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A GENERALIZED NASH SOLUTION FOR TWO-PERSON
BARGAINING GAMES WITH INCOMPLETE
INFORMATION*

JOHN C. HARSANYIt AND REINHARD SELTEN}

The paper extends Nash’s theory of two-person bargaining games with fixed
threats to bargaining situations with incomplete information. After defining such
bargaining situations, a formal bargaining model (bargaining game) will be proposed
for them. This bargaining game, regarded as a noncooperative game, will be analyzed
in terms of a certain class of equilibrium points with special stability properties, to
be called ‘““strict”’ equilibrium points. Finally an axiomatic theory will be developed
in order to select a unique solution from the set X of payoff vectors corresponding
to such strict equilibrium points (as well as to probability mixtures of the latter).
It will be shown that the solution satisfying the axioms proposed in this paper is the
point where a certain generalized Nash product is maximized over this set X.

Part I. The Problem
1. Introduction

The purpose of this paper' is to analyze two-player bargaining situations of the fol-
lowing kind. The two players may adopt any one of several possible agreements—or may
get into a conflict by being unable to accept any agreement by mutual consent. How-
ever, in contrast to bargaining situations with complete information, investigated by
Nash (see [5] and [6] and also [1] and [2]), one or both players have only incomplete
information about some important parameters of the bargaining situation, and in par-
ticular about the utility payoffs that each player would receive under various possible
agreements and/or under a conflict.

Bargaining situations, whether they involve complete or incomplete information,
may be divided into those with variable threats and those with fixed threats. A bar-
gaining situation is said to allow variable threats if each player can choose any one of
several retaliatory strategies available to him, and can commit himself to use this
strategy—called his threat strategy—against the other player if they cannot reach an
agreement. Therefore, the payoffs the players would receive in such a conflict situation
could depend on the threat strategies to which they had chosen to commit themselves.

On the other hand, we say that a given bargaining situation allows only fized threats
if the payoffs which the players would receive in the absence of an agreement are de-
termined by the nature of the bargaining situation itself, instead of being determined
by the players’ choice of threat strategies or by any other actions the players may take.”

* Received March 1970; revised April 1971.
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1 This paper grew out of discussions between the two authors and some other participants at
the International Game Theory Workshop held at the Hebrew University, Jerusalem, in 1965.
Further development of this work was supported by the U. S. Arms Control and Disarmament
Agency through a contract with Mathematica, Princeton, N. J., and Washington, D. C. Distribu-
tions of this paper were supported by a grant from the National Science Foundation to one of the
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2 A8 to bargaining situations with complete information, Nasgh discussed the fixed-threats case
in [5], and discussed the variable-threats case in [6]. However, the terms ‘‘fixed threats’’ and “vari-
able threats’ are due to later writers.
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The fixed-threats case is clearly appropriate for many purely economic situations,
such as selling or hiring; in case of no agreement, there is simply “no deal.” It is equally
clear that the variable-threats case is appropriate for most military situations, where a
“failure to reach agreement’ can have a wide range of possible outcomes. Intermediate
cases also exist, where it is not at all clear, prima facie, whether or not the threats are
fixed; arms control negotiations and labor negotiations are examples.

In this paper we shall be concerned only with the fized-threats case under incomplete
information. The variable-threats case under incomplete information appears to be
much more subtle, and there are deep theoretical problems which we have only par-
tially resolved.

Our analysis will be based on a model that Harsanyi has recently proposed for games
with incomplete information [3]. Under this model, incomplete information on the part
of either player is always interpreted as ignorance about certain attributes of the other
player, e.g., as ignorance about the other player’s utility function, about the physical,
technological, and social resources available to him, or about his information and his
beliefs concerning the bargaining situation.

More formally, it is assumed that either player can belong to any one of several pos-
sible types, and that different types of the same player may have different utility func-
tions, different amounts of various resources available to them, different degrees of
information, and different beliefs about the bargaining situation. Each player will
know his own type but in general will not know the other player’s actual type. In this
paper we shall assume that the number of possible types to which either player may
belong is finite, there being K possible alternative types for player 1 and M possible
alternative types for player 2.

Furthermore, it will be assumed that as a result of his uncertainty about the other
player’s actual type, each player will formulate a subjective probability distribution over
all possible types of his opponent. As has been shown in Part III of [3], in many cases
there will exist a probability matrix r = (74») which can be used to represent both
players’ subjective probability distributions over each other’s possible types at the
same time. Each element 7y, of this matrix can be interpreted as the joint probability
of player 1 belonging to type &k (k = 1, - - - , K) while player 2 belongs to type m (m =
1, - -+, M). If such a probability matrix r exists, it is called the basic probability matriz,
and the two players’ subjective probability distributions are said to be mutually con-
sistent. If such a probability matrix cannot be found, the subjective distributions are
said to be mutually inconsistent. In this paper we shall restrict our analysis to the con-
sistent case, though a method has been proposed whereby our results can be extended
also to the inconsistent case.’ In the consistent case, where the basic probability matrix
r exists, it is assumed to be known to both players.

Of course, the probability matrix r must satisfy the usual conditions

(1.1) 7em = 0 for all values of % and m
and
(1.2) ot 2wt Tem = 1.
The corresponding marginal probabilities
(1.3) D = D m=i Tim  and Qm = Dt Tom

can be interpreted, respectively, as the probability that player 1 will be of type

3 This method, due to Reinhard Selten, is described in [4, pp. 134-137].
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kE(k=1,---,K),and the probability that player 2 will be of typem (m =1, --- ,M).
For convenience we shall assume that all these marginal probabilities p; and g¢. are
larger than zero. (This assumption involves no loss of generality because any player
type whose probability of occurrence is zero can be simply eliminated from our model. )

As an example, consider a situation where two countries called 4 (‘“America’)
and R (“Russia’) are conducting negotiations about various possible arms control
treaties. Such negotiations are virtually always carried on under conditions of incom-
plete information. Thus, in general, neither side will have precise knowledge of the
other side’s armament levels, economic capability, and technology, nor of the utility
values that the other side would assign to alternative arms control arrangements.
Under our model, all these uncertainties will be represented by the assumption that
there are several possible American player types, which may be called 4, 42, +- -,
and there are also several possible Russian player types, which may be calied RB;, R.,
-+ - . Different types of either player would be in general characterized by different
combinations of armament levels, economic capabilities, technological know-how,
utility scales, ete.

However, while each side will know his own type, neither side will know the op-
ponent’s type. Thus the American player will know that he is in actual fact, say, player
type 4, and is not 4; or 4; ; but he will not know whether the Russian player is in ac-
tual fact player type R or player type R. . The converse will be true about the Russian
player. On the other hand, we are essentially forced to assume that both players know
the probabilities associated with all possible player-type combinations. Thus both of
them will know that the joint probability of the two players’ belonging to types 45 and
R; has the numerical value of, say, %, ete.

2. Definition of a Bargaining Situation with Incomplete Information

Under this model, the utility payoffs that the two players would derive from any
specific course of action (whether it results from a successful agreement or from the
conflict situation) will depend on both players’ actual types, i.e., on the two type vari-
ables k and m. For any given agreement, this information can be summarized in the
form of a K X M bimatrix

2.1) U = (Uipm), 1=12; k=1,:---,K; m=1,---,M,;

where a typical element u.m specifies the payoff that player ¢ will receive under this
agreement if player 1 is of type k while player 2 is of type m. [By a K X M bimatrix u
we mean a K X M matrix of which each element is not a single number uz» but a pair
of numbers of the form (uim , Usm).]

Any such agreement will require the players to perform certain specified physical
actions. The particular actions that a given agreement prescribes for either player may
or may not depend on his own type and on the other player’s type (as disclosed to him
by this other player). However, in general, agreements involving such type-dependent
actions will be feasible only if the players can find some mutually acceptable methods
for enforcing agreements of this kind—and in particular for enforcing truthful dis-
closure of information between the players (e.g., by providing opportunities for verify-
ing the information transmitted) to the extent required for implementing such agree-
ments.

For instance, suppose that in our previous arms control example the different types
Ai, Ag, --- of player A, and again the different types Ri, R:, - - - of player B, would
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differ mainly in the number of missiles of a given kind in the possession of player 4
and of player R, respectively. (In other words, we are assuming that the main piece of
information that each player lacks about the other player is the actual number of mis-
siles available to him.) The one kind of agreement open to the players would involve the
destruction of a certain specified number of missiles by each side (irrespective of the
actual number of missiles in the possession of either side). This kind of agreement
would be the easiest to enforce because its enforcement would not require any exchange
of information about the two sides’ missile stocks. Another kind of agreement would
require each side to destroy some specified percentage of his total stockpile of missiles.
Such an agreement could be enforced only if both sides (or at least some mutually
trusted third party) were given an opportunity to verify the total number of missiles
in the possession of the other side—or if the two sides felt they could trust each other’s
willingness to tell the truth, even without such verification. Finally, the two sides may
even agree to make the total number of missiles to be destroyed by either side a specified
mathematical function of both sides’ total missile stocks. Such an agreement of course
would involve the same enforcement problem in an even more accentuated form.
However, for the purposes of our formal theory, the set of all feasible agreements will
be simply regarded as giwen. In other words, we shall assume that agreements that
either side would find unacceptable because of enforcement difficulties (or for other
reasons) have already been eliminated from the list of feasible agreements.
Moreover, any feasible agreement will be formally identified with the corresponding
payoff bimatrix 4 = (umm). Thus two agreements giving rise to the same payoff bi-
matrix u will be regarded as identical.* The set of all feasible agreements will be called
U = {u}. To simplify our mathematical analysis we shall here assume that U is a finite
set. (In most cases this is not a very restrictive assumption as the set U often can be
made finite simply by assuming that money payments, commodity deliveries, or de-
creases in armament stockpiles, ete., must represent integer multiples of certain basic

units. )
The bimatrix
2.2) ¢ = (catm), 1=12; k=1---,K; m=1,---,M;

stating the payoffs cun that each player < would receive in case of a conflict, under all
possible assumptions about the actual types k& and m of players 1 and 2, will be called
the conflict point. As our discussion of bargaining situations with incomplete informa-
tion is restricted to the fixed-threats case, the bimatrix ¢ is a fundamental and basic
datum of our analysis, and is completely independent of any action that the players can
take. Formally, ¢ will be considered as an element of the set U. That is, it will be as-
sumed that the players are free to agree to bring about the conflict situation if they so
desire.

These considerations suggest the following definition. A bargaining situation with
incomplete information is formally defined as a triplet S, such that

(2.3) S = (U,er),
where U is the set of all feasible agreements; ¢ is the conflict point (which is itself a

special element of the set U); and r is the basic probability matrix.

4 That is, they are identical as far as the present formal theory is concerned. Many psychological
aspects must then either be ignored (with some loss of realism) or incorporated into the payoffs
(with great increase in complexity).
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3. Comparison with Nash’s Bargaining Theory

As our own theory will be a generalization of Nash’s [1950] theory of bargaining
under complete information, we shall now briefly restate Nash’s theory in such a way
as to make it more easily comparable with our own theory to be described below. We
shall restrict ourselves to those aspects of his theory which are important for our pres-
ent purposes, but shall include some ideas that he made explicit only in his second paper
on bargaining games [6]. We shall use our own terminology and notation.

Nash’s analysis may be divided into four steps.

Step 1. Definition of a bargaining situation with complete information. Any such
bargaining situation S can be characterized by specifying the set U = {u} of all pay-
off vectors 4 = (u1, uz) that the players can achieve by mutual agreement, as well as
the payoff vector ¢ = (c1, ¢2) that the players will obtain in a conflict situation, i.e.,
in the absence of any agreement. Thus formally we can define

(3.1) S = (U, c).

Equation (3.1) is an obvious analog of equation (2.3), except that it does not exhibit
the probability matrix r, because complete information means that there is only one
possible type for each player. (Thatis, K = M = 1.)

Step 2. A bargaining model, specifying the nature of the bargaining moves that the
players can make, as well as the outcome (viz., “agreement” or ‘“conflict””) that will
result in each case. More particularly, Nash assumes that each player ¢ (0 = 1, 2),
independently of the other player, has to choose some payoff u; as his payoff demand.
If the two players’ demands are compatible, i.e.,if w = (u1, u2) € U, then we say that
the players have reached an agreement on choosing this payoff vector u, and so they will
receive the corresponding payoffs u; and u. . On the other hand, if w § U then we say
that the players have reached a conflict situation, and they will receive the conflict
payoffs ¢; and ¢, .

Step 3. Analysis of the bargaining model (bargaining game) as a noncooperative game,
in terms of its equilibrium points. Nash has shown that the equilibrium points of the
bargaining game postulated by him are given by all payoff vectors w = (u1, u2) lying
on the upper right boundary of the feasible set U and satisfying the inequalities

(3-2) U = €1, U = Co.

Thus, typically the set V of all equilibrium points is an infinite set (though in certain
degenerate cases V can shrink to a unique point).

Step 4. An axiomatic theory for choosing one particular equilibrium point as the solu-
tion of the game. Nasgh argues that the solution of the game should satisfy certain in-
tuitively plausible axioms, and then shows that a solution satisfying these axioms al-
ways exists and is always unique; and it is given by the point w = (u1, u2) at which the
Nash product

(8.3) T = (U — c1) (U2 — ¢2)

is maximized over the feasible set U (or equivalently over the set of all equilibrium
points, V'), subject to the inequalities (3.2).

Our own theory will likewise involve four steps, analogous to those of Nash’s theory.
We have already discussed Step 1 (the formal definition of a bargaining situation S)
at the end of §2. We shall now propose a bargaining model for bargaining situations
with incomplete information (Step 2).
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Then, we shall analyze the resulting bargaining game as a noncooperative game. How-
ever, for reasons to be stated below, our analysis will not be based on the concept of
equilibrium point as such. Instead, it will be based on the concept of strict equilibrium
point (which will be defined as an equilibrium point satisfying a certain special stability
requirement ). We shall also make use of probability miztures of strict equilibrium points,
involving joint randomization by the players over strategy combinations representing
such strict equilibrium points. We shall argue that the solution of the game should be
chosen from the set X of payoff vectors corresponding to probability miziures of strict
equilibrium points—rather than from the set V of payoff vectors corresponding to ordz-
nary equilibrium points, or even from the set Y of payoff vectors corresponding to
strict equilibrium points without the use of probability mixtures of the latter (Step 3).

Finally, we shall propose an axiomatic theory to select a unique solution from this set
X. The axioms we shall use will be closely related to those used by Nash. We shall show
that the solution defined by these axioms always exists and is always unique, and can
be mathematically characterized in terms of maximization of a certain generalized
Nash product (Step 4).

Of the remaining steps of our analysis, Steps 2 and 3 will be discussed in Part IT of
this paper, while Step 4 will be discussed in Part III.

Part II. The Bargaining Model and Its Analysis as a Noncooperative Game
4. Description of Our Bargaining M odel

The purpose of a bargaining model is to make the bargaining process between the
two players accessible to formal game theoretical analysis, by representing it as a
mathematically well-defined ‘“bargaining game’ with precise rules about permissible
bargaining moves, commitments, agreements, etc.

To analyze bargaining situations with incomplete information, we shall need a more
complicated bargaining model than Nash needed in the complete-information case.
But we feel that the model we are going to propose is the simplest bargaining model
which is still rich enough to represent the most important features of a bargaining
process under incomplete information.

One might argue that it is not really necessary to introduce a bargaining model since
one could develop a theory which simply selected one of the feasible agreements as the
solution. But this approach would not be satisfactory. An appropriate bargaining model
will often permit different pairs of types of the two players to choose different agree-
ments. For example, type % of player 1 and type m of player 2 may wish to choose an
agreement which is very favorable to them but would be wholly unacceptable to types
k" and m’ of the two players. In general, it will depend on the situation and on the rules
of the bargaining game whether the players actually can make their choice of an agree-
ment type-dependent in this way.

On the one hand, the players can usually benefit by making the outcome type-de-
pendent. On the other hand, they may have incentives to act as if their types were dif-
ferent from what they really are, which may make it impossible for them to arrive at
different agreements for different pairs of types. These are very important features of
the bargaining process, and they cannot be captured without analysing the players’
behavior at the equilibrium points of a formal bargaining game.

A multi-stage acceptance model of bargaining. Under our model the bargaining process
will consist of a finite number of consecutive stages. For this reason our model may be
called a multi-stage model. The authors have also explored one-stage models, which do
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not seem to be able to provide adequate representation of the players’ strategic pos-
sibilities in bargaining under incomplete information.

We shall assume that at any stage of the bargaining process each player can ir-
revocably commit himself to accept any particular agreement (should the latter be pro-
posed at any time by the other player for mutual acceptance); but he cannot ir-
revocably commit himself to reject any particular agreement. In this sense our model
is an acceptance model and not a rejection model. ,

Under an acceptance model, as bargaining proceeds, each player will declare more
and more possible agreements to be acceptable to him, while under a rejection model
each player will declare more and more possible agreements to be unacceptable from
his point of view. Thus, acceptance models give clearer expression to the empirical fact
that during the bargaining process the two sides often make increasing concessions to
each other, rather than make increasingly more extreme demands.’

More specifically, under our model, bargaining will proceed as follows. At every
stage each player will make an offer, by naming some agreement 4 € U as being ac-
ceptable to him. Each time the two players will choose their offers simultaneously, and
independently of each other. Neither player can withdraw any offer once he has made
it. When the two players make their offers, they will always know all offers made at
previous stages, and so will know what agreements each player has already declared
to be acceptable to him.

At any given stage a player may make a new offer, by proposing an agreement which
he has not proposed yet at any earlier stage; or he may simply repeat an old offer he
has already made. It is assumed that, if at some stage no new offer is made by either
player but only old offers are repeated by both, then the negotiations will break down
and a conflict will result. In this case the players’ payoffs will be specified by the con-
flict point ¢. Thus, if the players want to avoid a conflict, they must keep the negotia-
tions going by at least one of them making a new concession at every stage until an
agreement acceptable to both players is found.

If at some stagej (7 = 1, 2, - -+ ) a given player has made an offer  which has also
been proposed by the other player (at the same time or at some earlier time ), then we
say that u is an agreement accepted at stage 7. As soon as at least one agreement % has
been accepted at some stage 7, no further offers will be made by the two players.

If at some stage j exactly one agreement u is accepted then this agreement » will be
the outcome of the bargaining game, and the players will receive the corresponding
payoffs. The rules of the bargaining game do not exclude the possibility that at some
stage j two different agreements will be accepted, and so we have to define the outcome
of the game also in such cases. This possibility arises because it may happen that each
of the two players at the same time will propose an offer already proposed by the other
player at some earlier stage, so that under our previous definition both of these offers
will now become “accepted’” agreements. In such cases our model always empowers
one of the two players to break this deadlock. More specifically, we assume that a
random move will be made to select one of the two players for this purpose, with equal

§ However, one may argue that, even if the two sides do become more concessive in their overt
behavior, their inner attitudes may very well become in some sense more intransigent, e.g., be-
cause they may come to learn more and more about each other’s weak points during the negotia-
tions. Perhaps rejection models could be used to represent such shifts to more intransigent inner
attitudes by the two players.
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chances for the two players. Then'the player so selected has to choose one of the two
accepted agreements. The agreement chosen by him will be regarded as the outcome
of the bargaining game, and the players will receive the corresponding payoffs.’

5. Bargaining Strategies and the N-Player Form of the Bargaining Game

Bargaining strategies. A strategy of player 1 or player 2 in the bargaining game defined
by the above bargaining model is called a bargaining strategy. In order that we can
give a more precise formal characterization of the two players’ bargaining strategies,
we introduce the concept of an offer sequence. Consider a sequence

112 17
(7 y U y "y U
(5'1) b= < 21 922 2.r>

u,u’...’u

which consists of a finite number of pairs of the form %"/, %%, where %% is interpreted as
the offer w = u* of player 7 at stage 7. Such a sequence is called an offer sequence if it is
compatible with the rules of the bargaining game. This will be the case if at every stage
j=1,---,J at least one of the two offers »' and 4* is a new offer, and if none of the
offers ' and v’ withj = 1, - - - , J — 1is an accepted offer. (Otherwise the bargaining
game would not have reached stage J.)

An offer sequence b is called a conflict sequence if both %" and 4 are old offers. If
exactly one of the two offers '’ and % is an accepted offer, or if '’ = «*, then b is
called a one-agreement sequence. A complete sequence is an offer sequence which is either a
conflict sequence or a one-agreement sequence.

If both «" and »*” are accepted offers, yet if 4"/ > u*’ then b is called a semicomplete
sequence. Finally, an incomplete sequence is an offer sequence that is neither complete nor
semicomplete. An emply sequence, which corresponds to the situation before the bar-
gaining has started, and which contains no offers at all, is also called ncomplete.

After these definitions, we can give the following formal description of a pure bargain-
ing strategy: A pure bargaining strategy f; of player © is a function which assigns some
agreement f;(b) € U to every incomplete offer sequence b, and also assigns one of the two
last-stage offers f:(b) = u* or f;(b) = ' to every semicomplete offer sequence b.

‘We shall now show that the number of pure bargaining strategies for either player is
finite.

Let | U | be the number of elements in U, i.e., the number of feasible agreements. In
any incomplete or semicomplete offer sequence there must be at least one new offer at
each stage, other than the last stage. Yet a given player cannot make more than | U |
new offers during the game. Therefore 2-| U | + 1 is an upper bound for the number of
stages in an incomplete or semicomplete offer sequence, and so the number of such offer
sequences is finite. Consequently, the number of pure bargaining strategies is also finite,
as desired.

Another implication is that the bargaining game will always end after a finite number
of stages.

The payoff expectations resulting from a given pair of bargaining strategies fi and f> used
by the two players. The set F of bargaining strategies is the same for both players. For
any given pair of bargaining strategies (f1,f.) with f; € F and f, € F, we can compute a

¢ Qur experience with numerical examples seems to suggest that the solution we shall propose is
not significantly affected by the rule actually chosen to define the outcome of the bargaining game
in the case where two different agreements are ‘“‘accepted.”
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K X M bimatrix o = h(fi, f2) of which a typical element Agm = hun (f1, f2) specifies
the expected payoff to player 7, when players 1 and 2 are of types k and m, respectively,
and when they use the bargaining strategies f; and f, in the bargaining game. This bi-
matrix can be computed as follows:

Let b (fi1, f2) be the complete or semicomplete sequence we shall eventually obtain if
we repeatedly apply the formulas

(5.2) u¥ = fi®™") for ¢=1,2 and j=1,-.--

and

; uu’ ceey, ulJ
(53) b= uzl, ceey u2j

and go on doing so as long as b’ remains an incomplete sequence.
Moreover, let u (fi, f2) be the unique accepted offer in sequence b (fi, f2) if the latter
is a one-offer sequence. Then we can define the bimatrix A = A (fi, f2) as follows.

h(fi, f2) = u(f1, f2) if b(f1, f2) is a one-agreement sequence,
(54) h(fi,f2) = cif b(f1, f2) is a conflict sequence, and
h(fi, fo) = 3101, f2)) + 30, f2)) if b(f1, f2) is a semicomplete

sequence.

Each expected payoff hugm = hum (fi, fo) will be simply the appropriate element of
this bimatrix & = A(f1, f2) just defined.

Mized bargaining strategies. We do not want to exclude the possibility that the two
players may use mixed strategies in the bargaining game. A mixed strategy ¢; of player
7 will be a probability distribution over the set F' of pure bargaining strategies. Ob-
viously the set ( of mixed bargaining strategies will be the same for both players. We
shall write % (g1, g2) to denote the expected value of the bimatrix 4 (f1, f) when player
1 uses the mixed strategy g; while player 2 uses the mixed strategy ¢. . Since A (g1, g2)
is the expected value of the K X M bimatrix & (fy, f2), it will be itself also a bimatrix of
the same size. A typical element Aygm = Rim (91, g2) of the bimatrix 4 (g1, g») will again
specify the expected payoff to player ¢, when players 1 and 2 are of types k¥ and m
respectively, and when they use the mixed bargaining strategies ¢g; and g .

The N-player form of the bargaining game. For many purposes it is useful to look upon
the K alternative types of player 1, and the M alternative types of player 2, as being
the K + M = N players of an N-player game. When we want to refer to this interpreta-
tion of the bargaining game it will be convenient to call these N types of players 1 and
2 subplayers, and to number them consecutively from 1 to N = K -+ M. In particular,
the types 1, -+, k, -+, K of player 1 will be called subplayers 1, --- , %k, ---, K;
whereas the types 1, - --,m, - - -, M of player 2 will be called subplayers K + 1, -- -,
K+m,---,K+ M.

In the N-player bargaining game played by these N subplayers, each subplayer ¢
will be assumed to choose some bargaining strategy, which may be a pure bargaining
strategy s; € F, or may be a mized bargaining strategy ¢; € G.” In terms of its intuitive

7 Technically, the N-player game played by the N subplayers is the Selten game corresponding
to the two-player bargaining game between players 1 and 2, and is based on the Selten model for
games with incomplete information. For a more extensive discussion of Selten games and their
intuitive interpretations, see Part I of (3, pp. 177-180].
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interpretation, for any subplayer ¢ = k = 1, --- | K, this bargaining strategy s; or ¢;
is simply the pure bargaining strategy fi = fi* € F or the mized bargaining strategy
g1 = gi" € G that player 1 would use in the two-player bargaining game between players
1 and 2, if he were of type ¢ = k. Likewise, for any subplayert = K+m =K+ 1, -- -,
K + M, this bargaining strategy s; or ¢; is simply the pure bargaining strategy fo =
f2" € F or the mized bargaining strategy g. = g»" € @ that player 2 would use #f he were
of typem =17 — K.

As pure strategies are special cases of mixed strategies, no generality will be lost if we
assume that the N subplayers will choose the mixed-strategy combination

(5.5) t= (tr, -+, tn).

To compute the expected payoffs of the first K subplayers when this strategy com-
bination ¢ is chosen, we must use the fact that any given subplayer & simply represents
type k of player 1. Therefore, his expected payoff zx (¢) will be given by player 1’s condi-
tional payoff expectation under the assumption that player 1 is known to be of type k.
Thus we can write ‘

(5.6) a(t) = iZ:‘nLl o T (b i) for o= 1, -+, K.

On the other hand, to compute the expected payoffs of the remaining M subplayers
when the strategy combination ¢ is chosen, we must use the fact that any given sub-
player K -+ m simply represents type m of player 2. Therefore, his expected payoff
Zrim () Will be given by player 2’s conditional payoff expectation under the assumption
that player 2 is known to be of type m. Thus we can write

(5.7) Trim(t) = quf=1 Tiom horm(t, tam) for m =1, .-+, M.

The K + M = N quantities defined by equations (5.6) and (5.7) together form the
vector

(5.8) z(t) = (@), -, 2n ().

As we have seen, each component z; (¢) of this vector is the payoff expectation of some
subplayer <. But, more fundamentally, it also represents a certain conditional payoff
expectation of player 1 or 2. In view of this latter interpretation, the vector z (¢) will
be called the conditional payoff vector corresponding to the strategy combination ¢ =
(tla ) tN)-

6. Strict Equilibrium Points

Strict equilibrium points in the N-player bargaining game. We assume that the bar-
gaining game will be played noncooperatively. Therefore, rational players may be ex-
pected to use bargaining strategies corresponding to an equilibrium point. Indeed, we
want to argue that only equilibrium points satisfying a special stability requirement—
to be called strict equilibrium points—can represent strategy combinations acceptable
to rational players.

Equilibrium points in mixed strategies often have the undesirable property that the
payoffs of certain players j will be changed if a given player 7 deviates from his mixed
equilibrium strategy ¢;, and shifts to some pure strategy s; occurring with a positive
probability in this mixed strategy ¢;. Yet, there is no reason to expect that deviations
of this kind will not happen, because such a pure strategy s; will always be a best reply
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to the other players’ equilibrium strategies, just as much as the equilibrium strategy
t; itself is. Consequently, these players j will be unable to form definite expectations
about the payoffs they would receive if they stuck to their own equilibrium strategies
t;, which again could easily induce these latter players, also, to deviate from these
equilibrium strategies, ete. Thus equilibrium points of this sort will not represent
stable strategy combinations.

To avoid this difficulty, we introduce the concept of strict equilibrium points.® Let
t = (tu, ---, ty) be some combination of bargaining strategies in the N-player bar-
gaining game, and let ¢'; be some bargaining strategy of subplayer 7. We shall write
t/t'; to denote the strategy combination we shall obtain from ¢, if we replace the
strategy #; by ¢'; but leave all other components of ¢ unchanged.

A best reply of subplayer 7 against a given strategy combination ¢ = (f'y, -+ -, t'x)
is defined as a strategy ¢ such that
6.1) z(t'/t’) = max,eq x(t /t:).

(For our purposes it is convenient to use a somewhat unorthodox terminology, and to
call this strategy ¢ a best reply against the whole strategy N-tuple ' = (t'y, - -+, ¢x),
rather than call it a best reply merely against the strategy (n — 1)-tuple (fy, ---,
s1,ti, -+, Ux), comprising only the strategies of the other (N — 1) players with
the exclusion of player ¢’s own strategy ¢ ;. This terminology is perhaps less natural
than the more customary one, but it simplifies the phrasing of some of the statements
we are going to make.)

An equilibrium point can be characterized as a strategy combination t* = (&%, - - -,
ty") in which every component #;* is a best reply against ¢*.

An equilibrium point ¢* is called strict if, for every subplayer 7, and for every best reply
¢ that this subplayer ¢ has against ¢*, we can write

(6.2) z@*/td) = = (@t™).

Thus, if t* is a strict equilibrium point then any player j using his equilibrium strategy
t;* will have some protection against any deviation by another player ¢ from his equi-
librium strategy #;* to some alternative best-reply strategy t.°, since such a deviation
would not affect player j’s payoff.

The concept of strict equilibrium points has useful applications, not only in the analy-
sis of bargaining games, but also in the analysis of general n-person noncooperative
games. (Of course, in the latter case strict equilibrium points must be defined with
reference to ‘“players,” instead of “subplayers.”)?

Guaranteed equilibrium points will be defined in terms of a much stronger stability

8 For another approach to the problem resulting from the fact that at many equilibrium points
t=(, ..., ty) the equilibrium strategy t; of a given player 7 is not his only best reply to the
other players’ equilibrium strategies, see [2]. The approach proposed there is based on the con-
cepts of strong equilibrium points and of centroid equilibrium points. But for our present purposes
the concept of strict equilibrium points seems to be a preferable analytical tool (cf. Lemmas 6.1,
6.2 and 6.3 below).

9 However, as one of the editorial referees has pointed out, one can construct examples for games
where all strict equilibrium points are rather inefficient. It is not clear whether this problem can
arise in bargaining games. But nevertheless one may wish to develop a solution based on the set of
all equilibrium points rather than on the set of strict equilibrium points alone. As the reader can
easily verify, very little has to be changed in our theory in order to do this.
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requirement than used in the definition of strict equilibrium points. However, as we
shall see, owing to certain special characteristics of bargaining games, any strict equi-
librium point of a bargaining game is also a guaranteed equilibrium point.

Lett* = (&% -+, tx") be an equilibrium point, and let & = (&, - - -, &»°) be some
combination of strategies, such that every component ¢ of £’ is a best reply against ¢*.
The equilibrium point ¢* is called a guaranteed equilibrium point, if for every such com-
bination £ of best replies against ¢* we can write

6.3) a; (/%) = 4;(¢*) for j=1,---,N.

Thus, if t*is a guaranteed equilibrium point then every player j using his equilibrium
strategy ¢;* will be protected, not only against deviations by single players, but also
against simultaneous deviations by several players—or even by all other players—to
alternative best-reply strategies.

Lemma 6.1. Every strict equilibrium point t* = (%, - -+, tx") of a bargaining game is
also a guaranteed equilibrium point.

Proor. Suppose that * = (4,°, -, t’) is a combination of best replies against ¢*.
Consider subplayers j and K -+ m, where subplayerj (j = 1, - - - , K) represents type j
of player 1, whereas subplayer K + m (m = 1, - -- , M) represents type m of player 2.
Suppose that subplayer j shifts from strategy t;* to strategy ¢, while all other subplayers
i # j stick to the strategies #;*. That is, suppose that strategy N-tuple ¢t* is replaced by
strategy N-tuple t*/1,". What effect will this have on the payoff of subplayer K + m?

By equation (5.7), his original payoff #x.»(¢*) is a sum of K terms. When ¢;* is re-
placed by #;°, only one term will be affected, viz. the term corresponding to & = j.
Consequently, we can write

(64)  Tren(t*/t7) = oxim(t*) — ’;"‘ hoim(t;*) tham) + o Tim 7 ajn (1 i)

On the other hand, as t* is a strict equilibrium point, by equation (6.2) we have
Trim (¥ /1) = Trim (™). Therefore, we must have

(65) :;izb h2im(t.7'0) t;+m = @_n h2]m(t1 ) tK+m)
fory = , K and form = 1, , M.

Next, cons1der the case where some subplayer K + j, representing type j of player 2
(G=1, , M), shifts from strategy txs; to strategy tx.;, so that strategy N-tuple ¢*

is replaced by strategy N-tuple ¢*/tx.; . By similar reasoning to that used in deriving
equation (6.5), one can verify that

(6.6) Txi hlkj(tk*, tres) = —2 hlk;(tk , bes)
Dk Dk

fork=1,---,Kandforj = M However, equations (5.6), (56.7), (6.5) and
(6.6) together 1mmed1ately 1mply that t* has property (6.3). This completes the proof.
Let Y = {y} be the set of all payoff vectorsy = (y1, - - -, y») which are conditional
payoff vectors of the form y = 2 (t*), corresponding to some strict equilibrium point ¢*
of the N-player bargaining game.
The number of strict equilibrium payoff vectors y will now be characterized by two
lemmas.
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Lemma 6.2. The set Y of strict equilibrium payoff vectors y is always nonempty.

Proor. Consider the strategy combination s = (s, - - -, s, ) under which every sub-
player < selects a pure bargaining strategy s; assigning the conflict point ¢ to every in-
complete offer sequence. This strategy combination s will be a strict equilibrium point.
Hence the set Y is always nonempty.

Levma 6.3. The set Y of strict equilibrium payoff vectors y is always a finite set.

Proor. To prove the lemma, we introduce the concept of a total equilibrium point.
A total equilibrium point is a guaranteed equilibrium point ¢* which has the additional
property that every pure strategy of each player is a best reply against ¢*. If a game has
several total equilibrium points, then all of them must have the same equilibrium pay-
off vector, because the use of the equilibrium strategy guarantees the equilibrium pay-
off regardless of the strategy choices of the other players.

Let t* be a strict equilibrium point of the N-player bargaining game. Let F;* be the
set of pure strategies to which the equilibrium strategy ¢;* assigns positive probabilities
(=1, .-, N).If the set of pure strategies of every subplayer < is narrowed down to
F.*, a restricted bargaining game results from the original one. As we have seen, every
strict equilibrium point of the bargaining game is a guaranteed equilibrium point.
Therefore, in the restricted bargaining game, t* (or, more precisely, the strategy com-
bination corresponding to t* in this restricted game ) is a total equilibrium point. There-
fore, every payoff vector y € Y is the payoff vector of a total equilibrium point in a
restricted bargaining game. Since the number of pure bargaining strategies is finite,
only a finite number of restricted games can be derived from strict equilibrium points of
the bargaining game. Each of these restricted games has only one total equilibrium pay-
off vector. Therefore Y s a fintte set.

7. The Equilibrium Set

Let X be the convex hull of the set Y. We call X the equilibrium set of the bargain-
ing game. It represents the set of all conditional payoff vectors 2 = (21, + -, 2x)
that can be obtained by means of jointly-randomized strategies corresponding to mix-
tures of strict equilibrium points.

Under our model the bargaining game is a noncooperative game. As we have argued
in a noncooperative game rational players will always use some strategy combination
that is an equilibrium point, and indeed is a strict equilibrium point. To restate our
previous argument in somewhat different terms, the basic reason is that only strict
equilibrium points can give rise to stable conformistic expectations on the part of in-
telligent players. By a conformistic expectation for a given strict equilibrium point
t = (t1, -+, ty) we mean the expectation that every player ¢ will use his equilibrium
strategy ¢;, or at worst will engage in some deviation not affecting the payoffs of the
other players (as will be the case with deviations to alternative best-reply strategies
t'+). Now suppose that for some reason or another the players come to form conformistic
expectations about one another’s behavior with respect to some strict equilibrium
point ¢. Then these expectations will be stable because they will be fully consistent with
the incentives confronting the players, and of course the players will know this.

In contrast, if a given strategy combination¢ = (i, - - - , tx) is not a strict equilibrium
point then it cannot give rise to stable conformistic expectations. For suppose the
players would adopt conformistic expectations about one another, i.e., would adopt
the expectation that all other players would use the strategies #; (or would adopt
strategies equivalent to the latter in terms of the resulting payoffs). Then these expecta-
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tions themselves would give some of the players the incentive to engage in noncon-
formistic behavior, contrary to these expectations; and of course the players will
again know this. Therefore, such expectations could not be stable with rational players.

On the other hand, it is our contention that probability mixtures of strict equilibrium
points do have the ability to generate stable conformistic expectations in the same way
as single strict equilibrium points do.

We are assuming that the players are free to communicate before the actual exchange
of offers as prescribed by our bargaining model. Given such preplay communication,
they may reach an informal understanding to make their choice among alternative
strict equilibrium points, £, ¢¥, - - - , of the bargaining game depend on the outcome of
some chance event (which may occur spontaneously, or may be produced by the players
themselves for the very purpose of obtaining the desired probability mixture of strict
equilibrium points). Even if the rules of the bargaining game do not make such an in-
formal understanding legally enforceable, it will be self-enforcing and therefore will
result in stable conformistic expectations.

For example, suppose that the chance mechanism used by the players actually
decides in favor of some particular strict equilibrium point ¢; and suppose that the
players expect one another to conform to this assumed informal understanding. This
means that now the players will expect one another to use strategies conforming to this
equilibrium point ¢ chosen by the chance mechanism. However, as ¢ is assumed to be a
striet equilibrium point, once the players adopt these conformistic expectations with
respect to ¢ these expectations will be stable. In other words, if the players decide to use
some probability mixture of strict equilibrium points, this decision will generate stable
conformistic expectations—simply because any strict equilibrium point, chosen by a
chance mechanism or by any other method, will itself generate stable conformistic
expectations on the part of the players.

This leads us to the conclusion that the conditional payoff vectors the players can
achieve in the bargaining game not only include all points y = (y1, -+ ,y~) in the
set Y of strict equilibrium payoff vectors, but also include all points z = (21, - - - , 2¥)
in the convex hull X of this set ¥ (which we have called the equilibrium set X).

The extended bargaining game. Instead of assuming that the players use jointly
randomized strategies to achieve probability mixtures of strict equilibrium points,
we may obtain these probability mixtures also by a formal extension of our bargaining
model. The extended bargaining model we shall use for this purpose will assume that
before the beginning of the actual bargaining a random move will select a random
number \ which is uniformly distributed over the interval 0 < A = 1. This random
number is then announced to both players. Only after they have been informed about
), do they begin to play the bargaining game described above. We call the bargaining
game together with the preplay random move the extended bargaining game. 1t is easy to
see that every strict equilibrium point of this extended bargaining game can be regarded
as a function which assigns a strict equilibrium point of the original bargaining game to
almost every A in the interval 0 < N < 1. Therefore, the set of conditional payoff vectors
corresponding to strict equilibrium points of the extended bargaining game is the equilibrium
set X.

The conflict payoff vector w = (w1, - -+ , wx) is defined as the conditional payoff vector
corresponding to the conflict point ¢, so that

(71) wr = pl Zi{:q Tkm Clkm y for k= 1, ey, K,
k
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and

(72) Wr+m = -q];- Zf;‘l Tiem C2km y for m = 1, cey, M.
In other words, wy is player 1’s conditional payoff expectation in case of a conflict, when
his type is known to be k; whereas wxn is player 2’s conditional payoff expectationiin
case of a conflict, when his type is known to be m.

If every subplayer < selects a pure bargaining strategy s; which assigns the conflict
point ¢ to every incomplete offer sequence, then the resulting strategy combination
s = (s1, -+ ,sy) will be a strict equilibrium point with w = z (s) as the corresponding
equilibrium payoff vector. Hence

(7.3) w€ X,

By using the strategy s;, each subplayer 7 can guarantee at least the payoff w; for
himself, regardless of the strategy choices of all other subplayers. Therefore, we have

(74) w; £ x; forall z= (x1, -+, 2y) € X.

In view of (7.3) and (7.4), the conflict payoff vector w can be characterized as the minimal
element of the equilibrium set X.

The bargaining basis. It is a fundamental assumption of our theory that the equilib-
brium set X and the basic probability matrix r are the crucial parameters determining
the outcome of bargaining between rational players. Thus, two bargaining situations
will be regarded as equivalent if they have the same basic probability matrix » and also
lead to the same equilibrium set X. Therefore we shall call the ordered pair

(7.5) B=(X,r)

the bargaining basis for a given bargaining game.

More generally, we shall call any pair B = (X, r) a bargaining basis, if » = (7tm) is a
probability matrix of size K X M, satisfying conditions (1.1) and (1.2) as well as the
positivity requirement for all marginal probabilities px and ¢» (¢ = 1, -+, K and
m=1,---,M);andif X is a compact and convex set of N-vectors (withN = K + M),
such that X has a minimal element w satisfying condition (7.4).

However, bargaining bases derived from bargaining games have some special prop-
erties in addition to the general properties listed in the last paragraph. One such special
property is that the equilibrium set X of such a bargaining basis is always the convex
hull of a finite set of payoff vectors. (This follows from Lemma 6.3, according to which
the set Y of strict equilibrium payoff vectors is always a finite set: for X has been
defined as the convex hull of this set Y.)

It could be argued that our theory should be developed in terms of bargaining bases
possessing the special properties which make them derivable from bargaining situations.
We shall not adopt this point of view because it would lead to unnecessary mathe-
matical complications. Instead, we shall develop our theory in terms of the more
general definition of bargaining bases stated above. The mathematical justification of
this approach lies in two facts. On the one hand, every bargaining basis B = (X, r)
can be approximated by a bargaining basis B* = (X* r) derived from a bargaining
game, up to a Hausdorff distance between X and X ™ as small as desired. On the other
hand, as will be shown in §11, in terms of the same distance, the solution we shall
define is a continuous function of the equilibrium set X.
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Polyhedral bargaining bases. A bargaining basis B = (X, r) will be called polyhedral
if it has the following properties:

(a) the equilibrium set X is a convex hull of a findle set ¥; and

(b) for every element y 5 w in set ¥ we have

(7.6) w; <y; for ¢=1,---,N.
(Here w again denotes the minimal element of X.)

LemMA 7.1. Any bargaining basis B = (X, r) can be approximated in the sense of the
Hausdorff metric, as closely as desired, by a polyhedral bargaining basts B* = (X* r).

Proor. The lemma follows from the fact that any compact and convex set X of a
finite-dimensional Euclidean space can be approximated by a polyhedral set X¥,
which is the convex hull of a finite number of points, and has an arbitrarily small
Hausdorff distance from X.

Lemma 7.2. Every polyhedral bargaining basis can be deriwed from some appropriately
chosen bargaining situation S = (U, ¢, r).

Proor. Let ¥ be the finite set of which X is the convex hull. We shall construct a
bargaining situation S = (U, ¢, r) which has B as its bargaining basis.
We define the first component of S, the agreement set U, as the set of all bimatrices
U = (Uam) = u(Yy),y € Y, which can be derived from any element y = (y1, **, yn)
of set ¥ according to the formula
(77) WUikm Yk if < 1
= Yrim if ¢=2

The second component of S, the conflict point ¢, is defined as the minimal element of
set X. Finally, as the third component of S we choose the basic probability matrix =
occurring in the definition of B = (X, 7).

In view of these definitions, any combination of pure bargaining strategies for the
two players must lead to some agreement w € U. Therefore, all conditional payoff
vectors corresponding to combinations of pure or mixed strategies in the N-person
bargaining game derived from S = (U, ¢, r) are convex combinations of some payoff
vectors y in set Y, and are consequently elements of set X. It follows that the equilib-
rium set of the bargaining game derived from S is a subset of X.

In order to prove that this equilibrium set is actually identical with X, we must show
that every point y in set Y is a conditional payoff vector corresponding to some strict
equilibrium point of the bargaining game derived from S. If every subplayer ¢ chooses a
pure bargaining strategy s; = s;(y) which to each incomplete offer sequence always
assigns the agreement w = % (y) corresponding to some specific point y in set Y,
then the resulting strategy combination s(y) = (s1(y), + -+, s¥(y)) will be a strict
equilibrium point with the equilibrium payoff vector (s (y)) = y. The strategy com-
bination s(y) will be a strict equilibrium point because any deviation by some sub-
player ¢ from his equilibrium strategy s; (¥) can only have the result that in some cases
the agreement 4 = % (y) will be replaced by the conflict point ¢ as the outcome of the
bargaining game. Therefore, any deviation by subplayer < which influences the payoffs
of the other subplayers 7 # ¢ will reduce his own payoff from y; to w; < y, ; thus s(y)
satisfies the definition of strict equilibrium points. Consequently, X isin fact the equilib-
rium set of the bargaining game derived from S, and so B = (X, r) is the bargaining
basis of this bargaining game. This completes the proof.
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Part IiI. An Axiomatic Theory for Defining the Selution of the
Bargaining Game

8. Some Definitions

Solution functions. We now propose to present an axiomatic theory for a rational
selection of a unique conditional payoff vector 2* = (2%, -+, ax") € X when the
bargaining basis B = (X, r) is given. Formally the purpose of our axioms will be to
select a unique solution function L as defined below.

A bargaining basis B = (X, r) is called regular if the equilibrium set X contains at
least one element = (z1, - -+, xx) with 2; > w, for every player (z = 1, ---, N).
(Thus, informally speaking, a bargaining basis is regular if there is some possible
stable outcome of the bargaining game which would yield each player 7 a payoff expec-
tation z; greater than his conflict payoff w;.) In order to avoid unnecessary mathema-
tical complications we shall develop the axiomatization in terms of regular bargaining
bases. Later it will be easy to show how the theory can be extended to irregular bargain-
ing bases.

A solution function is a function L which assigns an element 2™ = L (B) of the equilib-
rium set X to every regular bargaining basis B = (X, r); we call z™ = L (B) the solu-
tion of B.

The generalized Nash product. The solution function L, which we shall axiomatize,
selects that 2™ = L (B) which maximizes a generalized Nash product. In order to have
a convenient way of writing this product we shall adopt the notation

8.1) Prt+m = (m

for the marginal probabilities ¢1, - -+ , gar associated with types 1, - - - , M of player 2.
Then we can write the generalized Nash produect in the form

(8.2) T = Hi;v=1 (x,- - ’w;)pi.

If B = (X, r) is a regular bargaining basis, then the maximum of the generalized
Nash product = is attained at a uniquely determined conditional payoff vector z = z*.
This follows from the convexity of X and from the existence of conditional payoff
vectors € X with 2; > w;for¢ =1, ---, N.

If the bargaining basis B = (X, r) is not regular, then z; = w; holds for at least one
component of every vector £ € X. In that case the product = vanishes for all z € X.
Therefore, the rule of maximizing the generalized Nash product = must be slightly
modified for irregular bargaining bases. This question will be discussed later.

From now on we shall use the symbol L™ for the solution function which maximizes
the generalized Nash product. L will denote an unspecified solution function.

Operations. The axioms which we shall formulate in order to characterize the solu-
tion function deseribed in the previous section will refer to some operations which
can be applied to bargaining bases. It will always be clear that the result of the applica-
tion of one of these operations to a regular bargaining basis is also a regular bargaining
basis.

Operation 1. Interchanging the players. Let x = (x1, -+ , Zx) be a conditional payoff
vector in the equilibrium set X of a bargaining basis B = (X, r). Then the payoff
vector z ' = (v, --+, 'y) with

(8.3) 'm = Cggm for m=1,+--- M
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and
(8.4) & ysr =xx for k—1,--- K

is called the payoff vector derived from x by interchanging the players. Let X’ be the set
of all payoff vectors which can be derived from the vectors € X by interchanging
the players and let 7" be the transpose of 7. Then B’ = (X', ') is called the bargaining
basis derived from B by interchanging the players.

Operation 2. Interchanging two types of the same player. Let h and j be two integers
with # £ jand with 1 £ 7 £ Kand 1 £ A £ K. We define the payoff vector

= @'y, -, 2'y) derived from x = (xy, -+ -, xy) by interchanging the types h and j
of player 1. This payoff vector has the components

(8.5) o = s,

(8.6) 2y = a,

8.7) a'sy = x; forall ¢ with ¢ h and 4 #j.

The bargaining basis B = (X', ) derived from B = (X, r) by interchanging the
types h and j of player 1 is defined as follows: X" is the set of all vectors 2" which can be
derived from vectors z € X by interchanging the types h and j of player 1 and 7’
results from 7 by interchanging the jth and Ath rows.

The operation of interchanging two types of player 2 is analogous to that of inter-
changing two types of player 1. It can be defined as follows: the bargaining basis
B" = (X", ") derived from B = (X, r) by interchanging the types h and j of player 2
(here h and j are integers with 1 < A = M and 1 £ j < M) is that bargaining basis
which results from B by first interchanging the players, then interchanging the types
h and j of player 1, and finally interchanging the players once more.

Operation 3. Order-preserving linear wuiility transformation. Consider a system of
order-preserving linear transformations

8.8) Ti(®) = axs +Bs; s >0; ¢2=1,---,N.
Let T (z) be the vector
(8.9) T() = (Ti(z1), -+, Tw(zx)).

We shall call T itself also an order-preserving linear transformation. Let T (X) be the
set of all 7' (z) with z € X. Then B’ = (T (X), r) is the bargaining basis derived from
B = (X, r) by the order-preserving linear utility transformation T = (Ty, ---, Ty).

Operation 4. Splitting a type. Let B = (X, r) be a bargaining basis and let j be an
integer with 1 < j < K. For every payoff vector £ = (21, - -+, 2x) we define a payoff
vectorz' = (&1, -+, X'w41) derived from x by splitting type j of player 1 into two types.
This payoff vector has the components

(8.10) .x’;_= x; for ¢=1,---,7,
(8.11) 2 = o,
(8.12) i =2y for 6=4j4+2 ---,N+1.

The basic probability matrix ', derived from r by splitting type j of player 1 into two
types with the probabilities v and 1 — v, is defined as a (K + 1) X M matrix, related to r
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as follows:

(8.13) Y im = Thm for k=1,---,7—1,

(8.14) rim = Vim s

(8.15) Pivtm = (L= 0)7jm,

(8.16) "im = Teim for k=74+2 -+, K+1,

each of these four equations holding for m = 1, - -+, M. Here v is a probability with

0 < » < 1. Let X’ be the set of all payoff vectors «’ which can be derived from the pay-
off vectors x in X by splitting type 7 of player 1 into two types. Then B’ = (X', ")
is the bargaining basis derived from B = (X, r) by splitting type j of player 1 into two
types with the probabilities v and 1 — v.

The operation of splitting a type j of player 2 is analogous to the operation of splitting
a type j of player 1. Let B” = (X”, ") denote the bargaining basis derived from
B = (X, r) by splitting type 7 of player 2 into two types with the probabilities » and
1 — ». We can define B” as the bargaining basis we obtain if we first interchange the
two players, then split type 7 of player 1 into two types with the probabilities » and
1 — », and finally interchange the two players once more.

Operation 5. Dividing a type. Consider the bargaining basis B* = (X', ") which is
obtained from B = (X, r) by splitting type j of player 1 into two types with the prob-
abilities v and 1 — v. Let 7" bea (K + 1) X M maitrix, related to r as follows:

(8.17) " km = Tim for k=1,+--,j—1,
(8.18) " im = Unlim,

(8.19) " it = (1 = Un)ljm,

(8.20) " m = Tit,m for k=j+2,---,K+1,

each of these four equations holding form = 1, - - - , M. Here the quantities v, - -+ , v
are probabilities which may or may not be equal to one another. If now in
B = (X', r') the matrix ¢’ is replaced by »” then we obtain the bargaining basis
B” = (X’,"). Any bargaining basis B” obtained in this way will be called a bargaining
basis derived from B = (X, r) by dividing type j of player 1 into two types. Obviously,
the operation of ‘“‘splitting” a given type j, already defined, is simply a special case of
the operation of ‘“dividing” this type j: it corresponds to that special case where
Vo= e = Uy = 0.

Again the operation of dividing type j of player 2 into two types is analogous to the
operation of doing this for type j of player 1. In order to obtain the bargaining basis
B" = (X", +") derived from B = (X, r) by dividing type j of player 2, we can proceed
as follows. We first interchange the two players, then we divide type j of player 1 into
two types, and finally interchange the two players once more.

9. The Azioms

We now formulate a set of axioms for solution functions L. Later it will be shown that
there is one and only one solution function satisfying these axioms. This is the solution
function L™ which is generated by the maximization of the generalized Nash product.

Axionm 1 (PromrraBiITY). The solution 2™ = (z,%, - -+, 2x™) = L(B) of a regular
bargaining basis B = (X, r), where w = (wy, * -+, wy) is the minimal element of X,
satisfies the inequalities ;™ > w; for7 = 1, -+, N.
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Axtom 2 (Prayer Symmerry). If B = (X', ') is derived from B = (X, r) by
interchanging the players, then &'* = L(B') is derived from z* = L(B) by inter-
changing the players.

Axrtom 3 (TypE SymmETRY). If B = (X', R') is derived from B = (X, r) by inter-
changing the types h and 7 of player 1, then «’'* = L(B’) is derived from z* = L(B)
by interchanging the types % and j of player 1.

Axrtom 4 (Erriciency). The solution 2™ = L (B) of a bargaining basis B = (X, r)
has the property that there is no point z in X with 2 = 2* and with 2; = z.*
forc=1,---,N.

Axtom 5 (Linear INvariance). If B = (T'(X), r) is derived from B = (X, r)
by application of the system T = (T4, ---, Tx) of order-preserving linear utility
transformations, then L(B') = T (L(B)).

Axiom 6 (IRRELEVANT AvternaTivEs). If B = (X, 7) and B = (X', r) are two
bargaining bases with X’ € X and L (B) € X then L(B') = L(B).

Axtonm 7 (Serirring Tyems ). If B = (X7, 7)1 1s derived from B = (X, r) by splitting
type 7 of player 1 into two types with probabilities » and 1 — », then 2% = L(B)is
derived from 2™ = L (B) by splitting type 7 of player 1 into two types.

Axrtom 8 (Mxing Basic ProBaBiniry MaTrices). If B = (X, r) and B = (X,
have the same solution vector L (B) = L(B’) and if +’ has as many rows and as many
columns as r, then for every B" = (X, ") with " = vr + (1 — v)r, where vis a
probability with 0 < » < 1, we have L(B”) = L(B") = L(B).

The solution function L™ satisfies the axioms. In the following we shall show that the
solution function L*, which maximizes the generalized Nash product, satisfies Axioms
1 through 8.

Obviously =™ > w must be true for the conditional payoff vector which maximizes
the generalized Nash product for a regular bargaining basis. Thus L* satisfies Axiom 1.
The generalized Nash product does not change if the players or two types of one player
are interchanged. Therefore, L™ satisfies the symmetry Ax10ms 2 and 3 It is also clear
that Axiom 4 is satisfied, because any x E X with z # z* and z = 2™ would be asso-
ciated with a higher Nash product than z*. The solution function L™ satisfies Axiom 5
because the order-preserving linear transformation 7' = (T, ---, T), defined by
equations (8.8) and (8.9), transforms the generalized Nash product = of equation
(8.2) into the quantity

9.1) 7 = I~y (@ut: — aaw;)® = rMimy o,

and consequently maps the solution of B = (X, r) 1nt0 the solutlon of B' = (T'(z),r).

Axiom 6 is satisfied because the payoff vector ™ = L*(B), maximizing the gen-
eralized Nash product = over the set X, maximizes the same product = also over any
subset X' of X, if 2* ¢ X'

Axiom 7 is satisfied because if B = (X', ") is derived from B = (X, r) by splitting
type 7 of player 1 into two types with the probabilities » and 1 — v, then the generalized
Nash product = associated with any payoff vector z in B will be identically equal to
the generahzed Nash product =" associated with the corresponding payoff vector z
in B', since

(9 2) ‘1l' = Hf:ll (x',- —_ 'w',-)”" = H§a1 (xi - wi)“"' = .
This follows from equations (8.10), (8.11), (8.12) and from the fact that by equations
(8. 13), (8.14), (8.15), and (8.16), the marginal probabilities Py, + -+, p'xy1 associated

with #" and the marginal probabilities p;, -« -, px associated Wlth r are related as
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follows:

9.3) pi=p; for 4=1,---,5—1,
(94) P+ i = i,

9.5) pi=piy for 1=44+2 -+, N+1.

In order to prove that L™ also satisfies Axiom 8, we shall look at the logarithm of
the generalized Nash product . If 2* maximizes = for B = (X, r) then we must have

(9.6) Z§=1P-‘10g (@ — wi) > Z':Y=1pi log (z: — w:)

for every z € X with z # z*. As 2™ = L*(B) = L*(B’), a similar inequality holds
also for the bargaining basis B' = (X, ¢’), so that

9.7) Doinpilog (@ — wi) > Doiip’ilog (v — w)

for every z € X with z 5 2. Here the quantities p’y, - - - , p’w are the marginal prob-
abilities associated with . The marginal probabilities for #” of Axiom 8 are computed as
follows:

(9.8) pi=wpi+ (1 —o)p; for ¢=1,---,N.

Now, multiplying (9.6) by v, then multiplying (9.7) by 1 — », and then finally adding
up the resulting two inequalities and using (9.8), we obtain:

9.9) ap"ilog (@ — wi) > D up”ilog (T — wi)

or every z € X with & s a* Therefore, vector 2™ maximizes the Nash product =
also in B” = (X, r"), in accordance with Axiom 8.

10. The Main Theorem. Characterization, Existence, and Uniqueness of the Solution

Characterization of L™ by the Azioms 1 through 8. In the preceding section we have
already proved the first half of the following Theorem:

TaeoreEM. There is one and only one solution function which satisfies Axioms 1
through 8, namely the solution function L, which maximizes the generalized Nash product.

We must show that L* is the only solution function satisfying Axioms 1 through 8.
In order to do this, we shall prove several lemmas in which we shall make use of the
following definitions. A bargaining basis B = (X, r) is called linear, if the equilibrium
set X can be described as the set of vectorsz = (1, - - - , zx) satisfying the inequalities

(10.1) x; =z w; for ¢=1,.--, N

and

(10.2) D iami <0,

where a;, - -+, ay are positive constants. A special case is the set X" defined by the
inequalities

(10.3) 2,20 for ¢=1,---,N

and

(10.4) 2 s 2.

Given any basic probability matrix r, the bargaining basis B" = (X", r) will be called
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the norm basts of r. These norm bases will be important for the proof of the Theorem.
Obviously any regular linear bargaining basis can be obtained from some norm basis
by using an order-preserving linear transformation 7.

Levma 10.1. Let r be a fized basic probability matriz and let R be the set of all reqular
bargaining bases B = (X, r) with this basic probability matrix r. Let L be a solution func-
tion which satisfies Azioms 1,4, 5, and 6, and let e = L(B") be the solution of the norm
basis B" = (X", r) of r. The components of this vector e = (e1, + - , ey ) will satisfy the
conditions:

(10.5) e; >0 for ¢=1,---,N
and
(106) Dre = 2.

Furthermore, if «* = L*(B) s the solution of a bargaining basis B = (X, r) in R,
then x* is the uniquely determined conditional payoff vector which mazimizes the product
(107) Te = Hiy=1 (x,- - w;)"'

over the set X. Here w = (wy, - - - , Wy ) denotes the minimal element of X.

Proor or THE LEMMmA. The inequality e; > 0 follows from Axiom 1 because ¢ is the
solution of B". Equation (10.6) is a consequence of Axiom 4.
The product 7, assumes its maximum at the same point as does the function

(10.8) log me = D imyeilog (&i — wi).
In the case of B" = (X%, r) we have

(10.9) log me = 2 i~16;log z;.
Maximizing this function under the constraint

(10.10) 2tz =2

yields the necessary conditions

(10.11) ei/ri =N for 7=1,--- N,

where )\ is the Lagrange multiplier. The solution of the set of equations (10.10) and
(10.11) is & = e. Since log . is strictly concave in z, the product 7, assumes its maxi-
mum over X" at exactly one point, namely at # = e. This shows that e = L(B")
maximizes =, for B".

Any regular linear bargaining basis in R has the form B = (T (X"), r) where
T = (T1, ---, Ty) is an order-preserving linear utility transformation. Therefore, the
product . for B is nothing else than the corresponding product for B” multiplied by a
constant positive factor. Consequently, the product , for B is maximized by 2™ = T (e).
Thus, in view of Axiom 5, the conditional payoff vector 2™ = T (e) is the solution of B.
This shows that #* = L(B) is maximal with respect to =, for every regular linear
bargaining basis B.

Consider an arbitrary bargaining basis B = (X, r) in B. Let w be the minimal
element of X and let z* be the point where the product 7, assumes its maximum over X.
Let 7" be the value of m, for z = z*. The hypersurface H consisting of all points z for
which we have 7, = =" can be represented by the equation

(10.12) 2?;1 €; log (931; - w,-) = log 1l'e*.



P-102 JOHN C. HARSANYI AND REINHARD SELTEN

The equation of the hyperplane H* tangential to this hypersurface H at the point
z =g is

(10.13) Doimi (i — 2 )es/ (2 — wi) = 0.

Let X* be the set of all points « satisfying the conditions

(10.14) vz w; for i=1,+--,N

and

(10.15) D mie/ @ — w) £ D wite/ (x — wi).

Since the quantities e;/ (z;* — w;) are all positive, B¥ = (X*) r) is a linear bargain-
ing basis in R. Obviously = 2™ is the point where , assumes its maximum for B¥,
Therefore, B* has the solution 2 = L (B¥).

Now X is a subset of X*. This can be seen as follows. Assume that X contains a point
y outside X*, The straight line which connects y with z* contains a point = 2° above
the hypersurface H and for this point z” the product , is greater than ,*. This follows
from the strict concavity of the left side of the equation (10.12) defining H. Hence,
because of the convexity of X the point ° must be in X. Since =,* is the maximum of
me over X, this is a contradiction.

Since X is a subset of X * it follows from Axiom 6 that B = (X, r) and B* = (X* 1)
have the same solution 2™, This completes the proof.

Lemma 10.2. Let L be a solution function satisfying Axioms 3, 7, and 8. Then the
following is true: If B' = (X', 1") is derived from B = (X, r) by dividing type j of player 1
indo two types, then L (B") is derived from L (B) by splitting type j of player 1.

Proor or LEMMA 10.2. We must have z;* = 2,51 fora’* = L(B’) because z’; = 2'j41
holds for every z 6 X’ and «* must be an element of X’. Consider the bargaining
basis B” = (X”, ") which is derived from B" = (X', r ) by 1nterchang1ng the types
Jandj -+ 1 of player 1. In view of Axiom 3 we must have x,+1 = x, *and z]* = aqfl for

g% = LB )andz"" = L(B”) We know already that z;" = z}1; . Consequently, we
have :cf* = x;'fl = 9,54 = x3+1

By the manner in which B’ = (X', ") is derived from B = (X, r) it is clear that we
have X" = X' Consider the basic probability matrix " = & + 4" and the bargaining
basis B* = (X', 7°). In+” the rows j and J -I— 1 of v are interchanged but apart from
that there is no difference between #" and . Obviously ° is the basic probability
matrix which results if type j of player 1 in B = (X, r) is split into two types with
probabilities # and . Therefore, B* = (X', #°) is the bargaining basis which is derived
from B = (X, r) by splitting type j of player 1 into two types with probabilities
and . Consequently, by Axiom 7 the solution L (B”) is derived from L (B) by splitting
type j of player 1 into two types.

We know that X” = X’ is true and we have proved L (B") = L(B’). Therefore, it is
possible to apply Axiom 8 to B’,B”,and B®. This yields L (B°) = L(B’). Consequently,
L(B') is derived from L (B) by splitting type j of player 1 into two types. This com-
pletes the proof of Lemma 10.2.

Lemma 10.3. Let L be a solution function satisfying Azioms 1 and 3 through 8 and let
e(r) = L(B") be the solution of the norm basis B" of r. The vector function
e(r) = (er(r), -+, ex(r)) has the following property:

If ' is derived from r by dividing type j of player 1 or by dividing typej — K of player 2
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then the following are true:

(10.16) () = e(r) for i=1,---,7—1,
(10.17) e; () 4+ e () = e;(r),
(10.18) ei(r') = e;4(r) for i=7+4+2, -+, N+ 1.

Proor or LEmMA 10.3. We shall assume that j = K. The case where j is a subplayer
of player 2 can be treated analogously. We can derive a bargaining basis B’ = (X', ")
from the norm basis B” = (X7, r) by dividing type j of player 1. In view of Lemma 2
the solution ¢’ = L (B’") must be derived from e(r) by splitting type 7 of player 1.
On the other hand, ¢ = L(B’) must be equal to the conditional payoff vector z’
which maximizes the product

(10.19) T = Dt @)7%"
subject to the constraints

(10.20) z; =2

and

(10.21) Do s = 2

This follows from the definition of B’ and from Lemma 10.1. It can easily be seen
that this product w, of equation (10.19) assumes its maximum at the point
7 = @1, -+, 2'y) with

(10.22) 'y =e@) for ¢=1,---,5—1,
(10.23) ¥y =i = 60") + ena (),
(10.24) o' =e_,(') for i =47+2 --,N+ 1.

But we already know that 2’ = L(B’) = ¢/, where ¢’ is the payoff vector obtained from
e (r) by splitting type j of player 1. This fact together with equations (10.22) to (10.24)
shows that the lemma is true.

Lemma 10.4. Let L be a solution function satisfying Axtom 1 as well as Axioms 3 to
8. Let

pl
(10.25) r o= (p >

be a basic probability matriz with K rows but only one column. Then each component e; (r)
of the vector e (r) will be a function of the one quantity p; alone so that we can write

(1026) ei(’)”) = go(pz) fm' 7 = 1’ S, K’
and the function ¢ will be independent of <.

Proor or LEmmA 10.4. The matrix r can be derived from the 1 X 2 matrix

(10.27) v =< P )
1—-m

by successive applications of the operation of dividing a type j of player 1 with j > 1.
Therefore, in view of equation (10.16) in Lemma 10.3, the first component e; (r) of
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vector e(r) will always remain unchanged under these operations. Hence, e:(r) is a
function of p; alone so that we can write e (r) = ¢ (p1).

If we interchange the types 1 and j in the norm basis B” = (X", r), we obtain the
norm basis B” = (X", 1"). Since B" and B” have the solutions ¢(r) and e (r’), Axiom 3
yields

(10.28) e;(r) = er(’) = o(p;).
This shows that the lemma is true.

Lemma 10.5. Let L be a solution funciion satisfying Axioms 1 through 8. Then we have
¢(@) = p.

Proor or LEmma 10.5. Consider the basic probability matrix +” with one row and one
column and the single element 1. The norm basis of 7’ remains unchanged if the players
are interchanged. Therefore, it follows from (10.7) in Lemma 1 and from Axiom 2 that
we have

(10.29) LB =e@) = (@1,1).
This yields

(10.30) (1) = 1.

The matrix

’ pl
(10.31) r =P
D3

can be derived from

(10.32) = ( Pt pe )
1 —p1— pe

by dividing type 1 of player 1. Therefore, it follows from equation (10.23) in Lemma 3
that ¢ has the property

(10.33) (1 + p2) = o(p1) + o (P2).

In view of equations (10.30) and (10.33), we must have ¢ (1/Z) = 1/Z for every integer
Z and consequently also

(10.34) 0(R/Z) = 2/Z

for every positive rational number z/Z between 0 and 1. In view of inequality (10.5)
in Lemma 1 we have ¢(p) > 0 for p > 0. Therefore, it follows from (10.33) that
o(®") > ¢(p) holds for p’ > p.

There can be no p with0 < p < 1 and ¢ (p) 5 p. This can be shown as follows: Let
p be sueh a number. Consider the case ¢ (p) < p. We can find a rational number p’ with
o(p) < p’ < p. For this p’ we would have ¢ (p’) > ¢ (p) in spite of p’ < p. We get a
similar contradiction for ¢ (p) > p; for a rational p’ with ¢ (p) > p" > p we would have
o(@’) < ¢(p) in spite of p" > p.

Proor or THE THEOREM. In order to prove the Theorem, it is sufficient to show that
e(r) is equal to the vector p = (p1, * -, px) of the marginal probabilities of r. This
follows from Lemma 1 and from the definition of L*. If 7 is a K X 1 matrix, then
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e;(r) = pifori =1, - -+, K follows from Lemma 4 and Lemma 5. In view of equation
(10.6) in Lemma 1 we also have ey (r) = py = 1.

Any K X M matrix can be derived from a K X 1 matrix by successive applications
of the operation of dividing a type of player 2. In view of equation (10.16) in Lemma 3
these operations do not influence the first K components of e. The marginal probabilities
D1, -+, Px do not change either. Therefore, we have

(10.35) e‘-(T) = p; for ¢ = ]_, SRR K,

for every K X M matrix r.

By Axiom 2 equation (10.35) must hold also for 7 = K + 1, ---, N. This can be
seen as follows. Consider the norm basis B” = (X , ') which is derived from the norm
basis B" = (X”,r) by intlerchanging the players. The solution e () of B" is derived from
the solution e(r') of B” by interchanging the players. The first M/ components of
e (+") must be equal to the M/ marginal probabilities of the columns of r. This proves the
Theorem.

11. A Continuity Property of the Solution

We now propose to show that the solution has the continuity property mentioned
in §7.

Lemua 11.1. Under the Hausdorff metric, the solution L™ (B) depends continuously on
the equilibrium set X of the bargaining basis B = (X, r).

Proor. Let V. be the e neighborhood of L*(B). Let II* (B) be the value that the
generalized Nash product = takes at L™ (B). Let v be a small positive number to be
specified later. Let H, H, and H_, be the hypersurfaces consisting of all points x for
which the generalized Nash product = takes the value II* (B), II* (B) 4+ v, and IT* (B)
— v respectively. Let H* be the hyperplane tangent to H at the solution point L*(B).
Finally, let H,* be the hyperplane parallel to H* and tangential to H,, .

We can always choose v in such a way that the set 4, of all points  lying above the
hypersurface H_, but below the hyperplane H.,* is fully contained in V. .

Let M; be the family of all sets X’ having the general properties of an equilibrium
set and a Hausdorff distance less than é from X. We have to show that for every e > 0
we can find some 6 > 0, with the property that for any bargaining basis B' = (X', r)
with X’ € M;, the solution L*(B’) lies in V..

We can always choose  in such a way that any set X’ € M; will have some points
above H_, and no points above H,*. The latter fact follows from the convexity of X.
Therefore, for any B = (X', r) with X' € M, the solution L* (B') must lie in the set
A, , and consequently also in V..

12. Irregular Bargaining Bases

Extension of the solution function L™ to irregular bargaining bases. We have defined
a solution function as a function which assigns a solution to every regular bargaining
basis. Irregular bargaining bases have been excluded from the region on which a solu-
tion function is defined, because it is convenient to develop the axiomatic theory in
terms of this definition. This does not mean that the limiting case of irregularity is
without interest. Therefore, in this section we shall extend the definition of L™ to ir-
regular bargaining bases.

Let B = (X, r) be an irregular bargaining basis, where w is the minimal element of X.
Consider a subplayer 7 in B for whom no z € X with z; > w; can be found. Let J be the
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set of all subplayers j with this property. We call these subplayers #rregular and call the
other subplayers regular. Because of the convexity of X there are elements in z with
z; > w; for all regular subplayers <. Therefore the product

(12.1) 7 = Iy, iqr (0 — wi)™
will assume its maximum over X at a uniquely determined conditional payoff vector

z* € X, with ;% = w; forj € J and 2" > w; for s ¢ J. We define the extension of L*
to irregular bargaining bases by

(12.2) L¥(B) = z*.

We call a function L which assigns a conditional payoff vector z € X to every bar-
gaining basis B = (X, r) an extended solution function. It can easily be seen that the
extended solution function L™ satisfies Axioms 1 through 8. The same reasoning which
was used to show that the unextended solution function L™ satisfies Axioms 1 through 8
can be applied almost without change to the extended solution function.
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