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A FIXED POINT FREE NONEXPANSIVE MAP 

DALE E. ALSPACH1 

ABSTRACT. In this note we give an example of a weakly compact convex subset of 
LJ[O, 11 that fails to have the fixed point property for nonexpansive maps. This 
answers a long-standing question which was recently raised again by S. Reich [7]. 

1. Introduction. A (usually nonlinear) map T on a subset K of a Banach space X 
is said to be nonexpansive if for every kI, k2 in K, IITkI - Tk2I I Ilk1 - k211. 
Many authors have given conditions on the set K that guarantee that a nonexpan- 
sive map T on K has a fixed point, e.g., [1], [2], [5], [6]. Usually K is assumed to be 
weakly compact and convex. Of course, if T is weakly continuous, then T has a 
fixed point by the Schauder-Tychonoff fixed point theorem. For T nonexpansive, 
(and not weakly continuous) positive results have been obtained only by placing 
additional requirements on K; however, it was unknown whether any of these 
additional requirements on K were necessary. Our example shows that in fact some 
additional assumptions on K are necessary. 

2. The example. Let X = L1[0, 1] and let 

K = {f e L[O, 1]: 'f= 1,0 < f< 2, a.e.}. 

It is easy to see that K is a weakly closed, convex subset of the order interval 
{f: 0 6 f < 2), and thus K is weakly compact, because order intervals in LJO, 1] 
are weakly compact. (This is a direct consequence of uniform integrability, [3, p. 
292].) Define the map T from K to K by 

- 

2f(2t) A 2, 0 < t < 
Mft) 

= 2 l 

[2f(2t - 1) - 2] I < t < I. 

(We will use equality throughout with the understanding that there may be an 
exceptional set of measure zero.) We leave it to the reader to check that T is an 
isometry on K. 
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Suppose that T has a fixed point g. We note first that g = 21A for some set A of 
measure one-half. Indeed, 

{t: g(t) = 2) = {t: Tg(t) = 2} 

= {t/2: g(t) = 2) + { 2 : g(t) = 2} 

+ {t/2: 1 < g(t) < 2). 
(We are using + to denote disjoint union.) Because the measure of {t/2: g(t) = 2) 
+ {(1 + t)/2: g(t) = 2) is equal to the measure of {t: g(t) = 2), it follows that 
{t: 1 < g(t) < 2) is of measure zero. Iteration of this argument shows that 

{t: 0 <g(t) <2) = U {t: 2-n < g(t) < 2-n +} 
n=O 

is of measure zero, as well. 
Next observe that for g = 21A 

{t: Tng(t) = 2} = 2) (2 +2 r n + 2n;: t (E A) 

for all n. We have this for n = 1 above, and induction establishes it in general. 
Because g is fixed, A = {t: Tng(t) = 2) for all natural numbers n and thus, the 
intersection of A with any interval with dyadic end points has measure exactly half 
the measure of the interval. Obviously no such measurable set exists. This con- 
tradiction shows that T has no fixed point. 

REMARK 1. The set K has diameter two, but IIf - I I 1 for allf E K and thus, 
K cannot be the minimal weakly compact convex subset invariant under T. In 
particular, the set 

00 

n (P. IV - (I + r) 1) n {fIlf-I1 < 1) n K, 
i=l 

where ri = sgn[sin 2sit], the ith Rademacher function, is invariant. 
REMARK 2. It remains open whether there is a closed, bounded, convex subset of 

a reflexive space (hence, weakly compact) without the fixed point property for 
nonexpansive maps. 

REMARK 3. When viewed as a transformation acting on the sets {(x, y): 0 < y 6 
f(x)). This example is essentially the baker's transformation from ergodic theory 
[4]. The various properties of our example can be derived from the well-known 
properties of that transformation. 
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