Approximating the permanent of a matrix with nonnegative entries

Mark Huber¹ and Jenny Law²

¹Department of Mathematics and Computer Science, Claremont McKenna College

²Department of Mathematics, Georgia Perimeter College

31 Mar, 2010

A Permanent Problem

Perfect Matchings

A perfect matching in a graph is a collection of edges such that every node is adjacent to exactly one edge

Perfect Matchings

A perfect matching in a graph is a collection of edges such that every node is adjacent to exactly one edge

Encodings

More than one way to encode matching...

Perfect Matchings

Rook Placement

Applications

- Nonparametric statistics (permutation statistical models)
- Contingency tables
- Graphs with given degree sequence
- One of first #P-complete problems

Goal

Basic Problem

- Count number of perfect matchings/restricted permutations/rook placements
- #P-complete problem, best can do is approximation
- Jerrum-Sinclair-Vigoda used Markov chain approach
- Even with improvements, still an $O(n^{10}(\log n)^4)$ algorithm
- Today: how to get $O(n^4 \log n)$ but only for dense problems

Make the problem harder

Weighted problem

- Give each edge a nonnegative weight
- (Chessboard now matrix with nonnegative entries)
- Weight of perfect matching product of weights of edges:

wt(matching) =
$$\prod_{e \in \text{matching}} \text{wt}(e) = \prod_{i=1}^{n} A(i, \sigma(i))$$

New goal

New goal, find

$$Z = \sum_{\text{matchings}} wt(\text{matching})$$

> Call it the *permanent* of the matrix A:

$$per(A) = \sum_{\sigma \in S_n} \prod_{i=1}^n A(i, \sigma(i))$$

D v P

Recall determinant of a matrix is:

$$\det(A) = \sum_{\sigma \in S_n} (-1)^{\operatorname{sgn}(\sigma)} \prod_{i=1}^n A(i, \sigma(i))$$

Remove the sign of the permuation to get the permanent:

$$per(A) = \sum_{\sigma \in S_n} \prod_{i=1}^n A(i, \sigma(i))$$

Allowable spaces get value "1", forbidden "0":

Comparison

Differences

- Determinant geometric/algebraic, simple invariants
- Can be found in $O(n^3)$ time
- Permanent combinatorial, #P-complete
- Best known algorithm Ryser: $O(n2^n)$ time

Similarities

- > Expansion by minors works with both
- Multiply row by α , multiply per/det by α

Acceptance/Rejection

How to roll a seven sided die

Repeat

- 2 Roll an 8-sided die
- Ontil result at most 7

On average, takes 8/7 rolls of 8-sided die To get roll of 3-sided die, takes 8/3 rolls on average This works because 8 > 7 and 8 > 3

Upper bounds

Consider the following example:

$$per(A) = 3!2!$$

Minc (1963) conjectured that for given row sums, block structure maximizes permanent

[Finally proved by Bregman in 1973]

For matrices whose entries are 0 or 1:

$$\operatorname{per}(A) \leq \prod_{i=1}^{n} [r(i)!]^{1/r(i)},$$

where r(i) is the sum of row *i*.

Problem: cannot prove via induction on minors

To work for upper bound...

Need

$$\text{bound} \begin{pmatrix} 3\\2\\3\\2 \end{pmatrix} \geq \text{bound} \begin{pmatrix} 1\\1\\3\\1 \end{pmatrix} + \text{bound} \begin{pmatrix} 2\\1\\3\\1 \end{pmatrix} + \text{bound} \begin{pmatrix} 2\\1\\3\\1 \end{pmatrix}$$

but for Minc/Bregman:

$$6.6038... \leq 1.81... + 2.57... + 2.57...$$

So can't use Minc's inequality exactly

By Stirling's approximation:

$$(r!)^{1/r} \approx \sqrt{2\pi r} \left(\frac{r}{e}\right)^{1/r} = (2\pi r)^{1/2r} \cdot \frac{r}{e}.$$

Get a handle on $r^{1/2r}$ using $e^x \approx 1 + x$ for small x:

$$(r!)^{1/r} = e^{(1/2r)(\log r + \log 2\pi)}(r/e)$$

$$\approx \left[1 + \frac{1}{2r}(\log r + \log 2\pi)\right]\frac{r}{e}$$

$$= \frac{r + (1/2)\ln r + (1/2)\ln(2\pi)}{e}$$

Theorem For a matrix A with entries either 0 or 1 and row sums r(i):

$$\operatorname{per}(A) \leq \prod_{i=1}^{n} \frac{h(r(i))}{e},$$

where

$$h(r) = r + \frac{1}{2} \ln r + e - 1.$$

Moreover, this bound can be proved by induction on minors.

Example from earlier

Need

$$\text{bound} \begin{pmatrix} 3\\2\\3\\2 \end{pmatrix} \geq \text{bound} \begin{pmatrix} 1\\1\\3\\1 \end{pmatrix} + \text{bound} \begin{pmatrix} 2\\1\\3\\1 \end{pmatrix} + \text{bound} \begin{pmatrix} 2\\1\\3\\1 \end{pmatrix}$$

and for new bound:

 $8.397... \geq 1.937... + 2.897... + 2.897 = 7.733...$

Sampling algorithm

Procedure

- Choose rook placement for first column...
- ...with probability bound of minor over original bound
- > By Theorem, these ratios add to less than one
- If no placement chosen, reject and start over
- Otherwise continue until all rooks placed

Why does this work?

Probability of making this choice:

 $\frac{h(2,1,3,1)}{h(3,2,3,2)} \cdot \frac{h(1,1,2,1)}{h(2,1,3,1)} \cdot \frac{h(1,1,1,1)}{h(1,1,2,1)} \cdot \frac{h(1,1,1,1)}{h(1,1,1,1)} = \frac{1}{h(3,2,3,2)}$

where (3, 2, 3, 2) are original row sums

How long does in take to run?

Average number of steps:

$$\frac{\mathsf{bound}(\mathsf{per}(A))}{\mathsf{per}(A)}$$

Can be exponential in *n* Example: *A* diagonal plus superdiagonal:

$$per(A) = 1$$

bound(per(A)) = (1.495...)ⁿ⁻¹

Speeding things up

Upper and lower bounds

Regular graphs

- Minc: permanent large when 1's are clumped
- Van der Waerden: permanent small when entries spread out as much as possible

Lower bounding the permanent

Regular graphs

- Regular graphs have all degrees of all nodes are same
- Matrices all row and column sums are same, say r
- > Van der Waerden lower bound for regular matrices

$$\operatorname{per}(A) \ge \operatorname{per}\begin{pmatrix} r/n & r/n & \cdots & r/n \\ r/n & r/n & \cdots & r/n \\ \vdots & \vdots & \cdots & \vdots \\ r/n & r/n & \cdots & r/n \end{pmatrix} = r^n \frac{n!}{n^n}$$

Proved indep. by Egorychev (1981), Falikman (1981)

Use Stirling as before

For regular problems:

$$\sqrt{2\pi n} \left(\frac{r}{e}\right)^n \le \operatorname{per}(A) \le \left(\frac{r+(1/2)\ln r+e-1}{e}\right)^n$$

Looking at ratio of upper to lower bound:

$$\frac{\text{upper}}{\text{lower}} = \frac{1}{\sqrt{2\pi n}} \left(1 + \frac{1}{2r} \ln r + e - 1 \right)^n \approx \frac{1}{\sqrt{2\pi n}} r^{n/2r} (e - 1)^{n/r}$$

So if problem is dense:

$$r \ge \gamma n, \ \gamma \in [0, 1]$$

then runtime polynomial

Achieving regularity

Sinkhorn step

- Divide each row by its row sum
- ② Divide each column by its column sum

Repeat until nearly regular

- Row and col sums in $[1 n^{-2}, 1 + n^{-2}]$ in $O(n^{4.5})$ steps
- Can be done in $O(n^4)$ using ellipsoid method

Sinkhorn in action

1	1	1	0	3	1/3	1/3	1/3	0	1
1	0	0	1	2	1/2	0	0	1/2	1
0	1	1	1	3 —	→ O	1/3	1/3	1/3	1
1	0	1	0	2	1/2	0	1/2	0	1
3	2	3	2		4/3	2/3	7/6	3/6	
			1/4	1/2	2/7	0	29/28		
			3/8	0	0	3/5	39/40		
		\rightarrow	0	1/2	2/7	2/5	73/70		
			3/8	0	3/4	0	45/56		
			1	1	1	1		_	

After many Sinkhorn steps

.2069	.5450	.2479	0	\approx 1
.3381	0	0	.6618	\approx 1
0	.4549	.2069	.3381	\approx 1
.4549	0	.5450	0	≈ 1
1	1	1	1	

This has permanent about .1359

Making rows as large as possible

Last scaling of rows

- Want row sums as large as possible
- Divide each row through by its maximum entry
- All entries still in [0, 1]

.3797	1	.4549	0	1.8346
.5108	0	0	1	1.5108
0	1	.4549	.7432	2.1982
.8346	0	1	0	1.8346

The Theorem/Method

Theorem

For a matrix A with entries in [0, 1] and row sums r(i):

$$\operatorname{per}(A) \leq \prod_{i=1}^{n} \frac{h(r(i))}{e},$$

where

$$h(r) = \begin{cases} r + \frac{1}{2} \ln r + e - 1 & r > 1 \\ 1 + (e - 1)r & r \le 1 \end{cases}$$

Moreover, this bound can be proved by induction on minors.

Summary: Speeding things up

What to do

- Regularize matrix using Sinkhorn steps or ellipsoid method
- > Van der Waerden's inequality lower bounds permanent

Theorem (Huber,Law 2008)

If original row sums at least γn for $\gamma \in (.5, 1]$, then

$$rac{ ext{bound}(ext{per}(A))}{ ext{per}(A)} \leq n^{-.5+.5/(2\gamma-1)}.$$

An application

Nonparametric regression

Are quasars that are far away brighter? Some data:

Is sample correlation high only because of truncation?

Nonparametric approach

Data set encodes permuation

Measure relationship by counting inversions

- Inversion when items "out of order" in permutation
- Ex: 2143 has four inversions
- > 2 before 1, 1 before 4, 1 before 3, 4 before 3

Possbilities

Three possibilities:

No inversions

2 inversions

6 inversions

Understanding distribution of number of inversions

Take random permutations that don't violate truncation So: perfect matching/restricted permutation/rook placement Count number of inversions in random permuation

Conclusions

First perfect simulation for permanent

- Sadly, only provably poly time on dense problems
- But on these dense problems, much faster than Markov chain method
- First Markov chain approach only poly time on dense problems

Open question

- Can general problem be reduced to dense problem?
- Current Markov chain approach doesn't do that

References

M. Jerrum, L. Valiant, and V. Vazirani.

Random generation of combinatorial structures from a uniform distribution *Theoret. Comput. Sci.*, **43**, 169–188, 1986

M. Huber.

Exact Sampling from perfect matchings from dense regular bipartite graphs *Algorithmica*, **44**, 183–193, 2006

M. Huber and J. Law.

Fast approximation of the permanent for very dense problems *Proc. of Syposium on Discrete Algorithms*, 681–689, 2008