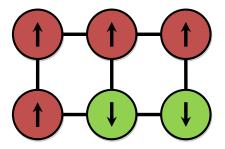
Simulation reductions for the Ising model

Mark Huber

Department of Mathematics and Computer Science, Claremont McKenna College

8 Nov, 2009

The Ising model



Begin with graph G = (V, E)

- Each node either "spin up" (+1) or "spin down" (-1)
- Each edge $\{i, j\}$ has strength of interaction β

Spins distribution

Configuration *x* has weight:

$$w_{\rm spins}(x) = \prod \exp(2\beta)$$

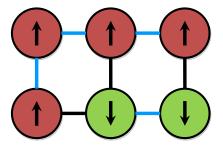
edges have same spin

Distribution:

$$\pi_{
m spins}(x) = rac{w_{
m spins}(x)}{Z_{
m spins}}, \ \ Z_{
m spins} = \sum_{x'} w_{
m spins}(x')$$

Call Z the normalizing constant or partition function

The Ising model



Since 4 edges have same spin:

$$\pi_{\rm spins}(x) = \frac{\exp(2\beta)^4}{Z_{\rm spins}} = \frac{\exp(8\beta)}{Z_{\rm spins}}$$

Why study Ising?

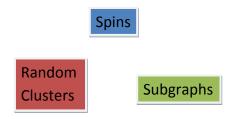
Originated in statistical physics

- Simple model
- Has phase transition on 2-D lattice

Computations

- Spatial model in statistics
- Finding Z_{spins} is a #P complete problem

The triple scoop: Three flavors of Ising



All of form $\pi(\cdot) = w(\cdot)/Z$

- \blacktriangleright $Z = \sum_{a \in \Omega} w(a)$
- Random cluster and subgraphs work directly on edges

> Z_{spins}, Z_{subgraphs}, Z_{random cluster} are related by explicit formulae

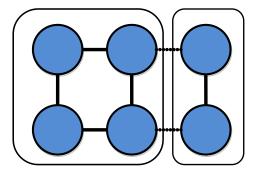
Random cluster distribution

Configuration $y \in \{0, 1\}^E$ has weight:

$$w_{\text{random cluster}}(y) = \left\{ \prod_{e: y(e)=1} [\exp(2\beta) - 1] \right\} 2^{c(y)},$$

c(y) := # of clusters formed by edges with y(e) = 1

Random cluster example



Since 5 edges and two connected components (clusters):

$$\pi_{
m rc}(x) = rac{[\exp(2eta) - 1]^5(2)^2}{Z_{
m rc}}$$

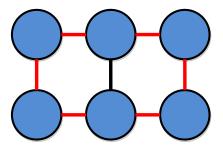
Subgraphs distribution

Configuration $y \in \{0, 1\}^E$ has weight:

$$w_{\text{subgraphs}}(y) = \left\{\prod_{e:y(e)=1} \tanh(\beta)\right\} E(y)$$

 $E(y) := \begin{cases} 1 & \text{degrees of all nodes are even,} \\ 0 & \text{otherwise} \end{cases}$

Subgraphs example



Since 6 edges and all nodes even

$$\pi_{\text{subgraphs}}(\mathbf{x}) = \frac{\tanh(\beta)^6}{Z_{\text{subgraphs}}}$$

Why is the subgraphs view important?

Jerrum and Sinclair [3] gave first fpras for Z_{spins}

- Used a Markov chain approach
- Did not use spins view!
- Operated on subgraphs view

Subgraphs to spins connection not obvious:

"Although there is no direct correspondence between configurations in the two domains, and the subgraph configurations have no obvious physical significance..."

Simulation reductions

Definition

Consider two families of distributions: π indexed by inputs \mathcal{I} , and π' indexed by \mathcal{I}' . Then π is *simulation reducible* to π' if a draw from π' together with a number of Bernoulli draws, is enough to generate a draw from π

new distribution π' + \Rightarrow old distribution π extra (unfair) coin flips

Swendsen-Wang [1]

Two step chain:

- > 1st step: Given $X \sim \pi_{spins}$, generate $Y \sim \pi_{random \ cluster}$
- > 2nd step: Given $Y \sim \pi_{random cluster}$, generate $X \sim \pi_{spins}$

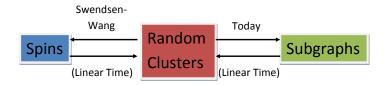
Theorem (Swendsen-Wang 1986: Spins to clusters) Given a draw $X \sim \pi_{spins}$ and a number of Bernoulli draws at most the number of edges, it is possible in time linear in the size of the graph to generate $Y \sim \pi_{random \ cluster}$.

Theorem (Swendsen-Wang 1986: Clusters to subgraphs) Given a draw $Y \sim \pi_{random \ clusters}$ and a number of Bernoulli draws at most the number of nodes, it is possible in time linear in the size of the graph to generate $X \sim \pi_{spins}$. Theorem (H. 2009: Subgraphs to random clusters) Given a draw $W \sim \pi_{subgraphs}$ and a number of Bernoulli draws at most the number of edges, it is possible in time linear in the size of the graph to generate $Y \sim \pi_{random \ cluster}$.

Theorem (H. 2009: Random clusters to subgraphs)

Given a draw $Y \sim \pi_{subgraphs}$ and a number of Bernoulli draws at most the number of edges, it is possible in time linear in the size of the graph to generate $W \sim \pi_{random \ cluster}$.

Graphically



Spins, subgraphs and random clusters are simulation equivalent

How does it work: preparation

Hyperbolic Tangent:

$$anheta = rac{\exp(eta) - \exp(-eta)}{\exp(eta) + \exp(-eta)} \in [0, 1]$$

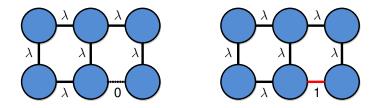
Goal:

> Transform all β to 0 or ∞ , so tanh β either 0 or 1

How does it work: mixtures

Distribution is a mixture of distributions on two graphs:

 $\lambda = \tanh \beta$



Do not know coefficients of mixture: 70/30? 50/50?

Do not need coefficients of mixture!

Start with draw from mixture:

$$X \sim \pi = \alpha_1 \pi_1 + \alpha_2 \pi_2$$

Write distributions using weights:

$$\pi_1 = \frac{w_1}{Z_1}, \ \pi_2 = \frac{w_2}{Z_2}, \ \pi = \frac{w}{Z} = \frac{c_1 w_1 + c_2 w_2}{Z}$$

Choose component of mixture as:

$$\mathbb{P}(I=1) = \frac{c_1 w_1(X)}{c_1 w_1(X) + c_2 w_2(X)}, \ \mathbb{P}(I=2) = \frac{c_1 w_2(X)}{c_1 w_1(X) + c_2 w_2(X)}$$

Procedure gives correct coeffients

Theorem The procedure on the previous slide yields:

$$\mathbb{P}(I=i)=\alpha_i$$

and

$$[X|I] \sim \pi_I$$

Proof.

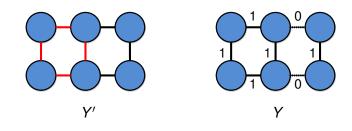
Implicit in auxiliary variable methods. (Explicit proof in [2].)

Reducing subgraphs to random clusters

Start with $Y \sim \pi_{subgraphs}$ While an edge has $\lambda \in (0, 1)$

) Choose either $\lambda = 0$ or $\lambda = 1$ using theorem

Example:



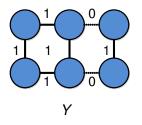
End result: $Y' \sim \pi_{\text{random cluster}}$

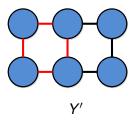
Reducing random clusters to subgraphs

Key Question:

Given that all λ(e) are either 0 or 1, can we draw a subgraphs draw?

Example:





How to reduce to

Leaves

- Call an edge a *leaf* if degree of one end is 1 (using only edges with λ(e) = 1 or Y(e) determined)
- Set Y(e) to maintain even requirement

Cycles

- If no leaves, all edges part of a cycle of $\lambda(e) = 1$ edges
- Can "flip" cycle, so $\mathbb{P}(Y(e) = 1) = \mathbb{P}(Y(e) = 0) = 1/2$

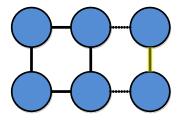
Procedure

- Deal with leaves until no leaves left
- 2 Deal with cycles until no cycles left
- If still undetermined edges, goto 1

Example: leaf

Highlighted edge is a leaf:

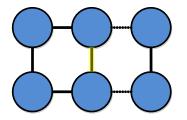
Must have Y(e) = 0



Example: cycle

Highlighted edge part of a cycle

- 50-50 chance of Y(e) = 1
- > Once Y(e) set, rest of edges are leaves



Reducing random clusters to subgraphs

The procedure:

- **Draw** $Y' \sim \pi_{\text{random cluster}}$
- All edges with Y'(e) = 0 have Y(e) = 0
- Find maximal forest F using Y'(e) = 1 edges
- All remaining edges are independent with Y(e) ~ Bern(1/2)
- Use even degree restriction to complete Y(F)

Applications

Immediate results:

- New proof of formula relating Z_{subgraphs} to Z_{random cluster}
- New Gibbs sampler for Ising:
 - From subgraphs draw, generate random cluster
 - From random cluster, generate subgraphs draw

Summary: results and future work

What is now known:

- Reduce subgraphs draw to random cluster draw with # of Bernoullis at most # of edges
- Reduce random cluster draw to subgrpahs draw with # of Bernoullis at most # of edges
- New "Swendsen-Wang" style chain for Ising model

Open questions

- What is mixing time of new Markov chain
- In particular, is it faster than Jerrum-Sinclair chain on subgraphs?

References

R. Swendsen and J-S. Wang",

Non-universal critical dynamics in Monte Carlo simulation *Phys. Rev. Lett.*, **58**, 86–88, 1987

M. Huber

Simulation reductions for the Ising model arXiv:0908.2151, 2009

M. Jerrum and A. Sinclair, Polynomial-time approximation algorithms for the Ising model", *SIAM Journal of Computing*, 22, 1087–1116, 1993

Details

Recall for mixtures, need:

$$W = C_1 W_{\lambda(e) \leftarrow 1} + C_2 W_{\lambda(e) \leftarrow 0}$$

For Y(e) = 1 edges:

▶ $w_{\lambda(e)\leftarrow 0}(Y) = 0$ (can't remove this edge!)

▶ $w_{\lambda(e)\leftarrow 1}(Y) = w(Y)/\lambda(e)$ (remove factor of λ)

For Y(e) = 0 edges:

$$w_{\lambda(e)\leftarrow 0}(Y) = w(Y)$$
$$w_{\lambda(e)\leftarrow 1}(Y) = w(Y)$$

Combining:

$$w = \lambda(e) w_{\lambda(e) \leftarrow 1} + (1 - \lambda(e)) w_{\lambda(e) \leftarrow 0}$$

Choosing which mixture

From last page:

$$w = \lambda(e) w_{\lambda(e) \leftarrow 1} + (1 - \lambda(e)) w_{\lambda(e) \leftarrow 0}$$

Recall algorithm from theorem:

Start with
$$w = c_1 w_1 + c_2 w_2$$

- > Choose $X \sim \pi$
- Choose which mixture I by:

$$\mathbb{P}(I=1) = \frac{c_1 w_1(X)}{c_1 w_1(X) + c_2 w_2(X)}, \ \mathbb{P}(I=2) = \frac{c_2 w_2(X)}{c_1 w_1(X) + c_2 w_2(X)}.$$

After using theorem, returns following algorithm:

Start with
$$Y \sim \pi_{subgraphs}$$

While an edge has $\lambda \in (0, 1)$
If $Y(e) = 1$ set $\lambda(e) \leftarrow 1$
If $Y(e) = 0$ set $\lambda(e) \leftarrow \begin{cases} 1 & \text{with prob } \lambda(e) \\ 0 & \text{with prob } 1 - \lambda(e) \end{cases}$