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Annals of Mathematics, 102 (1975), 159-182

Inequalities in Fourier analysis

By WILLIAM BECKNER

1. Introduction

Inequalities are a basic tool in the study of Fourier analysis. The classical
result relating L” estimates for a function and its Fourier transform is the
Hausdorff-Young theorem. For an integrable function on R* the Fourier
transform is given by

FN@ = [eriy .

The Fourier transform ¥ then extends to a bounded linear operator on
L’(R"), 1< p <2, and

(1) NFf Nl = N Fls

Here p’ denotes the dual exponent, 1/p +1/p" = 1. This result can be obtained
by using the M. Riesz convexity theorem to interpolate between the end-
point estimates for L'(R") and L*(R").

This theorem holds generally for analysis on any locally compact abelian
group. The first proofs were given for the case of the circle group T ~ R/Z
and developed from the efforts of W.H. Young to extend the Parseval
theorem for Fourier series to other L” classes. In terms of the basic relation-
ship between the Fourier transform and convolution, Young observed that
an inequality for the Fourier transform could be obtained from a convolution
inequality. For integrable functions on R" the convolution of two functions
is given by

(F+0)@) = | o = ot)dy

and under the action of the Fourier transform, convolution goes over to
pointwise multiplication.

F(fxg) = (FfN)Fg) .
By the careful application of Holder’s inequality, one can obtain Young’s
inequality for convolution:
(2) [f=gll = I Flls 1191l

where 1 < p,q,r £ « and 1/r = 1/p + 1/¢g — 1. In some sense there is a
duality between inequalities (1) and (2) reflecting the basic identification by
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the Fourier transform of the L' convolution algebra with a pointwise multi-
plication algebra of bounded functions, and the essential object of study here
is the group action of translation on R". For »’ an even integer, that is,
p’' =2 4,6, -.-, the Fourier transform inequality (1) can be obtained from
the convolution inequality (2) (this was Young’s observation); and in turn
for 1 < p, q, v < 2, the convolution inequality can be obtained from the
Fourier transform inequality. However, we should remark that convolution
is essentially a positive operation, and so convolution arguments are likely
to be conceptually easier than arguments for the Fourier transform.

These inequalities are sharp on the circle group T; that is, there exist
extremal functions for which equality between norms is attained. In fact,
there is a theorem of Hardy and Littlewood that equality in (1) will be
attained only for exponential functions

flx) = Aerim® meZ

(see Zygmund, Vol. II, page 105). However, on the real line a much sharper

inequality for special values of p was obtained by Babenko in 1961 ([1]). For

p’ an even integer, i.e., p' = 2, 4, 6, - .-, Babenko proved, using methods of

entire functions, that the best norm for the Fourier transform inequality
would be attained for gaussian functions,

f@) = e, a>0.

In Babenko’s proof the Fourier transform is regularized by composition
with the classical Mehler kernel for Hermite functions. The resulting
operator is compact, and therefore by a weak compactness argument a
solution will exist to the corresponding extremal problem for the maximum
norm of this operator over a bounded set. This extremal solution will
satisfy two non-linear integral equations, and then using Phragmen-Lindelof
methods and rearranging contour integrals in the complex plane, one can
calculate the value of the maximum norm for this extremal problem. Then
a limiting argument gives a sharp L’ inequality for the Fourier transform.
The importance of the even integer values of o’ is that all functions appear-
ing in the integral equations will have entire extensions.

Though Babenko’s proof held only for the special values »’ = 2, 4,6, .-,
it was clear by a convexity argument that inequalities (1) and (2) would have
new sharp forms on R” for general p. In the work described in this paper
we have obtained sharp L” inequalities for both the Fourier transform and
convolution on R*. That is, we give precise values for the norms

_ F1lly
@ = sup NI L 1l
[1£1l5
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1<p=£2,1/p+1/p" =1; and

_ [[f*gll
S FINFATS
with 1/» = 1/p + 1/g — 1. These values will be attained for gaussian func-
tions.

On reflection, the role of the gaussian function should not be considered
too surprising. First, the function exp (—x2? is invariant under the action
of the Fourier transform, and the Hermite functions are eigenfunctions of
the Fourier transform. But consider the problem in % dimensions. Here one
might expect that if an extremal function exists, it should be rotationally
invariant. Also, we might suppose this extremal function to be essentially
unique, that is, up to the basic symmetry operations of Fourier analysis. The
norm in 7 dimensions will be a power of the one-dimensional norm so we
would want an extremal function for which a product of functions radial in
separate variables is also radial in the variables jointly. This is possible
only for a gaussian function. This simple heuristic idea suggested the basic
structure of our proof for sharp convolution inequalities.

Suppose we assume that Babenko’s inequality held on the line for general
p and write out the resulting inequality in terms of Hermite expansions.
Let

fl®) = 3 a, H,(x)e ™",
(Ff)@) = X a,iHa(@)e ™" .
Here the {H,(x)} are the Hermite polynomials corresponding to the gaussian
measure dw(x) = 12-exp (—2r2?)dx.
NFf Nl < [T 5
v e""’”‘zdx}l/p, < {1/5 S |3 e, H(2) e”“’“dw}”p .

{1/178 |3 4,0 H, (@)

This format is very suggestive that, notwithstanding some interplay between
the dilation group and the Hermite semigroup, Babenko’s inequality is
related to multiplier problems on the Hermite semigroup.

The gaussian function has an intrinsic character both as an entire func-
tion and as a probability distribution. Analysis of the Hermite semigroup
and gaussian measures has played an important role in the study of quantiza-
tion in quantum field theory, particularly in the work of Segal, Nelson,
Glimm, and Gross. The application of probabilistic methods to the study of
the Hermite semigroup in recent work of Nelson ([6]) and Gross ([2]) sug-
gested a different approach to obtaining sharp inequalities for the Fourier
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transform on R". Nelson used stochastic integrals and gaussian processes
to obtain a basic multiplier inequality on the Hermite semigroup (see Section
IV). Gross then gave a proof of Nelson’s result directly on the line by using
the central limit theorem to obtain the gaussian measure from a sequence
of Bernoulli trials. Both proofs emphasized the product character of the
multiplier operator. The structure of our proof follows the general methods
of Nelson and Gross in using the product character of multiplier operators
to obtain sharp L? estimates.

In Section II we prove a sharp Hausdorff-Young result, that is, Babenko’s
inequality, for the Fourier transform on R” for the full range of values of
»,1=p=2

£ 1l < A" 171l
4, = [p[p" 7]

In Section III we obtain a sharp Young’s inequality for convolution on R*,

IFxgll, = (ApAA )" IF 1l Mg llo -

In Section IV we make some brief remarks about the relation of these results
to other problems in harmonic analysis.

I would especially like to express my appreciation to Elias M. Stein for
having given advice, encouragement and many helpful suggestions during
the course of this work.

II. Babenko’s inequality

We obtain the following sharp inequality for the Fourier transform
on R™:

THEOREM 1. F: L*(R") — L*'(R"), 1 < p < 2 with

(3) ”?f”p' é (Ap)” ”f”ﬂ ’
4, = [P [p ).

Consider the case n = 1; the Fourier transform on R" splits naturally into a
product of one-dimensional operators and the result for » dimensions will
follow from an application of Lemma 2 (on products of operators) below. As
suggested in the preceding section, inequalities for the Fourier transform are
equivalent to multiplier inequalities on the Hermite semigroup. Let {H,.(x)}
denote the Hermite polynomials corresponding to the gaussian measure'

! Note that we have changed normalization for the Hermite polynomials from our
remark in Section I. The usual properties for the Hermite polynomials are easily obtained
by using the generating function below. Also, see Vilenkin, Special Functions and the Theory
of Group Representations; and Szegd, Orthogonal Polynomials.
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dp(z) = 1/12_7[ e dy ;

that is,
Ha@) = | @+ )rdp@)
and we have the generating function

2
exp (——% + xt) =2 —/ﬂ%t”‘Hm(x) .

For |@ | < 1 consider the multiplier operator defined on basis elements by
T.,. H,— »™H, .

Observe that T, T,, = T..,- This operator can be expressed as an integral
operator on L*(d) defined by the Mehler kernel

Dy = Q- e S ¢ o),
2(1 — @) 1 — @

(T.0)(&) = | Tule, DI@)n) -
Then Theorem 1 for n=1is equivalent to the following multiplier inequality.
THEOREM 2. For w =iVp — 1and 1 < p < 2,
T,: L*(dp) — L (dp) ,
| Tog llzoram = 119 |lzoeam -

Suppose we consider equation (4) for polynomials g(x). Then by a simple
change of variables this equation is equivalent to equation (3), holding for
n = 1 and functions f(x) = g(V/2npx) exp (—7a?). This is sufficient to estab-
lish the equivalence of the two theorems since each will hold for a dense set
of functions. Explicitly, equation (4) can be written

{I|] 7o, owiarw|” ap@}” = {] 1o due}

On the left-hand side of the equation make the change of variables x =
V2rp wand y = 1/ 2xpv, and substitute the value @ = iv'p — 1; on the
right-hand side of the equation make the change of variables * = 1/27p u.
Then we obtain

{g He“"“”g(V_Zn_p v)e‘”zdvlp/ du}”p/ < A,,{S ‘g(l/ZTp wye~ ™

(4)

1/p

P i/p
du} .

We prove this multiplier inequality for the Hermite semigroup by using
the classical central limit theorem to obtain the gaussian measure d/ as a
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limiting probability measure. Suppose we consider a sequence of Bernoulli
trials; that is, let dv(x) be the discrete probability measure with positive
weight 1/2 at the points = =*1, and let dv,(x) be the n-fold convolution of
the measure dv(1/nx) with itself. Then dv, converges to dy¢ in Cy(R)*, and

moreover the moments of dy, will converge to the moments of dy. For he
C\(R)

Sh(x)du,,(x) = S W@, + - + 2)dV/ 7)) - -+ AV, 5
lim S h(@)dv,(z) = g h(@)dp(a) .

At each stage in the convergence process we prove an analogue of the
basic multiplier inequality of Theorem 2 with respect to the product measure
dv(V'nw,) -+ dv(Vnw,); then we obtain the final multiplier inequality for the
Hermite semigroup as a limit of inequalities with respect to these product
measures. The product measures dv(v'nx,) - -+ dv(V ' nz,) are discrete meas-
ures; that is, the x, can assume only two values, =1/1/n. So all functions
over these measure spaces will be polynomials of degree at most one in each
of the n variables. By imitating the action of the multiplier operator T,
with respect to the initial Hermite polynomials (that is, Hy(x) = 1 and H,(x) =
), we define an analogue C of the multiplier 7, on the measure space over dy:

Tw: aHo + le h— aHo + 60le
C:a + bx — a + wbx .

The initial problem is to show that C is a bounded linear operator on L*(dy)
to L*(dv) with norm one; this result is contained in Lemma 1 below. In
general, we define operators

C‘n,k: a + bxk m——4 + a)bxk
where a and b are functions of the remaining » — 1 variables; and
Kn = Cn,l cee Cn,‘n .

By a lemma on products of operators (Lemma 2 below), the “two-point
inequality” for C, that is the operator C having norm one, will imply that
K, is a bounded linear operator with norm one on L?[dy(V/ n,) - - - dv(V n2,)]
to L* [dv(V'nx,) - -+ dv(V/nw,)]. The restriction K, of the operator K, to the
subspace of functions symmetric in the » variables will also be a linear
operator of norm one. We denote this function space of symmetric functions
over the product measure dv(v'nx,) --- dv(V nz,) by X,.
The functions
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q)n,l(xl} cc xn) = l! gl(xly R xn)

form an orthogonal basis in L’[X,]. The o’s are the elementary symmetric
functions in » variables;

o-l(xb ) xn) = Em1<"'<ml xml e xml

and 1 < m,; < n. The generating function for the symmetric functions is
given by

"-T(xn ceey Ts t) = II:=1 (1 + xkt) = 7=0 tlo-l(xly ct xn)

a1
= El=0 _l_'tl¢n,t(xly ) xn) .
For the Hermite polynomials the generating function is given by

T(w;t) = e "t = 32 T t"H (2) .
=% m!
Observe that if x =, + ... + 2z, with (x,)* = 1/n, then we can obtain the
following relations between the two generating functions

T(w, + «-o + @5 8) = e *Pleosh (¢/V/B)]"T[x, -+, 7,; 17 tanh (¢/V/7)] ,

X Tle, + -+ + 2,; Vntanh™ (/v n)] .

The first relation follows from
T, + -+« + 2, t) = e P ];_ e
= ¢ " TI;_, [cosh (¢/v'n) + %,V n sinh (¢/V/n)]

and the second relation is obtained by inversion. Then by differentiation one
can express @, ,(x, ---, z,) as a linear combination of the Hermite polyno-
mials H.(x, + -+ + 2,), 0 < k < 1. In fact, we will have

(5) g’n,l(xl; ct wn) = Hl(xl + e+ xn) + % E,El:/i] al,f'Hl—ZT(xl + e + xn)

where the coefficients a,, are bounded with respect to n for fixed ! (see
Appendix, Part 1). The functions @, , are eigenfunctions of the operators K,:

. l
K, %y oot Cpy— 0%y~ Ty,

Kn?n,l = aﬂ@n,l ’
and they are the natural analogues of the Hermite polynomials over the
function spaces L*[X,].
We have argued that K, maps L?[X,] into L?'[X,] with norm one; it
remains to show that these inequalities imply the multiplier inequality of
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Theorem 2. It suffices to prove this result for a dense set of functions,
namely polynomials. Any polynomial g can be expressed as a finite linear
combination of Hermite polynomials

9(@) = 3., biH(x) .
Define corresponding polynomials in the discrete variables z,, - --, z, by
Gu(@y, <o, @) = 300 0iPa(®y -, )
Then
T.: Y bH,(x) — >, »'b,H,(x)
K b Pa(@, « -, 2,) — 30 00,9, « -0, @)

In the limit n — o
S [(ng)(xl 4o + xn) - (Kngn)(xly Tt xn) |p/ du(-l/"_?'xl) e du('l/ﬁxn) —0

because of the relation expressed in equation (5) between the Hermite poly-
nomials and the basis functions @, ;. By the triangle inequality
l [| Tug lle»’(dy,,) — || K.9. 2oL 1 l
_ — — 1/p’
{1 @@+ 2) - Bag e, o) 7 W00 7w) - dv(V )}

As noted above in our remarks on Bernoulli trials, the moments of dv, will
converge to moments of dy, so in fact dv, converges to dy¢ weakly with
respect to functions of polynomial growth, and since g is a polynomial we
have

lim || K, ||zoie, = 1m || Tog ||zo vy = || Tog llzoam -
By a similar argument
lim || g, [|zorx,y = |1 9 |lzoam -
Thus
| Kudn llzocey = 1 9 lliarr,
implies
[| Tug llor'am = 11 9 llzoam -

We now prove the basic “two-point inequality” and a lemma on products
- of operators.

LEMMA 1. C:a + bx — a + wbzx is a bounded linear operator with norm
one on LP(dy) to L* (dy) with w =iVp—1,1<p=<2and 1/p+1/p =1;
that is, for all complex numbers a and b
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! — ' Y1/p’ — i/p
(6) {Ia+wbl”;r|a @b | }_”é{la+bl”-2%la bl”} )

It suffices to show this result for @ = 1 and b any complex number; by
an appropriate scaling this is equivalent to showing G(¢, ) < 1 for ¢ and 7
real where

(10 + 9+ (0 = D" + [0 =7 + (0 — D™ b

l 2
G, 7)) = .
€ Uu+@%ﬁy—1wwuﬂu—9H%ﬁ—nﬂmy”
2

Note that »" — 1 = 1/(p — 1). Using Minkowski’s inequality we obtain

[t e (o Ve 10 = 77 + (o= DT
2

»’ _ p’ “J2/p’

and

{ [+ & + (@ = VPT°" + [(1 — & + (' — D)™ }2“’
2

[L+ &P+ 1 =g P” , 2
> J—
=[ 5 ] + (p .

In the second equation the sign of the inequality reverses because (p/2) < 1.
Thus

P’ _ P’ J2/P’ 1/2
[h+vl+h nl] + (- 12

GG, 7)) = __2 p
l:ll S —El”]zl + @ - Dy
2
But
{Il + 7" _;_ [1— 77]:7/}1/1:/ <+ -
and
[1+<p—1>5211/2g{11 F e+ |1 —glp}l/p
B 2
then imply

p’ _ P’ J2/p! 12
[I1+77| erll vl] +(p— D&

[Il+$|”+|1—5|p}2lp+(p’—1)7]z
2

IA
=
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The two inequalities above are obtained by an elementary minimization
argument. First, observe that the inequality

e e L S T

for 0 <y <1 and m > 2 will also imply the case of ¥y > 1, if we divide
through by a factor of y. We want to show this inequality for fixed m > 2
and y varying between 0 and 1. It suffices to consider the function

_ 1 O+ "+ —yml _ 1 T
q)(y)—-;%—ln{ . } Linl+ (m— Dy

for0<y<land2=<m < oo,

Py =1+ +A—-y" 1+ (m— Hy]Ady)
Ay) =1+ "L —-(m—Dy]l — 1 —y»)"'[1 + (m — 1)y]
Ally) = —m(m — Dy{[1 + y]"* — [1 — y]"%}.

For 0 <y < 1land m = 2 we have A’(y) < 0 which implies ®'(y) < 0 which
implies #(y) < 0. For 1 < m < 2 all inequalities reverse sign. Observe that
these two basic inequalities above are special cases of the result that for
fixed ¥ > 0, the function

- {!14__1/;/—_11:_1_’1__?/_1»}1/:;
2

vVp—1

is monotone decreasing as a function of p, 1<p < (see Appendix, Part 2).
Thus, we have shown that G(£, 7)<1 for 1<p=2, and hence the “two-point
inequality” in Lemma 1 holds.

The following lemma is used to show inequalities for products of oper-
ators. It generalizes an important lemma used in the work of Segal and
Nelson.

LEMMA 2. Comnsider two linear operators T, and T, which are integral
operators defined by kernels; suppose

T.: L*(dp,) — L*(d\y) , IT=<1,
T;: L*(do,) — L(@\,) IT:ll=1,

where dp; and d\; are o-finite measures; then if p < q, we have for the
product of the two operators

T\ T,: L”[dp, x dps] — L[d\, x dAs] IT.T,|| <1.

The proof of the lemma is contained in the following steps.
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{S S HTTof ) (@, ) [* dhl(xx)dxz(xz)}’”
= {[ v {1 @A @, 2 7 dow [}
= {S dpl(yx)[g | (Tof) (W, ) [ A (xz)]p/q}l,p
= [ 170 w1 dowidoswd} ™

Here we have used the fact that both T, and T, are operators of norm one.
We have interchanged orders of integration using Minkowski’s inequality
for integrals;? that is for » > 1

{{adf{17@ w12y} < [au{] 1 P, 1 aa} ™

In the computation above, we take » = q/p = 1.
III. Young’s inequality

The relation between the Fourier transform and convolution is basic to
the study of harmonic analysis. We have obtained the following sharp form
of Young’s inequality for convolutions on R".

THEOREM 3. For fe L*(R"),ge L'R"),1 < p,q,r < < and 1l/r = 1/p +
1/ q— 1!

[f*gll, = (ApAA)" | fllo 119 la »
A, = [mmmm]eE Ym + 1m’ =1.

But as a consequence of the sharp Hausdorff-Young inequality of
Theorem 1, we can obtain immediately the following partial result.

(8)

THEOREM 3. For 1 < p,q,7 =2and 1/r =1/p + 1/q — 1,

1fxgll, = (Add )" | Fllo 119 ]]a -
Note that at least two of these exponents will always be less than or
equal to two. Consider » = 1 and observe that

1fxgll. = Av | FNEFD Il = A TSNl (| F g o
= A (A fll) (Al glld)

for 1/r' = 1/p’ + 1/¢’. In addition, the sharp Hausdorff-Young inequality of
Theorem 1 for the special case where p’ is an even integer can be obtained
directly from the sharp Young’s inequality for convolution in Theorem 3.
Let ' = 2k and so p = 2k/(2k — 1); then

2 Stein, E. M. Singular Integrals and Differentiability Properties of Functions (Princeton
University Press, 1970), page 271.
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k
UIFF Nl = 11 Fx e =1l < [Ap |1 £11]* 2

To obtain the general result of sharp convolution inequalities in Theorem
3, the basic problem is to calculate the one-dimensional convolution norm

_ ILf*gll.  _ [Lf*g*h ]l
¥) R TN P12 TR PITRTTAT
with1 < p, q, r £ « and 1/r = 1/p + 1/¢ — 1. The equality of these norms
is easily seen by noting the relations
[f*gxhll. _— llf*gll.
Ilfllpllgllqllhllw “Afls gl
_ sup, S h(f+*g)dx s I Frashll.
A1 12119 e "NAN T Tl 2]

with h(z) = h(—x). Observe that on R” the convolution operation has a
product structure, in that it acts on the variables separately with respect
to dimension. Also, it takes positive functions to positive functions.

LEMMA 3. The convolution norm for n dimensions will be C* where C is
the one-dimensional norm.

Consider n» = 2, and observe that for positive functions on R?

(Fra:0@ = | f@ = v - Do@h()dydz

se|{{|1rm—v.—z0ra] | low, ora]"

% U | bz, 8) | dt]""}dyldzl

=LA Ng IRl

But the two-dimensional norm is seen to be at least ¢ by considering products
of functions in one variable. Note that the content of this lemma extends to
the case where we consider the convolution of an arbitrary number of func-
tions; in fact, this argument applies to any positive operation with a product
structure.

In the general consideration of convolution inequalities the following
lemma allows a restriction to radial functions that are decreasing ([7] and

[81).
LEMMA (Hardy-Littlewood, F. Riesz, Sobolev).

8 Theorems 1, 2, and 3’ were obtained about a year ago. Influenced by these results, H.
Brascamp and E. Lieb have recently obtained an independent proof of Theorem 3.
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(10 [, p@(fix o s f)@de = | F@(Fr - 2T @) ;

f denotes the equimeasurable symmetric decreasing rearrangement of f.

By equimeasurable we mean that f and f have the same distribution
function

mix: | f(@) | > a} = miz: fv) > a},

where m denotes Lebesgue measure on R". The original lemma was proved
in » dimensions by Sobolev for rearrangements of three functions, but it is
not difficult to extend this result to an arbitrary number of functions. In his
proof of the one-dimensional result, Riesz remarks that this extension is an
immediate consequence of the method used by Hardy and Littlewood for the
rearrangements of series. First, one observes that convolution preserves
the class of radial decreasing functions. Convolution takes radial functions
to radial functions since this is true for the Fourier transform. Suppose that
f and § are radial decreasing functions; to see that f*g is also a decreasing
function, consider

17431l = sup | h@)(F+D@)de 1Bl =1, 020
= sup | B@)(F+D)@do < || 7471l -

But, by the conditions for equality in Holder’s inequality, we must have
(R)''" =fxg a.e.

so f*g is a radial decreasing function. Then
h(@)[f1* (fox fo)l (x)da
(lo ) @) (Fo* fo) (@) dx

| r@)(f < fir fo@der < |
S

= | 0@ (S @da
S
S

Fu(@)(Fu+ ) @)de
= (E*f—l)(x)(f—z*f—s)(x)dx
= | B@)(FirFor P @

where g, is some rearrangement of the function % xf,, which is itself a
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radial decreasing function. This argument is clearly independent of dimen-
sion.*

In a rough sense the interplay between these two lemmas would force
an essentially unique extremal solution for which the maximum norm is
attained to consist of gaussian functions. That is, for measurable functions
on R" the only way for a product of functions, each radial in separate
variables, also to be radial in the variables jointly is for the functions to be
gaussian. This remark provides the underlying basis for the fact that on
euclidean spaces extremal solutions to these inequalities in Fourier analysis
are given by gaussian functions.

To solve the basic problem defined by equation (9) we modify this con-
volution problem in a natural way so that a smooth extremal solution will
exist in two dimensions. In making this modification, or regularization, we
retain the product structure of the convolution operation so that Lemma 3
extends to the modified problem, and then use this fact to show that a
smooth extremal solution must consist of gaussian functions. We then
calculate the norm for the modified problem, and through a limiting argument
obtain the norm for the original convolution inequality.

By using the rearrangement lemma, we restrict our attention to radial
decreasing functions in two dimensions. Let

k(x, ) = Aexp [—a(z! + x3)] , a>0,|kl, =1

be a fixed gaussian function. Consider the two-dimensional norm for the
convolution of four functions with one being a fixed gaussian. That is,

. k*f*g*h|!°°
(11) D* = sup I
[ £ 1oy 119 11, 11 2 ],

where 1 < p,, p,, D5, »s < o and 1/p] + 1/p; + 1/p; + 1/p, = 1. Because the
functions are radial and decreasing,
[[kxfxgxh|l., = (k*fxg=h)0)

- Slc(x + ¥ + (@) dedydz , %y, e R,

Using a weak compactness argument there will exist an overall sequence
{fas Gn, h,} such that

(k*fn*gn*hn)(o) — gDZ

* For a different argument (also independent of dimension) see G. Sampson, “Sharp
estimates of convolution transforms in terms of decreasing functions,” Pac. J. Math. 38 (1971),
213-231. Recently a generalization of the Sobolev lemma was given by H. Brascamp, E. Lieb
and J. Luttinger, “A general rearrangement inequality for multiple integrals,” J. Functional
Analysis 17 (1974), 227-237, using arguments similar to those of Sobolev.
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with [ fulloy = 1, |gallsy = 1, 1k lls, = 1 and f,—f weakly in L”, g,—g¢
weakly in L2, and h, — h weakly in L?%. The fixed gaussian k is a smooth
and rapidly decreasing function. The radial decreasing functions f,, g., k.,
have uniform majorizations on bounded sets; i.e., if || f,|],, = 1, then

Fulr) = [(mr?)]'1Pr = (7).
First,
k * fu— k * f
as a pointwise limit because of the weak convergence of f,. But kxf, is
majorized by kx+, and this latter function is a good function in L, 1/r =
1/p, + 1/p, — 1. So by the Lebesgue dominated convergence theorem £ *f,,
converges to kxfin L". Then
| (e # Fur @urha)(0) — (o fguh)O) | = | ([xfu — o xf1%gn*ha)(0)]

S| kxfo— Exflxgn*hy |l

S 11 galloy [ B llog [| o % fu) — (B* 1) [l»

= || (k*f.) — (k*1) 1l
and thus

lim (k * f, * 9, % h,)(0) = lim (k* f* g, % ,)(0) .
By repeating this argument for the functions g, and &, we obtain
D* = (kxfxg=h)0) .

But by definition

(kxfxg+h)(0) = D*|[ fllo, 119 llny Il 2[5

and since these functions are weak limits, we must have || f|l,, = 1, 1|9 ls, =
1, and ||k ||,, = 1. Thus, we have used a weak compactness argument to
show the existence of an extremal solution for which the maximum norm is
attained in equation (11). Since the supremum is attained, the conditions for
equality in the case of Holder’s inequality require that the following integral
equations be satisfied:

Pt =kxgxh a.e.,

Dgret = kxfxh a.e.,

DR =kxfxg a.e.
For example,

9 = (b frg+h)(O) = | @+ g+ W@)de

= 5D i1, s | F@ 2 g R @)
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So we can in fact choose representative functions for this extremal solution
which are smooth (even real analytic) by specifying that the above integral
equations are satisfied identically (at most they can differ at the origin).

The fixed function % is gaussian so it splits into a product of gaussian
functions

k() = k() ko)

with one-dimensional norm || k,||,, = 1. So for this smooth extremal solution
we have

9 = [ (o, + v+ 2o + v + 2) VT F DV YT 9
X (V2 + 2d)dwdr.dy.dy.dzdz, ;
P = S k@, + ¥, + 2)0@, U, z)[s fVEF B dt]"“

x U |l sVEF B dt]""ﬂ WVETF D) P dt| dedy.dz, ;

Dz, Y, 2,) = Sko(xz + Y. + 2)F, ()G, () H, (2.)da.dy.dz, ;

RO -
(firozsaral]™

_ 9V + vl :
) 1o asayra]™

W ETD .
[[1ezTara]™

H,(z,) =

Smoothness and monotonicity will insure that the function @ is continuous,
and O(x,, y,, 2,) =< 9D as it corresponds to a one-dimensional convolution prob-
lem. Hence

P = Sko(xl oyt zl)B FOV/E T D) dt]‘“’l
% U P dtJ”sz | WOV Z B |7 dt}llradxldyldzl

and so we must have ®(x,, ¥, z,) = 9D almost everywhere, and by continuity
D(x, ¥, 2) = D for all values of the variables x, ¥, z,. Observe that the
functions F, (x,), G,,(¥.), H. (2.) give a smooth one-dimensional extremal solu-
tion as functions of x,, ¥,, 2z, for all values x,, ¥,, 2, (which can then be varied
independently as “parameters”). That is,



INEQUALITIES IN FOURIER ANALYSIS 175

D = S lol@s + Ys + 20)F ()G (o) H., (22) dsy,dz, .

Suppose we fix x,, ¥, and allow z, to vary. Then the function
Hl(zz) = h(-l/zf + zg) 1/P3
U | (V2 T 5| dt]

in terms of the variable 2z, will be determined by an integral equation in
terms of the functions f, ¢ and the parameters x,, ¥, because of the condi-
tions for equality in Holder’s inequality

D(H,)" " = F, *Gy, *k, .
Thus, this continuous function H, (z;) must be independent of the “param-
eter” z,. Setting z, = 0 and defining
RV 2+ 2)

w(z? + 23) = 7(0)

,

we obtain

w(zi + 23) _ u(23)

[S lu(z? + ) |7 dt]"” U | u(t?) |7 dt]”” '

Now set z, = 0 and we find
(12) w(z? + 29 = u(zH)u(zd) .
This relation holds for all z,, 2, so « must be exponential and % is a gaussian
function. The same argument will show that f and ¢ must also be gaussian
functions.

Now if we consider the one-dimensional convolution problem

@ Nfrgsh=k]l.
Lo, 119 1oy (1R 1y 1 5 12,
where f, g, h, k are one-dimensional gaussian functions, a variational argu-
ment will show that
(13) D= A"lA”zApsAm

where 4,, = [m''™/m™™]. Now let 1/p, + 1/p, + 1/p; = 2, 1/s’ = e*and 1/q; =
1/p, + 1/(3s"). Let f, g, h be one-dimensional step functions with k(x) =
exp (—ns'z?). Then

[(Frgehs @] _ 4 g 4 4
e g lla, | 2 lleg 11 RNl — 9, 41gy4q54 s

and in the limit ¢ — 0 (i.e., s — 1) we obtain
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[(f*g«m)@)]| 4 4 4
”fllpl ”g”pz “h”ps = P 43py4ip,
(14) C=A4,A4,A4,, .

More generally, we obtain the following sharp form of Young’s inequality
for convolutions.

THEOREM 4. For f,e L"(R") with 1 < p, < oo and 1/p, + +++ + 1/p) =
1/7',1 < r < o, then

(15) Lfixeee xfull, = [A1’1 APmAr’]n ”fl“m ”fm”?m ’
A, = [p[p"" ' and in the limit p—1 or p— oo, lim A4, = 1.

As illustrated in our argument to obtain the sharp convolution inequal-
ities, gaussian functions will be extremal functions on which the maximum
norms are attained for Theorems 1, 3 and 4.

IV. Further remarks

1. Nelson’s inequality. In the study of mathematical problems in
quantum field theory, analysis of quartic interactions and other problems
(particularly in the work of Nelson and Glimm) has used basic L? estimates
for the quantization operator. This: problem can be formulated on Fock
space, or in terms of stochastic integrals and gaussian processes, or as a
Hermite multiplier inequality on the line. The best possible estimate has
been called Nelson’s “hypercontractive inequality” (see [6]). This estimate
viewed as a multiplier inequality is in fact a special case of the sharp form
of Young’s inequality contained in Theorem 3 for one dimension.

THEOREM 5. For real w,0 < w =< [(p — D/(r — D]*® and p < r the
multiplier inequality on the Hermite semigroup

(16) | Tug llzram = 11 9 1lzocam
18 equivalent to the convolution inequality on the line
7 [kxfllr = ApAdA, ||kl fl»

where k is a gausstan function, f€ L*(R) and 1/g =1/r + 1 —1/p,1 <
0,9, 7 < oo

The notation here is the same as in Theorem 2. It suffices to consider
the maximum value of @, and by dilation we normalize the functions in the
second inequality so that k(x) = exp (—7q'x?). The equivalence is evident by
considering polynomials g(x) in equation (16), and noting that by a simple
change of variables equation (17) will hold for functions
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f(@) = g(V2rpp'x) exp (—xp'a’) .

Both of these sets of functions are dense in their respective spaces. Expli-
citly, equation (16) can be written

1r 1/p

{[1] 7o, wowarw)| @} = {{ 190 dut@)}

On the left-hand side of the equation make the change of variables z =
V2rrr'u and y = 1V 27pp'v, and substitute the value = [(p — 1)/(r — D]*%
on the right-hand side make the change of variables # = V" 27xpp'u. Then
we obtain

{S !S e"‘""“""’ZQ(VWv)e‘""”zdvl' du}m

< A,AqA,,(é)lm{S | 9V 2Tppw)e " |” du }”" .

2. Conwvolution extremal functions. In our proof to obtain sharp con-
volution inequalities in Section III, we used the product structure of convolu-
tion to show that gaussian functions provide an extremal solution. An
extension of that argument will in fact show that up to the basic symmetry
operations of translation, character multiplication and dilation, any extremal
function will almost everywhere be gaussian. Details of this remark will
appear in a later paper.

3. Hirschman’s inequality. Prior to the idea of Babenko there were
no definitive results to indicate that the classical Hausdorfi-Young inequality
could be improved on the line. But Hirschman had earlier suggested a rela-
tion between the Hausdorff-Young inequality and the Weyl-Heisenberg
uncertainty inequality ([5]). For fe S(R) and

a=feir@ra,  ={s16n@rE

then the Weyl-Heisenberg inequality is given by

e-wirerea]” [[e-iep@ral”

alP IF£1Le ~ o’

Hirschman argued that by differentiating the Hausdorff-Young inequality
as a function of the exponent p, then the equality of L? norms, i.e., | Ff]. =
[| £1lz» would imply an inequality of the form

(18)

(19) [17rmifrds + | 15001 FF P do < By
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where we have made the normalization || f|, = || Ff]. = 1.°

Hirschman conjectured this inequality would hold for the constant E,, =
In 2 — 1 (which is the value attained on the left-hand side for a gaussian
function). He demonstrated that this result would then imply the Weyl-

Heisenberg inequality by using the classical entropy inequality for a prob-
ability distribution; i.e.,

(20) S P@) In px)ds = —1/2 — (1/2) In {27r S @ — p)?ga(x)dw}

with

S P(x)de =1, S xp(x)de = p .

If one uses the classical Hausdorff-Young inequality in Hirschman’s
argument, then one can only obtain the value E, = 0 in equation (19), but
using the sharp Hausdorff-Young result one obtains the best constant, £, =
In 2 — 1, which is attained for gaussian functions.

4. Inequalities on the torus. It is easy to give a limiting argument to
show that the sharp inequalities on the line imply the classical inequalities
on the circle group. For example, let p(x) be a finite trigonometric sum
defined on T ~ R/Z; then consider functions on R of the form

h(@) = NFp(x)e™ A>0;
then in the limit » — 0, the sharp Hausdorff-Young inequality on R
” Fh ”LP'(R) = Ap || h ”LP(R)

will imply the classical Hausdorff-Young inequality on T;

HSFZ)”LP’(Z) = |2l -

5. Locally compact abelian groups. For the problem of sharp L’ in-
equalities in analysis on a locally compact abelian group, we can use the
structure theorem (van Kampen) which states that any locally compact
abelian group is topologically isomorphic to a product R* x G,, where G, is
a locally compact abelian group which contains an open compact subgroup
H, and the dimension #» is an invariant of the group ([4, Theorem 24.30]).
For groups G, the classical inequalities are sharp, and this was demonstrated
in work by Hewitt and Hirschman ([4, Theorem 43.13]). This product struc-
ture for the group together with Lemma 2 above on products of operators

5 This argument is similar to the one used by Gross ([3]) to obtain a logarithmic inequality
for his proof of Nelson’s inequality.
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then implies that the sharp norms for these inequalities on locally compact
abelian groups will be given as a product of the sharp R" norms with the G,
norm which is by the Hewitt-Hirschman theorem equal to one. This last
remark confirms the conjecture of Hewitt and Ross (see [4, Vol. II, page 630]).

Appendix
1. We give here a short proof of equation (5),
¢n.l(x1y "ty xn) = H,(xl + oo 4+ xn)

r=1

+ '?17 e al,rHl—2r(x1 + e+ xn) ’
with (x,)’ = 1/n and the coefficients a, , bounded with respect to n for fixed
l. By explicit computation

9’”,0(3:1, cee, xn) = Ho(xl 4+ oo 4 xn) R
9’”,1(3:1, cee, x”) = _El'l(gc1 4+ e + x”) ,
Poo@yy v, 2,) = Hyw, + -ov + 1),

P o1, cee, ) = Hyx, + -+ + r.) + %Hl(% + o 42,

The general result in equation (5) can be proved by a recursion argument.
Using the definition of the Hermite polynomials as

H@) = | @ + wyduw) ,

we obtain through an integration by parts the recursion relation

Hy(x) = zH,_,(x) — (I — 1)H,_(x)
= Hl(x)Hl—l(x) - (l - I)Hl—z(x) .

For the basis functions @, ,(x,, ---, x,) we have
@n,l(xly ct ey xn) = ¢n,l(x1y Tty xn)¢n,l—1(x1, °t xn)

~ =Dy - Bpua, 2

In terms of the elementary symmetric functions this is simply
lal(xly ctcy xn) = Gl(xly MY xn)al—l(xly ct xn)

— = — (= Do, -, @) -
n

To obtain this recursion relation use the generating function
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T@y coryzart) =10, A+ at) =3 tole, -+, ),
0 n ~
a_tj-(xly ceey Tns t) = Ek=1 xky(xly cery Ly vy Ty t)
= 1=0 tl_llo'l(xu ) xn) ’
0'1(56,, M) xn)y(xlv sty Xy t) = :=1 xk(l + xkt)g"(xn ) xk’ cery Ty t) ’

0'1(9?1, tt xn)y(xly ceey Tns t) - —aa?ir(xu cery Xys t)

1 n A~ .
= %tquﬂ‘(xl’ cee, Ly v, Tl t) .

Observe that

E:=1 Ul(xly ) fv\ky ) xn) = (n - l)ol(xu Tty xn) 5
that is, by symmetry the left-hand side must be a constant multiple of
o(x, -+, z,). We note that for n = [ there are (7’) terms in the expression

for oy(x,, ---, z,), and find the constant by setting all the x, equal to the
same value. Thus we have

0'1(.’171, Tty xn)g(xly sy Tns t) - aitg(xl’ sy Tap t)
= -l—t ::;10 (’I’b - m)om(xly Tt xn)tm
n

and by comparing powers of ¢ this gives the desired recursion relation for
the elementary symmetric functions in the case (x;)* = 1/n.

It is seen explicitly that equation (5) holds for the initial values of I.
Then the two recursion relations for the Hermite polynomials H,(x, + ---- +
z,) and the symmetric basis functions @, ;(x,, ---, x,) together with an induec-
tion argument on ! show that equation (5) holds in general.

2. We give a proof for the remark contained in equation (7); that is, the
function

Yy P ‘ Yy 1P
1+ L |- L
“ Vvp—1 }
2

Vp—1

is monotone decreasing as a function of p, for p > 1 and fixed y > 0. The
monotonicity of this function is equivalent to the inequality

“1+Jp"1y{41—J%§%y
2

q—1

q \1/9
} <p1+yV+H—yVF”
= 2

for 1 < p < ¢ < . Suppose we have proved this inequality for 0 < y < 1.
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Then we can obtain the case y > 1 from this result. For observe that if
I<wgl,
2

|wi\/§:i 2é]l:':}/p_lw

so we have

q—1

q o 1 |7\
+w—\/p L }

{Iw+x/—§—:—:—
w‘q+‘1—\/p lw

2
—1 — q \1/9
1+/p
{I g—1 q— }
2

< 1

<{|1 + w|” + |1 — 'wl”}’“’_
2
Now dividing through both sides of this equation by a factor w and setting
¥y = 1/w, we obtain the above inequality for the case y > 1.

This inequality is equivalent to a multiplier inequality on “two-point
spaces” (with real-valued functions) corresponding to the multiplier factor
Y =1V (p — 1)/(¢ — 1); that is,

T:a + bx —> a + Ybx

for @ and b real, ¥ = V/(»p — 1)/(g — 1), and x with the values 1 with equal
weight. If we can show that T has norm one as a linear mapping from
L*(dv) to L*(dv) (here we want real-valued function spaces) for the restricted
casel £ » < q < 2, then this result will imply by duality the inequality for
2=5¢ =p' <oosinceY=v(p—1/g—1) =1V (@ — I)/(» — 1); that is,

T*:a + bx —> a + 7bx

is a linear mapping of norm one on L*(dv) to L” (dv) (again real-valued funec-
tion spaces); and these two results together will imply the general inequality.
Thus we need only to show the inequality

“1+/§:iy

for the restricted case 0 <y <1l and 1 < p £ q £ 2. With the use of the
binomial expansion, this inequality is equivalent to

o (TN D— 1\ u o o [P,
[ "=°(2k)<q——1>yJ = ieo | g )V

q —‘——"_1 q \1/9
1_
+‘ \/q—ly 1 S{Il+y|’+|1—yl”}"”
2 - 2
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and for 1 < p < q < 2 the binomial coefficients (2%) and <2qk> are both posi-

tive, and in addition
)=y <(2)
q\2k/\q—1/ — \2k

Using the elementary result that for0 <A <land x> 0
L+2'<1+ 2,

we have

- (4 p—lkzkplq P [TV D=1\
[1+Ek=‘(2k)(3—-_1)y] §1+'q" k=t 2k<q—1)y
=1+ 30, (;c)y

We remark that the basic inequality of this section is the natural
analogue of Nelson’s inequality for the “two-point space.”
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