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The Ising model
 

Begin with graph G = (V ,E)

Each node either “spin up” (+1) or “spin down” (-1)
Each edge {i , j} has strength of interaction �
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Spins distribution

Configuration x has weight:

wspins(x) =
∏

edges have same spin

exp(2�)

Distribution:

�spins(x) =
wspins(x)

Zspins
, Zspins =

∑
x ′

wspins(x ′)

Call Z the normalizing constant or partition function
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The Ising model
 

Since 4 edges have same spin:

�spins(x) =
exp(2�)4

Zspins
=

exp(8�)
Zspins
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Why study Ising?

Originated in statistical physics
Simple model
Has phase transition on 2-D lattice

Computations
Spatial model in statistics
Finding Zspins is a #P complete problem
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The triple scoop: Three flavors of Ising

 
Spins 

 

 

    

 

 

 

Random 
Clusters Subgraphs 

All of form �(⋅) = w(⋅)/Z
Z =

∑
a∈Ω w(a)

Random cluster and subgraphs work directly on edges
Zspins, Zsubgraphs, Zrandom cluster are related by explicit formulae
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Random cluster distribution

Configuration y ∈ {0,1}E has weight:

wrandom cluster(y) =

⎧⎨⎩ ∏
e:y(e)=1

[exp(2�)− 1]

⎫⎬⎭2c(y),

c(y) := # of clusters formed by edges with y(e) = 1
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Random cluster example
 

Since 5 edges and two connected components (clusters):

�rc(x) =
[exp(2�)− 1]5(2)2

Zrc
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Subgraphs distribution

Configuration y ∈ {0,1}E has weight:

wsubgraphs(y) =

⎧⎨⎩ ∏
e:y(e)=1

tanh(�)

⎫⎬⎭E(y)

E(y) :=
{

1 degrees of all nodes are even,
0 otherwise
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Subgraphs example
 

Since 6 edges and all nodes even

�subgraphs(x) =
tanh(�)6

Zsubgraphs
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Why is the subgraphs view important?

Jerrum and Sinclair [3] gave first fpras for Zspins

Used a Markov chain approach
Did not use spins view!
Operated on subgraphs view

Subgraphs to spins connection not obvious:

“Although there is no direct correspondence between
configurations in the two domains, and the subgraph
configurations have no obvious physical significance...”
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Simulation reductions

Definition
Consider two families of distributions: � indexed by inputs ℐ,
and �′ indexed by ℐ ′. Then � is simulation reducible to �′ if a
draw from �′ together with a number of Bernoulli draws, is
enough to generate a draw from �

new distribution �′

+
extra (unfair) coin flips

⇒ old distribution �
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Swendsen-Wang [1]

Two step chain:
1st step: Given X ∼ �spins, generate Y ∼ �random cluster

2nd step: Given Y ∼ �random cluster, generate X ∼ �spins

Theorem (Swendsen-Wang 1986: Spins to clusters)
Given a draw X ∼ �spins and a number of Bernoulli draws at
most the number of edges, it is possible in time linear in the
size of the graph to generate Y ∼ �random cluster.

Theorem (Swendsen-Wang 1986: Clusters to subgraphs)
Given a draw Y ∼ �random clusters and a number of Bernoulli
draws at most the number of nodes, it is possible in time linear
in the size of the graph to generate X ∼ �spins.
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The results [2]

Theorem (H. 2009: Subgraphs to random clusters)
Given a draw W ∼ �subgraphs and a number of Bernoulli draws at
most the number of edges, it is possible in time linear in the
size of the graph to generate Y ∼ �random cluster.

Theorem (H. 2009: Random clusters to subgraphs)
Given a draw Y ∼ �subgraphs and a number of Bernoulli draws at
most the number of edges, it is possible in time linear in the
size of the graph to generate W ∼ �random cluster.
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Graphically

 

Spins 

 

 

    

 

 

Random 
Clusters 

Subgraphs 

Swendsen-
Wang Today 

(Linear Time) (Linear Time) 

Spins, subgraphs and random clusters are simulation
equivalent
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How does it work: preparation

Hyperbolic Tangent:

tanh� =
exp(�)− exp(−�)
exp(�) + exp(−�)

∈ [0,1]

Goal:
Transform all � to 0 or∞, so tanh� either 0 or 1
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How does it work: mixtures

Distribution is a mixture of distributions on two graphs:

� = tanh�

� � � � � �

� �

� 0

� �

� 1

  

Do not know coefficients of mixture: 70/30? 50/50?
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Do not need coefficients of mixture!

Start with draw from mixture:

X ∼ � = �1�1 + �2�2

Write distributions using weights:

�1 =
w1

Z1
, �2 =

w2

Z2
, � =

w
Z

=
c1w1 + c2w2

Z

Choose component of mixture as:

ℙ(I = 1) =
c1w1(X )

c1w1(X ) + c2w2(X )
, ℙ(I = 2) =

c1w2(X )

c1w1(X ) + c2w2(X )
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Procedure gives correct coeffients

Theorem
The procedure on the previous slide yields:

ℙ(I = i) = �i

and
[X ∣I] ∼ �I

Proof.
Implicit in auxiliary variable methods. (Explicit proof in [2].)
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Reducing subgraphs to random clusters

Start with Y ∼ �subgraphs
While an edge has � ∈ (0,1)

Choose either � = 0 or � = 1 using theorem
Example:

Y ′

  

Y

1 1 1

1 0

1 0

End result: Y ′ ∼ �random cluster
Details
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Reducing random clusters to subgraphs

Key Question:
Given that all �(e) are either 0 or 1, can we draw a
subgraphs draw?

Example:

Y

  

Y ′

1 1 1

1 0

1 0
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How to reduce to

Leaves
Call an edge a leaf if degree of one end is 1
(using only edges with �(e) = 1 or Y (e) determined)
Set Y (e) to maintain even requirement

Cycles
If no leaves, all edges part of a cycle of �(e) = 1 edges
Can “flip” cycle, so ℙ(Y (e) = 1) = ℙ(Y (e) = 0) = 1/2

Procedure
1 Deal with leaves until no leaves left
2 Deal with cycles until no cycles left
3 If still undetermined edges, goto 1
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Example: leaf

Highlighted edge is a leaf:
Must have Y (e) = 0
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Example: cycle

Highlighted edge part of a cycle
50-50 chance of Y (e) = 1
Once Y (e) set, rest of edges are leaves
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Reducing random clusters to subgraphs

The procedure:
Draw Y ′ ∼ �random cluster

All edges with Y ′(e) = 0 have Y (e) = 0
Find maximal forest F using Y ′(e) = 1 edges
All remaining edges are independent with
Y (e) ∼ Bern(1/2)
Use even degree restriction to complete Y (F )
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Applications

Immediate results:
New proof of formula relating Zsubgraphs to Zrandom cluster

New Gibbs sampler for Ising:
From subgraphs draw, generate random cluster
From random cluster, generate subgraphs draw
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Summary: results and future work

What is now known:
Reduce subgraphs draw to random cluster draw with # of
Bernoullis at most # of edges
Reduce random cluster draw to subgrpahs draw with # of
Bernoullis at most # of edges
New “Swendsen-Wang” style chain for Ising model

Open questions
What is mixing time of new Markov chain
In particular, is it faster than Jerrum-Sinclair chain on
subgraphs?
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Details

Recall for mixtures, need:

w = c1w�(e)←1 + c2w�(e)←0

For Y (e) = 1 edges:
w�(e)←0(Y ) = 0 (can’t remove this edge!)
w�(e)←1(Y ) = w(Y )/�(e) (remove factor of �)

For Y (e) = 0 edges:
w�(e)←0(Y ) = w(Y )

w�(e)←1(Y ) = w(Y )

Combining:

w = �(e)w�(e)←1 + (1− �(e))w�(e)←0
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Choosing which mixture

From last page:

w = �(e)w�(e)←1 + (1− �(e))w�(e)←0

Recall algorithm from theorem:
Start with w = c1w1 + c2w2

Choose X ∼ �
Choose which mixture I by:

ℙ(I = 1) =
c1w1(X )

c1w1(X ) + c2w2(X )
, ℙ(I = 2) =

c2w2(X )

c1w1(X ) + c2w2(X )
.
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After using theorem, returns following algorithm:

Start with Y ∼ �subgraphs
While an edge has � ∈ (0,1)

If Y (e) = 1 set �(e)← 1

If Y (e) = 0 set �(e)←
{

1 with prob �(e)
0 with prob 1− �(e)

Return
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	The basic product estimator

