  �o(b) in Subcl⌦(L),
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3. �o is injective

4. �o preserves all joins

Proof. (1) is obvious form the definition of �o; for all B 2 Bc(L), �oB(0) = 0 and

�oB(0) = ;. Similarly, �oB(1) = 1 and �oB(1) = ⌦B = ⌦(L)
B
.

(2) also follows from the definition of �o. If a  b, then �oB(a)  �oB(b) and

�oB(a) ✓ �oB(b) for all B 2 Bc(L), meaning that �o(a)  �o(b) in Subcl⌦(L).

For (3), let a and b be distinct elements of L. Then,

^

B2Bc(L)

�oB(a) = a 6= b =
^

B2Bc(L)

�oB(b)

This implies that there must be some B 2 Bc(L) such that �oB(a) 6= �oB(b). As BoB is

a complete Boolean algebra isomorphism, it follows for this B that

�oB(a) = BoB(�
o
B(a)) 6= BoB(�

o
B(a)) = �oB(b)

As �o(a) and �o(b) di↵er at this component, then they are not the same subobject of

⌦(L). Thus, �o is injective.

For (4), let (ai)i2I be some (possibly infinite) family of elements of L indexed by

set I. For all i 2 I, from statement (2) of this lemma we know that

�o(ai)  �o
 

_

i2I

ai

!

Consequently,
_

i2I

�o(ai)  �o
 

_

i2I

ai

!

Conversely, recall that for all i, ai  �oB(ai). Then, for each B 2 Bc(L),

�oB

 

_

i2I

ai

!

=
^

{b 2 B | b �
_

i2I

ai}


^

{b 2 B | b �
_

i2I

�oB(ai)}

= �oB

 

_

i2I

�oB(ai)

!

=
_

i2I

�oB(ai)
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The last equality above holds because for a 2 B, �oB(a) = a. AsBoB is an isomorphism

of Boolean algebras, it preserves order and arbitrary joins, so

�oB

 

_

i2I

ai

!

= BoB

 

�oB

 

_

i2I

ai

!!

 BoB

 

_

i2I

�oB(ai)

!

=
_

i2I

BoB (�oB(ai)) =
_

i2I

�oB(ai).

As this is true for all B 2 Bc(L), it follows that

�o
 

_

i2I

ai

!


_

i2I

�o(ai)

This result and the one above together imply

�o
 

_

i2I

ai

!

=
_

i2I

�o(ai),

demonstrating that �o is join-preserving, as desired.

7.4 The adjoint of daseinisation

Now that the daseinisation map gives a relationship between complete orthomodular

lattice L and complete bi-Heyting algebra Subcl⌦(L), we want to explore this cor-

respondence a bit more. In analogy to Stone’s representation theorem for Boolean

algebras, we want to find some sort of representation of L inside Subcl⌦(L).

It is clear that L and Subcl⌦(L) cannot be isomorphic as lattices in general,

because L is not necessarily distributive but Subcl⌦(L) is. Additionally, Subcl⌦(L)

contains significantly more elements in general that L. However, we will show that

Subcl⌦(L) modulo a certain equivalence relation is a complete lattice with a complete

lattice isomorphism to L. We first consider the adjoint of the daseinisation map.

As �o is a join-preserving map between two complete lattices, we can now apply

Proposition 6.1.4. Thus, �o has a meet-preserving upper adjoint ✏ : Subcl⌦(L) ! L.

This map ✏ is defined by:

✏ : Subcl⌦(L) ! L

S 7!
_

{a 2 L | �o(a)  S}

The following lemma, adapted from an unpublished result by Carmen Constantin,

provides more insight into this map ✏.
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Lemma 7.4.1. Let L be a complete orthomodular lattice, with spectral presheaf ⌦(L).

The map ✏ generated by Proposition 6.1.4 is given by

✏ : Subcl⌦(L) ! L

S 7!
^

B2Bc(L)

Bo�1
B (SB)

Proof. Suppose that a is some lower bound for the set {Bo�1
B (SB) | B 2 Bc(L)}.

That is, for each B 2 Bc(L),

a  Bo�1
B (SB).

As Bo�1
B (SB) is an element of B that is greater than a and �oB(a) is the least element

of B that is greater than B, then

a  Bo�1
B (SB)

, �oB(a)  Bo�1
B (SB)

, BoB(�
o
B(a)) ✓ BoB(Bo�1

B (SB))

, �oB(a) ✓ SB

This exactly characterizes the lower bounds a of the set {Bo�1
B (SB) | B 2 Bc(L)}.

That is,

{a 2 L | a  Bo�1
B (SB) 8 B 2 Bc(L)} = {a 2 L | �oB(a) ✓ SB 8 B 2 Bc(L)}

= {a 2 L | �o(a)  S}

In a complete lattice, joins can be written in terms of meets. That is,

^

B2Bc(L)

Bo�1
B (SB) =

_

{a 2 L | a  Bo�1
B (SB) 8 B 2 Bc(L)}

=
_

{a 2 L | �o(a)  S}
= ✏(S)

The previous lemma implies the following result, which is stronger than could be

expected for an arbitrary Galois connection:

Lemma 7.4.2. ✏ � �o = idL
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Proof. Let a 2 L. Then,

(✏ � �o)(a) = ✏(�o(a)) =
^

B2Bc(L)

Bo�1
B (�oB(a))

=
^

B2Bc(L)

Bo�1
B (BoB(�

o
B(a)))

=
^

B2Bc(L)

�oB(a)

= a

We proceed to use this map ✏ to define an equivalence relation on Subcl⌦(L).

Definition 7.4.3. For S, T in Subcl⌦(L), define S ⇠ T if and only if ✏(S) = ✏(T ).

This is clearly a well-defined equivalence relation. Let

E =
n

[S] | S 2 Subcl⌦(L)
o

.

This particular set E will be shown in the next subsection to be partial representation

of ortholattice L inside of Subcl⌦(L). In fact, we will see that E, when given an

appropriate lattice structure, can be used to reconstruct the structure of L as a

complete lattice.

7.5 Representing L in the clopen subobjects of its
spectral presheaf

This section will show that E is a complete lattice, and that there is a complete lattice

isomorphism from E to L. First, we show that there is a set bijection between E and

L.

Lemma 7.5.1. There is a bijective set map from E to the set underlying complete

orthomodular lattice L, given by

g : E !L

[S] 7!✏(S)
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Proof. Clearly g is well defined, as if [S] = [T ] then g([S]) = ✏(S) = ✏(T ) = g([T ]) by

definition. Consider the function

f : L ! E

a 7! [�o(a)]

I will now show that f is an inverse to g, meaning E and L are isomorphic as sets.

First, let a 2 L. Then, by Lemma 7.4.2,

(g � f)(a) = g ([�o(a)]) = ✏ (�o(a)) = a.

Now, let S 2 Subcl⌦(L). Then,

(f � g) ([S]) = f (✏(S)) = [�o (✏(S))] .

By the properties of a Galois connection (Proposition 6.1.5),

✏ (�o (✏(S))) = ✏(S),

meaning

(f � g) ([S]) = [�o(✏(S))] = [S].

Thus, as both compositions of f and g are the identity, then g : E ! L is a set

bijection and E and L are isomorphic as sets.

Note that a consequence of this lemma is that map ✏ is surjective. We now proceed

to give E the structure of a complete meet-semilattice.

Definition 7.5.2. For all families ([Si])i2I of elements of E, where all Si 2 Subcl⌦(L),

^

i2I

[Si] :=

"

^

i2I

Si

#

,

where the meet on the right hand side above is taken in Subcl⌦(L).

It is simple to check that such meets in E are well defined; suppose that (T i)i2I is

such that [Si] = [T i] for all i, that is, that ✏(Si) = ✏(T i). Then, because ✏ preserves

meets,

✏

 

^

i2I

Si

!

=
^

i2I

✏(Si) =
^

i2I

✏(T i) = ✏

 

^

i2I

T i

!

.

Thus
V

i2I [Si] =
V

i2I [T i], and meets in E are well-defined. Of note, this definition of

meets also yields a poset structure on E; [S]  [T ] if and only if [S] ^ [T ] = [S]. As
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E has a top element [⌦(L)], that is, an empty meet, then this makes E a complete

meet-semilattice, that is, a poset with a top element in which arbitrary meets are

well-defined.

A complete meet-semilattice can be made into a complete lattice by defining joins

in terms of meets.

Definition 7.5.3. For all families ([Si])i2I of elements of E, where all Si 2 Subcl⌦(L),
_

i2I

[Si] :=
^

{[T ] | [Si]  T 8 i 2 I}

The meet on the right hand side above is well-defined because E is a complete meet-

semilattice, and this is clearly a least upper bound for the family ([Si])i2I with regards

to the partial order on E defined above. Thus, E is a complete lattice. Note that in

general,
_

i2I

[Si] 6=
"

_

i2I

Si

#

.

It is only known that ✏ preserves meets, and in general ✏ does not preserve joins. If ✏

were to preserve both meets and joins, then it would be a surjective complete lattice

homomorphism whose domain Subcl⌦(L) is distributive. This would imply that its

codomain L is also distributive, which is not true in general of orthomodular lattices.

The following is our main result, which is strongest result we could reasonably

hope for relating the complete lattice structure of E and L.

Theorem 7.5.4. There is a complete lattice isomorphism between E and L, and

(f, g) is a pair of order isomorphisms.

Proof. From Lemma 7.5.1 and its proof, we already know that there is a set isomor-

phism g from E to L with inverse f . We proceed to show that both g and f preserve

arbitrary meets and joins, meaning that f and g are complete lattice isomorphisms.

First, we show that f and g preserve arbitrary meets. Consider g, and let ([Si])i2I
be a family of elements of E.

g

 

^

i2I

[Si]

!

= g

 "

^

i2I

Si

#!

= ✏

 

^

i2I

Si

!

=
^

i2I

✏(Si) =
^

i2I

g ([Si])

Thus, g is a complete meet-semilattice homomorphism from E to L. In order to show

that f : L ! E is a complete meet-semilattice homomorphism as well, note that if

(ai)i2I is a collection of elements of L, then

g

 

^

i2I

[�o(ai)]

!

=
^

i2I

g ([�o(ai)]) =
^

i2I

✏ (�o(ai)) =
^

i2I

ai
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Then, as we already know that f and g are set isomorphisms and thus f � g = id, it

follows that

f

 

^

i2I

ai

!

= f

 

g

 

^

i2I

[�o(ai)]

!!

=
^

i2I

[�o(ai)] =
^

i2I

f(ai).

It only remains to show that f and g preserve arbitrary joins. First, consider g,

and let ([Si])i2I be a family of elements of E. Then,
_

i2I

g([Si]) =
_

i2I

✏(Si)

=
^L {a 2 L | ✏(Si)  a 8 i 2 I}

The superscript on the meet above indicates that the meet is taken in L. As ✏ is
surjective, then every a 2 L can be written as ✏(A) for some A in Subcl⌦(L). Thus,

=
^L {✏(A) 2 L | ✏(Si)  ✏(A) 8 i 2 I}

Alternatively, note that

g

 

_

i2I

Si

!

= g
⇣

^E {[T ] 2 E | [Si]  [T ] 8 i 2 I}
⌘

= g
⇣

^E {[T ] 2 E | ✏(Si)  ✏(T ) 8 i 2 I}
⌘

= g

✓

^Subcl⌦(L) n

T 2 Subcl⌦(L) | ✏(Si)  ✏(T ) 8 i 2 I
o

�◆

= ✏

✓

^Subcl⌦(L) n

T 2 Subcl⌦(L) | ✏(Si)  ✏(T ) 8 i 2 I
o

◆

=
^L {✏(T ) 2 L | ✏(Si)  ✏(T ) 8 i 2 I}

From this, it follows that
W

i2I g([Si]) = g
�

W

i2I Si

�

, meaning g preserves arbitrary

joins and thus is a complete lattice homorphism. To see that f also preserves joins,

we use the same argument as above. Let (ai)i2I be a collection of elements of L, then

g

 

_

i2I

[�o(ai)]

!

=
_

i2I

g ([�o(ai)]) =
_

i2I

✏ (�o(ai)) =
_

i2I

ai

Then, as we already know that f and g are set isomorphisms and thus f � g = id, it

follows that

f

 

_

i2I

ai

!

= f

 

g

 

_

i2I

[�o(ai)]

!!

=
_

i2I

[�o(ai)] =
_

i2I

f(ai).

This demonstrates that g = f�1 and both are isomorphisms of complete lattices,

meaning L and E are isomorphic as complete lattices.
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The above theorem shows that the complete lattice structure of L is represented,

in the form of E, in the clopen subobjects of its spectral presheaf. This can be

seen as a generalization of Stone’s representation theorem for Boolean algebras to the

nondistributive case of complete orthomodular lattices. Of course, representing L in

Subcl⌦(L) required the use of the Galois connection (�o, ✏), which was defined using

the lattice structure of L.

A possible next step is to consider whether the orthocomplementation function of

L is somehow represented in Subcl⌦(L), and specifically, in E. One possibility is to

consider the Heyting negation or co-Heyting negation of bi-Heyting algebra Subcl⌦(L)

as an orthocomplementation function on E. In either case, one would need to show

that the chosen negation is well-behaved with respect to the equivalence classes of E

and gives a true complement of each equivalence class, rather than an intuitionistic

or paraconsistant complement.
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Chapter 8

Conclusion: Generalizing the
Spectral Presheaf

The exploration of the spectral presheaf of an orthomodular lattice in the previ-

ous sections provides some important clues about what properties of mathematical

structures are necessary to define a spectral presheaf and to be able to prove an iso-

morphism result as in Theorem 5.7.3 and a representation result as in Theorem 7.5.4.

Our exploration of the spectral presheaf of an orthomodular lattice has illuminated

several key properties which are necessary to obtain such results.

On one hand, to define a spectral presheaf we need nonabelian or nondistributive

structures that have some classical duality for their abelian or distributive parts, e.g.

Gelfand duality or Stone duality. On the other hand, the poset of abelian/distributive

parts, or contexts, must encode su�cient extra information to allow reconstructing

algebraic operations also on noncommuting or incompatible elements. In the case of

orthomodular lattices, the order structure is encoded by the context category in the

sense of Proposition 4.0.5; if a  b in an orthomodular lattice L, then there is some

Boolean subalgebra B 2 B(L) such that a, b 2 B. This is not the case in general or-

tholattices, as we saw in Proposition 4.0.6. This implies that there are non-isomorphic

ortholattices that have isomorphic context categories and hence isomorphic spectral

presheaves, meaning the isomorphism result of Theorem 5.7.2 doesn’t hold for arbi-

trary ortholattices. This condition also exists for the von Neumann algebra case, but

is more subtle and requires the use of additional techniques to explore.

Additionally, any mathematical structure we choose must be covered by its con-

texts; otherwise, there can be no hope of reconstructing it up to isomorphism from its

spectral presheaf. In the lattice case, this is ensured by considering only orthocomple-

mented lattices L; every element a 2 L has a complement a0, and thus {0, a, a0, 1} is a

Boolean subalgebra of L containing a. In the algebra case, any von Neumann algebra
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is covered by its abelian subalgebras; for any element a, the subalebra generated by

a is abelian and contains a. Such a result must also hold for any structures on which

we wish to define a spectral presheaf.

In Chapter 7, we defined a daseinisation map for an orthomodular lattice L that

ultimately allowed us to construct a representation of orthomodular lattice L in the

clopen subobjects of L’s spectral presheaf modulo an equivalence relation. In order

to define this daseinisation map and its adjoint, we had to consider complete or-

thomodular lattices and complete Boolean subalgebras because the definition of the

daseinisation map contains infinite meets. Rui Soares Barbosa, in recent unpublished

work, has shown how to define a daseinisation map for non-complete lattices. In

future work, we are planning to consider this generalization, which will allow to us

define daseinisation and hence an analog of Theorem 7.5.4 and Stone’s representation

theorem for arbitrary orthomodular lattices.

8.1 Compact Lie groups

One possible next step is to consider the spectral presheaf of a compact Lie group.

Lie groups and their associated Lie algebras are closely related to many concepts in

quantum mechanics. For example, they can be used to model the symmetry schemes

of quantum particles or used to simplify quantum mechanical calculations such as

solutions to the Schrödinger equation [7].

Beyond connections to quantum mechanics, compact Lie groups have mathemat-

ical structure that suggests the definition of a spectral presheaf would be possible.

A compact Lie group has a context category consisting of its compact abelian Lie

subgroups, ordered by inclusion. There is then a duality, known as Pontryagin (or

Pontrjagin) duality, between a locally compact abelian Lie group and its dual group.

The dual group has as elements the characters of G, which are group homomorphisms

from G to the circle group T , as well as some additional topological structure. More

information about dual groups and Pontryagin duality can be found in Chapter 4 of

[28]. There is a clear analogy between Pontryagin duality, Stone duality, and Gelfand

duality; all three involve considering topological spaces whose elements correspond to

maps from the algebra or group to some fixed simple object.

Another important aspect of the spectral presheaf of a von Neumann algebra

that one can define ‘flows’ on the spectral presheaf and interpret these flows as time-

evolution of a quantum system [12]. There is a possible connection between the

maximal compact connected abelian Lie subgroups of a compact Lie group, called
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maximal tori, and flows on the spectral presheaf of a Lie group. Any two maximal

tori are conjugate to each other by some element of the Lie group, and hence maximal

tori can be ‘connected’ by a flow. More information on maximal tori can be found in

[3]. The possible existence of a structure with a nice relationship with flows is another

motivation for considering the spectral presheaf of a Lie group as a next step.

8.2 Sober spaces and spatial frames

The duality between Boolean algebras and Stone spaces is a specific instance of the

more general duality between spatial frames and sober spaces. A frame is a complete

Heyting algebra, and a spatial frame is one that has enough points in the sense that

the map sending the frame to the frame of open sets of its points is an isomorphism.

A sober space is a topological space in which every irreducible closed subset is the

closure of a unique point. There is a dual equivalence between the category of spatial

frames and the category of sober spaces; more information on these structures and

the dual equivalence between them can be found in [20].

It may be possible to exploit this dual equivalence to define a notion of spectral

presheaf that is more general than the spectral presheaf of an orthomodular lattice.

However, it is currently unclear which non-distributive ‘quantum lattices’ can be

assembled from spatial frames such that the context category of a ‘quantum lattice’

has spatial frames as its objects while at the same time the order relations in the

context category are su�ciently rich to reconstruct the ‘quantum lattice.’ Certain

quantales may be candidates for such ‘quantum lattices.’

A future goal is to develop some coherent framework that characterizes exactly

what properties a mathematical structure must have in order to have a well-defined

spectral presheaf for which duality and representation results can be derived. We hope

to be able to provide a uniform way to prove isomorphism results such as Theorem

5.7.3 and construct daseinisation maps as in Section 7.3. In this dissertation, we have

begun the exploration into generalizing the spectral presheaf, and we hope and expect

that future research will lead to a more comprehensive picture.
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[3] Theodor Bröcker and Tammo tom Dieck. Representations of Compact Lie

Groups. Graduate Texts in Mathematics. Springer-Verlag, New York, 1985.

[4] Stanley Burris and H.P. Sankappanavar. A Course in Universal Algebra.

Springer-Verlag, 2012 edition.

[5] J. Butterfield and C. J. Isham. Topos perspective on the Kochen-Specker the-

orem: II. conceptual aspects and classical analogues. International Journal of

Theoretical Physics, 38(3):827–859, 1999.

[6] J. Butterfield and C. J. Isham. Topos perspective on the Kochen-Specker the-

orem: IV. interval valuations. International Journal of Theoretical Physics,

41(4):613–639, 2002.

[7] J.F. Cornwell. Group Theory in Physics: An Introduction. Academic Press,

London, 1997.

[8] B.A. Davey and H.A. Priestly. Introduction to Lattices and Order. Cambridge

University Press, Cambridge, second edition, 2002.
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