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THE THEORY OF INFINITE GAMES!

By SAMUEL KARLIN
(Received April 7, 1952)
(Reccived January 8, 1953)

This paper develops in an abstract way the theory of infinite games. The
kernel is replaced by an operator and the distributions by suitability chosen
Banach spaces; the complete theory of the determinateness of a game is studied.
Both weak and uniform upper and lower values are introduced and relations
among them are obtained, (see Theorem 1 and lemma 7). A study of Bayes
solutions is given and an analysis of the change of the value under perturbation
of the operator is carried out. Some new examples of determinant games are
presented to illustrate the general theory. A further discussion on non-linear
games and games with constraints is given. Games invariant under groups of
transformations are discussed. The usual terminology of the theory of games
developed in the Annals of Mathematics Studies 24 is freely employed. A future
paper on the applications of this theory to statistical decision functions is in-
tended.

§1. Preliminaries and notation

Let ¢ and § denote Banach spaces consisting of measures; more precisely,
subspaces of abstract (L) spaces in the sense of Kakutani [1]. The reader may
find it helpful to keep in mind any of the concrete examples given below. Let F
and S be Banach spaces of functions; specifically, subspaces of abstract (M)
spaces [2]. As usual, R* and S* will denote the conjugate Banach spaces. It is
known that (L) spaces and (}) spaces are mutually conjugate spaces of one
another although non-reflexive.

Let K denote a closed cone of elements in R, i.e., if x, y € K, then \e 4+ uy ¢ K
for A, p = 0, and if x, —x both belong to K, then z = 0. Similarly, I’ will denote
a closed cone in ¢. The dual cone K* in R* is defined as the set of all f in RB*
with the property that (x, f) = 0 for every z in K. [(x, f) is the value of the
functional f acting on the element x. Throughout this paper the inner product
notation will be employed.] Also, let @ be a closed cone contained in K*. It is
assumed that in S a closed cone L is given and that P is contained in L*. We
also suppose that K and L possess interior points % and ». This means that there
exists a sphere about u and v lying entirely in K and L. This implies the existence
of a number p such that for any g ¢ K* with || g || = 1 that (u, g) = p. In view
of this, nothing is lost by considering a cross section of K*. More precisely, let
K* be the section of the cone K* where (u, g) = 1. Q, is defined analogously
with the section taken relative to Q. Finally, P, is constructed in a similar
fashion.

! This work was done partly at Rand and partly with the help of funds provided by the
O.N.R. at Princeton.
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372 SAMUEL KARLIN

A schematic diagram of the chosen underlying spaces is given.

<s R > <P K )
S(ce*) F(CR*) L(cP*) Q(cK¥*)
Space Array Cone Array

The corresponding entry in the cone array designates the cone chosen in the
corresponding entry in the space array. For example, K is the cone selected in R.

The generic elements of each of these spaces are indicated by ({/ :;) ,ie, f, f

will denote points of ¢, ete.
A few typical examples of such spaces and cones are in order.
Examples of ¢ or F are:
(a) (V)—The space of functions of bounded variation on [0, 1].
(b) (L)—The space of integrable functions on [0, 1].
() (F)—The space of finitely additive set functions of bounded variation.
(d) (D)—The space of absolutely convergent series.
For the cone P in these respective spaces, we may take the set of positive meas-
ures.
Examples of R and S are:
(') (M)—Bounded Lebesgue measurable functions.
(b’) (C)—Continuous functions.
(¢") (C™)y—Continuously = times differentiable functions on the unit interval.
The cone K may be taken to be respectively (a”) all elements of (M) non-
negative almost everywhere, (b”) non-negative elements of (C') and (¢”) all ele-
ments of (C") for which ™ (¢) = 0 with z”(0) = 0 for s = 1, - ,n—1.
Other examples will be considered later. It is to be remarked that with respect
to any cone there can be defined a partial ordering. Specifically = 0 if and
only if z ¢ K. Similarly, y = z shall mean y — = = 0. Throughout the sequel,
it is to be understood that any partial ordering used is relative to the prescribed
cone in the space.

§2. Definitions

Let A and B denote bounded linear operators mapping ¢ into R. Suppose the
conjugate mappings A* and B* take R* D F into S. Therefore, for f in P and
gin Q, (A*g, f) = (9, Af) and (B*g, f) = (g, BF) are well defined. We also assume
that for g in @, and f in P, that (g, Bf) = 6 > 0. This assumption is not really
essential but is given for simplicity of exposition. In problems dealing directly
with Infinite Games this requirement will always be fulfilled. In the theory of
linear programming, this mild restriction can be dispensed of without difficulty.

A game is said to be defined whenever the operators 4 and B and the conical
sections P, and @, are given. The set of elements of P, shall be referred to as
the strategies of player I and similarly Q, comprises the strategy set of player II.

DEeriniTION 1. Let O,(4, B, P,) be the set of A for which there exists an fin
P, such that Af = ABf (Af — \Bfis in K). Put A,(4, B, P) = sup A for A in &, .
Note that A, depends only on P but not on Q.
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DgrFINITION 2. A, and @, are defined in a similar manner with the above in-
equality reversed and sup replaced by inf.

DeriniTIiON 3. Let Q. = [\ | for any g1, -+ - ¢n € Q. there exists an f in P, with
(Af, g:) = AN(Bf, gi) for ¢ = 1, ---, n]. Clearly, f may depend upon g;. Put
(P, @) = sup A for X in , . Similarly, 2, and ), are defined.

DErinITION 4. The set Q. is said to be sufficient relative to P, if whenever
xz = Af — \Bf for some fin P, and (g, z) = 0 for every g in @, , then 2 isin K.
Similarly, P, is sufficient if for any y = A*¢ — AB*g with gin @, , then (y,f) = 0
for every f in P, implies that y is in L. This must be verified for any real \.

DEFINITION 5. Q,(A* B¥), Q,(4*% B*) --- and A} = \,(4* B*) --- are de-
fined analogously in terms of the conjugate mappings.

An example of two sets sufficient with respect to X = the set of all continuous
functions non-negative on the unit interval are: The space of all discrete measures

and the space of all absolutely continuous measures. That is, if f z(t) dy(t) = 0

for all discrete measures y(t), then clearly xz(t) = 0. Also, if f z(t)y(t) dt = 0 for

all absolute continuous measures given in the form of integrable functions y(t),
then z(¢) = 0.

An interpretation of the set &, and @, are in order. Let one interpolate a payoff
(Af, 9)/(Bf, g) with f ranging over P, , the set of strategies of player I, and ¢
over Q. which represents the choices available to player II. If A is in Q,(4, B),
then a strategy fo e¢ P, exists guaranteeing player I the amount A, irrespective
of any ¢ that player II uses. Indeed, Af, — ABf, = 0 (in K), and thus as
g € Q. C K* we infer (Afo, g)/(Bfo, g) = X for all g in @, . If @, is sufficient,
then X, is the maximum amount which can be achieved within any ¢ by player I.
In an analogous manner if \ in &, , then player I can secure for himself the
amount A against any alternative prescribed in advance. In other words there
exists an effective response against each g separately which secures the amount A.

§3. Existence of a value

Throughout this section we assume that P, and @, are sufficient, unless other-
wise stated.

LeEMMmA 1.
. .o (g, Af)
A = b R
®) sup Inf 1B
(b) Y = inf sup (g, 47)

0€Qy fePy (.q_! B.f) ’

Note that (¢, Bf) = § > 0 by assumption and hence the ratio is always defined.

Proor. Let X = X, — ¢, then for some f, ¢ P,, Afo — ABf, = 0. But as
g € Q, C K*, this implies that (4fo — ABfy, ¢) = O for every ¢ in Q.. Or,
(Afo, 9)/(Bfs, g) Z X, — & for every g. Hence, infocq, (Afo, 9)/(Bfo,9) Z X — ¢
so that supyer, infyo, (Af, g)/(Bf, 90 2 A — &. Now as the left-hand side is
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independent of ¢, we deduce that Supyser, infoeq, (Af, 9)/(Bf, g) = X, . Let now
X = X + ¢ then X\ is not in (4, B) and hence for each fin P, the inequality
Af — ABf z 0 fails. Thus by the sufficiency of Q, there exists a gr in @, depend-
ing on f such that (Af, g;) — A(Bf, g;) < 0, or (Af, 91)/(Bf, gs) = \. This yields
that inf,.q, (Af, 9)/(Bf, g) < A for every fin P, , whence sup;.p, inf,.qo, (4f, 9)/
Bf,g) EN=X+c Ascis arbitrary, the proof of formula (a) of this lemma
is complete. The proof of part (b) is similar.
Remark. Without any assumption of sufficiency the following is true:

c o (g, Af) _ . (g9, Af) _ |«
As = sup inf -2 < inf sup = = A
7B oca, (g, Bf) = sea. rers (g, Bf)
Proor. The outer two inequalities have been established in the proof of the
lemma. The inner inequality is standard but we prove it for completeness. In
fact,

@A) _ (5,40
0, BN = 708 (0, B

which yield

(g A (g, A7)
f 22 < inf AR
vean @ B = oeon 1o (g, BF)

This is valid for any f in P, and thus the inequality remains true if SUpfer, 1S
taken on the left-hand side.

Lemma 2. If P, is sufficient, then \¥ < R, .

Proor. Let A = X\, + & which is clearly not in ., . Thus for some finite set
g1, ", gu € @, 1o f in P, exists such that (4*g; — AB*g;, f) = 0 for every
t =1, .-+, n. Consider the image M in n dimensional space of f ¢ (P,)

[F— (&} = {(A*: — \Bg:, NH}].
M is convex, contains no interior points of the positive cone 7, hence we have a

non zero functional 1 = (»;) for which (M) < 0 and n(I) = 0 (thus 7, = 0),
and

0 2 3 ni(A%g: — NB¥g:, f) = (4% nigs — AB*3_ nigs, f)

for all fin P, . Since #; 2 0, D nig; is in Q and has a positive multiple in @, ,
and hence X € Q, . Therefore, \¥ < A\ = X, + ¢ ; as € is arbitrarily small, the
lemma is proved.
Lemma 3. If Qu ¢s sufficient, then )5 < X,. The proof is similar to that of
Lemma 2. On combining Lemmas 1, 2, and 3 we get
TaEOREM 1. If P, and Q, are sufficient, then
N f(Afrg)z)-\ >A:.

: (Af, )
X = A = inf su /270 > sup in s =
- 0eQu fePg (Bf, 9) /ePI: oeau (B, 9)

A more precise inequality will be given later.
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DerixitioN 6. The game G(A, B, P, Q) is said to be determined or to have a
value if \¥ = X,. When @, and P, are sufficient, this coincides with the usual
meaning of value.

Some criteria will be now given to insure the existence of a value.

DEeriNiTION 7. The weak topology of a set H in a Banach space relative to a
set G in the conjugate Banach space is defined as follows: A neighborhood
Uxe 3 %1, -+, Yne) 1s given as [z |z ¢ H with | (x, y;) — (2o, i) | < €]. This
may not define a Hausdorff space unless there exist enough elements in G to
distinguish points of H. A set H of elements is said to be weakly compact rela-
tive to @ if under the weak topology on H induced by G, the space H constitutes
a bicompact set.

LemMa 4. If Q. 1s sufficient and the set Hy of elements Af — NBf for f in P, is
weakly compact relative to Q,, for any X, then A, = A, .

Proor. It is evident from the definition that A, < A, . Let A = X\, — ¢ and
suppose that for no f in P, is Af — ABf in K. Since @, is sufficient we deduce
for each f there is a g in Q. with (Af — ABf, g) < 0. Let G(g) = [Af — ABf|f
in P, and (Af — MBf, g) < 0]. The set G(g) is an open set in the weak topology
of H relative to @, . Furthermore, the set of all G(g) cover H and hence there
exists & finite number G(g1), G(g2), - - - , G(g») which cover H. This contradicts
the definition of A, for this implies that for each f in P, (Af, g:;) = MBf, ¢.) is
violated by some g; for A, — & = .

In a similar manner it is shown that

Lemwma 5. If P, s suffictent and the set for each N of A*q — AB*g with g in Q.
is weakly compact relative to P, , then \& = \n .

Summing up, we have shown

TuroreM 2. If Q, and P, are sufficient, then the value exists if either

{a} The set Hy of elements Af — ABf for f in P, and any N ts weakly compact
relative to Q. or

(b) The set Gy of elements A*g — NB¥*g for g in Q, and any \ 7s weakly com-
pact relative to P, .

Remark. The stronger condition of weak bicompactness can be replaced by
weak sequential compactness provided, however, that a weak separability con-
dition 1s added. For a full discussion of this phenomenon see [3].

Another criterion very useful later is the notion of conditional compactness.

DEeFINITION 8. A set H of elements is said to be conditionally compact relative
to functionals of G if whenever the metric p(2;, 22) = supsee | (f, 1) — (f, 22) |
is introduced for z,, . in H the space becomes conditionally compact. It is
understood we have identified points for which p(x; , z2) = 0.

It is important to note that a covering of G' by open sets U, in this metric
space does not imply the existence of a finite covering. This is due to the lack
of completeness of the metric space.

LemMa 6. If P, and Q, are sufficient and M, = set of elements Af — N\Bf for
fin P, is conditionally compact relative to Q, for each \, then X\, = A, . (The as-
sumption (Bf, g) = § > 0 is essential here.)
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Proor. The proof proceeds as in Lemma 4. Suppose to the contrary
that A\ = X — & > X,. Then for any f in P, there exists a g with
(Af — (Ao — €/2)Bf, g) < 0. Let G(g) = [h|h = Af — (A — &/2)Bf and
(h, g) < 0]. It is clear that the G(g) are open sets in the metric space My and
cover My, . Let f be in the completion ofi My, .2 with respect to the metric.
Thus there exists an f in P, such that | (f — Af + (Ao — &/2)Bf, 9) | £ # uni-
formly for g in @, . Choose go so that (Af — (A, — 3¢/4)f, go) < 0 which is pos-
sible as A, — 3&/4 > X, . As (Bf, g) = 6 for all fand g, we find that v < ¢/4(Bf, go)
for n chosen less than &§/4. Thus, it follows that (f, @) =< 2 +
(Af — (Ao — €/2)Bf, go) = (Af — (Ao — 3¢/4)Bf, go) < 0. Hence, the G(g)
covers the completion as well which is now unconditionally compact and hence
a finite subcovering must exist. Just as in the proof of Lemma 4 this is impos-
sible.

Lemma 6 is a very useful result for applications. The corresponding result
employing only weak sequential unconditional compactness does not necessarily
imply the existence of a value.

We now obtain an expression for A, and A\ resembling formulas (a) and (b)
of Lemma 1. The following expressions will be established. If P, and Q, are
sufficient, then

(Afi, @)

A = supinf sup -2
- p 9 l<tgn (Bfug)

and

s (41, g9

ho = ISP P (BF )
where F denotes the collection of all finite sets of P, and G consists of the set
of all finite sets of @, . In the above context (fi, - - f.) represents a typical
element of F and (g1, - - - , gm) denotes an element of G. The proof of the above
facts is similar to Lemma 1. We present the proof only for A% . To this end, let
X\ = A} 4+ &. For any finite number f;, - - - , f. there exists a g depending on f;
with

(A%, 1) - (A*g, £:)
! A Consequently, su WE SN
(B*, f) = e (B, 1)

Also, inf, supy,.....;, (A*g, f:)/(B*g, f) = \. Since this is valid for any finite col-
lection f1, -, fn we obtain, sups inf, sups,....;; = As + & On the
other hand if we let A = MY — &, then there exists a set (fi, ---,fa) for
which sup; (4f:, g)/(Bf:, g) = A for every g in @, . Since this holds for all g, we
get inf, sup; (Af:, 9)/(Bf:, g) = \. A fortiori, supr inf, sup; (Af:, g)/(Bf:,9) =
As — ¢. The proof is thus complete.

LEMMA 7. If P, and Q, arc sufficient, then Ay = Xy £ Ar = Ao .



o

THEORY OF INFINITE GAMES 377

Proor. The formula obtained above gives easily

. (Afi, 9) o ¢ A, 9)
A = sup inf su (4f;, su su n ?
- rp 10 P(fy. p o fn) (Bf., 9) F=<f1'-p (Bfn g)
Af,9) _
= su 1nf 2L = ).
£ B9

Similarly, A¥ = X, invoking Theorem 1 furnishes thus the conclusion.

Some other conditions which are easily applied under which a value will exist
are given in

TreoreM 3. If P, and Q, are sufficient, then the value will exist if

(a) A and B are weakly compact operators (map bounded closed sets into
weakly compact sets).

(b) A and B are completely continuous operators (map bounded closed sets
into conditionally compact sets).

Proor. A direct application of Theorem 2 and Lemma 6.

A more detailed analysis of conditions of the type given in Theorem 3 are
discussed in [3].

We now establish the proposition that every game can be imbedded in a game
with a value by enlarging P and @ appropriately and extending A and B to the
second conjugate operations.

THEOREM 4. Every game G(A, B, P, Q) can be extended to a game with a value.

Proor. Replace Q, by K and P, by L . Clearly K’ is contained in R* D &
and L; is contained in S*. Also, replace A and B by A** and B** which map
S* into R** and are the conjugate maps to 4* and B*. The notion of positivity
in R** is defined by the cone K** to which K* is clearly sufficient as a result of
the definition of the dual cone. Similarly, L is sufficient for L*. Furthermore, as
L* is conjugate to L and thus L} is a weak*compact set (compact in the weak
topology viewed as functionals), the image A**f — \B**f for f in L} is weakly
compact relative to K*. Thus Theorem 2 can be applied and the conclusion
follows.

This result seems only of theoretical interest for it is extremely difficult to
apply in any concrete situation.

It is easily established from the definitions and properties of

_— . (Af, ) (4f, 9)
ho=supint By BF. 9)

that the inf can be replaced by min and sup by max if Y is in @, or X, is in &,
respectively. A criterion under which this will be so is given in the next lemma.

Strategies f in P, for which Af = X.Bf are called optimal strategies or solu-
tions or minimax strategies. The same terminology applies to strategies g for
which A*g < A¥B*g. It is immediate to verify that the set of optimal strategies
for each player is convex and closed.

e
K

A, = inf sup
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Lemma 8. If P, is weakly compact relative to S, then X, is in Q, .
Proor. Consider the set A, of all fin P, with 4, = [fi Af — <)'\s - %)Bf 2 0] .

It is easily verified that 4, is weakly closed non-void and 4; D A4, D 4; --- .
As P, is weakly compact, we deduce that I' = NA, = 0. Let f, be in T, then it
follows that Af, — A.Bf, = 0 which shows that X, is in £, .

Lemma 9. If Q, is weakly compact relative to R, then \Y is in QF .
Proovr. Similar to Lemma 8.

§4. Completeness, admissibility and Bayes strategies

A strategy f in P, is said to be admissible if there exists no other strategy f’
such that (4f, g) = (Af', g) for all g in Q, with inequality holding for at least
one g. An element fo dominates f if for all g, we have (Afy, g) = (A4f, g). A set
T' of strategies is said to be complete if every strategy outside T' is dominated
by an element of I and every element of T is admissible.

THEOREM 5. If the image Af of f in P, is weakly compact relative to Q, , then
there exists a complete system.

Proor. We establish the existence of a complete system. To this end, let the
set Q. be well ordered g1 , g2, - -+ . For any finite set of elements Ja1 ' Ua, the
image of P, into £ under the map f — {£} = {(Af, ga;)} is a convex closed
bounded set which possesses a complete undominated set M, . A point z of a
convex compact set in Euclidean space is undominated if there exists no other
point of C with y = z (this inequality means that each component of z is not
larger than the corresponding component of y). Let T' (ga, , - - - , ga,) be the weak
closure of the inverse image of M ,in A (P,). Put G(ga) = Na,<a T'(gay *** Goi ) Ga)-
Clearly G(ga,) # 0, for otherwise the weak compactness gives

0= Nict TGarc "+ ap 0 9a) = T(Gast, Gayz -+ - a5 §a) 7 0,

which is impossible. Also G(g.) form a weakly closed decreasing collection of
sets and hence I' = G(g,) # 0 again by weak compactness. We assert that
I'™* C T is complete. Let f; be not in T'. Then for any finite number of Gay " Jog
there exists a closed set I'"(ga, *** gay) < T'(gay, *** , gop) Such that for fin
I(gay *** , ger), We have (Af'gar;) = (Afy, ga;)- Proceeding as above, we con-
struct (#'(g.) and finally I  T. Thus, we can exhibit an f’ in TV with (4f, Jo) =
(Afo, ga) for all g, . As fo is not in T and a fortiori is not in IV, it is thus not in
some (G’'(g.) and hence not in some I"(g,,g e gag). Thus for some 92’ , we get
(Af'gat) > (Afo, ga;). This shows that f° is dominated by an element of T.
There may be duplication in T in the sense that there may exist f and f' in T
such that (Af, g) = (Af’, g) for all g. This can be adjusted by considering equiva-
lence classes and then choosing a representative from each class. The resulting
set is called I'*. The definition of I'(ga, , - - , ¢a,) implies that the elements of
T'* are admissible and hence I'* is complete.

We remark that the theorem of Wald on minimal complete systems [4] can
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be slightly generalized by assuming weak separability in ¢ and weak sequential
compactness in f {see [3]}. Our result discards the assumption of separability
and replaces the weak sequential compactness by weak compactness.

We next introduce the concept of Bayes solution. The set of f in P, for which
max; (Af, go) is attained is said to constitute the Bayes solutions with respect
to go . The set of f in P, which reach within ¢ of the max; (Af, go) are said to
constitute the e-Bayes solutions of gq .

LeMMA 10. The set of all admissible strategies is contained in the set of all
e-Bayes solutions, provided that the tmage AP, is weakly compact.

Proor. Let f; be admissible and we assume the contrary that it is not e-Bayes
for any g. Thus for any ¢ there exists an f, such that (Af,, ¢9) = (4fs, 9) + €.
Proceeding in the usual way (see Lemma 2), we show that for any finite number
g1, -+, gn there exists an f such that (Af, g;) = (Afy, 9:) + efori =1, --- | n.
Again, in a similar manner to the proof of Theorem 5 with the aid of weak com-
pactness of AP, , we get the existence of an f such that (Af, g) = (Afy, 9) + ¢
for all g. This contradicts the admissibility of fo .

Lemma 11. (Wald) The set of all admassible strategies coincides with a complete
system.

Proor. This is evident from the definition of admissible strategy and com-
plete system.

Levmma 12. If the tmage AP, is weakly compact and the tmage A*Q, is sequen-
tially weakly compact, then any admussible fo is Bayes for some g.

Proor. In view of Lemma 10 for any ¢ there exists a g. such that
e+ (fo, A*g.) = (f, A*g.) for all f. Let £, = 1/n and apply the weak sequential
compactness of A*Q, . We obtain a g, such that (f,, A*g) = (f, A*g) for all
fin P, .

We now employ a device introduced by Wald [4] to describe Bayes solutions
in terms of games. The modified operator A’ is defined as follows: A'f =
Af — (v, f)Afo . It is now assumed that f, is Bayes for g, .

LeMmuma 13. The set of all minimax strategies for player 1 is contained in the set
of all Bayes strategies relative to gy . Moreover, fo 1s minimazx for player 1.

Proor. We consider (Af, go) = (Af, go) — (Afo, g0) = 0 (Bf, go) = 0 for f in
P, as f, 1s Bayes for go. Thus the value is less than or equal to zero. However,
fo yields A’f, = 0 and thus the value is zero. Hence for any minimax f’ we get
(Af’, g0) = (Afo, go) = max; (Af, go) and this establishes the proposition.

It is clear generally that not every Bayes strategy is admissible; however, the
following simple criterion is often useful. If f, is Bayes relative to go where g, is
interior to @, (interior here means that for any « £ 0 in K, we have (z, go) > 0),
then fo is admissible. Indeed, if f, were not admissible, then there exists an f’
such that Afy < Af’ where it is assumed that @, is sufficient. But this gives
(Afs , 9oy < (Af, go) since g, is interior which contradicts the Bayes property of
fo relative to g .

The converse is not true in general. However, if the space @, of ¢ is spanned
by a finite number of ¢ and if AP, is weakly closed, then if f, is admissible it is
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a limit of f, which are Bayes strategies relative to interior points g in @, . This
result was first achieved by Arrow and Blackwell, but we present a very simple
geometrical proof. In view of the assumption, the set of g can be looked upon
as an n dimensional simplex Q, . We construct the game A’ of Lemma 13 for
which f; is minimax and A’f, = 0 and the value is thus zero. The simplex @, can
be placed in E**' 50 as to be represented as the points where 7; = 0 D r, = 1.

Let T denote the quadrant in Euclidean n + 1 space consisting of those
points where ¢ ¢ R implies {; = 0 for = 1, --- , n 4 1. This is the dual cone
to the simplex @, ; that is the set of all points in E™™* where St = 0 for
every rin @, . If we plot the points V = {(4'f, g;)} in E™*" for each f in P, ,
then the set of all such points is convex closed and does not overlap with T but
touches 7' at points which are the inverse images of optimal f strategies for the
game A’. (For a complete description of this method of analyzing finite games
see [5].) It is asserted now that the set V touches T only at the origin. Let f be
so that (4f, g:) 2 0 = (4'fy, ¢:); but since f, was admissible, we deduce that
(A’f, g) = 0. In particular, if the space P, is also spanned by a finite number
of strategies, then V is polyhedral and touches T only at the origin. Conse-
quently, V and T can be separated by a plane which intersects T' only at the
origin. This plane corresponds to an optimal g strategy for player II which is
interior to the simplex @, . Whence, we conclude that f, is also a Bayes strategy
for an interior g strategy. In the general case, where V is no longer assumed to
be polyhedral, we replace @, by Q< where Q7 = (g |geQuand g = DM nigs

and 5; = 7—1’1) Let T, denote the dual cone. As Q" — Q, and T,, — T the game

corresponding to (P, , T') tends to the game described by (Q, , T). In the game
(P, , T%), we secure the solutions by moving T, along the 45° line until 7T,
touches V. The points of contact come from the optimal f strategies and the
separating planes of T, and V provide the optimal g strategies [5]. Since the
contact point of V and T is unique, it can be verified easily that the origin is
the only limit point as m — <« of any sequence of contact points between T,
and V. For m sufficiently large let f correspond to a contact point of T',, and V'
near fo, i.e. | (4’7, g.) — A’fo, g:) | < . This exists by virtue of the preceding
remark. Since any g strategy for (P,, T%) is interior to Q, , we get that f is a
Bayes strategy relative to an interior g strategy of Q, . We have thus shown
THEOREM 6. If the set Q, of strategies for player 11 is spanned by a Jinite number
of g: and the image of Af is weakly closed, then any admissible f, is uniformly
approximable by an f which is Bayes relative to an interior point of Q, .

§6. Perturbation of value

This section is devoted to studying the effect of change of the operator and
the change of the cone upon the value of the game.

Lemma 14. If A and B are held fived and P’ < P& and QP < QP while K
and L are unchanged, then \" < AP < 2\}® < \*¥@,

Proor. This is immediate for the condition Af — ABf = 0 is independent of
Q. and depends only on the cone P, . Use is made here of Corollary 1 to Lemma 1.
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ReMark. It is to be noted that for purposes of generality one could also vary
K and L appropriately. However, in most applications only the case treated in
Lemma 14 will be used. Results dealing with the effects of changes of K and L
on the value are analogous.

The existence of a value is preserved when the cones P and @ are enlarged,
but may be destroyed when the cones are decreased. For practical purposes it
is desirable to decrease the cones as far as maintaining the value allows. *

DeriniTION 9. (i) A set of operators 4, converges uniformly to A with respect
to P, if A.f = Af uniformly for f in P, , i.e. (4.f, g) converges uniformly to
(Af, g) for all fin P, and ¢ in @, .

(i1) A set of operators 4, converges strongly to A if for each f in P,, then
A.f — Af, i.e., (A.f, g) converges to (Af, g) uniformly with respect to ¢ in @, for
each fin P, .

(iii) A set of operators A, converges weakly to A relative to P, and @, if for
each fin P, and ¢ in @, , then (A4.f, g) — (4, g).

Lemma 15. If A, converges strongly to A,, and if N, is the value A\, of
G(A,, B, P, Q), then lim X\, = X\o. We assume here that Q is sufficient.

Proor. Let Ay — ¢ = \. Then there exists an f, with Aofy = ABf,. As B is

strictly positive and A, converges strongly to 4o, we secure for n = no that

(Ao — An)fo = eBfy. Whence, on combination, we have A.fy = ABf, —
(Ao — A)fo = (Ao — 2¢)Bf, . Thus we conclude that X\, = N, — 2¢ forn = ny,

orlim \, = A

LemMA 16. If A% converges strongly as A*, then Iim A% < Ac .

Proor. Similar to the above proof.

ReMark. Even if both 4, and A% converge strongly to 4, and A¢ and each
A, possesses a value, it does not follow that A, will have a value. This will be
shown later by use of the classical counter example of Ville.

Lemma 17. If A, — A uniformly with respect to P, , then N, — X, , provided that
Q. s sufficient.

Proor. Let A\, = N\, — ¢ and f, be such that 4., = (A, — ¢)Bf, . The uni-
form convergence and sufficiency guarantees an m, such that for n = n,,
(A — 4,)f. = —eBf, . This gives

Afn = (A — Au)fa + Anfa 2 —eBfa + (\a — €)Bfa,

whence Ay = X\, — 2¢ or Ay = lim \,. Combining this with the conclusion of
Lemma 18, we conclude that lim X, = X, . We assume that P and Q are sufficient.

THEOREM 7. If A, and A% , converge uniformly to A and A* with respect to P,
and Q. respectively, then if each G(A,, B, P, Q) has a value, then G(A, B, P, Q)
has a value.

Proor. This follows easily by applying Lemma 17 and a similar result ob-
tained from Lemma 17 by replacing 4, , A and P, by A%, A* and Q, and the
conclusion by lim A% = AJ .

It is to be understood in the future that 4, = A, shall mean that for f in P, ,
then A,f = A,f.
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THEOREM 8. Let
(a) A, and A converge strongly to Ay and Ag ;
(b) A, = A,y for each n;
(¢) Each G(A., B, P, Q) has a value and P, and Q. are sufficient;
(d) Each A, with n = 0 maps ¢ into R and ¢ is the conjugate space to the
space containing the image of A’%g, then Ao has a value.
Proor. It follows trivially that

MZhz X 2X

or im X\, = u = X;,. Consider u — ¢ which is in Q, for each n. Let
o= [f|A.f = (u — &)Bf,fin P,). As 4, = Any1, we obtain that T', D T,
and each T, is weak-closed in ¢ as Q, is sufficient. Hence AT, > 0 as ¢ is a con-
jugate space by assumption (d) and therefore each T, is weak *compact. Thus
Aufo = (u — &)Bfo for each n with f, e NT,, and hence by (), Afo = (u — &) Bf, .
Thus Ao = u — & which yields that A = x. Also ASgn = Alg, + (AF — ANg. <
Angn since AF < A% which is a consequence of 4, < A4, and the sufficiency of
P, . Let g, be such that 4%g, < \¥ + €)B*g, , then we get A5g, < ¥ + ¢)B*g., .
Therefore \o < \% + ¢ or o < AL Consequently Ao < A% = X\, — X . As the
opposite inequality is evident, we conclude A, = Ao .
CorOLLARY 1. The same hypothesis as Theorem 8 except that (a) is replaced by
weak convergence instead of strong convergence, then A has a value.
The proof is similar with X, and A} used instead of A, and ¥ and also Lemma 7
employed.
CorROLLARY 2. Under the same hypothesis as Theorem 8, then Ay s in
Q (4o, B, P, Q_). i i
Proor. As Ny < X, for n and the weak *compactness yields that X, is in Q
(4., B, P, Q) for each n. We apply the analysis with 4 — ¢ replaced by X, and
the first part of the argument of Theorem 8 shows that Noisin @ (4,, B, P, Q).
CoROLLARY 3. Let
(a) A, and A’ converge strongly to Ay and Ay ;
(b) A% < A%, for each n;
(¢) Each G(A, , B, P, Q) have a value and Q. is sufficient;
(d) Each A% maps § into S and § is the congugate space to the space containing
Xl,'f,
then Ay has a value.
Applications of Theorem 7 and Theorem 8 will be given in the next section.
We close this section with some remarks concerning equivalence of games.
DEFiNtTION 9a. Let 4, B, K and L be fixed, then a cone or game (P{" |, Q¥
is said to be equivalent to (P;”, Q) if A{" = A® and A*? = A e
One could also define one-sided equivalence concepts.
LemMa 18. If the value of G(A, B, P, Q®) exists with P® < P® and
QY < QP, then (PP QP s cquivalent to (PP, QP).
Proor. This follows easily from Lemma 14.
Lemma 19. Let the image M\ = A — AB(P,) be weakly compact for each \
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relative to Q. Let Q¥ < QF and P, be sufficient, then the games G(4, B, P, Q)
and G(A, B, P, Q®) are equivalent.

Proor. An easy application of Theorem 2 and Lemma 18.

DeriniTioN. We say that @, is sufficient in the strong sense relative to P, if
Q. is sufficient and whenever I' = (4 — AB)(P,) does not intersect K there
exists an element of @, which separates I' and K.

LemmA 20. Let P, and Q. be sufficient and let Q. be sufficient in the strong sense,
then X, = Ax .

Proor. Let A = X, + ¢, then for no f in P, is it true that Af — ABfis in K.
Thus (A — AB)P, does not intersect K and hence there exists a ¢ in @, such
that (Af — ABf, g) < cforfin P,, (z,g) = c for z in K. It easily follows that
¢ = 0and (f, A*¢ — AB*g) < 0 for all fin P, . As P, is sufficient, this yields
that A*g — AB*g < 0. Hence, \i < X = X\, + &

The proof is thus complete since A, < A .

TueoreM 9. Let G(A4, B, P, Q™) have a value and P, and QP < QS are suffi-
cient. If Q is sufficient in the strong sense relative to P, , then G(A, B, P, Q®) s
equivalent to G(A, B, P, Q).

These ideas will be used in later context.

§6. Non-linear Games

In this section we indicate how the entire preceding theory can be carried over
to games generated by non-linear operators. Let ¢(f, g) be a bounded real valued
function convex in g for each f and concave in f for each g. Let ¢(f, g) be a func-
tion of the same type as ¢ except that ¢ is convex in the first variable and con-
cave in the second variable. We assume for definiteness that ¢ and ¢ are positive
valued and ¢(f, g) = & > 0. The elements f and g traverse the sections P, and Q, ,
respectively.

DEerinNiTION 10. Let X,(¢, ¥) be the supremum of all X for which there exists
an f in P, with ¢(f, g) = MN(, g) uniformly for g in @, . Analogously, X.(¢, ¥),
A5 (@, ¥) and No(e, ¥) are defined.

It is to be remarked that no sufficiency considerations need be mentioned in
view of the manner in which the X has been defined. This applies even to the case
where ¢ and ¢ arise from linear operators. However, the important distinction
now is that X\, depends on both cones P and Q. Yet most of the important the-
orems are valid for A, , etc. It is assumed that ¢ satisfies the following continuity
requirement, namely : if f, — f; weakly, then lim ¢(f.. , 9) < ¢(fu, g) foreach g and
that if g, — go then lim ¢(f, go) = ¢(f, go) and an analogous continuity condition
is put on ¢ (f, g). Actually, in establishing the determinancy of the value, only one
of these continuity conditions need be imposed for ¢ and . It is now asserted
that most of the theorems remain valid for this setup with little change in the
method of proof. In particular, Theorem 1, Theorem 2, Lemma 6, Lemma 7,
Theorem 3, Lemma 8, Lemma 9, Theorem 7, and Theorem 8 are all valid. These
results will be used without further justification. An example of a lemma not
valid for this definition of A,(P, @) is Lemma 14, furthermore the equivalence
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theory does not carry over. The concepts of Bayes solution and admissibility
and their results extend over under this generalized non-linear context.

We now establish a proposition about the variation of the cones.

Tueorem 10. Let ¢ and ¢ be held fized. Let K and L be fixed. Let P, < P, C
Py .-« — Py (strongly) and Q@ < Q. < --- — Q. (strongly). If G(A, B, P,., Q.)
has a value, then G(4, B, Py, Q) has a value.

ReMARK. The cone P, tends strongly to P, means here that foranyfin P, and
any ¢ there exists an n dependent only on ¢ and an f’ in P, such that
o(f — f,9) £ cand ¢y(f' — f,9) = eforall gin @, . A corresponding meaning
is attached to @, — @ .

Proo¥. Let X, = X, for G(4, B, P, , @,) and define )\ similarly. Let X, — ¢ = ,
then there exists an f in P, such that ¢(f, g) = MN/(J, ¢) for all g in @, . The hy-
pothesis furnishes an f, in P, such that ¢(f,, g) = (Ao — 3e)¢¥(f., g) for g in
Qo and a fortiori for g in Q. Thus X, = Ay — 3¢ and hence lim X, = X, . For every
fin P, there exists a g, in Qo such that ¢(f, g;) < (A + €) ¥(f, g5). Applying the
hypothesis for Q; and ¢ replaced by £/6 shows that there exists a g; in Q, such
that o(f, g5) < (o + 2¢/3)(f, g;). This implies X\, < N + 2 ¢ and hence
lim X, < X, . This gives lim X, = X, . In a similar manner, we conclude lim A} =
M . as)\% = \,, the assertion N, = A¥ follows.

CoROLLARY. Let the hypothests be as before except that the game G(A, B, P, , @,)
is not necessarily determined, then lim X, = X, and lim s = A .

7. Applications

The most typical application is that where ¢ = §F = (V) and R = S = (C).
The cones chosen are those indicated on § 1. Let v = » = 1 the function

identically one. Finally, put Af = f K(x, y) df(x), with K(x, y) continuous for

0 =2,y =1,and Bf = (u, f)u. The operator B in this case is one-dimensional,
mapping P, into the function u. The conditions of Theorem 2 are satisfied as
(V) is the conjugate space to (C). Actually, A and B are completely continuous
operators (see [3]). Therefore, the value exists with P, taken as the set of all
completely additive distributions on the unit interval. The mapping 4* can be

taken in this case to be A*g = f K(x, y) dg(y) which is the relevant contraction

of the true conjugate operator.

It is important to emphasize that the value in the abstract sense for this ex-
ample and for the other cases treated before agree completely with the usual
meaning of value as appear in the literature. Theorem 11 investigates cor-
responding games where the cones of permissible strategies are of different types.

TueEOREM 11. The games G(A, B, V, V), G(A, B, D, D) and G(A, B, L, L) are
equivalent. (See § 1 for definitions of V, D, and L.)

Proovr. This follows by an easy double application of LLemma 19, as D and L
are clearly sufficient in this circumstance.

The meaning of Theorem 11 is that for a game generated by a continuous
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kernel cn the unit square, one can find an effective optimal strategy whose yield
is uniformly within ¢ of the value amongst the absolutely continuous distribu-
tions (L) or the discrete distributions (D).

Even more, if K(z, y) is a continuous function for 0 = z,y = 1, then if Pis any
sufficient set in (V), the value of G(4, B, P, P) exists and is equal to the value
of the game G(4, B, V, V). This also follows from Lemma 19.

A set T of positive integrable functions is said to be equi-integrable with re-
spect to a fixed measure y if for any ¢ there exists a #(e) such that if u(S) < 9,

then f f@©) du(t) £ & uniformly for all fin T'.
8

A few examples of equi-integrable absolutely continuous sets of measures are
(a) All positive measurable functions bounded by a fixed constant C. This

is immediate as f fdt = Cm(8).
8
p
(b) All absolutely continuous measures = integrable functions ( f f”> =C
with p > 1. Indeed, f f = [m(8)]V”'C by the Holder inequality.
8

(¢) All measures for which f flog™ f £ C. This follows from a theorem of

Hardy.

In the next lemma (M) is chosen for B and S with the usual choice of K in
(M) (see § 1).

Lemma 21. If K(x, y) is measurable and bounded on the unit square and P is an
equi-integrable set of absolulely continuous distributions, then there exisis a sequence
of continuous kernels which as operators converge uniformly to K (x, y) relativeto P.

Proor. Extend K (z, y) to a larger region by putting K(z, y) = 0 outside of
the unit square. Consider

i v+1/n  prz4l/n
K.(z,y) =n K(t, w) dt du.
v z

It follows that K,.(z, y) are continuous and converge almost everywhere to
K(z, y). We now verify that 4, defined by K. converge uniformly to 4 deter-
mined by K relative to the given cone P. By the theorem of Egoroff, K.(z, y) —
K(z, y) uniformly except for a set S of a small measure 5. Let S, =
ly| (z,y)in S]and let T = [z | m(S;) > O]. If w, denotes the characteristic func-
tion of S, we obtain by use of the Fubini theorem

12 [[ ety dedy = [ m(s) an

Let
T, = [x|m(S.) > v/l
then
m(Ta) £ V/n.
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Now

[ 1Kate ) — Ko, )i @ate) de dy

1

éfsanK"—-Klfg—i-%[T"ffs;g—i-Zc/T

where S° denotes the complement of S and where S, corresponds to those S
where m(S;) > +/n and S, to those S, where m(S;) < /7. The hypothesis

Tffs,,g

—-T, -

implies . f=cand . g =< ¢efor n chosen sufficiently small. A simple estimate

combining these facts yields
‘f (K. — K) fgdx dy| < e+ 4Ce

with this estimate independent of f and ¢ in P.

TrareorREM 12. If K is bounded and measurable, then the game G(A, B, P, P) has
a value where P 1s given as in Lemma 21.

ReMARK. The meaning of the value is taken as in definition 10 and therefore
the sufficiency criteria is automatically satisfied. The value does not exist in the
abstract sense, definition (6), since the cones are not sufficient.

Proor. This is a simple consequence of Theorem 7, Lemma 21, and Theorem 3.

CoroLLARY 1. If K is bounded and measurable, then the game G(A, B, L., L.)
is determined, which means that the value exists, where L, consists of all absolutely
continuous distributions with bound C.

TraEOREM 13. If K(x, y) is lower semi-continuous or upper semi-continuous, then
G(A, B, V, V) has a value.

Proor. We treat only the case of K(z, y) lower semi-continuous. It is well
known that there exists a sequence of continuous kernels K, (z, y) = K,41 (z,y) —
K(z, y) everywhere. The hypothesis of Theorem 8 can be verified and the con-
clusion is obtained by applying Theorem 8.

This result was independently obtained by I. Glicksberg.

One can show now by a counterexample that pure convergence is not sufficient
to guarantee a value for the limit kernel. The well-known counterexample of
Ville, namely

1 1=22y=0
1 1>ac>y=
K(x,y) =4 0 x =y >
-1 1>y>c=
L 1 1=y>220

is a kernel with the value not existing for G(4, B, V, V), but K(z, y) is a function
of Baire class 1 and it can therefore be approximated strongly by kernels K, (z, y)
continuous for each x and y.
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§8. Games with constraints

As a special application of the method exploited in the preceding section,
we now indicate how an analysis patterned after Lagrange multipliers can be
used to study games with constraints. To best illustrate the fundamental ideas
we begin with a special case. Let ¢ = § = (V) and 113 = 8§ = (C) with the usual

j K(z, y) df(x) where K is
0

continuous and Bf = (u, f)u = 1 (since v = u = 1) for f a distribution (i.e. fin
P,). Of course, A*g = f K(z, y) dg(y). Suppose in addition that we have re-

stricted P, by outside constraints of the form (f, k) = « and (h, g) = B. Spe-
cifically, if & corresponds to the continuous function %(z), then we consider only

Il

cones chosen as described on § 1. Let Af

those distributions for which (f, k) = f k(x) df(x) = a and a similar statement

applies to the second constraint. Geometrically, this means that we have replaced
our original conical section P, of all distributions on the unit interval by a smaller
linear convex section. It shall now be demonstrated that if («, 8) are interior
points to the set A of all points in Euclidean 2 space E° obtained by the mapping

(f 1.n I(;) — [(4, k), (h, g)], then a Lagrangian procedure is valid. Precisely,
g in Q,

LemMma 22. Under the conditions stated above there exists constants a and b so
that the game given by G(A, B, P, , Q.) with Af = Af + a(f, k)u + b(f, u)h pos-
sesses soluttons fo and go for which (fo, k) = aand (h, go) = Bwith Afy = \Bfo and
A*go é )\oB*go .

ReMARK. Lemma 22 yields directly that (Af,, g) = MN(Bfo, g) and (A*go, f) =
N(B*go, f) where A = A\ — aa — b for all f and g satisfying (f, k) = a and
(g9, B) = B.

Proo¥. Let ¢ = § = direct product of (V) ® E*. Choose R = S = (C) ® E.
Let P, and @, be the direct product of the usual positive cones in these spaces.
For the normalizing function in R, we select (3u, %, 3) where u = u(z) = 1.

The operator A, applied to vector elements of the form f = (£f(x), &, £”)
where §, ¢, 2 0and £+ ¢ + & = 1 and f(x) in P, produces the following
vector element in R.

(Af — E[Bau — R] — &"[h — Bu]
Anf = {tlan — (f, B)]
¢, k) — ol

where o, = @ + 1/n and 8, = 8 + 1/n where 7 is sufficiently large. Also

t
Bf=40
0
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The conjugate operator A,* is easily seen to give when applied to an element §

14*g + v'lanu — k] + 9"k — aul
A = — (8, — (h, 9)]
—n[(h, g) — B]
while nB*gl
B%i =< 0 .
0 )

In this lemma the conical sections we are dealing with are bicompact, and in
fact weak (*) sequentially compact. Although the operator B is not strictly posi-
tive for P, and @, , it follows immediately that Theorem 2 applies and conse-
quently the value and optimal strategies f, = (¢(n)f., £(n), £”(n)) and §, =
(n(n)gn , n'(n), 1”(n)) exist (see Lemmas 8 and 9). £(n) and 5 (n) are not zero,
for if £(n) = 0, say, then from the first component

—{'(n)(Bn — h) — E'(n)(h —B) =0
so that

—E(m)(Bn — (b, 9)) — E(m)((h,9) —B) 20

for all g in Q. , contradicting the fact that (o, 8) and (a. , 8.) for n sufficiently
large are interior points of the image A. Consequently, from the second and third
components we have a, = (fa, k) = a and 8, = (9., h) = B. If we expand

(A%, @ — Nu(Bnf, §), we obtain
E(n)n(n)(Af, 9) + aa(f, k) + balk, g) — Nn&(n)n(n)(Bf, g)

where f now is any element of the form (¢(n)f, £(n), £ (n)) with f varying over
P, and § represents the analogous type element. The existence of a value yields.

*) (Anfn, §) ZNu(Bufa, @)
(**) (A%f, §n) < No(BYT, §2)

As n goes to infinite a./£(n)n(n) is bounded. Otherwise, when n is large
a.(f, k)/&(n)n(n) becomes the dominant term of those involving f in the expansion
of (*) and thus the optimal strategy in f for (*) is achieved for n large with f,
such that (f., k) concentrates near the boundary values of the image set ' =
[(f, )]. This is incompatible with the inequality @ £ (f. , k) < a, with « interior
of T. Similarly, it follows that b./£(n)n(n) is bounded. We select limit points
a,b, go, fo, N of an/E(m)n(n), ba/Emo , gu , f» and N, which exist on account of the
weak (*) compactness of P, and Q, . It is clear that 8 = (b, go), @ = (fo, k)
with (*) and (**) reducing to (Afy, g) = No(Bfo, ) and (A, go) < No(Bf, go). The
proof of Lemma 22 is hereby complete.
The notation is the same as in Lemma 22.

TrEOREM 14. If f ranges over P, subject to the constraints (f, k;) = a; for i =

1, - -+, n while g traverses Q, and (h;,g) = Bijforj = 1, .-+, m, then there exist
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constants (a;, b)) 1 = 1,---, n; 5 = 1, -+, m such that the modified game
Af = Af + 2 hialf, kdu + D51 bi(f, wh; and Bf = Bf with f in P, and
g in Q. and no other requirements possesses optimal strategies satisfying the con-
straints provided the restriction imposed on a; , B; given below hold.

Remark. Theset S = {(f, k.), (h;, 9)} in E™™ is convex as f traverses P,
and g ranges over @, and we assume for Theorem 14 that {(a.), (8;)} is interior
to S. The conclusion of Theorem 13 is not valid when (e, , 8;) is on the boundary
of S. We leave it to the reader to furnish simple examples of this fact.

The proof of Theorem 13 is similar to Lemma 22 with the natural adaptations.
In this case the usual sections in P, ® E*" and Q, ® E™ become the strategy
sets with the appropriate choice of A’ and B’. The details are straightforward
and we do not present them.

It is worth remarking that an analogous treatment is valid for the case when
the contraints are of the form of linear inequalities.

Finally it is important to realize that there may exist other solutions to the
game G(A, B, P, , Q.) which do not satisfy the constraints. The Theorem only
produces at least one solution of the type described there.

We now proceed to analyze this general constraint problem from a different
point of view. For each set of constants @ = (a;) andb = (b;) we can consider the
game G(Aas, B, Pu, Q). We denote the vector (4, b) by ¢. Let the sets of ¢
effective strategies where ¢ is fixed be denoted by A ® T' = Q;. It is trivial to
verify that Qz is convex. We consider the image set 7. of Q: in E"*™ by the nap-
ping ¢ of a point {f, ¢} in Q: into {(f, k:), (h;, g)}. The image set T is thus con-
tained in S. This mapping is a point to convex set mapping. We now investigate
some of its properties.

LemMa 23. The set W of all ¢ = (a, b) for which T= covers a fived value v =
(a,8) = (a;,85)i=1,---,nandj =1, --- , m constitutes a convex set.

Proo¥. Let & = (@1, b)) and & = (@, by) bein W. Let & = t&; + (1 — 8)&
with 0 < ¢t < 1. Let (fi, ¢1) and (f2, g») be optimal ¢ effective strategies which
correspond respectively to ¢, ¢ and cover v. Put f, = tfi + (1 — )f> and go =
g+ (1 — t)gs .

A simple calculation shows that

(“i&,l'a ’ fO ) g) = t(A—&.l-Ifl ) g) + (1 - t)(A&»5f2g) = t(Aal vBlfl ) g)
+ (0= 0 sy 5ufo,9) Ztn+ (1 — e — ¢

where v; denotes the value of thegame G(4;, .5, , B, P. , Q). In a similar manner,
it follows that (43S, go) < to; + (1 — &)v, + €. By choosing optimal strategies
instead of ¢ — effective strategies, one finds the value equal tovy, = tv; + (1 — ).
Since fo , go is therefore ¢ effective and maps evidently into the point (a, 8) the
conclusion of the lemma is hereby established.

We now consider the game where the operator A is taken to be
Af = Y taaf, k)u + > 1 bi(f, wh;. Inthis case, optimal strategies for
player I are those which maximize Y7, a.(f, k;) while player IT searches for
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distributions g which minimize > bjh;, g). We assume in what follows that
ki 2 0 aneh; = 0. The cone X of all @ = (a;) for which doryadf, ki) = 0 for
every fin P, is called the dual to the section S; which consists of all points in E”
of the form (f, k;) with fin P, . It is easy to show that as a traverses the boundary
of X, then the maximum of Y 7, a:(f, k) is attained for points of S; which also
range over the complete boundary of S; . A similar analysis applies to the form
> bi(h;,g) where we denote the dual cone to (g, h;) with g in @, by V.

Furthermore, the game 4y, = 4 + A\ 4 with A sufficiently large possesses
optimal strategies for which the solutions of A are ¢ effective. Consequently, as
(a, b) traverses the boundary of X ® Y the mapping ¢ covers the boundary of S.
It is now asserted that the mapping ¢ covers also the full interior of . This
is a consequence of the following lemma which possesses independent interest.

LeMMA 24. Let 8 be a point set mapping of a bounded convex polyhedral set R in
E™ into a convex bounded set R' in E" possessing the following properties:

(a) The image of any point in R is a closed convex: set tn R’ which is continuous
wn the classical sense of such mappings. (If z, is in 6(z,) converges to zy
and x, — xy then zo is in 6(x)),

(b) The inverse tmage of any point in R’ is a closed convex set,

(¢) The boundary of R covers by the mapping 0 the boundary of R’, then 6
covers the interior of R’.

Proor. Let us suppose the contrary. Then there exists a sphere about a point
Po in R’ which is not covered. We consider a sufficiently fine barycentric subdi-
vision M of diameter 1/n of R and we construct the simplicial mapping 8, which
takes the vertices into any chosen points of their image sets and the remainder
of the mapping is completed simplicially. It follows easily that for n sufficiently
large 6, does not cover p, . Let ¢ denote the mapping of R’ into itself which maps
every point p in R’ into the first point 5 beyond Po on the line segment connecting
p to po, which is covered by 6, . On account of condition (c) for n chosen suffi-
ciently large such points 5 will exist. Since 6, is continuous, it follows that y is
continuous. Finally, we consider the point-set mapping ¢ of R into itself of the
form for 7 in R, ¢(r) = 0';1{:,&[0,.(1')]}. In view of condition (b) and the form of
0~ , we obtain that ¢ maps points of R into closed non-void convex sets in E. This
mapping is continuous in the sense as described in (a). Indeed, let r,, — r, and
Suppose s in ¢(r») converges to so . Therefore, Y[6,(rm)] — ¥(0.(ro)) and 0,(s,,)
tends to 0,(s0). AS Y(6.(rn)) = 6.(sm), we infer that ¥(0..(r0) = 0.(s0) which is the
desired conclusion. The classical Kakutani fixed point theorem [11] applied to
the mapping ¢ provides a point » with 7 in ¢(r). However, 6, maps points » and
points from the set ¢(r) into opposite sides of a line segment through p, . Conse-
quently, we deduce a contradiction and the proof of the lemma is complete.

Lemma 24 enables us to give a new proof of Theorem 13. In fact, the discussion
preceding Lemma 24 including Lemmas 23 and 24 show the existence of con-
stants ¢ = (a;, b;) so that optimal ¢ solutions of the game generated by A;;
satisfy the constraints y = (a;, 8,) for any preassigned y. As in the proof of
Theorem 13 since v is interior, we can conclude that as a function of £ the con-
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stants ¢ are bounded. A simple compactness argument allows us to remove the
qualitying e.
Further special cases of this constraint theory will be treated later in the paper.

§9. Reduction theory

This section illustrates the use of the abstract theory as a guide to solve certain
types of games. The idea is to use the nature of the kernel in choosing the spaces
and partial orderings.

ExampLE. Let M (x, y) satisfy M,,(x, y) = 0 with M, (x, y) continuousin both
variables for 0 < z, y < 1. In other words M (z, y) is convex in y for each z.
Let R consist of the space of all functions h(y) twice differentiable and
let K,,,(0 < o < 1) consist of the cone of functions for which A(y,) = 0, &'(yo) =
0 and A”(y) = 0 all y. The operator B is the same as before and the operator 4 is

taken as (Af)(y) = h(y) = / M(z, y) df(x). We investigate first the solution to

the problem Af — ABf = O for a fixed A\. This is equivalent to the following
three inequalities:

(a) fo M, (x, y) df(z) = 0.
(b) [ M6z 00 ar@) = 0.
(c) /01 M(x, yo) df(x) = \.

If f(x) is a distribution, then the hypothesis impli€s that the first inequality gives
no restriction. There exists a convex combination of two pure distributions which
fulfill (b) and (c) for a fixed \. Indeed, consider the mapping of f into the two
dimensional space

</01 M (z, yo) df(x), fol M(x, y0) df(x)>

The extreme points of this convex set lie among the images of the pure distribu-
tions I, the set of which is connected. Thus any f satisfying (b) and (c) can be
represented as a convex combination of two pure strategies. A similar analysis
can be applied to the cones Ko{h(0) = 0, k'(0) = 0, »”(y) = 0} and K {h(1) =
0,h'(1) £ 0, B”(y) = 0}. Furthermore, if a X exists satisfying (a) — (¢), then by
Taylor’s expansion

f M(z, y) df(x) = f M(z, yo) df(z) + (v — o) f M,(x, yo) df(x)

_ 2 .1
+ (y 2'2/0) / M, (2, ¢) df(x) = Nfor0 < 3y, < 1.
. Y0
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A similar statement applies to i = 0 or 1. Conversely if fo(2) is optimal for player
I, then / M(z, y) dfo(z) = v for all y. As f M (z, y) df(z) is convex a minimum

occurs at yo , say with 0 < y, < 1, whence f M (z, yo) df(x) = 0. It follows that

fo belongs to K, and satisfies (a) — (¢) with A = »; thus fo 1s represented as in-
dicated above. Again, the case 4o = 0 or 1 is handled similarly. It follows im-
mediately from this that player IT has a pure optimal strategy.

The essential idea of the proof has been to reduce the game to a different prob-
lem where the nature of the solution is evident. The special properties of the
kernel have been employed in choosing the partial orderings or equivalently the
cones.

The above analysis carries over to the case where y ranges over an n dimensional
convex-set and M (z, y) is convex in y for each z. The n dimensional Taylor ex-
pansion serves in this case, and yields the result that there exists an optimal
strategy for player I which is representable as a convex combination of n +1
pure strategies.

In the specific instance where M (z, ) is convex in both variables, then it fol-
lows easily that player I concentrates at z = 0 and z = 1 while player II must
restrict himself to any pure strategies y where M (0, y) = M 1, y) [12].

We now combine this fact with the theory of games with constraints to resolve
thle game M (z, y) with the above convexity properties subject to the constraint

1
f xdf(x) = a and f y dg(y) = B where 0 < a, 8 < 1. As a consequence of
0 0

Lemma 22, we know that there exist constants A and u such that optimal strate-
gies of the game M'(z, y) = M(z, y) + Az + uy exist satisfying the constraints.
Clearly M'(z, y) is also convex in both variables and thus the optimal strategy
for y is located at any point where M (0, y) + wy = M(1,y) + N\ + uy. Conse-
quently, we may take A\ = M(0, &) — M(1, a). A simple calculation shows —u
= (1 — B)M,(0, a) + BM,(1, a). Thus an explicit answer is given to the con-
straint problem in this case which exhibits how to compute the Lagrange multi-
pliers. We remark in passing that such a scheme in general can be developed for
any game with linear constraints.

Further results using these ideas for analytic kernels shall appear in a subse-
quent paper.

The next two sections invstigate the relation of certain classes of games and
groups of transformations. Some results in this direction were introduced earlier
in connection with statistical applications [6, 7]. In a later paper, we shall also
extend these ideas to the study of statistical inference problems left invariant
under a given group of operations. However, in this discussion we are concerned
only with game theoretic problems where the strategy space for both players
consists of distributions.
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§10. Convolution games

This section is devoted to studying games whose kernel is defined on a topologi-
cal group G. Precisely, the kernel is of the convolution type. Consider

*) (4f,9) = [[ K@) a0 dota)

and the operator B is given as before and where ¢ and u traverse the group G.
A few examples of such games are:
(a) Let G = real line, then (Af, g) takes the form

[ [ K6 = w arto dg

(b) Let G = unit circle and K(¢) a periodic function, then

Who) =] | K- w a0 dgtw.

(¢) Let G = set of integers, then
(Af7 g) = 200 wa an—kskﬂn

where
202X & =1 and 7,20, D . =1

with a, uniformly bounded.

All the above examples cited are abelian; non abelian cases can be given, al-
though they are considerably more complicated. A very important such class
useful in applications consists of the group of all affine transformations of the
real line into itself.

It is supposed that the reader is familiar with the elements of harmonic analysis
on a locally compact group [8], [9].

Case 1. The group G is compact. We may assume that the Haar measure d¢ of
G is of total measure 1. Also in this case we suppose that K(t) is bounded real
and measurable, so that K (¢ 'u) is a measurable function in the product space.

LemMA 25. An optimal strategy for each player is the Haar measure.

ProoF. Performing a change of variable t '« = u’ and using the invariance of
the Haar measure, we obtain

fK(t“lu) du = fK(u’) du' = r.

A symmetric calculation applies to the other player.
We now extend a result of L. J. Savage.
LemMma 26. If G is compact Abelian, then a necessary and sufficient condition

that the solution be unigue s that f K()X(@) dt = 0 for any character X # I (iden-

tity character).
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Necessity. Suppose the contrary, that the Fourier transform f K(@)%:(t) =0

for some character X, # I. Let
) dt = <1 + M) dt.

We verify now that f(f) dt is optimal. Clearly f(¢) = 0 as |%(f) | = 1. Also
/ f@) dt = f 1dt = 1 as %o(¢) is orthogonal to I. Furthermore, we have

f Kt 'w)f(w) du = f K(u)f(ut) du

o® [ K du+ %) [ KaFw)
2

=_/-K(u)du+f =fK(u)du=v.
We have used the fact that X(¢s) = %(£)%(s). This furnishes the needed contra-
diction of the uniqueness.

Sufficiency. Since the Haar measure has positive measure on any open set it
follows that any optimal strategy must yield a return of » for every open set.

In particular if uo is another solution, then f K@t 'u)(dt — dus(t)) = 0. This

states that if dw(t) = dt — dus(t) then we must show that dw(¢) = 0. It is no
loss of generality in assuming that the value of the game is non zero. As

f K()%(t) dt # 0 for X I and the value is non zero implies / X@)K(t) dt =0
for every character X¥. The Fourier transform of / K(t'u) dw(t) = 0 yields

f%(t)K(t) dt f%(t) dw(t) = 0. This gives fX(t) dw(t) = 0 for every character.

The classical uniqueness theorem of Harmonic Analysis on a locally compact
Abelian group yields that dw(f) = 0. This establishes the conclusion as df and
duo are both normalized.

RemARK. In the case of the compact Abelian Group, a statement can be made
as to the dimension of the optimal strategies. The dimension of the optimal
strategies is essentially equal to the dimension of the linear space spanned by
the characters orthogonal to K(¢). This is a consequence of Godement’s theory
[9]. Godement shows that if ox = linear space spanned by the characters orthog-

onal to K(t) and u(f) is any continuous function for which [ Kt w)u(t) dt = 0,

then u(?) is in ox . This is not true for any locally compact Abelian group, how-
ever, for the particular cases of compact groups where the structure of the ideals
of the group algebra is known it is valid. This fact yields the equality of the di-
mension of the optimal strategies and the character space indicated above. We
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now generalize the result of Lemma 26 to the general compact group which is
not necessarily Abelian.

Let M(t) denote a typical unitary matrix representation of G.

THEOREM 15. The optimal solution to (*) s unique and equal to the Haar measure

if and only if f K@)M (t) dt = non singular for any unitary representation M (t) =

I(t) identity representation).
Proor. Sufficiency. If u(t) is any other optimal strategy, then let dv(t) = dt —

du(t) and we obtain f K(t™'u) dv(t) = 0. Applying the non commutative Fourier

representation theorem, we obtain

0= f [ f K(6w) dv(t):l M) du = MEE)MG) (8],

where M(K) = f K@)M(t) dt and M(v) = f M(t) dv(t). As M(K) is non-singu-

lar, we get that M (v) = O for every M where we have assumed that the value is
non-zero. By the use of the completeness theorem (Peter Weyl Theorem [8]),
we have that dv = 0.

Necessity. Let f K@)Mit) = Mo(K) be singular, with M, > I, then there

exists a non-zero vector o such that Mo(K)xy = 0. Therefore, for any vector y
the inner product (Mo(K)zo, y) vanishes. As My(t) is unitary, we have that
(Mo()xo , y0) #= O for some y, . Let

f@t) dt = {1 + % (Mo(®)ao, yo) + (Mo(t)o, yo)]} dt.

Clearly f(t) dt = 0 for ¢ chosen sufficiently small and one verifies as in the proof
of Lemma 26 that f(t) df is an optimal strategy. Use is made here of the fact that

Mo(tu) = Mo(t)Mo(u) and (Mo(K)zo , M (wy) = (Mo(K)ao, y1) = 0

for every u in G. (M} is the transpose conjugate of M, .) The contradiction of
the hypothesis of uniqueness is now evident and the proof of the necessity is
thereby complete.

Case 2. The group G is locally compact but not compact. As an indication of
the scope of the ideas, we treat only the special case of the real line. It is sup-
posed that

1 T
lim o [
lim o7 |, K@ dt
converges. Furthermore, we assume K (?) is bounded and continuous. It follows

eagily that
T+a

. 1
l'rl?w ﬁ —T+a K(t) dt
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converges to a value independent of a uniformly, for any finite interval of values
a. Let ur denote a measure generated ty the density equal to 1/27 on the interval
(=T, T) and zero outside this interval. We obtain for such x that
o 1 T+u
lim K(t — ) dur(t) = lim — K@) = v.
T—w J—oo 2T —T+u

By an application of bounded convergence, we get that

lim f dv(u) f Kt — u) dur(u) = v
T -0 Y—x —00

for any distribution dv(w). This does not necessarily imply the game has a value
but that A} = » = X, . If the convergence

lim K(t — ) dur(2)
T —00 VY-
is uniform for any set of u, then it can be shown that v is the value of the ex-
tended game guaranteed by Theorem 4. .
Finally, we close this section with an additional observation which converts
the convolution game into an equivalent game for the case of an Abelian group.

If we consider (4f, g) = f Kt 'u) df(u) dg(t) and apply the Parseval relation,

we obtain
*) (“4f,9) = [ R@j@c@) du

where K, f and § denote the Fourier transform of K , f, g which are defined on the
dual group. The validity of (*) can be insured under appropriately strong hy-
pothesis placed on K(¢). If the group possesses a suitable notion of symmetry,
then K, f and § can be restricted to real transforms. The solution to the game
can thus be achieved by solving in that case

inf sup f R@J(@)j@) dd = sup inf f R()j()§(a) da
9 f s g

where g and f are transforms of distributions (positive definite functions with
g(e) = 1 and f(e) = 1). In certain instances this problem is simpler to deal with
than the original formulation. Specific applications of the results of this section
will be given in a later section.

The Relations of Game Theory and Groups of Transformations

We deal here first with concrete kernels and develop afterwards an abstract
theory. Let K(z, y) denote a kernel defined on the space X ® Y and let T denote a
group of homeomorphisms of X onto itself. It is assumed that measurable sets are
transformed into measurable sets.

A kernel K is said to be invariant with respect to 7' if there exists an induced
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set of transformations T which transform Y onto itself such that for any ¢ in T
there exists a #in T such that K(tz, y) = K(z, fy). A game is said to be invariant
with respect to 7 if the kernel is invariant. It is furthermore assumed that the
elements of T' generate linear bounded transformations of norm 1 on the space
of measures into itself which map distributions into distributions. We now es-
tablish the following lemma fundamental in all that follows. It is trivial to show
that ' = #1. The game generated by K(z, y) is assumed to be invariant with
respect to T.

LemuMma 27. If fo(z) is an optimal strategqy for player 1, then fo(tx) for each t in T
18 also an optimal strategy for player 1.

Proov. Since f;(z) is optimal, we get

[[ k@) ai@) dgw) = »

for all distnbutions g(y). Using the invariance, we obtain
[ [ K ante) dow) = [ [ K@% y) aite) dotw)
= [ [, K@ dne dot) = [ K@) dhu) dy(ly)

= /;fYK(x, y) dfo(x) dg(ty) = v

which shows that fo(tx) is optimal.

Lemma 27 establishes the fact that the elements of 7' transform the convex
set of optimal strategies into itself. In what follows ¢f will denote the distribution
f(tz).

TraEOREM 16. If the space of distributions is weakly compact with respect to the
cone K of R and the group T is Abelian, then there exists an optimal f, such that
tfo = fofor every t in T. That is, there exists an invariant optimal strategy with respect
to the transformations of T.

ReMARK. The equality of &, = fo is to be understood as the equality of two
elements of the Banach space ¢.

Proor. Due to the hypothesis of weak compactness, it follows by Lemma 5
and Lemma 8 that the game is determined and that the set I' of optimal strate-
gies for player I is non empty. Let fo be an optimal strategy. Consider for a fixed
to in T the distribution

— bofo + -~ tg[o

n

fﬂ,

which is also an optimal strategy as a consequence of the convexity of the set of
optimal strategies and Lemma 27. Let f be a weak limit point whose existence
is guaranteed by the weak compactness; it follows easily that for any given zin R

e — tofo, %) 1 <2,
n | n

! (lﬂfrn - fn; IL’) | =
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Thus we conclude that ,f — f = 0. Restricting ourselves to the set of fixed points
Ty, of T under 4 which is non empty and convex, it is shown as above that for
tin T there exists in T'y, an f with ¢, f = f. The Abelian character of T is used here
in establishing the fact that ¢ transforms I's, into itself. Similarly for any finite
number of ¢ , ---, ¢,, there exists a common invariant fin T. Let G(t,) =
[f | taf = fwith fin T]. Now S = N,G(t.) # 0 since otherwise as T is also a weakly
closed subset of ¢ and hence weakly compact, there exists a finite number of sets
G(t:) with N_; G(¢;) = 0. This was shown to be false. Thus any element of S
furnishes the required conclusion of the theorem.

We now remove the hypothesis that T is Abelian.

TrHEOREM 17. Under the same hypothesis as Theorem 16, except that the group T
constitutes a solvable group, then there exists an optimal fo such that tfy = f, for
everytin T.

Proor. Since T is a solvable group, there exists a finite chain 7 D T, O

- D T. with T,,; a maximal normal subgroup of T, Ti/T;;, Abelian, and
finally T, is a simple Abelian group. Since T, is Abelian there is a non void set
T of optimal strategies f for which ¢f = ffor all tin T, (see proof of Theorem 16).

Let S be the set of all ¢ in T',_; for which tfo = fo for all f, in T'. One verifies
easily that this constitutes a normal subgroup of T and hence by the simplicity
and the maximal character of 7., relative to T._, either coincides with T, or
T, .Suppose S = T, . We observe that

tsfo = tfo(sx)] = fo(sz) = sfy

and hence any typical element of the co-set ¢s for ¢ in T, and s in T',_; yields
the same effect acting upon the elements of I'. Thus we can consider T',_,/T, as
transforming T' into itself. As T,_/7T, is Abelian, we apply Theorem 16 and
deduce the existence of an f in T' for which t*f = f with t*e (T,—y/T,). As T,
leaves T' pointwise unchanged, we deduce for fthat ¢f = f for ¢t in T,_,. Pro-
ceeding in this way produces an f which T,_, leaves invariant, etc., and finally
an f which is invariant under the transformations of the total group ¢in T.

It is important to note that no topological structure was imposed on the
group 7' to ascertain the validity of Theorems 16 and 17. However, additional
results can be obtained if a suitable topological artifice is placed on T. In the
next theorem questions of measurability and the validity of the use of Fubini
theorem are not discussed. In any specific applications these matters are easily
handled. The following proofs suppose that any procedures involving such con-
siderations are valid.

THEOREM 18. If T s compact and the set of optimal strategies for player 1 is
non empty, then there exists an invariant optimal strategy.

Proor. Let fy be an optimal strategy, then consider

7(E) = f f(E) de
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with E any measurable set in X and where dt denotes the Haar measure of T of
total measure 1. One verifies immediately that f(z) is a distribution. Indeed,

[ @@ = [[ ane) a = [t [ i) = 1

where

[ antt=m) = 1,
as t transforms distributions into distributions. Also
[ K@ v) di@) = [[ K@, v) dite) dodt = [[ Kiew, ) dfatea) .
Replacing z by ¢ 'z yields that

f K(z, ty) dfo(x) dt = f (f K(z, ty) dfo(x)> dt = v.

This establishes that f is optimal. Finally,

tof = J(LE) = ffo(totE) dt = ffo(tlE) at’ = J(E)

where the substitution #¢ = ¢’ and the invariance of the Haar measure have been
used.

We now formulate an abstract version of this invariance theory. Let T denote
a group of operators transforming ¢ into itself and such that each ¢ in T maps
the conical section P, into P, . Let {7"} denote a group of operators which map
R into itself. The game G(4, B, P, Q) is said to be invariant with respect to
{T} and {T"} if for any ¢t ¢ T there exists a ¢’ in 7’ such that ¥4 = At and
‘B = Bt.

We assume the cones P, and @, are sufficient.

LeEmMmA 28. If fo vs such that Afy = NBfo, then tfo has the same property.

Proor. Consider for any ¢ in Q,

(Atfo, 9) = (t'Afo, g) = (4Afo, t"*g) 2 MBfo, t'*g)
= (t,BfO ) g) = )\(Btfo ) g)~
As @, is sufficient, this implies that Aify = ABif, .

The role of Lemma 28 is similar to that of Lemma 27. We now remark with-
out elaborating on the details that the analogous statement to Theorem 17 is

valid for this abstract setup.

Applications

It is worthwhile to give several specific applications of the above theory.



400 SAMUEL KARLIN

ExampLE I. Let X and Y be a finite set of n points. The game is equivalent
to a matrix game. A convolution game corresponds to a circular matrix where
a:;j = ax with K = 7 — j modulo n. The remark following Lemma 23 applies
here and the full description of the optimal strategies are:

Let 71, be the real part of the complex vector

L, @y wn®, oo e, w0

where w, is a primitive n'™ root of unity with D axe? = 0. This last equality
expresses the vanishing of the Fourier transform. The set of all optimal strategies
are given by the form (1/n, ---, 1/n) + r1, and cyclic permutations of ry, .

ExampLE II. Let X and Y be the unit circle and let K (¢) be any function
defined on the circle or in terms of the unit interval a periodic functions of
period one. The kernel given by K (¢ — u) defines a convolution game acting on
the compact circle group. The condition of uniqueness expressed in Lemma 26
becomes the requirement of the non-vanishing of all of the Fourier coefficient
of K(f) except for the zero™ coefficient. This example was also considered by
L. J. Savage. The Parseval relationship expresses the game in terms of the
Fourier coefficients. Explicitly,

ff K(t — w) df(t) dg(w) = 3 bpanca,

where b, , a. , and c, are the Fourier coefficients of f, g and K respectively. The
remark following Lemma 26 also applies here and a full description of optimal
strategies can be given.

ExampLE ITI. Let K(t — u) be the kernel defined with — o <t < o and
—© < u < =, then this defines a convolution game on the group consisting
of the real line. The condition of uniqueness is the non-vanishing everywhere of
the Fourier transform of K (z).

ExawmpLe IV. Let X and Y be the unit intervals. Consider the group of trans-
formation T' acting on the unit interval which consists of the identity and the
transformation which takes z into 1 — z. Let the induced group T be the same
group transforming the y interval into itself. Let K(z, y) = K 1—-2z1-y)
with K continuous, then as a consequence of Theorem 15 one can find an optimal
strategy for both players which is invariant with respect to the group of trans-
formations 7.

ExampLE V. We generalize the results of the previous section in the following
manner. There exists a group of transformation T operating on the product
space X ® Y which transform X ® Y into itself. The kernel K (z, y) is invariant
with respect to 7' if K(t(z, y)) = K (%, y). The induced transformation on the
measure space becomes

tg@)f )] = tu(z, y) = ult(z, v)).

We consider the special example where 7' consists of the identity and a reflection
about the line y = 2. The measure g(x)f(y) goes over into the measure f@)g(y).
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If K(x,y) = —K(y, ), then it can be shown as a consequence of Theorem 15
that if g(z)f(y) is optimal for both players, then so is {(g(x)f(y)) optimal for
both. The negative sign is needed to establish the conclusion of Lemma 27 for
this example. This is the well known fact that for a symmetric game the set of
optimal strategies for both players coincide.

In general, the applications of the above invariance theory is much more
abundant to problems of statistical inference.

PRINCETON UNIVERSITY
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