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INTERNATIONAL ECONOMIC REVIEW
Vol. 10, No. 3, October, 1969

PURE COMPETITION, COALITIONAL POWER,
AND FAIR DIVISION*

By LLoyD S. SHAPLEY AND MARTIN SHUBIK!

1. INTRODUCTION

THIS PAPER IS CONCERNED with the conceptual foundations of the theory of
economic competition, and with the effect thereon of a new solution concept
borrowed from the mathematical theory of games.

In Section 2, we consider three basic principles of distribution in an economic
society—pure competition, coalitional power, and fair division—and show how
they lead to three different ideas of what might constitute the “solution” of
a mathematical model of the marketplace. Two of these solutions, the
competitive equilibrium and the core, have been found to be intimately
related, despite sharp differences in heuristic interpretation [6, 4, 25, 21].
Our present purpose is to introduce to economic analysis the third of these
solutions, the value of the game, and to compare and contrast it with the
other two.

Like the core, the value solution presupposes that the market is a collusive,
multi-person game. The value solution, however, looks for a unique, equitable
compromise among all opposing interests, whereas the core merely delimits
a “no man’s land” between unyielding coalitions. The competitive equilibrium,
for its part, recognizes no collusion at all. But when the number of traders
is large, it can nevertheless be shown under rather general conditions that
all three varieties of solution come into agreement, predicting the same
outcome, but for different reasons.?

In Sections 3,4, and 5, which may be read independently of one another,
we consider some typical applications. In Section 3, numerical solutions are
determined for a simple symmetric market model involving complementary
goods (see [18]). In Section 4, the mutual convergence of value, core, and
competitive equilibrium is demonstrated for a general class of Edgeworth
market games (see [24, 20]). In Section 5, a particular Edgeworth model is
viewed as a game without transferable utility and is solved explicitly as a
function of market size. This exercise represents the maiden voyage of a
new definition of the value, and the technical argument is accordingly spelled
out in some detail.

* Manusecript received May 23, 1966, revised March 20, 1967.

! This research was sponsored by the United States Air Force under Project RAND,
Contract No. F44620-67-C-0045, monitored by the Directorate of Operational Require-
ments and Development Plans, Deputy Chief of Staff, Research and Development, Hq
USAF. Views or conclusions contained in this paper should not be interpreted as
representing the official opinion or policy of the United States Air Force.

2 Agreement in the limit, for a restricted class of oligopolistic models, has been
established for yet another game-theoretic solution: the Nash moncooperative equilib-
rium point (see [21]).
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338 LLOYD S. SHAPLEY AND MARTIN SHUBIK

The main definitions of the formal theory are summarized in the Appendix.

2. THREE APPROACHES

Underlying traditional writings and utterances on the virtues of competition
and the “invisible hand” of the open marketplace are several fundamentally
different approaches to the question of distribution and trade in an economic
society. The three that will concern us in this essay are, in brief: (1) pure
competition: individuals interact only through an impersonal market, which
provides them with information and receives their separate decisions; (2)
coalitional power: individuals join forces and coordinate decisions when it is
to their advantage, constrained ultimately only by the countervailing power
of opposing coalitions; (3) fair division: gains in welfare arising out of
economic activity are distributed equitably among all participants, in ac-
cordance with their contributions to the economy.

These three conceptual points of departure, seemingly at odds, may or
may not lead to conflicting results in application. The mathematical theory
of games provides a formal frame of reference within which these ideas
may be analyzed, compared, and, to a certain extent, integrated.

2.1. The competitive equilibrium. The classical theory of pure competition
has demonstrated that, under certain general conditions concerning consumer
preferences and production possibilities, there will exist a schedule of equi-
librium prices for the goods and services in the economy [27,10,2]. If each
individual maximizes his own welfare, on the assumption that these prices
will prevail and without spending more than he receives, then demand and
supply will just balance. The resulting “competitive” allocation of goods and
services has the property of Pareto optimality: no redistribution could benefit
anyone without hurting someone else.

The beauty of this kind of price mechanism, which uses money only as a
bookkeeping device, is that it replaces a complicated, joint maximization
problem by a set of simple, individual maximization problems, the solutions
of which all synchronize to give an optimal result. It is a decentralized
decision system with a (weak) welfare property. ;

A drawback, however, is the absence in the model of a method of generating
the equilibrium prices that determine the pattern of trade. One might
postulate a central authority, which not only calculates and publishes the
prices but also selects a particular price schedule if there should happen to
be more than one with the equilibrium property. - The informational re-
quirements of such an agency, however, would seem to vitiate any subsequent
advantages of decentralization. Alternatively, one might hope that competitive
prices would arise out of some dynamic adjustment process, steered by
tentative bids and offers from the individual traders. Unfortunately, con-
vergence and stability are not ensured without added assumptions about the
economy that exclude many cases of interest [1, 14, 12, 13].

These difficulties are closely related to the possibility of nonuniqueness of
the competitive solution, a phenomenon that can occur without visible pe-
culiarities in the data of the model. It must be admitted, however, that even
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without uniqueness, the set of competitive allocations (arising from a given
initial allocation) is generally a very substantial narrowing of the set of all
Pareto optima.

2.2. The core. In order to discuss the question of coalitional power, we
turn to a game-theoretic solution known as the core. In a general m-person
cooperative game, the core may be described as the set of final imputations
of wealth that are not “coalitionally dominated” by other possible divisions
of welfare. In other words, for an imputation to belong to the core, no
group of participants should be able, through collusion, to ensure an outcome
of the game that every member of the group would prefer to the given
imputation.?

The core concept may be regarded as an extension of the notion of Pareto
optimality, taking into account the possibility of independent optimization by
subsets of the economy, as well as by the economy as a whole. It may also
be regarded as an extension, to groups, of the individualistic principle that
says that a man will not accept any redistribution of wealth that worsens
his initial position, unless compelled to do so. Thus, the core is both Pareto
optimal and individually rational.

In many general m-person games the core is void.* In these cases the
intermediate coalitions—between the one-person sets and the all-player set—
are too strong and cannot all be satisfied at once. On the other hand, it has
been shown [6, 23] that in an economy in which competitive prices exist, the
core is not void; indeed, it contains all competitive allocations. This means,
somewhat remarkably, that the decentralized “pure competition” equilibrium
cannot be upset by collusion among any subset of traders, even though they
violate all the rules of pricing, communication, and trading on which the
competitive equilibrium in principle depends.

Even more remarkably, when the number of participants in the economy
is increased in a suitably homogeneous manner, the core can be shown to
shrink, until in the limit only the competitive solution is left [24, 7, 6]. Note
that prices play no part in the definition of the core. Nevertheless, in an
economy with a large number of participants, the device of giving free rein
to coalitions has the effect of generating competitive prices.

When there are only a few participants, the core may be large. For
example, in trading between just two individuals, the core must consist of
the entire Edgeworth contract curve, there being no intermediate coalitions
to raise objections. It is also worth noting that the core can and does exist

8 A simple three-person money-sharing game will illustrate this. Suppose the players
are told that (1) they may have $1 if they can agree how to divide it; (2) failing this,
any two of them may exclude the third and get 80¢, again provided they agree on
the division; (8) failing this, all get nothing. This game has no core, for no matter
how the $1 might be divided, some two players will get less than 80¢ together.

Now change the payoff rules to make the coalitions of two worth 50¢, instead of
80¢. Then there is a core, consisting of all allocations of $1 that give every pair of
players at least 50¢; for example (50¢, 0, 50¢), (15¢, 40¢, 45¢), etc.

¢+ For example, all essential zero-sum games in the sense of von Neumann and
Morgenstern have empty cores [26, (280)].
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in some economic models in which there is no competitive solution because
of the disequilibrating effect of such features as joint production costs or
nonconvex or interdependent preferences [23, 22].

2.3. The value. The idea of “fair division” in a socio-economic situation
calls for the application of yet another solution concept from the theory of
games—the value. This solution seeks to evaluate each player’s position in
the game a priori, taking into account both his own strategic opportunities and
his bargaining position with respect to gains attainable through collaboration.

The value can be defined most easily when a common measure of utility
exists, together with a vehicle, such as money or credit, which permits utility
to be transferred freely among the players. In the absence of such transfer-
ability, a value can still be defined, but intrinsic rates of utility comparison
between the players must simultaneously be derived from the strategic and
bargaining possibilities of the game itself, and multiple solutions are possible.

Intuitively speaking, the value solution seeks to impute the proceeds of
total cooperation among the participants in a way that takes fair account of
each person’s contribution to each possible cooperative venture. In calculating
the value of an economic game, one must determine the marginal worth of
an individual to every subset of other individuals and form an average.’
Thus, an ability to measure the economic “worth” of a set of individuals is
presupposed. If a money (in the sense of the preceding paragraph) is available,
then utilities can be measured on a common scale, and the worth of a coalition
can be defined as the maximum combined wealth that the coalition can
achieve for its members by its own efforts. These worths, determined for
every possible subset of players, comprise the characteristic function [26],
from which the value of the game can be computed by a formula (see Ap-
pendix A.l).

Historically, the formula for the value was first derived from postulates
of symmetry, Pareto optimality, additivity, and—most crucially—the value’s
sole dependence on the kind of information conveyed in the characteristic
function [17]. Harsanyi, working constructively from a model of the bargain-
ing process, and later Selten, working deductively from postulates on the"
move and payoff structure of the game, arrived at a value definition that
applies the same mathematical formula to a modified characteristic function
[8,15,16].° In the present economic models without externalities, the modifi-

5 We illustrate with a variant of the previous example. Avoiding total symmetry,
we now assume that pairs 12, 13, and 23 can divide 50¢,50¢, and 80¢, respectively,
failing a general agreement to divide $1. Player 1 is in the weakest position. His
marginal worth to the coalition 123 is just 20¢; to 12 and I3 he is worth 50¢; and to
the “coalition” I, consisting of himself alone, he contributes nothing. Averaging these
numbers (giving equal weight to each size of coalition, not to each coalition) we find
Player 1’s value to be 233¢. A similar calculation gives 383¢ to Player 2 and the same
to Player 3. This imputation happens to be outside the core, since the coalition 23
can do better alone.

6 Use of the classical characteristic function [26] implies in effect that a coalition

(Continued on mext page)
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cation proves to be irrelevant; the classical characteristic function yields
the Harsanyi-Selten value and is simpler to work with.

In general, the value may lie outside the core. That is, there may be
coalitions that could seize by their own efforts more than they are allotted
in the value.” Indeed, the value exists even when the core is empty.

When no “money” is available, evaluation of the game must proceed indi-
rectly. We assume that utility is transferable, and then try to arrange
matters so that the value imputation does not, in the end, require any net
transfer of utility. This seems at first too much to arrange, but there is
some freedom of maneuver. Since the individual utility scales are not related
a priori to each other, or to a common monetary unit, we are free to adjust
them separately, before making utility transferable. (Equivalently, we could
leave the individual units alone but permit transfer only at prescribed rates
of exchange, as in an international money market.) This freedom to rescale
(or to prescribe rates of exchange) proves to be just enough to ensure the
existence of a value that is feasible—i.e., one that can be achieved with no
net transfer of utility. Thus the value solution, in the “no-transfer” theory,
can be defined as the set of all feasible “transfer” values.?

This is not the place for a formal axiomatic justification of this definition.
However, we may remark that its plausibility rests on a form of the “inde-
pendence of irrelevant alternatives” principle, namely, the assertion that if
the solution-with-transfers-permitted can be achieved without transfers, then
it must remain a solution when transfers are forbidden. Of course, it could be
objected that the possibility of transfers may well influence the outcome even
in those cases where the ultimate net transfer is nil.

We shall sketch another view of the value definition which may be of
interest. It depends on the observation that when a particular outcome of
an w-person game is adopted, this implies not only that an interpersonal
comparison of utilities has taken place, but implies it in two distinet ways.
The first way relates the given outcome to other possible outcomes on the
Pareto surface, basing the comparison on the existence of tradeoffs that were
available but did not occur. The other way relates the given outcome to the
initial positions (and strategic potentials) of the contestants, using it to refer
something about the relative intensities of their desires. The first method
infers the individuals’ weights in the measuring of social welfare; the second
their weights in the sharing of social profit. Our present value concept
embodies a principle of equivalence between these two methods of inter-

always expects the worst so far as actions of outside players are concerned. In the
present economic context, this “worst” is simply a boycott, involving no special costs
to the outside players. In other contexts, the most damaging threats might be so
costly to make that they should be discounted in determining what a coalition is worth.
It is therefore advisable, in a general value theory based on a characteristic function,
to recast the definition in terms of “optimum threats,” in the sense of Nash [11].

7 See footnote 5.

8 Appendix A.3 has the formal definition. The key idea of using implicitly-determined
utility exchange ratios was adapted from a proposal of Harsanyi [9].
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personal comparison: the values of the game are just those outcomes for
which the two sets of derived weights coincide.

Thus, under this definition, a value of the game represents a kind of
equilibrium. It is as though the players introduced a money-of-account as
an aid to rational bargaining, but with the prices of the different people’s
“units” chosen so that when the books are closed all accounts are miraculously
in balance. The game itself is called upon to provide an intrinsic, “equitable”
comparison among the personal utility units. As previously noted, the com-
parison factors are not always unique.

A close affinity between the value of the game and the competitive equi-
librium is suggested by the money-of-account analogy. They are not the
same, however, as can be seen from the fact that the former makes essential
use of cardinal utility while the latter does not. A nonlinear, order-preserving
transformation of the utilities will generally change the value, but not the
competitive equilibrium nor, for that matter, the core.

In the remainder of this paper we apply the value theory to three different
models, correlating the value solution in each case with the core and com-
petitive solutions. The three applications are independent of one another.
In the Appendix we have assembled some of the important formal definitions.

3. A SYMMETRIC MARKET GAME

Our first model was chosen for the contrast it provides between the value
and the other solutions under discussion. We shall find that the value gives
an intuitively more satisfactory measure of the “equities” of the situation
while avoiding a violent discontinuity exhibited by both the competitve equi-
librium and the core. Also, exploiting that discontinuity, we shall obtain a
simple example of convergence to different limits, by the value and the other
solutions, when the set of traders is expanded linearly but not homogeneously.

The model can be formulated in terms of gloves. Each player starts with
one glove—either right- or left-handed, and the players may trade them,
or buy or sell them for money, without restriction. At the end of the game,
an assembled pair is worth $1 to whoever holds it. For example, there might
be an outside market that would pay that price.?

The characteristic function of the game, which states the dollar potential
of each coalition S, is given by the equation

(1) v S)=min(|SNR|,[SNLJ.

Here R and L are the original sets of owners of right- and left-handed
gloves, respectively, and the notation “| X|” means the number of elements
of the set X.

Equation (1) expresses a rudimentary form of complementarity between
economic units of different types. Traders on the same side of the market
stand in the position of perfect substitutes; traders on opposite sides, perfect
complements. A further discussion of this characteristic function will be
found in [18].

9 An alternative formulation, without money, is given at the end of the section.
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8.1. The competitive equiltbrium and core. The three kinds of solutions
discussed in Section 2 will now be determined. Let r=|R| and [ =|L|,
and suppose first that » < I. Then the equilibrium price of left-handed gloves
in a competitive market is zero, and the members of R can acquire complete
pairs at no cost. The unique competitive imputation is therefore

w;=%1 for ©7eR,

2
(2) 0;=$0 for jelL.

The case r > | is just the opposite. In the transition case, » =1, the equi-
librium prices are not unique; we know only that the sum of the two prices
must be $1. A continuum of competitive imputations results, as follows:
(3) wi(p) = $p for @'eR, Osp=<1).

wi(p) =$1 — p) for jelL,
~ The core of the game necessarily contains all competitive imputations. In
this case, it happens to contain no other imputations. Indeed, in any non-
competitive imputation the least-favored member of R and the least-favored
member of L get less than $1 combined, and can therefore form a blocking
coalition. Thus the core is also given by (2) (or its opposite) or (3).

38.2. The value. To calculate the value, we shall make use of the “random
order” version of the definition (see Appendix A.l), in which an imputation
is built up one player at a time by awarding each player the increment that
he brings to the coalition consisting of his predecessors. The value of the
game is equal to the average of these imputations, over all possible orderings
of players [17].

Let @rign(r, 1) denote the sum of the values to the r members of R. If we
consider separately those orderings that end with a member of R (probability
r/(r + 1)), and those orderings that end with a member of L (probability
l(r + 1)), we obtain the following difference equation:

¢right(7" l) - [¢right(’r - 1, l) + ’U(R U L) - ’U(R’ U L)]

_r

r+1
l

+ 7ﬁ[¢rignc("', -1,

where R’ is any set satisfying R'c R,|R'|=7r—1. If we assume that

r > 1 (thereby eliminating the “v” terms in (4)), then the relevant boundary

conditions are

(4)

Brigni(7, 0) = 0 and  Gugnilr, r) = % , all r,

and the solution of the difference equation for » =1 is

_r r—1 < ri !
¢1‘1g;ht(/"y l) - 2 2 AZZO (’I" + k)l (l — k)[ '

(The reader may verify this by direct substitution in (4).) This amount is
divided equally among the members of B. With the aid of Pareto optimality:
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Grigne + Prers = V(R U L) = 1, the values to members of L are easily determined.
The complete value imputaion for » = [ is

1 r—14 P :
p= - f €eR,
b= o Hrt+d—rl "

(5) 1 r—1 i
1 o .
b=t T R ra—ky oF €

The case r <l is symmetrical. Table 1 gives an idea of how these equations
behave for small numbers of traders.

TABLE 1
VALUE TO A MEMBER OF R

1 2 3 4 5

o~
(==}
[o2]
3
[0}

<
e

0.500  0.667 | 0.750 | 0.800 | 0.833 ! 0.857 | 0.875 | 0.889
0.167 | 0.500 | 0.650 | 0.733 | 0.786 | 0.822 | 0.847 | 0.867
0.083 | 0.233| 0.500: 0.638 | 0.720 | 0.774 | 0.811| 0.838
0.050 | 0.133 | 0.272 | 0.500 | 0.629 | 0.710 | 0.764 | 0.802
0.033 | 0.086 | 0.168 | 0.297 | 0.500 | 0.622 | 0.701 | 0.755
0.024 | 0.060 | 0.113 | 0.194| 0.315| 0.500 | 0.616 | 0.693
0.018 | 0.044 | 0.081 | 0.135 | 0.214 | 0.330 | 0.500 | 0.610
0.014 | 0.033 | 0.061 | 0.099 | 0.153 | 0.230 | 0.341 | 0.500

00 =3 & UL W N
(=R e I — 2 I == e )

The value solution definitely favors the “short” side of the market, indi-
vidually and collectively. For example, if [ < 7, the members of L, with
less than half the population, get more than half the total profit, which is
w(RUL)=1. On the other hand, the “long” side of the market is not totally
defeated, as in the other solutions discussed. The value of the game is less
abruptly sensitive to the balance between supply and demand than the com-
petitive equilibrium and the core, since it gives some credit for the bargaining
position of the group in oversupply.’® It is not strange that the competitive:
solution, with its decentralized outlook, fails to recognize collusive bargaining
power, but it is a little surprising that the core—a cooperative-game concept—
misses it as well.

3.3. Asymptotic behavior. In Figure 1 we show the effect of altering the
ratio of trader types, holding the size of the market fixed. In the second

10 For example, if » =1+ 1, then the members of R, faced with total defeat under
pure competition, might select two of their number to withdraw from the market,
thus turning the tables on L. This behavior would not be Pareto optimal, since only
1 — 1 pairs of gloves could be formed, but the threat is credible enough and might
well raise the price for right-handed gloves.

The reader will recognize this as a standard price-support tactic in situations where
collusion is possible. Of course, the value of the game does not directly consider such
details of process, but it recognizes and measures the coalition potentials that make
such maneuvers effective. For further discussion, see [19].
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FIGURE 1

VALUE AS A FUNCTION OF COMPOSITION

graph, with ten times as many traders, the slope of the curve in the vicinity
of the transition case is noticeably steeper. In the limit, the curve approaches
the “1_-shape associated with the core and competitive solutions.

The effect of increasing the size of the market while holding the ratio of
trader types fixed is illustrated in Table 2, for the ratio 2:1. We see that
owning a right glove is worth 162¢ when there are three traders, but less
than 6¢ if there are 30 traders and less than 1¢ if there are 300. The
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TABLE 2
VALUE SOLUTIONS FOR TRADER TYPES IN RATIO 2:1
r l &i P 1 ¢right Pleft
2 1 | 0.1667  0.6667 | 0.333 0.667
4 2 | 0.1333  0.7333 0.533 1.467
6 3 | 0.1131  0.7738 0.679 2.321
8 4 | 0.0990  0.8020 0.792 3.208
10 5 | 0.0884  0.8232 0.884 4.116
20 10 | 0.0589  0.8822 1.178 8.822
200 100 | 0.0002  0.9816 1.842 98.158
1 9 2 18 18 18
as r=2l-o T 1_l+?2_7 l—2-|—T

general asymptotic formulas for fixed ratio a:b, with a > b, are

ale by = Vo = DL 06 for ie R,
giak, bl =1— % 4 300D 40 gor jer.

(@ — b2k  (a— b)k?

(We omit the derivation.) The rate of convergence of the value to the com-
petitive imputation is of the order of 1/k. The same rate has been observed
in other examples and may be presumed to be typical for homogeneously ex-
panding markets.

Another asymptotic result is available. If we let the market expand with
the difference d = r — | held constant, we obtain the following estimates:!!

i _i_i]/_?_ » ,
¢i(r,r — d) = 2 5V, + 0@  for 1e R,
1

di(r, r — d) = + %]/77: + O(r—Y) for je L.

2
In other words, if traders are added in equal numbers on both sides of the
market, the distinction between “long” and “short” disappears in the limit,
and all get equal shares of the profit. This provides an example (if d + 0)
of a linearly, nonhomogeneously expanding market in which the value and
the competitive imputation do nmot tend to the same limit.

3.4. Concluding remarks. Still another solution concept—the von Neumann-
Morgenstern stable sets [26]—has been applied to the symmetric market game
(1) by one of the authors [18]. It was found that in the transition case, r =,
the unique stable set is the core itself, in other words, the straight line of
imputations defined by (3) above. In the other cases, r > and r < [, there

11 The method of derivation, in brief, is to multiply the summands in (5) by
(r + D!/r!ll, to obtain truncated sums of binomial coefficients that can be estimated
with the aid of Stirling’s formula.
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are infinitely many stable sets, each one a continuous curve of imputations
emanating from the one-point core and possessing certain monotonicity proper-
ties. Thus, a “price-like” parameter can always be identified, but most of
the stable sets will involve some kind of price discrimination—i.e., unequal
treatment of traders of the same type.

A nonsymmetric generalization of the present example, typified by Bohm-
Bawerk’s celebrated horse market [5], has also been considered by one of the
authors [19]. Again, it was found that the traders that are priced out of
the market receive consideration in the value of the game, but not in the core
or competitive equilibrium. The stable sets are again continuous, monotonic
curves.

A final remark: We could have avoided the use of money in this example
if we had made the commodities continuously divisible and given the traders
identical (cardinal) utility functions:

(6) #*(z, ¥) = min (x, ¥), all 1e N .

Money would then be superfluous, since the relevant utility transfers could
be accomplished (on a constant-sum basis) by transferring bundles containing
equal amounts of the two commodities.

4. A CONVERGENCE THEOREM

A proof of the convergence of the value to the competitive solution was given
in [20] for a general class of replicated markets with money, as formulated
in Appendix A.2. Here we shall focus on a two-sided market with equal
tastes, in order to display the main sequence of ideas of that more general
proof while avoiding certain secondary complications. Along the way, we
shall prove the convergence of the core to the competitive solution.

The two types of traders are distinguished only by their initial commodity
bundles, which are, respectively, (@, 0) and (0,5). Let there be km traders
of the first type and kn of the second; here k is to be regarded as variable,
m and n fixed. The relative composition (z,v) of the market will thus remain
fixed at ¢ =m/(m + n),v =1— g = n/(m + n).

All traders are assumed to have the same concave and twice-differentiable
utility function of the separable form u(x, ¥) + & where & is the net change
from the initial money level. The characteristic function of the game will
depend only on the numbers s,t of traders of each type in a coalition and
will be written v(s, t). Because of equal tastes, total utility for any coalition
is maximized by an equal sharing of goods, and we have at once

(7) v(s, t) = (s + t)u(sa, 7b) ,

where (g, t) is the relative composition of the coalition, thus: ¢ =s/(s+t),z=
1—o0=t/(s+t). Note that v is homogeneous of the first degree: v(1s, it) =
2v(s, t); this holds regardless of the homogeneity of u.

4.1. The competitive solution. Pareto optimality can be achieved by allo-
cating (¢a, vd) to everyone, followed by an arbitrary money transfer. In order
to support this goods allocation, the competitive prices must be
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_ Ou(pa, vb)
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The competitive payoffs are therefore given by

(first good) ,

(second good) .

(8) w;, = u(pa, vb) + var, — vbry, (first type) ,
wz = u(pa, vb) + pbry — paw, (second type) .

In these expressions, the first term is the utility of the final holding, the
second is the payment received for selling off part of the initial holding, and
the third is the money spent on buying the other good.

Now there may be competitive allocations other than (pa, vb), since % need
not be strictly concave. But the competitive imputation » is unique, as are
the prices.'? Note also that w, and w, are independent of k. As we change
the size of the market, the competitive solution remains fixed.

4.2. The core. Next, let us examine the behavior of the core. Expanding
% in (7) in a Taylor’s series about u(ya, vb), we have

v(s, t) = (s + ) [u(pa, vb) + (¢ — plar, + (v — v)bry + O — p)*)] .
Using (8) and the relation ¢ — ¢ =v — ¢ = ov — 7, we have

(9) v(s, t) = s + twy + (s + )00 — p)?) .

Moreover, by concavity, the remainder term is either zero or negative. Hence
(s, t) < sw; + tw;, and the competitive imputation satisfies every coalition and
is an element of the core.

Now let « be any Pareto-optimal imputation, i.e., one with total payoff
v(km, kn). If « is not symmetrie, i.e., if a gives unequal payoffs to some
pair of traders of the same type, and if % > 1, then the m worst-treated
traders of the first type and the n worst-treated traders of the second type
must together get less than v(m,n). Hence they can block «. It follows
that if & > 1, the core is confined to the one dimensional set P of symmetric’
Pareto-optimal imputations. We may parametrize this set by distance from
o, thus: P = {a(e)] — < ¢ < o0}, where

ac) =w, +c/p  (first type),
az(e) = wy — ¢y (second type) .

As we have seen, a(0) = w is in the core. We shall not trouble to determine
the exact upper and lower bounds for ¢ in the core, which depend somewhat
irregularly on m,n, and k. But the convergence of these bounds to zero,
and hence the convergence of the core to the competitive solution, can be
shown quite easily.

In fact, let Q@ be a coalition having km + kn — 1 members, lacking only

12 Differentiability is important here. For example, the utility function (6) in Section
8 is not differentiable at x = y, and the nonuniqueness of the competitive prices and
imputations for the case r» = (see (3)) is the direct result.
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one trader of the first type. Then al¢c) awards @ the amount
v(km, kn) — w;, — ¢/p .
If we use (9) to estimate the characteristic function of @, we obtain
v(km — 1, kn) = v(km, kn) — o, + OQ/k) .

Thus, if ¢ is positive, and if %k is sufficiently large, then @ can block a(c).
Similarly, if ¢ is negative and k large enough, then a coalition lacking just
one trader of the second type can block a(¢). In the limit, only the competitive
imputation «(0) remains unblocked.

4.3. The value. Now let us examine the behavior of the value. For any
trader, it represents his expected marginal worth to a coalition chosen at
random (see Appendix A.1). We may express this (for a trader of the first
type) as follows:

{10) o) = E{D(s, 1)},
where F is an averaging operator and D, is the finite difference
Dy(s,t) =v(s+1,t) — v(s, t) .

The precise form of E could be stated, but it is not relevant here. Indeed,
any method of averaging the increments D, that will sustain the “almost all”
statements in the paragraph following will suffice. The convergence theorem
is therefore valid for a whole class of “values” that might be defined.

Now let equation (7) be regarded as defining a function (s, t) for all positive
real numbers s and ¢; like u it is twice differentiable. TUsing homogeneity,
a simple Taylor’s expansion, and (7), we have

Dy(s, t) = (s + t)[v(o + ?}j—t—, r) — (o, T)]

_ v(o, 7). <m_],;,>
0o +0 s+t

— (s, 1) <_L>
08 +0 s+t

_ 0 - 1

= 2 [(s + t)u(sa, <b)] + O< P t)

_ . u(oa,b) _ . duloa, 7b) < 1 )
= u(oa, <b) + za P b P + 0 e b

The last line closely resembles the formula for w; in (8). Indeed, if s+ ¢ is
large, and if (0,7) is close to (z,v), then Di(s, t) will approach the competitive
payoff w;, as required. But if %k is large enough, then “almost all” coalitions
will be large, and “almost all” coalitions will have compositions approximating
(¢, v). The latter will be recognized as a form of the law of large numbers.
The precise statement is as follows: Given any e > 0, a number k. can be
chosen so large that for any k¥ = k. a randomly chosen coalition will, with
probability at least 1 —e, have size s+t large enough and composition (g, 7)
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near enough to (z,v) to ensure that | Di(s,t) — ;| =¢. Hence we may write
(11) $:(k) = A — e)w; + o(k)) + eC(k) , all k= k.,

where | (k)| < e, and Cy(k) is the appropriately weighted average of the Di(s, t)
for the “exceptional” coalitions—i.e., those occurring with probability ¢ that
may be too small or have compositions too far from (g, v).

Let us consider the implications of (11). If Ci(k) were known to be bounded,
we could conclude that ¢,(k) — w;, and we would be through. A lower bound
for Cy(k), namely, v(1, 0), follows at once from the definition of D, and the
superadditivity of the characteristic function. An upper bound for Ci(k)
cannot be deduced so directly, however, unless restrictions are imposed on
the behavior of u(x,y¥) near the boundaries of the positive quadrant. But
there is a trick that takes us around this difficulty. We observe that both
the value and the competitive imputation are Pareto optimal; hence we have

(12) mi(k) + nga(k) = mo;, + no; for all k& .

The lower bound on Ci(k) tells us that lim inf ¢,(k) = w,, i.e., that no limit
point (finite or infinite) of the sequence {¢;(k)} is less than w,. Hence, by (12),
we have lim sup ¢:(k) < w,. To complete the proof, we merely return to (10)
and repeat the whole argument with types 1 and 2 interchanged, obtaining
lim sup ¢:(k) < @, and lim inf ¢y(k) = w,. In this way we finally establish the
convergence of the value imputation ¢(k) to the competitive imputation w.

To sum up the essential idea of the proof: The partial derivatives of the
characteristic function v(s, t), show that the marginal value of a player to a
large, nearly balanced coalition is substantially equal to his competitive payoft.
However, if the economy is big enough, almost all coalitions are large and
nearly balanced.

5. A MARKET WITHOUT TRANSFERABLE UTILITY

In order to illustrate the application of the theory of games without trans-
ferable utility, we shall present a simple two-sided Edgeworth market in which
both the core and the value can be determined explicitly, but in which there
is not so much symmetry that the solutions are uninteresting. In addition
to providing working experience with the new value concept, the example
will illustrate several theoretical points.

Let there be m traders on each side of the market. Let there be two goods
in trade, but no money or credit. Let the initial holdings be

1,00  (first type),
0,1 (second type),

and let the (cardinal) utility functions be
13) wi(, y) = vy (first type) ,
uslx, ¥) = Vot + ¢t + 28zy  (second type) .

The number 23 is only a convenience; all that really matters is that these func-
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tions are concave, homogeneous of degree 1, and symmetric in the two goods.

Figure 2 is the “Edgeworth box” for this market [7,24]. The origin O
represents the allocation that gives (0,0) to type 2, and hence (1,1) to type
1. The opposite corner C’ is the “origin” for type 1, and R is the initial or
no-trade point. The segment CC’ is Edgeworth’s contract curve for the case
of two traders (i.e., n =1). The unique competitive allocation », which gives
all traders (1/2,1/2), is represented by the point W; this is independent of n.
(The point V represents the value allocation for » = 1, which will be deter-
mined later.)

First trader
R

3 .2 0.1 c’
1.0 T ‘%_1 I
0.9 — - 0.1
\
i \
0.8 \ 02
| \
a7l | Jo.3
\ |
0.6 \ m
\ |
\
0.5 \ |
= \ l
\ I
0.4 I
L
0.3 Vo B
o
0.2 | L]
Lo
|
01t | Y
Lo
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Second trader @

FIGURE 2
THE EDGEWORTH BOX

We emphasize that for n > 1, the Edgeworth box serves to represent only
the symmetric allocations—those in which traders of the same type are treated
alike.
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5.1. The core. We first discuss the core. For n =1 the core comprises
the whole contract curve CC’. More precisely, the core is the image of CC’
in the utility space under the mapping (13), as shown in Figure 3.

For n > 1, we first observe that all imputations in the core must be sym-
metrie, since any nonsymmetric imputation can be profitably blocked by a
two-man coalition consisting of one least-favored trader of each type. We
may therefore transfer our attention from the 2n-dimensional space of all
imputations to the two-dimensional subspace of symmetric imputations.

Because of the homogeneity of (13), the Pareto-optimal symmetric imputations
lie along a straight line (OC’ in Figure 3); its equation is

<14) 57/11 + Uy = 5.

The core, for each m, is a subset of this line. It remains to discover which
points on the line can be blocked. As in the model of Section 4, the most
efficient blockers are coalitions that have almost, but not quite, the same
relative composition as the market as a whole.

To verify this, let »(S) denote the ratio of first types to second types in
an arbitrary coalition S, and let (1 —¢,5t),0 <¢ =<1, be an arbitrary point
on OC’, representing the symmetric imputation a;. Then a routine calculation
reveals that in order for S to block «a; it is necessary and sufficient that »(S)
lie strictly between 1 and a certain critical ratio »;, given by

(2 — 0.04)
A -t —t*— 0.04)

Note that 7, = 1, showing that the competitive imputation «,,; cannot be
blocked, since there is no number strictly between 1 and 1. However, any
other a; will be blocked by some coalition if 7 is sufficiently large.

For each n, the coalitions of size 2n — 1 provide the best type-composition
ratios available, namely (n — 1)/n and m/(n —1). Setting 7r; equal to these
numbers in turn, and solving for ¢, gives us the endpoints of the core. We
have done this numerically for several values of %, as shown in Table 3 and
Figure 3. Asymptotically (last line of Table 3), the length of the core varies
inversely with the size of the market.

ry =

TABLE 3
ENDPOINTS OF THE CORE
n C c’
1 0.800 1.000 0.000 5.000
2 0.577 2.116 0.421 2.897
3 0.546 2.272 0.453 2.733
4 0.533 2.337 0.467 2.665
5 0.525 2.374 0.474 2.628
10 0.512 2.440 0.488 2.560
as 1, 2 5 105 | 12 5, 10
n— oo 2 184 2 184n 2 18in 2 ' 184n
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Uy

U1

|
2 3

FIGURE 3

THE UTILITY SPACE (SYMMETRIC PAYOFFS ONLY), SHOWING THE SHRINKING
OF THE CORE TO THE COMPETITIVE PAYOFF!3

5.2. The value. We now turn to the value. The technique, as explained
in Section 2.3, is to introduce a set of “weights” {2;}, nonnegative and not all
zero, on which to base hypothetical exchanges of utility among the traders.
Thus, if « is a payoff vector attainable in the market, we assume that a + 8
is also attainable for any B such that >'2:;8;=0. Given the weights, we are

13 We have used the same letters to denote allocation points in the (x, y)-space and
the corresponding payoff points (imputations) in the (w1, us)-space.



354 LLOYD S. SHAPLEY AND MARTIN SHUBIK

in a position to calculate the “i-transfer value” of the game (Appendix A.3).
This value is in general infeasible, i.e., not attainable by commodity transfers
alone. We must try to find weights that yield a feasible 2-transfer value;
this will be, by definition, a value of the original market without transferable
utility.

We shall first dispose of the possibility of a nonsymmetric solution—one
that gives different payoffs to traders of the same type. This would require
unequal weights, since the value formula itself is symmetric. Suppose there-
fore that 1; < 2, where j and k are traders of the same type, and consider
how the i-transfer value might be attained. Regardless of utility transfers,
the allocation of goods must maximize the weighted sum of utilities. Any
goods of positive utility that j could transfer to k would increase this sum
because of the following comparison:

Jeu(x? 4 o, y? + yF) = Wlu(d, y9) + ulzk, b))

(15) T
= 2u(xd, y7) + Aaulzk, y¥) ,

with strict inequality on the second line if w(x?, y/) > 0. Hence j’s share of
the goods allocation must be worthless. But his payoff in the i-transfer value
is easily seen to be positive, even if 1; = 0.1* It follows that the A-transfer
value can be attained only with the aid of a utility transfer, making it
infeasible for the original game. We conclude that only equal weights need
be considered for traders of the same type.

With symmetry established, the A-transfer characteristic function (see
Appendix A.3) can be written in the form (s, t), where the pair of integers
(s, t) is the type-composition of the coalition in question. A simple fact about
this function will be useful.

LEMMA. If st = 0, then v\(s, t) = v\(t, 8).

PRrROOF. The inequality (15), which depends on the concavity and homoge-
neity of (13), shows that any coalition can attain its maximum A-weighted
total utility while concentrating all its goods in the hands of at most two
traders—one of each type. For a coalition of composition (s,%), with neither
s nor t equal to 0, there will be an optimal allocation that gives, say, (z, %)
to one man of type 1, (s — x,t — y) to one man of type 2, and nothing to the
rest. This allocation is worth an amount A = v*(s, ) to the coalition. Now
consider a second coalition, of composition (¢,s). A possible allocation is (¥, x)
to one man of type 1, (¢t — ¥y, s — x) to one man of type 2, and nothing to the
rest. Since the utility functions are symmetric in the commodities, this must
be worth the same amount, A, to the second coalition. Hence v*(t,s) = A =
vM(s, ). Repeating the argument, we obtain v(¢, s) = v*(s, t), completing the
proof of the lemma.

Let us now consider the value formula in its “orderings” version (see
Appendix A.1l). The i-transfer value ¢} to a typical trader of type 1 can be

4 The reason: He makes a positive A-weighted contribution to any coalition in
which at least one trader is of the opposite type and at least one trader has weight
greater than 0.
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expressed as a linear function of all the v(s, t), where s and ¢ are integers
ranging from 0 to n. Consider how the coefficient of a particular v*(s, t) is
formed. There will be positive contributions from coalitions containing 7, and
negative contributions from coalitions not containing ¢. For the positive part,
we must count the number of orderings that put 7 in position “s + ¢’ and
put exactly s — 1 other type 1 traders in positions preceding “s + t.” This
number is

(Z:ix?)(s +t—DI@2n—s—10)!,

or zero if s=0. Similarly, for the negative part, we must have 4 in position
“s+t+1,” and exactly s other type 1 traders in positions before “s 4- ¢ 4- 1.”
The number of orderings that do this is

(122 —a-imn

or zero if s =mn. The desired coefficient of v(s, t) is the difference of these
two numbers divided by the total number of orderings, which is (2n)!. This
reduces to

—@2n—s—t—1(s—
(16) (Z><q;o>(s+t 1).(2n(2ﬂ.,s)!t Di(s—t)
or
—or  its=t=0,
or
% ifs=t=mn.

Since the coefficient (16) is antisymmetric in s and ¢, the lemma permits
us to cancel the bulk of the terms in the value formula. It is this cancellation
that makes the whole calculation manageable. We are left with

S noin\ (s—DICn—s—Dls
=g vN(m, n)+§f(s> o] VA, 0)
_ & (m\ ¢ =DI@n—t—Dlt N

t;(t) 2n)! vN0, t) 2nv(O, 0).

Homogeneity of v* reduces this to

gt =gt + 5 (1) S E ST, 0 - w0, 1)

This, in turn, can be reduced to the very simple expression,!®

15 The reduction:
+ (n) sl@n—s—Dls  nln! 2 @r—s—Dln— n—s)]
s

2n)! To@en)! & (n—)ln!
(Continued on mext page)

La
s=1
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#= 5L D)+ — L 0) — 00, 1)

A symmetrical argument yields

#= gD = L L0 — 0, ),

where j is a typical trader of type 2.

Thus far only the concavity, symmetry, and first-degree homogeneity of the
utility functions have played a role. We now refer to the particular functions
(13) and make the simple determinations

wM1,0) =0,
v0,1) = 4;,
M1, 1) = max (4;, 52;) .

Inserting these values, we obtain

¢t = L nax (4i,525) — L A (first type) ,
2 n+1
amn 1
¢k = l max (4;, 54;) + le (second type) .

This is the A-transfer value. The question is: For what choices of 4;, 4; is
it feasible?

Clearly, only the ratio between 2; and 2; is significant. The situation is
illustrated in Figure 4 for the case » =1. In general, let a« be any feasible,
symmetric imputation. Then 5a; + a; <5 (¢f. (14)). But if « is to be a value

of the game, we must have L = ¢ and 2ja; = ¢+ for some choice of 2;, 2;.
Hence the following inequality must be satisfied:

(18) Bipt + gk < Bk

with 2; and 2; nonnegative and not both zero. If we substitute (17) into (18),
we find that 2; < 52; implies

5 1
D 11:_ Zbg i
(2 n—|-1>( 5%) = 0

while 2; = 52; implies

5 1
2t —— 2\ — 5B <0.
(2 n+1 J>< 545) =0

It follows that the only solution is 2; = 51;; this conclusion is independent of

= LA -E (T
—%;‘;;%[(2” )-Gal-=
(R
\r

using the identity (:) + (T + 1> + o b ) (f:_rll)
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FIGURE 4
FEASIBILITY OF THE A-TRANSFER VALUE (n =1)

n.1* Hence the value of the game is unique and is given by

1 1
;= T — ﬁ st t ,
& 2 5(n + 1) (first type)
¢;= 5 + B (second type)
) n+1 ype) -

357

Table 4 is intended for comparison with Table 3. In Figure 5 all three

16 This 5:1 ratio, valid for all », could have been deduced several pages ago, by
an argument similar to the one establishing symmetry of 2. However, the 2-transfer

value computation is not helped (in this case) by knowing 2 in advance.
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TABLE 4
THE VALUE
n v
1 0.400 3.000
2 0.433 2.833
3 0.450 2.750
4 0.460 2.700
5 0.467 2.667
10 0.482 2.591
as 11 5 1
n— 2 5n 2 n
n n
10+ -I-' 10
I~
l ™ Competitive
solutions
Ny -1—// 8
ds -+ 7
6 e -'— 6
Values I
5 & _'_ AN 5
;.\\ l
4 —I—— “<“*f7 Cores +
S ——{— / 3
21 2
16l Vv LW L
l
%1 =0.0 0.2 0.4 0.5 0.6 0.8
we=5.0 4.0 3.0 2.5 2.0 1.0
FIGURE 5

CONVERGENCE OF SOLUTIONS
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kinds of solutions are shown together, as functions of market size. We see
that the value is always more favorable to traders of type 2 than the com-
petitive solution, and that it begins inside the core but moves outside at
n = 3 because of its somewhat slower rate of convergence. These comparisons
should not be interpreted too broadly, however, since as indicated at the end
of Section 2 the no-transfer value is essentially a cardinal concept, while the
other solutions are not. If we tamper with our example, applying nonlinear
transformations to the traders’ utilities, we can alter all such qualitative
features. Indeed, for any fixed %, a pair of differentiable order-preserving
concavity-preserving transformations for (13) can be found that place the
value point V at any designated spot in the interior of the contract curve
CC', without affecting the other solutions.

The RAND Corporation and Yale University, U.S.A.

APPENDIX

A.1. C-GAMES WITH SIDE PAYMENTS!
N: the set of players.

v: the characteristic function: v(S) for each S S N is a real number
representing the monetary worth of the coalition S. Ordinarily v is
superadditive, in the sense that if Sn T =0 then v(S)+ v(T) =
v(Su T).

A: the set of imputations a (feasible utility vectors), characterized by

Sai = v(N).
1eN

C: the core, defined as the set of imputations a€ A that satisfy every
coalition:

Sai =z v(S), all SeN.
ies

¢:  the value, an imputation defined by

— D —

S31

N 1u(S) — o(S — (a1,

where s, n denote the number of elements in S, N, respectively. An
equivalent definition, often easier to work with, is

¢i—l

n! wel

[V(Po,: U {i}) — v(Po.i)],

where 2 is the set of all orderings of N and P.,; is the set of
predecessors of player ¢ in the ordering w.

A.2. AN EXCHANGE ECONOMY WITH MONEY?
N: the set of traders.

1 See [17]. The term “c-game” is short for “game that is adequately represented
by its characteristic function.”
2 See [20, 23].
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an allocation of the m goods among the n traders:
#={xi|ie N}, where 2t=(al - -, a5).

Thus, 2% is the amount of good j held by trader <.
the utility function of trader ¢, assumed to be of the form:

Ui(e, &) = wia) + &,
where u? is concave and differentiable and & represents the net change
from the initial money position.
the initial allocation. We assume every good to be present: >, a‘ > 0.
an optimal allocation, characterized by

S ui(bY) = max > ui(x?)

N T N
the maximization subject to x = 0 and >, ' = 3}, a’. It is unique
if the u* are strictly concave.
the competitive price vector, defined by

m{j}auf(bf)/axj if b;’{i}o,
where b is any optimal allocation.
the competitive imputation, defined by
w; = w'(%) + - (a* — b?)
where b is any optimal allocation. Uniqueness of = and o follows

from the differentiability of the u’.
the characteristic function, defined by

v(S) = max >, () ,
z S

the maximization subject to x = 0 and >\;2° = > sa’. The core and
value can now be defined as in Appendix A.l.

Replication: Let k identical economies be regarded as a single economy,

having kn traders of » different types. The competitive price vector
of the enlarged market is just =, while the competitive imputation
is just the kn-dimensional vector (w, -, ®) (k times). The character-
istic function of the enlarged market is homogeneous of the first
degree, in the sense that v(hS) = hv(S), where hS denotes a coalition
having exactly h times as many traders of each type as S. Unlike
the competitive solution, the core and the value depend on k. How-
ever, both converge to the competitive imputation as k — oo.

A.3. C-GAMES WITHOUT SIDE PAYMENTS?

N:
V.

The set of players.

the generalized characteristic function: V(S) is a compact, convex,
nonempty set of s-dimensional vectors, representing the feasible
utility vectors for the coalition S € N. Ordinarily V is superadditive,

3 See [3].



[1]
(2]
[3)
[4]
[5]
[6]
(71
[8]
[91]
[10]
(1]
[12]
[13]

[14]

COMPETITION, COALITION AND FAIR DIVISION 361

in the sense that if SN T = 0 and if ac V(S), B€ V(T), then the s + ¢-
dimensional vector («, B) (with coordinates properly identified) is in
ViSu T).

the set of imputations: A = V(N).

the core, defined as the set of imputations a€ A that satisfy every
coalition, i.e., it is never the case that ge V(S) and B8; > a;, all 1€ S.
2. a scaling vector (4;]1€ N). The components must be nonnegative

and not all zero.

Qx

V). the A-transfer characteristic function, defined by

QJA(S) = maXx Z A .

aeV(S) jes

¢r: the I-tramsfer value, defined by

— Dl — 8! .
g = 3, LD — s - ).
S3a1i .
@: the set of values of the game, comprising all g€ A for which there
exists a scaling vector 2 such that 2;6; = ¢/, all e N.
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