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The Problem



Flipping coins

Heads Tails



The question

What is the probability the coin is heads?



Basic estimate

Step 1: Numerically encode coins:

Heads = 1, Tails = 0

Step 2: Assign probability distribution:

C ∼ Bernoulli(p)⇒ P(X = 1) = p, P(X = 0) = 1− p

Step 3: Basic estimate:

p̂n =
C1 + · · ·+ Cn

n
, Ci

iid∼ Bern(p)



This has lead to some great mathematics

Jacob Bernoulli proved in
1713 an early version of
the Strong Law of Large
Numbers.

Strong Law of Large Numbers:

lim
n→∞

p̂n = p with probability 1



But how fast does it converge?

Abraham de Moive
proved in 1733 an early
version of the Central
Limit Theorem in order to
study how the simple
estimate behaves



The Central Limit Theorem

The CLT says that in the limit as you add independent,
identically distributed random variables, the resulting density
approaches a normal distribution:

Our coin flips are iid, so p̂ approximately normal...



M. Freeman, A visual comparison of normal and paranormal
distributions, J. of Epidemiology and Community Health, 60(1),
p. 6, 2006



Central Limit Theorem

The CLT has some drawbacks for this problem
I Convergence to normal polynomial in n
I Tails exponentially small in n
I Not accurate out in the tails
I For confidence close to 1
I Bad for small p
I Gives additive error, not relative error



Relative Error

Definition
The relative error of an estimate p̂ for p is

p̂
p
− 1 =

p̂ − p
p

.

Example: Actual answer: 20%
Estimate: 23%
Relative error: 3%/20% = 15%



Today

I will present an unbiased estimate p̂ for p
where the relative error does not depend in any

way on p.



Estimate properties

The new estimate
I Requires a random number of flips
I Unbiased
I Number of flips very close to optimal
I Relative error distribution known exactly
I Allows easy construction of exact confidence intervals



Relative error and basic estimate: An example

For the basic estimate, relative error heavily depends on p

Suppose n = 5 and p = 0.25.

Then

p̂n ∈
{
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5
,
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5
,
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5
,
4
5
,
5
5

}
.

and
p̂n

p
∈
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4
5
,
8
5
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5
,
16
5
,
20
5

}
.

The values that [p̂n/p]− 1 takes on depends on p!



More generally

More generally:

p̂n

p
∈
{

0
np
,

1
np
,

2
np
, . . . ,

n
np

}

New estimate
I Distribution of p̂/p − 1 does not depend on p
I Allows us to easily find exact confidence intervals



But is it fast?

Goal: for ε > 0 and δ > 0,

P(|(p̂/p)− 1| > ε) < δ

Suppose we knew p ahead of time, what should n be exactly for

ε = 10% and δ = 5%?

Can directly calculate tails of a binomial to get:

p Exact n

1/20 7219
1/100 37546



New algorithm

Let Tp be number of flips required by new estimate

ε = 0.1, δ = 0.05
p Exact n E[Tp] E[Tp]/n

1/20 7 219 7 700 1.067
1/100 37 545 38 500 1.025

ε = 0.01, δ = 10−6

p Exact n E[Tp] E[Tp]/n

1/20 4 545 010 4 789 800 1.053
1/100 236 850 500 239 490 000 1.011



Estimate properties

The new estimate
I Requires a random number of flips
I Unbiased
I Number of flips very close to optimal
I Relative error distribution known exactly
I Allows easy construction of exact confidence intervals



How did I get started on this problem?

My work is in perfect simulation
I Drawing samples exactly from high dimensional models...
I ...usually using a random number of samples.

Examples
I Ising (and autonormal) model
I Strauss model
I Widom-Rowlinson
I Allele frequency tables
I Colorings of graphs
I Matérn type III process
I Weighted assignments

Numerous applications



Applications



Application: Finding the permanent of a matrix

M. Huber and J. Law. Fast approximation of the permanent for very
dense problem. In Proc. of 19th ACM-SIAM Symp. on Discrete Alg.,
pp. 681–689, 2008

Definition
Suppose n workers are to be assigned to jobs {1,2, . . . ,n}, but
each worker is only qualified for a specified set of jobs. The
number of such assignments is called the permanent.



Acceptance/Rejection

HL 2008 was an example of an acceptance/rejection method...

Goal: Estimate size of blue

1. Draw X1, . . . ,Xn from
red region

2. Let k be the number of
Xi that fell into blue

3. Estimate is (k/n) times
size of red region



This is just the coin problem!

Probability of heads p is size of blue over size of red
I Want to minimize number of draws from red region...
I ...is the same as number of flips of a coin

In the paper, used a Chernoff bound to bound Binomial tails:

14p−1ε−2 ln(2/δ)

flips of the coin sufficed



Then I was asked to referee a paper...

The authors had referenced the 2008 permanent paper...
I They used the 14 constant
I This constant is way too large
I So I started work to reduce this constant



How should number of samples vary with p?

To get a rough idea of how many samples needed, consider p̂n

E[p̂n] = p, SD(p̂n) =

√
(p)(1− p)

n

So to get SD(p̂n) ≈ εp...

n ≈ ε−2(1− p)/p

Number of samples should be Θ(1/p), but we don’t know p



DKLR

P. Dagum, R. Karp, M. Luby, and S. Ross. An optimal algorithm for
Monte Carlo estimation. Siam. J. Comput., 29(5):1484–1496, 2000.

They solved the 1/p problem in the following clever way:
1. Keep flipping coins until get k heads
2. Estimate is k divided by number of flips

Run time On average, draw k/p samples

[Biased estimate, however]

Their theorem: to get P(|(p̂DKLR/p)− 1| > ε) < δ,

k ≥ 1 + 4(e − 2)(1 + ε) ln(2/δ)ε−2

Note 4(e − 2) ≈ 2.873 . . .



Running time for DKLR

ε = 0.1, δ = 0.05
p Exact n E[Tp] E[TDKLR]

1/20 7 219 7 700 23 340
1/100 37 545 38 500 116 700



Application: Exact p values

M. Huber, Y. Chen, I. Dinwoodie, A. Dobra, and M. Nicholas, Monte
Carlo algorithms for Hardy-Weinberg proportions, Biometrics, 62(1),
pp. 49–53, 2006.

Definition
A p value is the probability that a statistic applied to a draw from
the null hypothesis model is more unusual than the statistic
applied to the data.

Low p-value = evidence that null hypothesis is untrue



Estimating p-values with perfect samples

Want p-value for a statistic S(·)
A p-value is just

P(S(X ) is weirder thanS(data))

where X is a draw from statistical model

So if have algorithm for drawing X exactly from model...

This is again exactly the coin flipping problem!



The Estimate



Uniform and exponential random variables

Say U ∼ Unif([0,1]) if for all 0 < a < b < 1,

P(a < U < b) = b = a.

To get an exponential random variable (with rate 1):

U ∼ Unif([0,1])⇒ − ln(U) ∼ Exp(1)



The algorithm in words:

Before you begin:
I Fix k a positive integer

The estimate:
1. Flip a coin
2. Draw an exponential random variable of rate 1
3. Add the exponential to a total of time
4. Keep doing 1 through 3 until you have k heads
5. The final estimate is k − 1 divided by the sum of the

exponentials



The algorithm in pseudocode

Gamma Bernoulli Approximation Scheme

GBAS Input: k ≥ 2

1) R ← 0, S ← 0
2) Repeat
3) X ← Bern(p), A← Exp(1)
4) S ← S + X , R ← R + A
5) Until S = k
6) p̂ ← (k − 1)/R



Poisson point process

Definition
P is a Poisson point process on a region A of rate λ if for any
B ⊆ A of finite size, the mean number of points of P that fall in
B is λ times the size of B. Also, the # of points in an in interval
is independent of the # of points in a disjoint interval.

︸ ︷︷ ︸
Expected number in interval of length 2 is 2λ



Equivalent Formulation

Distances between points are iid

exponential random variables of rate λ

(take exp rate 1, divide by λ)

0

A1 A2 A3 A4 A5 A6

A1,A2,A3, . . .
iid∼ Exp(λ)



Back to mean formulation...

Suppose for each point flip Bern(p)

Only keep points that get heads

tails tails

heads

tails

heads

tails

Expected number in interval [a,b] is λp(b − a)

New effective rate: λp

Process called thinning



Estimate: Poisson formulation

I Run Poisson process forward in time from 0
I Each point flip a coin–only keep heads
I Continue until have k heads
I Let Pk by time of the k th head
I Estimate is (k − 1)/Pk

0 P1 P2



Gamma Bernoulli Approximation Scheme

GBAS Input: k ≥ 2

1) R ← 0, S ← 0
2) Repeat
3) X ← Bern(p), A← Exp(1)
4) S ← S + X , R ← R + A
5) Until S = k
6) p̂ ← (k − 1)/R



Gamma distributions

Because Pi − Pi−1 ∼ Exp(p)

Pk ∼ Gamma(k ,p) [sum of k exponentials]

So 1/Pk ∼ InverseGamma(k ,p)

E
[

k − 1
Pk

]
= (k − 1)E[P−1

k ] = (k − 1)
p

k − 1
= p

Estimate is unbiased!



Back to exponential formulation...

0

A1 A2 A3 A4 A5 A6

Multiply all the Ai by 2:

0

2A1 2A2 2A3 2A4

New expected number in [0, t ] = old expected in [0, t/2]

So λ(t − 0)/2⇒ new rate is λ/2



Scaling exponentials

Fact
If X ∼ Exp(λ), then cX ∼ Exp(λ/c).

Fact
If X ∼ Gamma(k , λ), then X ∼ Gamma(k , λ/c).
That means

p̂
p

=
k − 1
pPk

= (k − 1)A,

where A ∼ InverseGamma(k ,p/p) = InverseGamma(k ,1)



Relative error independent of p

Theorem
For p̂ given earlier,

E[p̂] = p,
p̂
p
− 1 ∼ (k − 1)A− 1,

where A ∼ InverseGamma(k ,1), making the relative error
independent of p. The expected number of flips used by the
estimate is k/p.



Filling in the table

Recall the table we had earlier...

ε = 0.1, δ = 0.05
p Exact n E[Tp] E[Tp]/n

1/20 7 219 7 700 1.067
1/100 37 545 38 500 1.025

How I filled in those entries:

min
n

P(|(Bin(n,1/20)/n)/(1/20)− 1| > 0.1) < 0.05 = 7219

min
k

P(|(k − 1)InverseGamma(k ,1)− 1| > 0.1) < 0.05 = 385,

and 385/p = 385/(1/20) = 7700.



Comparison to



How many samples should be taken if CLT exact?

What should the constant be?

For basic estimate p̂n:

E[Ci ] = p, SD(Ci) =
√

p(1− p),

by CLT

p̂n =
C1 + · · ·+ Cn

n
≈ N

(
p,

p(1− p)

n

)
which means

p̂n

p
≈ N

(
1,

1− p
np

)



So for relative error...

Subtracting 1
p̂n

p
− 1 ≈ N

(
0,

1− p
np

)
Hence √

np
1− p

(
p̂
p
− 1
)
≈ N(0,1)



Bounding the normal tail

Z ∼ N(0,1) with density φ(x) =
1√
2π

exp(−x2/2),

(
1
a
− 1

a3

)
φ(a) ≤ P(Z ≥ a) ≤

(
1
a

)
φ(a)



Combining these results

P
(∣∣∣∣ p̂n

p
− 1
∣∣∣∣ > ε

)
= P

(√
np

1− p

∣∣∣∣ p̂n

p
− 1
∣∣∣∣ > ε

√
np

1− p

)
≈ P

(
|Z | > ε

√
np

1− p

)

Note

φ

(√
np

1− p
ε

)
=

1√
2π

exp(−npε2/(1− p))



The result

When CLT holds exactly

Let Ci ∼ N(p,p(1− p)), then

n =

[
2(1− p)

p
ε2
]

ln(2/δ) + lower order terms

New estimate

Let Ci ∼ Bern(p), then

E[T ] =

[
2
p
ε2
]

ln(2/δ) + lower order terms



Final thoughts



Some current projects

Bernoulli Factory
Given a p coin, can you flip a 2p coin?

Concentration
If you only bound standard deviation can you get concentration
as if you had a normal random variable?

Current results: Assuming CLT need ε−2, new method 64 + ε−2

Partition functions
How many samples are necessary to estimate the normalizing
constant of a Gibbs distribution?

Simulation with fixed correlation
Copulas are not the only method (with Nevena Marić)



Summary

Applications
I Numerical integration
I Finding exact p values

The new estimate
I Unbiased
I Easy to build
I Nearly optimal number of samples (lose factor of 1− p)
I Relative error (p̂/p)− 1 independent of p
I Easy to get exact confidence intervals


