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A Permanent Problem
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Perfect Matchings

A perfect matching in a graph is a collection of edges such that
every node is adjacent to exactly one edge
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Encodings

More than one way to encode matching...

Perfect Matchings
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Permutation

i �(i)
1 2
2 1
3 4
4 3

Rook Placement
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Applications

Nonparametric statistics (permutation statistical models)
Contingency tables
Graphs with given degree sequence
One of first #P-complete problems
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Goal

Basic Problem
Count number of perfect matchings/restricted
permutations/rook placements
#P-complete problem, best can do is approximation
Jerrum-Sinclair-Vigoda used Markov chain approach
Even with improvements, still an O(n10(log n)4) algorithm
Today: how to get O(n4 log n) but only for dense problems
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Make the problem harder

Weighted problem
Give each edge a nonnegative weight
(Chessboard now matrix with nonnegative entries)
Weight of perfect matching product of weights of edges:

wt(matching) =
∏

e∈matching

wt(e) =
n∏

i=1

A(i , �(i))
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New goal

New goal, find

Z =
∑

matchings

wt(matching)

Call it the permanent of the matrix A:

per(A) =
∑
�∈Sn

n∏
i=1

A(i , �(i))
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D v P

Recall determinant of a matrix is:

det(A) =
∑
�∈Sn

(−1)sgn(�)
n∏

i=1

A(i , �(i))

Remove the sign of the permuation to get the permanent:

per(A) =
∑
�∈Sn

n∏
i=1

A(i , �(i))
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Original problem

Allowable spaces get value “1”, forbidden “0”:

⇒

⎛⎜⎜⎝
1 1 1 0
1 0 0 1
0 1 1 1
1 0 1 0

⎞⎟⎟⎠
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Comparison

Differences
Determinant geometric/algebraic, simple invariants
Can be found in O(n3) time
Permanent combinatorial, #P-complete
Best known algorithm Ryser: O(n2n) time

Similarities
Expansion by minors works with both
Multiply row by �, multiply per/det by �
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Acceptance/Rejection
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How to roll a seven sided die

1 Repeat
2 Roll an 8-sided die
3 Until result at most 7

On average, takes 8/7 rolls of 8-sided die
To get roll of 3-sided die, takes 8/3 rolls on average
This works because 8 > 7 and 8 > 3
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Upper bounds

Consider the following example:

3

3

3

2

2

per(A) = 3!2!

Minc (1963) conjectured that for given row sums,
block structure maximizes permanent
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Minc’s conjecture

[Finally proved by Bregman in 1973]

For matrices whose entries are 0 or 1:

per(A) ≤
n∏

i=1

[r(i)!]1/r(i),

where r(i) is the sum of row i .
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Problem: cannot prove via induction on minors

3

2

3

2

1

1

3

1

2

1

3

1

2

1

3

1

Mark Huber and Jenny Law, CMC,Duke Approximating the permanent 16/40



To work for upper bound...

Need

bound

⎛⎜⎜⎝
3
2
3
2

⎞⎟⎟⎠ ≥ bound

⎛⎜⎜⎝
1
1
3
1

⎞⎟⎟⎠+ bound

⎛⎜⎜⎝
2
1
3
1

⎞⎟⎟⎠+ bound

⎛⎜⎜⎝
2
1
3
1

⎞⎟⎟⎠
but for Minc/Bregman:

6.6038... ≤ 1.81...+ 2.57...+ 2.57...
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So can’t use Minc’s inequality exactly

By Stirling’s approximation:

(r !)1/r ≈
√

2�r
( r

e

)1/r
= (2�r)1/2r ⋅ r

e
.

Get a handle on r1/2r using ex ≈ 1 + x for small x :

(r !)1/r = e(1/2r)(log r+log 2�)(r/e)

≈
[
1 +

1
2r

(log r + log 2�)
]

r
e

=
r + (1/2) ln r + (1/2) ln(2�)

e
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The Theorem/Method

Theorem
For a matrix A with entries either 0 or 1 and row sums r(i):

per(A) ≤
n∏

i=1

h(r(i))
e

,

where
h(r) = r +

1
2

ln r + e − 1.

Moreover, this bound can be proved by induction on minors.
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Example from earlier

Need

bound

⎛⎜⎜⎝
3
2
3
2

⎞⎟⎟⎠ ≥ bound

⎛⎜⎜⎝
1
1
3
1

⎞⎟⎟⎠+ bound

⎛⎜⎜⎝
2
1
3
1

⎞⎟⎟⎠+ bound

⎛⎜⎜⎝
2
1
3
1

⎞⎟⎟⎠
and for new bound:

8.397... ≥ 1.937...+ 2.897...+ 2.897 = 7.733...
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Sampling algorithm

1
1
3
1

2
1
3
1

2
1
3
1

1.937
8.397

2.897
8.397

2.897
8.397

Procedure
Choose rook placement for first column...
...with probability bound of minor over original bound
By Theorem, these ratios add to less than one
If no placement chosen, reject and start over
Otherwise continue until all rooks placed
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Why does this work?

3

2

3

2

Probability of making this choice:

h(2,1,3,1)
h(3,2,3,2)

⋅h(1,1,2,1)
h(2,1,3,1)

⋅h(1,1,1,1)
h(1,1,2,1)

⋅h(1,1,1,1)
h(1,1,1,1)

=
1

h(3,2,3,2)

where (3,2,3,2) are original row sums
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How long does in take to run?
Average number of steps:

bound(per(A))
per(A)

Can be exponential in n
Example: A diagonal plus superdiagonal:

per(A) = 1

bound(per(A)) = (1.495...)n−1
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Speeding things up
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Upper and lower bounds

Regular graphs
Minc: permanent large when 1’s are clumped
Van der Waerden: permanent small when entries spread
out as much as possible
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Lower bounding the permanent

Regular graphs
Regular graphs have all degrees of all nodes are same
Matrices all row and column sums are same, say r
Van der Waerden lower bound for regular matrices

per(A) ≥ per

⎛⎜⎜⎜⎝
r/n r/n ⋅ ⋅ ⋅ r/n
r/n r/n ⋅ ⋅ ⋅ r/n

...
... ⋅ ⋅ ⋅ ...

r/n r/n ⋅ ⋅ ⋅ r/n

⎞⎟⎟⎟⎠ = rn n!
nn

Proved indep. by Egorychev (1981), Falikman (1981)
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Use Stirling as before

For regular problems:

√
2�n

( r
e

)n
≤ per(A) ≤

(
r + (1/2) ln r + e − 1

e

)n

Looking at ratio of upper to lower bound:

upper
lower

=
1√
2�n

(
1 +

1
2r

ln r + e − 1
)n

≈ 1√
2�n

rn/2r (e − 1)n/r

So if problem is dense:

r ≥ 
n, 
 ∈ [0,1]

then runtime polynomial
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Achieving regularity

Sinkhorn step
1 Divide each row by its row sum
2 Divide each column by its column sum

Repeat until nearly regular
Row and col sums in [1− n−2,1 + n−2] in O(n4.5) steps
Can be done in O(n4) using ellipsoid method
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Sinkhorn in action

1 1 1 0 3
1 0 0 1 2
0 1 1 1 3
1 0 1 0 2
3 2 3 2

→

1/3 1/3 1/3 0 1
1/2 0 0 1/2 1
0 1/3 1/3 1/3 1

1/2 0 1/2 0 1
4/3 2/3 7/6 3/6

→

1/4 1/2 2/7 0 29/28
3/8 0 0 3/5 39/40
0 1/2 2/7 2/5 73/70

3/8 0 3/4 0 45/56
1 1 1 1
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After many Sinkhorn steps

.2069 .5450 .2479 0 ≈ 1

.3381 0 0 .6618 ≈ 1
0 .4549 .2069 .3381 ≈ 1

.4549 0 .5450 0 ≈ 1
1 1 1 1

This has permanent about .1359
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Making rows as large as possible

Last scaling of rows
Want row sums as large as possible
Divide each row through by its maximum entry
All entries still in [0,1]

.3797 1 .4549 0 1.8346

.5108 0 0 1 1.5108
0 1 .4549 .7432 2.1982

.8346 0 1 0 1.8346
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The Theorem/Method

Theorem
For a matrix A with entries in [0,1] and row sums r(i):

per(A) ≤
n∏

i=1

h(r(i))
e

,

where

h(r) =
{

r + 1
2 ln r + e − 1 r > 1

1 + (e − 1)r r ≤ 1

Moreover, this bound can be proved by induction on minors.
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Summary: Speeding things up

What to do
Regularize matrix using Sinkhorn steps or ellipsoid method
Van der Waerden’s inequality lower bounds permanent

Theorem (Huber,Law 2008)
If original row sums at least 
n for 
 ∈ (.5,1], then

bound(per(A))
per(A)

≤ n−.5+.5/(2
−1).
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An application
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Nonparametric regression

Are quasars that are far away brighter? Some data:

858 YUGUO CHEN AND JUN S. LIU

spurious relationship between X and Y . To obtain the null distribution of the

chi-square statistic under the truncation constraint, Karl Pearson suggested an

“urn-drawing” randomization law under the constraint Y ≤ X, which is just

the uniform distribution on all permutations of the Y that satisfy the constraint

(Diaconis et al. (2001)).

A more challenging case was studied in Efron and Petrosian (1999), in which

they were interested in whether the redshift X and the logarithm of luminosity

Y for quasars are independent. The answer to this question can shed light on

the suggested theory that earlier quasars were brighter. Due to experimental

constraints, we can observe Y if and only if Y ∈ [l(X), u(X)]. Figure 1 shows

the quasar data of Efron and Petrosian (1999), in which n = 210. The “ap-

parent” relationship between X and Y may be due to the truncation effect.

Truncated data also arise in many other situations, such as survival analysis

(McLaren, Wagstaff, Brittegram and Jacobs (1991) and Bilker and Wang (1996)).

Astronomers have developed permutation tests based on Kendall’s tau for dealing

with these problems (Lynden-Bell (1971)).
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Figure 1. Doubly truncated data from an astronomical study of Efron and

Petrosian (1999). Redshifts and log-luminosities for 210 quasars are denoted
by points. Upper and lower truncations for log-luminosities are indicated by
“-”.

A general setting of the problem is as follows. Let (X,Y ) be a pair of

random variables, and observe n independent realizations, (x1, y1), . . . , (xn, yn),

under the constraint that we can observe (X,Y ) if and only if Y ∈ S(X),

where S(X) is a set dependent on X. Of interest is whether X and Y are

Distance (Redshift)

Lo
g

lu
m

in
os

ity

Is sample correlation high only because of truncation?
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Nonparametric approach

Data set encodes permuation

y

x

2

1

4 3

Measure relationship by counting inversions
Inversion when items “out of order” in permutation
Ex: 2143 has four inversions
2 before 1, 1 before 4, 1 before 3, 4 before 3
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Possbilities

Three possibilities:

y

x

y

x

y

x

No inversions 2 inversions 6 inversions
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Understanding distribution of number of inversions
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spurious relationship between X and Y . To obtain the null distribution of the

chi-square statistic under the truncation constraint, Karl Pearson suggested an

“urn-drawing” randomization law under the constraint Y ≤ X, which is just

the uniform distribution on all permutations of the Y that satisfy the constraint

(Diaconis et al. (2001)).

A more challenging case was studied in Efron and Petrosian (1999), in which

they were interested in whether the redshift X and the logarithm of luminosity

Y for quasars are independent. The answer to this question can shed light on

the suggested theory that earlier quasars were brighter. Due to experimental

constraints, we can observe Y if and only if Y ∈ [l(X), u(X)]. Figure 1 shows

the quasar data of Efron and Petrosian (1999), in which n = 210. The “ap-

parent” relationship between X and Y may be due to the truncation effect.

Truncated data also arise in many other situations, such as survival analysis

(McLaren, Wagstaff, Brittegram and Jacobs (1991) and Bilker and Wang (1996)).

Astronomers have developed permutation tests based on Kendall’s tau for dealing

with these problems (Lynden-Bell (1971)).
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Figure 1. Doubly truncated data from an astronomical study of Efron and

Petrosian (1999). Redshifts and log-luminosities for 210 quasars are denoted
by points. Upper and lower truncations for log-luminosities are indicated by
“-”.

A general setting of the problem is as follows. Let (X,Y ) be a pair of

random variables, and observe n independent realizations, (x1, y1), . . . , (xn, yn),

under the constraint that we can observe (X,Y ) if and only if Y ∈ S(X),

where S(X) is a set dependent on X. Of interest is whether X and Y are

Distance (Redshift)
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Take random permutations that don’t violate truncation
So: perfect matching/restricted permutation/rook placement
Count number of inversions in random permuation
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Conclusions

First perfect simulation for permanent
Sadly, only provably poly time on dense problems
But on these dense problems, much faster than Markov
chain method
First Markov chain approach only poly time on dense
problems

Open question
Can general problem be reduced to dense problem?
Current Markov chain approach doesn’t do that
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