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Abstract

Tile self-assembly models describe both mathematically and computationally the ways in
which small square tiles can attach to each other to form larger assemblies. Two such models
are the abstract tile assembly model, in which all tiles attach to one main assembly containing
a seed tile, and the two-handed assembly model, in which there is no seed tile and tiles can
attach at any time. This thesis presents results showing that the seed-based assembly process
of any tile set that assembles under the conditions of the abstract tile assembly model can be
simulated by the assembly process of another tile set in the two-handed model. The simulation
is only a constant scale factor larger than the original system and actually requires a lower
temperature, a characteristic that describes how easily tiles attach to each other. This result
is surprising and interesting, and provides insight into the relative fundamental computational
power of both models. This work has direct applications in DNA computing, where biologists
are using these models to self-assemble pieces of DNA (represented abstractly by tiles) into
structures at the nanoscale level.
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2 Introduction
In biology and engineering on the nanoscale level, scientists are using small pieces of DNA to
assemble nanostructures via the self-assembly process. That is, they create several DNA pieces
with “sticky ends” that can attach to each other; then, some set of these DNA pieces are mixed to-
gether in a solution and the pieces self-assemble to form a larger assembly by attaching at matching
sticky ends. Such an assembly can then be used to organize and assemble additional molecules,
such as metals or proteins. In addition, the same DNA self-assembly process has been used to
create DNA computers, which can perform a variety of calculations on a much smaller scale and
more efficiently than traditional computers. These practical explorations suggest the necessity of
developing a theoretical framework for DNA self-assembly. To accomplish this goal, the DNA
self-assembly process has been abstracted using square tiles to represent DNA pieces and glues to
represent “sticky ends.” Several models of the tile self-assembly process have developed, including
seeded models and two-handed models. The relationship between these different models is not yet
completely understood, but this paper seeks to clarify it. I present a simulation result that shows
any assembly process that occurs in a seeded model can be mimicked by an assembly process in
the two-handed model. This provides fundamental insights into the two models, indicating that
the two-handed model is at least as powerful as the seeded model and suggesting that biological
exploration of DNA self-assembly should perhaps focus more on the exploration of two-handed
systems.

2.1 Motivations
An ability to create precise structures at the nanoscale level is a current goal of many engineers, in-
cluding those within electronics and biology. Some high density nanoelectronic devices require
precise spacing of components, down to the nanometer scale; biologists may wish to control
the spacing between and the density of certain kinds of proteins. Because there are a variety of
nanoparticles that can be chemically attached to DNA, assembled DNA nanostructures can provide
a precise scaffold for achieving nanometer precision in such endeavors [16].

Nanoscale structures can be created with extreme precision via DNA self-assembly. In this
process, small exact pieces of DNA of some standard shape are created. These pieces all have
“sticky ends,” exposed single helices of DNA with certain base sequences. When allowed to mix
together, single helices with complementary base sequences can bond together to form a double
helix. Through this process, large DNA assemblies can be created. When each DNA piece is
designed so that a certain nanoparticle can chemically attach to it, this large DNA assembly serves
as a scaffolding to assemble nanoparticles into particular shapes. Among other work, Yan et al.
used DNA aptamer binding to link proteins to a periodic self-assembled DNA array [18], and Kiehl
et al. used a DNA lattice to organize particles of gold into parallel lines spaced only about 63 nm
apart [15].

In addition to its practical uses in creating nanoassemblies, DNA self-assembly has also been
used as an alternate method of computation. For example, Braich et al. designed and implemented
a DNA self-assembly system which solves a twenty-variable instance of the three-satisfiability
problem [6]. The computation was performed by exhaustively trying all possible variable truth
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assignments, over a million possibilities, a task that would be infeasible on a traditional computer.
However, because of the high degree of parallelism achievable in DNA self-assembly, this compu-
tation was possible.

A systematic study of DNA self-assembly is clearly merited in order to develop a theoretical
framework to guide practical exploration. In order to understand the abilities and limitations of
such processes, multiple mathematical models have been developed and explored.

2.2 Tile self-assembly
The first comprehensive algorithmic study of the DNA self-assembly process was Erik Winfree’s
PhD thesis in 1998 [24]. Winfree abstracted several processes and techniques of DNA self-
assembly, and used the properties of these abstracted computational and mathematical models
to make conclusions about and suggestions for the DNA self-assembly process. While Winfree
considered several different DNA pieces, a main result is his Tile Assembly Model, formalized
in [21] as the abstract tile assembly model (aTAM). Winfree proposed the use of square tiles to
represent a certain piece of DNA, the double-crossover molecule, which is especially useful in the
self-assembly process because of its rigidity and cooperative binding capabilities. Each square tile
represents a double-crossover molecule with four sticky ends, where each sticky end is represented
by a glue of a certain type on one side of the tile. A tile sticks to a tile assembly precisely when the
glues on their abutting edges match and are of sufficient strength for the attachment to occur. Of
note, more recently researchers have created self-assembling plus shapes made from two protein
nanorods attached at their midpoints, and the self-assembly process of these particles can also be
modeled by tiles with glues [11].

Winfree’s tile assembly model is similar to the mathematical problem of Wang tiling [23]. A
Wang tile is a unit square with a color on each edge, and tiles must be placed so that abutting edges
have the same colors. Mathematical explorations of Wang tiles generally consider whether, given
a finite set of Wang tiles, it is possible to tile the plane with copies of the tiles in the set. While tile
self-assembly is similar in that tiles bond when the glues on their abutting edges match, researchers
consider the tile assembly process and the way in which large tile assemblies are formed instead
of just the pattern of tiles produced. In Wang tiling, the only concern is the position of each
tile in a final assembly, and the process by which this tile assembly was constructed is generally
unimportant.

2.3 aTAM and 2HAM
In order to simplify his Tile Assembly Model, Winfree made several assumptions, including the
restriction that all attachments consist of a single tile joining a larger assembly. This means it is
not possible for two tile assemblies both containing two or more tiles to attach to each other, even
if the glues between them are of sufficient strength. That is, any aTAM system has a single seed
tile, and all attachments consist of single tiles joining the tile assembly containing the seed tile.
This convention persisted through many later investigations within the field of tile self-assembly;
for example, consider [3], [4], [5], [10], [14], [21], and [22], among others.

Winfree gives little justification for this assumption; while it makes his tile assembly model
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mathematically simpler and easier to analyze, even he notes that it may not be entirely accurate.
There are still doubts within the tile self-assembly community as to whether such an assumption is
valid. Consequently, another tile assembly model has developed. In the two-handed tile assembly
model (2HAM) [11], also called the multiple tile model [9] or hierarchical self-assembly [8], there
is no seed tile. Instead, two tile assemblies with matching glues between them of sufficient strength
can attach at any time, regardless of the size of each assembly.

Discussion of a tile self-assembly model in which there is not a seed first appeared in [2], while
the 2HAM as it is used in current research was first defined in [9], where the authors studied the
minimum number of distinct tiles required to self-assemble squares and rectangles. Since then,
many authors have used the capabilities of the 2HAM to develop models and constructions that
would otherwise likely not have been possible, including staged self-assembly, in which certain
tile assemblies are created in separate bins and then mixed together [11]; self-assembly systems in
which certain tiles can be destroyed at some step by an RNAse enzyme [1, 12]; and self-assembly
systems in which can identify a certain shape [20]. While tile systems in the 2HAM have often led
to efficient production of shapes and to solutions to otherwise difficult problems, it is also much
harder to design well-behaved 2HAM systems, since attachment can occur between tiles or tile
assemblies at any time.

While the performance of both models on particular problems has been analyzed and there
are certain constructions developed in the 2HAM that do not have a clear analogue in the aTAM,
it has been remarkably difficult to prove a distinct separation between the models; [7] was the
first comprehensive exploration into such a question. A main result of that paper, and the result
presented in this thesis, is a simulation result proving that anything that can be done in the aTAM
can also be done in the 2HAM.

2.4 Simulations
From the beginning of the field of tile self-assembly, one area of inquiry has been into simulation
results. That is, researchers have considered how to use tile sets to simulate things such as Turing
machines, blocked cellular automata [24], and other tile sets [11, 13, 19, 25]. To simulate a Turing
machine or cellular automata means to perform the same computation, while for tile sets, simulate
means to follow the same assembly process. Such results provide insights into the computational
power of tile self-assembly models. For example, Winfree originally showed that the aTAM is
Turing-universal [24], meaning it can perform any computation that a Turing machine can. He
does so by showing that aTAM can simulate a blocked cellular automata, which was already well-
known to be Turing universal by a proof analogous to that in [17]. This same reduction can be
easily modified to show that 2HAM is also Turing-universal.

Simulation results between tile sets have provided insights into the relationships between dif-
ferent tile self-assembly models. Often, if a tile system T is simulated by another tile system T 0,
then each tile in T is actually represented by a k ⇥ k block of tiles in T 0. Demaine et al. showed
that a certain subclass of tile assembly systems could be simulated by a tile set with a constant
number of glues and tile types, with k = log |T | and requiring log(log |T |) stages, where in each
stage tile assemblies created in two or more separate bins are combined together and allowed to as-
semble [11]. This demonstrates that the staged tile assembly model is capable of performing some
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aTAM systems Simulating 2HAM systems
⌧ = 1 ⌧ = 2, k = 5

⌧ = 2 ⌧ = 2, k = 5

⌧ = 2 ⌧ = 3, k = 5

⌧ � 4 ⌧ = 4, k = 5

Table 1: Summary of simulation results, where ⌧ = temperature and k = scale factor.

of the same assembly processes as a traditional one-bin model, providing insight into how these
two tile assembly models are related. More recently, Doty et al. showed that there exists a single
aTAM system at temperature 2 that can simulate any aTAM system at any temperature [13], where
the temperature of a tile assembly system is the total glue strength needed for attachment to occur.
Such a result means that the aTAM is intrinsically universal, and shows that raising the temperature
of any aTAM system above 2 does not allow the production of any additional shapes, up to scale
factor k. However, in this simulation k = O(g4 log(g)), where g is the number of unique glues
in the original tile assembly system, an extremely large and impractical scale factor. Regardless,
simulation results such as these can provide insights into relationships and similarities between
models, helping to focus the direction of study on those models that are the most powerful.

2.5 Results
In this paper, I present a construction via which any aTAM system can be simulated by a 2HAM
system. The temperature of a tile assembly system is the strength needed for attachment between
tiles to occur, and lower temperature systems are much simpler, easier both to implement and to
study, and are generally preferred. See Table 1 for a summary of simulation results for varying
temperatures. In general, these results show that anything that can be done in the aTAM can also
be done in the 2HAM with only a small constant scale factor of five. Such conclusions suggest
that the aTAM has no more computational power than the 2HAM (up to small constants). While
scientists are still in the process of developing the tools needed to create large error-free self-
assembled nanostructures successfully, this result suggests that perhaps a focus should be placed
on developing the tools to implement two-handed systems rather than seeded systems.

Perhaps the most surprising and interesting result is listed in the bottom row of Table 1, indi-
cating that an aTAM tile assembly system at an arbitrarily high temperature can be simulated by a
2HAM system with just temperature 4 and a small constant scale factor of 5. This result suggests
that above temperature 4, no additional computational power is gained by any aTAM system, to
within a much smaller scale factor that the similar result by Doty et al [13]. This is believed to be
false for the 2HAM.
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3 Background
I will now define the abstract tile assembly model and the two-handed tile assembly model for-
mally, beginning with the fundamental components of a tile assembly system: tiles, glues, and
temperature.

3.1 Tiles, Glues, and Temperature
A tile t is an axis parallel unit square with corners at grid points of the integer grid Z ⇥ Z and a
glue on each of its four sides. A glue is a pair g = (a, k), where a is the glue type, an element of
some label set ⌃, and k is the glue strength, k 2 Z�0. Two glues of the same type a will always
have the same strength k, and two glues are equal if they are of the same type.

Consider a tile in Z⇥Z with corners at (x, y), (x+1, y), (x+1, y+1), and (x, y+1), generally
given in that order. Define the south face of the tile to be the side of the tile between (x, y) and
(x + 1, y); call the glue on this face the south glue gS . Define the east face to be the side of the
tile between (x+1, y) and (x+1, y+1); call the glue on this face the east glue gE . Similarly, the
side between (x+1, y+1) and (x, y+1) is the north face and its glue is the north glue, while the
side between (x, y + 1) and (x, y) is the west face and its glue is the west glue of the tile. A tile
type is specified by four glues (gS, gE, gN , gW ), listed in south-east-north-west order; there may be
(and often are) an infinite number of tiles of a certain tile type in a given tile assembly system. A
tile’s location is specified by the location of its bottom left corner in Z ⇥ Z. Both tile assembly
models discussed assume that these tiles can move horizontally and vertically to other locations
on the integer grid, but do not rotate. In fact, tiles move randomly throughout Z⇥ Z according to
Brownian motion.

The temperature ⌧ 2 N of a tile system is the minimum total glue strength needed for at-
tachment between tiles to occur. Informally, two tiles match if their locations are one unit apart
on the integer grid and the glues on the interface between the two tiles are the same; these tiles
attach or bond if this glue is of strength greater that or equal to the temperature ⌧ . That is, tile
t = (gS, gE, gN , gW ) at position (x, y) matches tile t0 = (g0S, g

0
E, g

0
N , g

0
W ) at position (x + 1, y)

precisely if gE = g0W = (a, k), for some glue a of strength k; these tiles attach if k � ⌧ . If t0 is at
position (x, y + 1), the two tiles attach precisely when gN = g0S = (a, k) and k � ⌧ .

When tiles attach, they form connected tile assemblies. Tile assemblies are rigid; if one tile
in the assembly translates one unit in a given direction, then the entire assembly translates in that
direction. The size of a tile assembly is the number of tiles in the assembly. Trivially, single tiles
are tile assemblies of size one. Tile assemblies can also attach to each other. Two tile assemblies
A and A0 overlap if some t 2 A and some t0 2 A0 are both at location (x, y) 2 Z⇥ Z; assemblies
A and A0 attach if they do not overlap and the sum of the strengths of all matches between tiles in
A and a tiles in A0 is greater than or equal to ⌧ . For an example of tile assembly attachment, see
Figure 1.

3.2 Abstract Tile Assembly Model
A tile assembly system T = (T, s, ⌧) in the abstract tile assembly model (aTAM) consists of a
finite set of tile types T , a single special seed tile s, and a temperature ⌧ . Attachment in this model
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Figure 1: Let the temperature ⌧ = 2, and let all glues c be of strength one. If tile assembly B translates two units to
the left, then tile assemblies A and B will attach.

is defined as above, with the additional restriction that any tile assembly of size greater than one
must contain the seed tile; such an assembly is called the seed assembly, and it is unique in any
aTAM system. Because of this restriction, all attachments consist of a single tile joining the seed
assembly.

The assembly process begins by fixing the single seed tile at location (0, 0), while infinitely
many copies of all other tile types are randomly distributed over Z ⇥ Z. Over time, the seed tile
remains fixed at (0, 0), while other tiles move arbitrarily horizontally and vertically (irrotational
Brownian motion restricted to the integer grid). When a tile is in a location adjacent to the seed
assembly such that attachment is possible, that attachment occurs. Note that if there is a location
on the boundary of the seed assembly to which two different tiles could possibly attach, there is
no way of determining which one would do so, because tile motion is random and unpredictable.
However, we assume one of the two possible tiles will eventually attach.

3.3 Two-handed Tile Assembly Model
A tile assembly system T = (T, ⌧) in the two-handed tile assembly model (2HAM) consists of a
finite set of tile types T and a temperature ⌧ . Attachment is defined as above, without the additional
restriction of a seed tile. The assembly process simply begins by placing infinitely many copies of
all tiles types at arbitrary locations in Z⇥ Z and allowing them to randomly translate horizontally
or vertically while remaining on the integer grid (Brownian motion). When two tile assemblies
are positioned such that attachment is possible, they attach. Again, note that if there are multiple
attachments possible for a given tile assembly, there is in general no way of determining which
one(s) will occur.

3.4 Termination, Unique Assembly, Planarity
The assembly process of a tile assembly system under one of the two models defined above termi-
nates when there are no possible attachments that can be made for any positions of the tiles and
tiles assemblies. A tile system is terminating if its assembly process always terminates. Any tile
assemblies to which no other tiles or tile assemblies can attach are terminal or final assemblies.
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A tile assembly system is unique if it always produces final assemblies of the same shapes,
though there may be different tiles at certain locations in the assembly. A tile assembly system is
strongly unique if it always produces the same final assembly or assemblies, with the same tiles at
the same locations in each assembly.

Two tile assemblies overlap if they each have a tile at the same location (x, y) in the integer
grid. In either tile assembly system described above, tile assemblies are permitted to overlap, but
no attachments are possible between overlapping tiles or tile assemblies. This ensures that any tile
assemblies remain planar, without overlaps. Permitting overlaps allows tile systems to fill in holes
in tile assemblies, for example. This is perhaps a more realistic model of DNA tile attachment,
since in practice these planar tiles exist in three-dimensional space. One can consider restricting
tile motion to disallow overlaps, however; in a planar tile assembly system, two tiles never overlap.

3.5 Simulations
Let T = (T, s, ⌧) be a tile assembly system in the aTAM model, and let T 0

= (T 0, ⌧ 0) be a tile
assembly system in the 2HAM model. Informally, T 0 simulates T if each tile t 2 T is represented
in T 0 by a set of k ⇥ k tiles that, as a whole, act like tile t and build the same assemblies as in T .

For k 2 Z+, a k-block supertile over tile set T 0 is a tile assembly contained within a k ⇥ k
square (a k-block). Let BT 0

k denote the set of all k-block supertiles over T 0. A partial function
R : BT 0

k ! T is a k-block supertile replacement function from tile set T 0 to tile set T if for any
↵, � 2 BT 0

k such that ↵ ✓ � and ↵ 2 dom(R), then � 2 dom(R) and R(↵) = R(�). That is, R
maps certain supertiles in T 0 to tiles in T ; if R sends part or all of a k-block supertile to a given tile
t 2 T , then R cannot map any subassemblies of this supertile to a different tile in T .

Let the set of all assemblies produced by a given tile set T be denoted by A[T ]. For x, y 2 Z,
A(x, y) is the tile in assembly A at location (x, y) in Z ⇥ Z, if such a tile exists; otherwise,
A(x, y) = ? if there is no tile in assembly A at location (x, y). For assembly A0 in tile assembly
system T 0, define the supertile A0

k(x, y) to be the assembly contained in the k-block that has lower
left corner (kx, ky).

Given a valid k-block supertile replacement function R from T 0 to T , one can also define a k-
block assembly replacement function R⇤

: A[T 0
] ! A[T ] . R⇤ is a k-block assembly replacement

function if for all assemblies A0 2 A[T 0
], R⇤

(A0
) = A if and only if it is possible to position A and

A0 in Z⇥ Z such that A(x, y) = R(A0
k(x, y)) for all tile positions (x, y) in A.

For the purposes of this paper, a k-block supertile in T 0 is empty, A0
k(x, y) = ?, if the only

tiles present within the k-block are adjacent to the boundary of the k-block; see Figure 2. Note this
is not a strict definition of an empty supertile, which lends a fuzziness of one tile to our simulation
definition; see section 4.1 for a discussion of fuzziness in simulations and to see why such a
definition of empty is necessary for the purposes of this result. We say R⇤ maps A0 to A cleanly if
for all x, y 2 Z, A0

k(x, y) = ? precisely when R(A0
k(x, y)) = A(x, y) = ?.
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Figure 2: A tile assembly in T 0. The three bold boxes represent non-empty 5-blocks, while all other adjacent 5-blocks
are empty. The gray lines are the grid 5Z⇥ 5Z.

Tile assembly system T 0 in the 2HAM simulates tile assembly system T in the aTAM at scale
k 2 Z+ if there exists a k-block replacement function R : BT 0

k ! T such that the following hold:

1. Equivalent Production

(a) {R⇤
(A0

)|A0 2 A[T 0
]} = A[T ]

(b) For all A0 2 A[T 0
], A0 maps cleanly to R⇤

(A0
).

2. Equivalent Dynamics

(a) If assembly A produces assembly X via a sequence of tile attachments in T for some
A,X 2 A[T ], then for all A0 2 A[T 0

] such that R⇤
(A0

) = A, A0 can produce some
assembly X 0 2 A[T 0

] with R⇤
(X 0

) = X .

(b) If assembly A0 produces assembly X 0 via a sequence of attachments in T 0 for some
A0, X 0 2 A[T 0

], then R⇤
(X 0

) 2 A[T ] can be produced by some sequence of attach-
ments in T from R⇤

(A0
) 2 A[T ].

The equivalent production condition ensures that the same assemblies form in T and T 0 up to
a scale factor of k, while equivalent dynamics ensures that the same assembly process is followed
in both models.
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Lemma 3.1. If tile assembly system T 0 simulates tile assembly system T , then T is terminating if
and only if T 0 is terminating.

Proof. Whether a system is terminating depends only on whether all produced assemblies are final
assemblies. By equivalent production, assembly A0 forms in T 0 precisely when assembly R⇤

(A0
)

forms in T . So, assembly A0 is final in T 0 precisely when assembly A is final in T . Since this is
true for all assemblies A0 and A, T 0 is terminating precisely when T is terminating.

No conclusions can be made about the uniqueness of tile system T 0 based on the uniqueness
of tile system T without additional information about the specifics of the simulation.
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4 Simulating aTAM at ⌧ � 4 with 2HAM at ⌧ = 4

It is possible to simulate aTAM at temperature ⌧ � 4 using 2HAM at temperature 4 with a constant
scale factor of 5. Let T = (T, s, ⌧) be an aTAM system at arbitrary temperature, and let T 0

=

(T 0, 4) be the 2HAM system that simulates it. I will now describe how to construct T 0 from T
such that the two systems have equivalent production and dynamics.

Overview Given any aTAM system T , each tile t in the aTAM system is represented by 25 tiles
forming a 5⇥5 supertile in T 0; that is, we have a 5-block supertile replacement function from T 0 to
T . A supertile in T 0 consists of a 3⇥ 3 center brick assembly, surrounded on all sides by a mortar
one tile thick. These tiles are designed such that bricks and certain mortar pieces can assemble
independently (utilizing the seedless nature of T 0), but bricks cannot attach to mortar pieces or
other bricks unless certain other conditions are met.

We mimic the seeded nature of T 0 by strengthening the bonds between brick and mortar for a
single supertile type, called the seed brick, which corresponds to the seed tile in T . This enables
the mortar to complete around the seed brick. Once a complete (or nearly complete) mortar has
attached around a brick, adjacent mortar pieces corresponding to other bricks can begin to attach.
This then allows new bricks to attach, followed by the completion of the mortar around these new
brick; the assembly process continues in this manner. Because this process can only begin with
the attachment of the mortar to a seed brick, we ensure that bricks can only attach to partially built
assemblies containing a seed brick, mimicking the seeded nature of an aTAM system.

Additionally, we divide instances of glues into inward and outward glue sets, such that an
outward glue g can only attach to an inward glue of the same type. Throughout the assembly
process, the invariant that all exposed glues in any assembly containing a seed brick are outward
glues is maintained; this prevents partially built seeded assemblies from attaching to each other.
An example of the construction in which 3 ⇥ 3 bricks, 3 ⇥ 1 mortar rectangles, and individual
mortar tiles attach to form 5⇥ 5 supertiles can be seen in Figure 3.

Inward and Outward Glues In order to prevent unwanted attachment, every instance of a glue
g in T 0 is assigned one of two labels, ”inward” or ”outward.” Inward and outward glues appear as
arrows pointing inward or outward from a tile in the figures throughout this section. We enforce
that all glues in T 0 only attach in complementary inward-outward pairs; for example, an outward
west glue will attach to an inward east glue of the same type but not to an outward east glue.
This can be easily implemented for each glue g in T 0 using four glues corresponding to the four
directions each glue arrow may ”point.” For instance, an outward glue a on the west side of a tile
is a west-pointing aW glue, while an inward glue a on the north side of a tile is a south-pointing
aS glue. The following lemma shows that this correctly implements inward-outward glue pairs.

Lemma 4.1. Replacing each instance of a glue a in some tile assembly system S with one of the
four direction-based glues aS , aN , aE , aW corresponding to the inward/outward pointing direction
assigned to the instance results in exactly inward-outward glue pair attachment.

Proof. Let S be a tile system in the 2HAM with inward/outward glues, and let S 0 be the corre-
sponding tile system, also in the 2HAM, where inward/outward glues are implemented by four
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supertile

Figure 3: The simulation of an assembly in an aTAM system simulated using a 2HAM system. The filled and unfilled
arrows represent glues of strength 2 and 1 respectively in the 2HAM system, while the dashes each represent a bond
of strength 1 in the aTAM system (i.e. 4 dashes on the north side of a tile is a glue of strength 4).

direction-based glues. Any inward-outward glue pair in S (i.e. an outward east glue and an in-
ward west glue) point in the same direction (i.e. east) and so are the same glue (i.e. aE), meaning
the direction-based glue system S 0 bonds whenever the inward/outward tile system S was able to
bond. Any pair of glues not on opposite sides of tiles cannot bond by geometry because tiles do
not rotate; for example, an east glue of one tile can only bond to the west glue of another tile. A
pair of glues on opposite sides of tiles whose glues are either both inward or both outward in S
point in opposite directions and thus are different glues in S and also cannot bond. This implies
the direction-based system S 0 bonds precisely when S does.

Since inward-outward glue pairs can be easily implemented using four direction-based glues,
we assume for the remainder of this section that all glues in 2HAM system T 0 are assigned a
direction, inward or outward. Intuitively, in 2HAM system T 0 simulating aTAM system T , each
piece (brick or mortar) attaches to a partially completed assembly at its own inward glues, leaving
only exposed outward glues to which more pieces can attach.

Bricks For each tile t 2 T , we can simulate t in T 0 by a set of 3 ⇥ 3 brick assemblies, one for
each minimal set of glues of t of total strength greater than or equal to the temperature ⌧ of T .
Note all glues between tiles within a brick are unique across T 0. Figure 4 depicts the gluing pattern
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Figure 4: The internal gluing pattern for bricks and mortars. Dark arrows represent glues of strength 4, and light
arrows represent glues of strength 2.

for the interior of any brick, which clearly implies the following two lemmas. Define a brick as
partially assembled if it consists of at least two attached tiles.

Lemma 4.2. If a brick B in T 0 is partially assembled, then the center tile of B is present in this
partial brick assembly.

Proof. See Figure 4. Between any two non-center tiles within B, there is at most one glue of
strength at most two, which is insufficient for attachment. Because of this, B cannot contain only
non-center tiles, because two non-center tiles cannot attach to each other. So, B must contain its
center tile.

Lemma 4.3. For brick B that is partially assembled in T 0, all exposed glues internal to B are
outward glues.

Proof. See Figure 4. The glues on B’s center tile are all outward glues. Any tile in the middle
of one side of B must use its strength four inward glue to attach to the center tile, leaving two
exposed strength two glues, both of which are outward glues. Any corner tile must use both of its
inward strength two glues to attach to a partially completed brick, leaving no exposed inward glues
internal to B. Since the assembly process of any partially assembled brick starts with the center
tile, then any partially assembled version of B does not contain any exposed inward glues internal
to B.

We will see that any brick attaches to the rest of the assembly at two different tiles. Lemma
4.2 then will be used to ensure the uniqueness of any supertile; once the center tile of the brick
is present, it completely determines the identity of the supertile. Lemma 4.3 will later be used to
prove the invariant that all exposed glues on any partially completed assembly are outward glues.

Given any tile t 2 T , consider every subset S of glues on t with total strength greater than ⌧
such that the removal of any glue from S yields a total glue strength less than ⌧ . For each such
minimal glue set S, a brick BS in T 0 is created such that all glues on the sides of BS corresponding
to glues in S are inward glues while all glues on other sides are outward glues. Note that if glue
set S is contained in glue set S 0, then S and S 0 cannot both be minimal glue sets. Because of this,
there will never be more than six distinct minimal glue sets for a given tile. If there are more than
six minimal glue sets, then one must be contained within another, a contradiction. A tile where
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Figure 5: Filled arrows represent glues of strength 2, unfilled arrows represent glues of strength 1. (a) an aTAM tile
t 2 T with minimal glue set S = {a}; (b) the brick B in T 0 generated by S; (c) a location where B could attach to a
partially built assembly.
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Figure 6: (a) an aTAM tile t 2 T with minimal glue set S = {a, b}; (b) the brick B in T 0 generated by S; (c) a location
where B could attach to a partially built assembly; note not all possible attachment points are used.

all four sides have glues of strength d⌧/2e yields exactly six minimal glue sets, all of which have
exactly two elements.

The specific types and strengths of external glues on bricks in T 0 are constructed as follows.
Let t 2 T . For each glue p on one side of t in a minimal glue set S corresponding to BS , there are
inward glues p8, p9, and p10 in clockwise order on the corresponding side of BS . All other glues
q on t yield outward glues q1 and q2 on the two corner tiles of the corresponding side of BS , both
with strength 2, with q2 clockwise from q1. For a minimal glue set {a} of size 1, the glue a8 has
strength 2, while a9 and a10 have strength 1 (see Figure 5). For a minimal glue set {a, b} of size 2,
glues a8 and b8 have strength 2, while glues a9, a10, b9, and b10 have strength 0, i.e. do not exist (see
Figure 6). For a minimal glue set {a, b, c} of size 3, glues a9, b9, c9, and c10 have strength 1, while
a8, a10, b8, b10, and c8 have strength 0 (see Figure 7). For a minimal glue set {a, b, c, d} of size
4, glues a9, b9, c9, and d9 have strength 1, while a8, a10, b8, b10, c8, c10, d8, and d10 have strength
0 (see Figure 8). See Figure 9 for an example of a tile t 2 T and the two bricks it generates in
T based upon its two minimal glue sets. In these and all subsequent figures in this section, filled
arrows represent glues of strength 2, unfilled arrows represent glues of strength 1, while glues of
strength 0 are not shown.

Note that the set of inward glues on any brick is minimal; that is, if a brick attaches to an
assembly at its own inward glues, then all exposed glues are outward glues.
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Figure 7: (a) an aTAM tile t 2 T with minimal glue set S = {a, b, c}; (b) the brick B in T 0 generated by S; (c) a
location where B could attach to a partially built assembly; note not all possible attachment points are used.

(a) (b) (c)

t a

b

c

d

B a
9

d
9

c
9

b
9

a
8

a
9

b
9

b
8

c
9

c
8

,

b
10

a
10

c
10

d
8

d
9

d
10

Figure 8: (a) an aTAM tile t 2 T with minimal glue set S = {a, b, c, d}; (b) the brick B in T 0 generated by S; (c) a
location where B could attach to a partially built assembly; note not all possible attachment points are used.
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Mortar Pieces In any 5 ⇥ 5 supertile assembly in T 0 representing an aTAM tile t 2 T , the
brick is surrounded by a mortar one tile thick. This mortar consists of both single-tile mortar
tile assemblies and 3 ⇥ 1 and 1 ⇥ 3 mortar rectangle assemblies with internal glues of strength
4. However, mortar pieces - both tiles and rectangles - cannot attach to each other or to bricks
unless other tiles are present. See Figure 4 for the general structure of the mortar assemblies
around any brick. Any mortar rectangle must attach to an assembly at exactly two glues, and the
following lemma will later be used to prove that even if a partially completed rectangle attaches
to an assembly, all exposed glues are outward glues. A partially assembled mortar rectangle is
defined as a mortar rectangle that consists of at least two attached tiles

Lemma 4.4. If a mortar rectangle is partially completed, then all exposed glues internal to the
rectangle are outward glues.

Proof. See Figure 4. A completed mortar rectangle has no exposed internal glues. A partially but
not fully completed mortar rectangle consists of two tiles, one of which must be the center tile of
the rectangle. The only exposed glue on such an assembly is a strength four glue on the rectangle’s
center tile, which is an outward glue.

The construction of exterior glues for mortar pieces adjacent to a brick with a null glue is
shown in part (a) of Figure 10. Note null glues will never be part of any minimal glue set S, so
will always be represented by outward glues on a brick BS . Outward glue z and its complementary
inward glue are generic glues that appear on many mortar pieces.

The glue structure of adjacent mortar pieces for a glue g of strength k � 1 on the right face
of an aTAM tile t is shown in part (b) of Figure 10 if g is an outward glue on a generated brick
B1, and in part (c) of Figure 10 if g is an inward glue on a generated brick B2. In part (c), the
image assumes the minimal glue set of B2 is {g}, though this will not always be the case; if there
are more elements in the minimal glue set generating brick B2, then the glue on the mortar pieces
remains the same but there will be mismatches between the outward glues on the mortar pieces
and the inward glues on the adjacent brick. For glues on other faces of tile t, this construction is
simply rotated.

Lemma 4.5. A brick or mortar rectangle must be partially assembled before it can attach to any
other tile structures.

Proof. By inspection, any tiles within bricks or mortar rectangles have at most one inward glue
external to the brick or mortar rectangle, and this glue is of strength strictly less than four. This
means no single tile of a brick or mortar rectangle can attach to any external tiles without first
attaching to another tile via a glue internal to the brick or mortar rectangle. Such an attachment
yields an assembly of at least two tiles, which by definition means the brick or mortar rectangle is
partially assembled.

Lemma 4.6. No pair of brick, mortar rectangle, or mortar tile assemblies either partially or fully
assembled can attach to each other unless one of the assemblies is a proper subassembly of some
larger assembly.

16



n n

n
n

n

n

Figure 10: (a) A tile t 2 T with a null (strength 0) glue on its right face and corresponding brick and mortar pieces in
the 2HAM simulation. (b) A tile t 2 T with a glue not in the minimal glue set S on its right face and corresponding
brick and mortar pieces in the 2HAM simulation. (c) A tile t 2 T with a glue in the minimal glue set S on its right
face and corresponding brick and mortar pieces in the 2HAM simulation. For this example, the minimal glue set is the
singleton set containing g.

Proof. Consider attachment involving only glues on the interior of bricks or mortar rectangles;
such interior glues are exposed only in partially assembled bricks and mortar rectangles. By Lem-
mas 4.3 and 4.4, any exposed interior glues on partially assembled bricks and mortar rectangles
are exclusively outward glues. Since two outward glues cannot attach, this means glues internal to
partially completed bricks or mortar rectangles do not bond with any glues found on the interior of
other partially completed bricks or mortar rectangles.

Next, note that because the glues used on the interior of bricks and mortar rectangles are distinct
from glues used on the exterior of bricks, mortar rectangles, and mortar tiles, exposed interior glues
on partially completed bricks and mortar rectangles cannot attach to such exterior glues. Since all
glues are either interior or exterior to bricks, mortar rectangles, or mortar squares and exposed
interior glues cannot attach to either, then exposed interior glues on partially completed bricks or
mortar rectangles cannot attach to any other fully or partially completed bricks, mortar rectangles,
or mortar tiles.
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Consider the attachment of a pair of brick, mortar rectangle, or mortar tile assemblies, where
neither of the pair is a proper subassembly of some larger assembly. By the previous paragraph,
any attachments must occur between glues on the exterior of bricks, mortar rectangles, and mortar
tiles. All such glues have strength less than three, which implies that two matching glues are
necessary for attachment. By considering the six possible pairs of bricks, mortar rectangles, and
mortar squares, we will see that no pair has sufficient matching glues for attachment to occur.

• Two Mortar Rectangles: Between any two mortar rectangles, there is at most one common
glue g5 of strength two.

• Two Mortar Squares: Any translation of two mortar squares has the potential for at most one
matching glue of strength at most two.

• Mortar Rectangle and Mortar Square: Any translations of a mortar rectangle and mortar
square has the potential for at most one matching glue of strength at most two.

• Mortar Rectangle and Brick: Between a brick and a mortar rectangle, there is at most one
matching glue of strength 2 (n2, g2, or g8) and one matching glue of strength 1 (g9), giving a
total maximum strength of three.

• Mortar Square and Brick: Between a brick a a mortar square, there is at most one common
glue (n2, g2, or g10) of strength at most two.

• Bricks: Consider attachment between two bricks. An inward (outward) glue on a brick only
has a complementary outward (inward) glue on mortar rectangles and mortar tiles. Since
the inward glues g1, g2 and the outward glues g8, g9, g10 (the complements to the glues that
appear on the exterior of any bricks) only appear on mortar rectangles and mortar tiles, this
means no translation of a pair of bricks can have any positive strength bonds.

In any case, there is never a glue set of strength at least four between any pair of mortar squares,
mortar rectangles, or bricks. Consequently, no pair of these assemblies can attach unless one of
the assemblies is a proper subassembly of some larger assembly, that is, unless there are more tiles
present in a superassembly of either piece to facilitate attachment.

Lemmas 4.5 and 4.6 imply tiles or partially completed supertile pieces (bricks or mortar) in T 0

cannot attach to each other unless one piece is part of a larger assembly. Since we will see next
that larger assemblies only begin to form around a special seed brick, this ensures that any larger
assembly contains a seed brick, mimicking the seeded nature of T .

The Assembly Process of T 0 The seed tile s of T is represented by a brick Bs in T 0 with all
outward glues, where outward glues and adjacent mortar pieces are created as above; there will be
infinite copies of this seed brick, since in any 2HAM system there are infinite copies of every tile
type. However, this brick (and all of its infinite copies) is modified slightly so that one glue g1 or g2
is of strength 4 instead of strength 2, and the corresponding mortar piece is modified as well. This
forms the only exception to lemma 4.6, meaning a single mortar tile or rectangle can attach to Bs
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Figure 11: (a) A brick B in T 0 corresponding to tile t 2 T with mortar completed on its right side. (b) At this point, a
mortar rectangle can attach to the assembly. (c) Next, a mortar square can attach. (d) At this point, a new center brick
could attach with a strength 4 attachment via glues g8, g9, and g10.

without either the brick or the mortar piece being a proper subassembly of some larger assembly.
This starts the process of assembling supertiles.

Once one side of the mortar surrounding a brick is completed, the mortar pieces for the adjacent
brick can attach; see Figure 11. After this process, there are exposed outward glues available
for a new center brick to possibly attach, simulating an exposed glue in T . A brick will attach
to the assembly precisely when all inward glues (i.e. a complete minimal glue set) on a brick
match the exposed glues on adjacent mortar pieces. Once one brick has attached to the assembly,
all remaining mortar pieces adjacent to this brick can attach in clockwise order, completing the
supertile; see Figure 12. Once one outward side of the supertile is completed, new adjacent mortar
pieces can then begin to attach, and this process repeats.

Note that if a brick attaches to a partially completed assembly, then it must have attached at
two or more tiles, meaning the center of the brick is also present by Lemma 4.2. This uniquely
determines which supertile is present at this location in the assembly. Moreover, if a mortar rect-
angle attaches to the partially completed assembly, then it must attach at exactly two of its tiles,
including the middle of its three tiles, and the rectangle is uniquely determined.

Maintaining Invariants in T 0

Lemma 4.7. All exposed glues on any assembly containing a seed brick Bs are outward glues.

Proof. This proof will proceed by induction. The exposed glues on all seed bricks Bs are all out-
ward glues by construction. Suppose that all exposed glues are oriented outward in some partially
completed assembly containing a seed brick. Lemma 4.5 implies that only a brick or mortar rect-
angle that is at least partially completed or a mortar tile can attach to the assembly, and it must
attach at its own inward glues. Inspection shows that the set of exposed inward glues on any fully
assembled mortar piece or brick is minimal, meaning the removal of any inward glue from this set
gives a total inward glue strength of less that ⌧ ; lemmas 4.3 and 4.4 imply that this holds even if a
brick or mortar rectangle is only partially completed. Thus, if a mortar piece or brick attaches to
the assembly, it must attach at all of its inward glues, leaving only outward glues exposed on its
exterior.
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Figure 12: (a) Partially completed mortar attaching to a center brick; (b) additional adjacent mortar rectangles attach.
(c) Next, mortar squares attach; note there may be outward glues that are blocked by other pieces in the assembly. (d)
The supertile is completed.

Lemma 4.8. If a mortar piece is attached to a brick or to another mortar piece, then both pieces
are part of a partially built assembly containing a seed brick Bs.

Proof. Lemma 4.6 states that bricks and mortar pieces cannot attach to each other unless other
tiles are present. The only exception is a seed brick, which can attach to one adjacent mortar piece
without any other tiles present. So, every partially completed assembly involving more than one
mortar piece or one brick must include a seed brick Bs.

Theorem 4.9. Any aTAM system T at temperature ⌧ � 4 can be simulated by a 2HAM system T 0

at temperature ⌧ = 4.

Proof. Transform aTAM system T into 2HAM system T 0 using the construction described in this
section. By defining a 5-block supertile replacement function between the simulating tile system T 0
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and the original tile system T , it is possible to see that the two systems have equivalent production
and dynamics, the necessary characteristics of a simulation.

Without loss of generality, any assembly A0 in T 0 can be translated translated so that the super-
tile boundaries align with the grid kZ ⇥ kZ, where kZ = {... � 2k,�k, 0, k, 2k, ...}. Recall that
A0

k(x, y) is the k⇥k supertile in T 0 with its bottom left corner at (kx, ky). Define a 5-block super-
tile replacement function R that maps each supertile in T 0 that contains a partially completed brick
and that is part of an assembly containing a seed brick to the tile t 2 T that generated that brick.
The domain of partial function R is precisely the A0

k(x, y) that contain a partially completed brick
that is connected to an assembly containing a seed brick. Extend R so it maps all other supertiles
A0

k(x, y) to the empty tile. Clearly R is a valid 5-block supertile replacement function. Let R⇤ be
the k-block assembly replacement function corresponding to this supertile replacement function,
that is, the function that maps supertile assemblies in T 0 to assemblies in T according to which
tiles R maps individual supertiles to.

These functions R and R⇤ will now be used to prove that tile assembly systems T and T 0 have
equivalent production and dynamics via induction on the number of tiles in an assembly in T . First,
note any assembly of size one in A[T ] is simply the seed tile s of T . By Lemmas 4.8 and 4.7, any
assembly in T 0 containing a combination of more than one brick or mortar piece contains exactly
one seed brick, so any assembly in A[T 0

] containing exactly one nonempty supertile consists of
only the seed brick Bs and possibly some adjacent mortar tiles. For assemblies in A[T ] of size one,
equivalent production holds because any produced assemblies in T consist of only one nonempty
supertile containing the seed brick, which under R⇤ is mapped to the seed tile s in T , the only
possible produced assembly in T . Equivalent dynamics also holds. No attachments have occurred
in T because the assembly of size one only contains only one tile. Consider any assembly X 0

consisting of exactly one nonempty supertile formed via some sequence of attachments of pieces to
a partially completed seed brick Bs, the smallest assembly in T 0 that contains a nonempty supertile.
Since both X 0 and Bs consist of only one nonempty supertile, then R⇤

(X 0
) = R⇤

(Bs) = s, the seed
tile in T . So, R⇤

(X 0
) is trivially produced from R⇤

(Bs) by an (empty) sequence of attachments.
This means that T and T 0 have equivalent production and dynamics for tile assemblies in T of size
one.

Now, suppose equivalent production and dynamics hold for all assemblies in A[T ] of size
up to n tiles. By equivalent production, this is equivalent to the same properties holding for all
assemblies in T 0 having up to n non-empty supertiles.

Equivalent Production: Let X 0 2 A[T 0
] have n+ 1 nonempty supertiles; consider all empty

supertiles X 0
k(x, y), which by the definition of empty given in section 3.5 may contain mortar tiles

and rectangles attached to adjacent supertiles but do not contain any tiles in their center 3⇥3 region.
Empty supertiles map to the empty tile in T under R by the definition of a k-block replacement
function. However, if the supertile is non-empty, i.e. it contains non-empty tiles in the center
3 ⇥ 3 subassembly, then the center tile must be present by Lemma 4.2, and the supertile contains
a partially completed brick which maps to a tile t 2 T under R. So supertile X 0

k(x, y) is empty
precisely when R(X 0

k(x, y)) is the empty tile, and consequently R⇤ maps cleanly for all assemblies
and simulation property 1(b) holds.

Moreover, any partially completed brick added to an assembly A0 in A[T 0
] that has n nonempty

supertiles to form assembly X 0 with n + 1 nonempty supertiles must be generated by a tile t 2 T
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that can attach to R⇤
(A0

) = A to form R⇤
(X 0

) = X . The minimal glue set at which the brick
attaches to A0 corresponds to a glue set on t via which t can attach to A, and this brick attaches
precisely when t can attach to A at this minimal glue set to form X . This means R⇤

(X 0
) 2 A[T ].

Additionally, for X in A[T ] produced by adding t to assembly A, because A0 exists in A[T 0
] by the

inductive hypothesis, then X 0 can be produced by adding some mortar pieces and a center brick
to A0, meaning X = R⇤

(X 0
) for some X 0 2 A[T 0

]. Since both directions of containment hold,
{R⇤

(A0
)|A0 2 A[T 0

]} = A[T ] for tile assemblies of size up to n+1, and because R⇤ maps cleanly
R has equivalent production.

Equivalent Dynamics: Define X to be an (n + 1)-tile assembly in A[T ], produced from A
by the addition of one tile t. Let A0 be an assembly in A[T 0

] with R⇤
(A0

) = A, guaranteed to
exist by the equivalent production of T 0. Let A00 be A0 with all possible mortar tiles and rectangles
added to the 5-block supertile corresponding to the location where t will attach. Then X 0 with
(n + 1) non-empty supertiles can be generated by adding to A00 a single partially completed brick
containing the center tile of this 5-block, and R⇤

(X 0
) = X . So, simulation property 2(a) holds,

because X 0 could be produced from A0.
Moreover, for any assemblies A0, X 0 2 A[T 0

], consider adding any tiles or tile assemblies to
A0 to produce X 0; by lemmas 4.7 and 4.8, all such attachments consist of adding only a single
mortar tile, partially completed mortar rectangle, or partially completed brick, or the attachment
of single tiles to complete a partially completed rectangle or brick. For any such addition, at most
one 5-block supertile has the identity of its center brick modified, so R⇤

(X 0
) is produceable from

R⇤
(A0

) by the addition of at most one tile, the tile generating the partially completed brick that
possibly attached to form X 0. So simulation propert 2(b) holds, and R has equivalent dynamics.

Because R has equivalent production and equivalent dynamics, this construction is a simulation
and any aTAM tile assembly system T at arbitrary temperature can be simulated by a 2HAM tile
assembly system T 0 at temperature 4.

4.1 Limitations
Fuzziness In the definition of a simulation and within the previous proof, it was assumed that
a supertile was empty even if it actually contains a single layer of mortar tiles. This gives our
simulation a ”fuzziness” of one, meaning any final shape in T 0 may not be an exact copy of a
final shape in T , but rather may have in places an extra layer of tiles around its boundary. This
”fuzziness” in in fact necessary for this simulation. In a final assembly in T , there might be a glue
exposed on the exterior of the assembly even though there is no tile that can possibly attach to this
glue. Correspondingly, for glue g on the exterior of a tile t in a final assembly in T , the supertile
corresponding to t in T 0 has exposed glues g4, g5, and g6; to these glues, another mortar rectangle
and mortar tile can attach; see figure 13. However, no brick can then attach to glues g8, g9, and g10,
because no tile t could have attached to g in T , meaning this assembly is terminal. Because any
final assemblies in T 0 necessarily have these extra mortar pieces around their boundaries whenever
the corresponding final assembly in T has an unused exposed glue, any definition of a simulation
must capture the presence of these extra tiles. If T is restricted such that the exposed glues on all
final assemblies are null glues, then a simulation can be defined without fuzziness.

Additionally, the definition of simulate used here allows small assemblies of size less than 5

2
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(a) (b)

Figure 13: (a) a terminal tile assembly in T , with exposed external glues marked; (b) the terminal shape of the
simulation of this tile assembly in T 0. Because no tiles can attach to the exposed glues in part (a), no bricks can attach
to the exterior mortar pieces in part (b)

that are not part of any larger assembly to form; because these assemblies are not large enough to
necessarily be in the domain of R, they are not mapped to any tile in T , and in fact may never be
used in any assembly in T 0. This arises because not all minimal glue sets of a tile t may be used for
attachment of t to the seed assembly during the assembly process of T . Consequently, there may
be some bricks in T 0 corresponding to these minimal glues sets that are never used in an assembly.
Similarly, there may also be some mortar pieces that never attach to a larger assembly as well.

Because of these nuances, the simulation result described in this section is not a true simulation
in the strictest sense of the term. However, when building large scale assemblies in T , the presence
of a few additional extra boundary tiles or some additional small constant-sized tile assemblies is
insignificant when compared to the size and structure of the assembly and the degree to which it
successfully mimics the behavior of T .

Connectivity The simulation described in this section also does not necessarily preserve the full
connectivity of tile assembly system T . In order to preserve the invariant that all exposed glues on
seed assemblies in T 0 are outward glues, all bricks attach to the assemblies only at minimal glue
sets. However, a tile in T need only attach to the seed assembly with a set of glues of strength
greater that ⌧ , and this set of glues may not be minimal. By restricting attachment in T 0 to minimal
glue sets, the additional connectivity gained when t attaches at a glue set that is not minimal is not
preserved in T 0. For an example of a tile assembly for which this simulation does not preserve
connectivity, see figure 14.
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Figure 14: A tile t that could potentially attach to assembly A to form a fully connected square in T , with ⌧ = 2. In
T 0, the simulation of this tile assembly would not be fully connected, as either the brick Bt corresponding to minimal
glue set {a} or minimal glue set {b} would attach, in both cases producing a glue mismatch on the other supertile face.

Uniqueness If tile assembly system T is unique, then tile assembly system T 0 is unique, with
fuzziness. That is, if T only ever assembles one unique shape, then T 0 assembles infinitely many
copies of this shape(scaled up by 5), all of which differ from each other by at most one layer of tiles
around their boundary. This occurs because while T only ever produces assemblies of one shape,
each time this assembly is produced it may have different tiles in different locations; in particular,
there may be glues exposed at different places around the exterior of this assembly. This means
the attachment of the extra mortar pieces to exposed external glues in T 0 which necessitates the
fuzziness of this simulation may occur at different places around the boundary of the final assembly
in T , producing slightly different shapes.

If T is a strongly unique tile assembly system, then T 0 is a unique tile assembly system. Be-
cause the same tiles are always in the same location in the unique assembly A assembled in T , then
the extra mortar tiles that attach to exposed external glues on assembly F (A) as described above
always attach in the same locations, and thus any assembly produced by T 0 will always have the
same shape. System T 0 is not strongly unique because of the same issue discussed in the previous
subsection. If a tile t attaches to the seed assembly in T at more than a minimal glue set, then
there may be multiple bricks corresponding to t in T 0. For example, if tile t attaches to the seed
assembly at glues a, b, and c, all of strength ⌧ � 1, then t has at least three minimal glue sets,
S1 = {a, b}, S2 = {a, c}, and S3 = {b, c}. Any one of the corresponding bricks B1, B2, or B3

could attach to the adjacent mortar pieces in T 0, meaning assemblies in T 0 are not strongly unique.
Recall that lemma 3.1 says T 0 is a terminal tile assembly system precisely when T is.

4.2 Scale Factors
Each tile in T is representile by a 5-tile by 5-tile block in T 0. In the construction described above,
if aTAM system T has t tile types and g glues, then a careful count shows 2HAM system T 0 has
at most 54t + 32g tiles and 72t + 26g glues, where an inward glue g and an outward glue g are
considered the same glue and only counted once. This is only an upper bound, however; this count
assumes all tiles in T have the maximum six minimum glue sets and thus generate six bricks in T 0,
but in practice this will often not be the case. A careful design of blocks and tiles can yield much
lower constants; one such modification yields the same number of tiles but only 18t + 18g glues.
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However, in any such modifications the glues within bricks and mortar rectangles are no longer
unique, and the proofs of lemmas 4.5 and 4.6 require much more detail.

Although these scale factors may seem high, they are still constant. Because many simulations
require a scale factor with some dependence on the size of the assemblies built, as in [11] and [13],
the fact that this simulation has constant scale factor is much more interesting than how large that
constant is.
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Figure 15: Unfilled arrows represent glues of strength 1. (a) an aTAM tile t with minimal glue set {a}; (b) the brick B
in the 2HAM system generated by this minimal set; (c) a location where B could attach to a partially built assembly.

5 Extensions and Generalizations

5.1 Simulating aTAM at ⌧ 2 {1, 2} with 2HAM ⌧ = 2

The construction described in the previous section can be modified to also enable simulating aTAM
systems at ⌧ = {1, 2} with the 2HAM at ⌧ = 2 with scale factor 5.

Theorem 5.1. Any aTAM system at ⌧ 2 {1, 2} can be simulated by a 2HAM system at ⌧ = 2.

Since minimal glue sets have at most 2 glues, ⌧ = 2 is sufficient for determining when a
minimal glue set is sufficient to bond two assemblies.

Modifying the construction involves changing all strength 2 and 4 glues to strength 1 and 2
respectively, and modifying how bricks for minimal glue sets are generated. Because minimal
glue sets at ⌧ = 2 contain at most 2 glues there are 2 cases, rather than 4, for generating a brick
based on a minimal glue set. See Figures 15 and 16 for constructing the bricks in these cases, as
well as for the structure of adjacent mortar pieces corresponding to inward glues. Adjacent mortar
pieces corresponding to outward glues are the same as in the previous section, with glue strengths
adjusted accordingly.

We model an aTAM system at ⌧ = 1 with equivalent aTAM system at ⌧ = 2 where each glue
is strength two instead of strength one; we then apply the same construction to simulate any aTAM
system at ⌧ = 1 with a 2HAM system at ⌧ = 2.

5.2 Simulating aTAM at ⌧ = 3 with 2HAM ⌧ = 3

The construction used to simulate the ⌧ � 4 aTAM model with the ⌧ = 4 2HAM model can also
be modified to simulate the ⌧ = 3 aTAM model with the ⌧ = 3 2HAM model.

The modification only changes the bricks generated for each tile. Since the aTAM system being
simulated is ⌧ = 3, minimal glue sets have size at most 3. The three cases for generating bricks
for minimal glue sets of sizes 1,2, and 3 are seen in Figures 17, 18, and 19.

Theorem 5.2. Any aTAM system at ⌧ = 3 can be simulated by a 2HAM system at ⌧ = 3.
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Figure 16: (a) an aTAM tile t with minimal glue set {a, b}; (b) the brick B in the 2HAM system generated by this
minimal set; (c) a location where B could attach to a partially built assembly.
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Figure 17: (a) an aTAM tile t with minimal glue set {a}; (b) the brick B in the 2HAM system generated by this
minimal set; (c) a location where B could attach to a partially built assembly.
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Figure 18: (a) an aTAM tile t with minimal glue set {a, b}; (b) the brick B in the 2HAM system generated by this
minimal set; (c) a location where B could attach to a partially built assembly.
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Figure 19: (a) an aTAM tile t with minimal glue set {a, b, c}; (b) the brick B in the 2HAM system generated by this
minimal set; (c) a location where B could attach to a partially built assembly.

5.3 Simulating Planar aTAM at ⌧ with 2HAM at ⌧ = 3

Recall that a planar tile assembly system is a system in which two tiles can never overlap. In
this case, all attachments consist of tile assemblies attaching along their exteriors. Because of
this, in any planar aTAM system, any tile attaches to the exterior of the seed assembly using at
most three of its glues, meaning all minimal glue sets are of size at most three. Consequently,
the construction given in the previous subsection also simulates any planar aTAM tile system T at
temperature ⌧ with a 2HAM system T 0 at temperature 3. If we add the additional restriction that
T 0 must be a planar tile assembly system as well, then while this simulation is still valid, there may
be some supertiles in T 0 that are never fully completed. Because tiles can never overlap, it might
not be possible for the tiles needed to complete certain supertiles to move to locations adjacent
to those partially completed supertiles. If system T 0 is not required to be planar, however, then
all supertiles can be fully completed, but there may be some assemblies A that are terminal in T ,
because planarity requirements restrict the motions of tiles, while F (A) is not terminal in T 0.
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6 Open Problems
Our construction has a fuzziness of one, does not preserve full connectivity of an assembled shape,
and does not preserve uniqueness or strict uniqueness. A simulation without even one of these
limitations would be an even stronger result, though it is not immediately evident how to achieve
this.

Another open problem is extending these simulation results to three dimensions. In three-
dimensional tile self-assembly, tiles are actually cubes with six glues, one on each face.

Conjecture 6.1. Any three-dimensional tile system T in the abstract tile assembly model at temper-
ature ⌧ can be simulated by a three-dimensional tile system T 0 at temperature 6 in the two-handed
tile assembly model.

Another natural question to ask is whether it is possible to simulate any 2HAM system with an
aTAM system. I conjecture the answer is no, though I expect such a conclusion will be extremely
hard to prove. Additionally, this result does not simulate aTAM systems at temperature one with a
2HAM system at temperature one; I again conjecture such a simulation is not possible because of
the difficulty of creating well-behaved temperature one 2HAM systems.

29



7 Conclusion
This thesis describes a simulation that can be used to simulate any aTAM system at any temperature
with a 2HAM system at an equal or lower temperature. Such a result provides fundamental insights
into the relative computational power of the aTAM and the 2HAM, the two main models of tile
self-assembly in use today. The existence of such a simulation can also be applied to other results,
as well. Doty et al. showed that there exists a single aTAM system at temperature 2 that simulates
any other aTAM tile assembly system [13]; our result then implies there also exists a single 2HAM
tile assembly system at temperature 2 that can simulate any aTAM system. Additionally, distinct
glues are relatively expensive to create in practical experiments; a new result by Allen, Cannon,
Damian, Flatland, and Silveira (not yet published, tentatively titled ”Self-Assembly using Few
Glues per Tile”) shows that any 2HAM system can be simulated by another 2HAM system with
at most two unique non-null glues per tile. This simulation result then implies that any aTAM
system can be simulated by a 2HAM system with at most two unique non-null glues per tile as
well. Because of the existence of this simulation, any future simulation results can be extended to
apply to both aTAM and 2HAM systems as well.

With the plethora of tile assembly models explored recently by researchers, many differing
from each other only slightly, a formal hierarchy of these models would be extremely useful. DNA
self-assembly systems offer a new way to compute the answers to complex problems, and just as
there is a hierarchy of computational classes such as P, NP, and P-SPACE , hopefully there will
soon be a hierarchy of tile-self assembly models. Just as we know P ✓ NP, this result suggests the
set of assembly processes producible by aTAM systems are contained within the set of assembly
processes producible by 2HAM systems, albeit with fuzziness and a scale factor of five. Perhaps,
among the many tile self-assembly models, there is one definitive model which can simulate all
other tile self-assembly models; perhaps certain tile self-assembly models are equivalent. I hope
these results inspire other researchers to continue to investigate this problem of the relationships
between different self-assembly models, which is one that will help the tile self-assembly commu-
nity to better understand the self-assembly process as a whole.
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