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ABSTRACT: Monte Carlo algorithms typically need to generate random variates from a probability
distribution described by an unnormalized density or probability mass function. Perfect simulation
algorithms generate random variates exactly from these distributions, but have a running time 7 that
is itself an unbounded random variable. This article shows that commonly used protocols for creating
perfect simulation algorithms, such as Coupling From the Past can be used in such a fashion that
the running time is unlikely to be very much larger than the expected running time. © 2008 Wiley
Periodicals, Inc. Random Struct. Alg., 33, 2943, 2008
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1. MONTE CARLO METHODS

Perfect simulation algorithms require an unbounded random amount of time 7 to generate
random variates from distributions. This article looks into a natural question about these
algorithms, namely, how likely is T to be very much larger than its expected value?

The basic problem of Monte Carlo algorithms is the following. Given a target distribution
7 over a measurable state space (€2, F), generate random variates drawn from this distrib-
ution. Monte Carlo methods are used in statistics to estimate exact p-values [1], in physics
to estimate partition functions [12], in computer science for approximation algorithms for
#P complete problems [11], and in a variety of other applications (see [6] for an overview).
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Typically the distribution is given in terms of an unnormalized density or probability mass
function:
w(dx) = [f(x)dx]/Z, orm(x) =w(x)/Z. (1.1)

Often it is an #P complete problem to compute Z exactly.

The classical approach to this problem is to use Monte Carlo Markov chain methods.
Using a technique such as Gibbs sampling or Metropolis-Hastings, build a Markov chain
whose stationary distribution matches w. Then, starting from an arbitrary state, run the
Markov chain forward until the distribution of the state is close to stationary.

Unfortunately, it is usually very difficult to ascertain how long a Markov chain must be
run before the state is close to stationary. Heuristic tests such as autocorrelation can alert
the user when the state is far away from stationarity, but cannot guarantee that the sample
generated has a distribution close to the target.

Coupling from the past (CFTP) [13] was the first widely used perfect simulation
algorithm. The advantages of a perfect simulation algorithm are twofold.

1. Random variates come exactly from the desired distribution 7 (they are exact
simulation methods.)

2. They are true algorithms where number of steps that need to be taken varies
dynamically with the problem.

There are situations where an analysis of the mixing time of the Markov chain is possible
([2,10]). These results are usually of the following form. Define the total variation distance
between distributions v; and v, on (2, F):

drv(vi,v2) := sup [V1(A) — 12 (A)]. (1.2)
AeF

Consider a Markov chain with stationary distribution 7, and let x, € €2, and p,(xy) be the
distribution of the state of the Markov chain after 7 steps given that the state started in xj.
Note that dry (p,(xo), 7r) is a decreasing function of time. Set

T(xp,€) = inf{t : dry(p,(x0), ) < €}. (1.3)

Then 7 (x, €) is the mixing time of the chain started at x,. Taking the supremum over all
Xo € 2 gives the mixing time of the chain 7 (¢).

The chain is rapidly mixing if 7(€) = p;(n) + p,(n) In(e~!), where n is a measure of
problem input size and p; and p, are O(n?) for some d.

When a perfect simulation algorithm with bounded expected running time and a rapidly
mixing Markov chain both exist for a problem, it is usually better to run the perfect simulation
method. For this, consider a Markov chain where the mixing time for a fixed € is shown to be
less than or equal to p(n). Then p(n) steps must be taken for each random variate generated
in order to guarantee that the chain has mixed. That is, the algorithm to approximately
generate variates will be ® (p(n)). Unless the user is willing to reanalyze the mixing time
argument for the specific problem at hand, the full p(n) steps must be taken every single
time.

On the other hand, perfect sampling methods are algorithms whose running time 7
has a distribution that varies depending on the problem at hand. Suppose that b(n) is an
upper bound on the expected running time of the algorithm for all problem instances. Then
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for specific problems the algorithm could take much less time then b(n). This gives the
algorithm an O(b(n)) expected running time.

This is well-known in studying other algorithms: bubble sort is well-known to be an
O(n?) sorting algorithm but can take ®(n) time on inputs that are close to being sorted.
But with approximate variate generation for Markov chains with known mixing time, the
algorithms created are always ® (p(n)) rather than O(p(n)). This can give a large speed
advantage for perfect simulation methods.

The expected value of the running time for a perfect sampling algorithm can be very
small. However, this hides an important question: even if the expected run time is small,
what about the tail of the distribution? This is the question addressed in this article, where
it is shown that for several common perfect simulation methods (including basic CFTP), it
is possible to run these algorithms in such a manner that the probability that the running
time is much greater than the expected time declines faster than any polynomial.

Theorem 1.1.  Consider an interruptible perfect simulation algorithm or Coupling From
the Past (CFTP) with running time T. If E[T] < oo and is known, it is possible to run these
algorithms so that

P(T > kE[T]) < 2exp(—k(In2)/4) (1.4)

independent of the problem.
If the mean of T is unknown, it is possible to run these algorithms in such a fashion so
that for k > 2,
P(T > kE[T]) < 4exp(—0.186k™%/1"%) (1.5)

independent of the problem.

Equation (1.4) follows from Lemma 2.1 in Section 2, and Lemma 5.1 in Section 5. Note
(1.5) provides a slightly weaker bound on the tail of 7', although both bounds decline faster
than any polynomial in k. It is to be expected that (1.5) is weaker as the mean E[T] is
unknown in this case. The method for proving (1.5) is shown in Section 4 for interruptible
methods and Section 5 for CFTP, and follows from Lemmas 4.1 and 5.3.

The next section defines perfect sampling and interruptibility, and develops the basic
methods for interruptible algorithms. Section 3 analyzes the running time of interruptible
methods using a known procedure, the doubling method. Section 4 develops a new procedure
by expanding upon the doubling method that has much smaller tails on the running time.
Section 5 shows how to apply these analyses and methods to Coupling From the Past.

2. INTERRUPTIBLE PERFECT SAMPLING

Perfect sampling protocols such as Coupling From the Past [13] (and variants), cycle pop-
ping [14], FMMR [5], and the Randomness Recycler [4] all can be used to design algorithms
to generate samples from a particular target distribution. The downside of these algorithms is
that the running time of the procedure is itself a random variable that can be arbitrarily large.

Definition. For a target distribution 7, a perfect sampling algorithm

1. outputs random variates whose distribution is exactly 7,
2. has a running time 7 such that P(T > ¢) > 0 for any positive 7.
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The second part of the definition is needed to distinguish perfect sampling algorithms
from algorithms that compute the normalizing constant explicitly in a deterministic fashion.
Dynamic programming is an example of a protocol for creating algorithms that falls in this
category, and such algorithms are not typically referred to as perfect sampling algorithms.

Example 1. A perfect simulation algorithm for a geometric random variable with
parameter p.

GEO

Input: p, Output: X

1) LetX <0

1) Repeat

2) Choose U < Unif[0, 1], Let X < X + 1
3) UntilU <p

As with GEO, many Monte Carlo algorithms are iterative in nature, with the time needed
for one step being dominated by the generation of a pseudorandom number drawn uniformly
from [0, 1]. Therefore it is customary to measure the running time of these algorithms by the
number of uniforms that they utilize. In the example above, if T is the number of uniforms
used, then X =T.

Definition. A perfect sampling algorithm with output X and running time 7' is interruptible
if X has distribution 7 when conditioned on 7.

The above example is a noninterruptible algorithm, since X conditioned on T equals T'.
A user running the algorithm GEQO must commit to running the algorithm to completion
with probability 1, otherwise bias will be introduced into the sample. For instance, if a user
begins a run of a noninterruptible algorithm knowing that they only have time to generate one
million uniforms, then the output will not be from r, but instead comes from X conditioned
on T < 10°. In the above example it is easy to determine how this changes the distribution
but in more complex situations this is rarely possible.

By contrast, an interruptible perfect sampling algorithm can be aborted and restarted
in the middle of a run without altering the distribution of the output. The algorithm
TIMED_ALG explicitly aborts after a time limit.

TIMED_ALG: Interruptible perfect sampling with time limit
Input: t

1) Run interruptible perfect sampler for ¢ time steps or until it finishes
2) If the algorithm finished, output the result

3) Else output L

Let m(T) denote the smallest median of the random variable T (note that while the median
might not be unique as 7T is integral, the set of medians will have a smallest element.) When
the input to TIMED_ALG is t = m(T), the probability that L is output is at most 1/2.
When m(T) is polynomial in the problem input size, Dyer and Greenhill [3] called such an
algorithm a “strong perfect sampler.”

The following algorithm breaks the interruptible algorithm into blocks of fixed length,
as illustrated in Fig. 1.
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Fig. 1. Blocks of fixed length.

Interruptible perfect sampling with fixed length blocks
Input: t, Output: Y

1) Repeat

2) Let Y be the result of TIMED_ALG(¢)

3) UntilY # L

Lemma 2.1. Let T be the running time of the original interruptible perfect sampling
algorithm. Suppose m(T) is known, and let Tx be the running time of the interruptible
perfect sampling with t = m(T). Then

E[Tx] < 2m(T) and (Vk > 0)(P(Tx > k - m(T)) < 2(1/2)"). (2.1)

If T has a known finite expectation then the running time of fixed length interruptible perfect
sampling with t = 2E[T] satisfies

E[Tx] < 4E[T] and (Vk > 0)(P(Tx > kE[T]) < 2(1/2)"?). (2.2)

Proof. The number of times through the repeat loop in the algorithm is a geometric random
variable with parameter at least 1/2, and each run through the loop takes m(T) time. Hence
the expected number of runs through the loop is at most 2, and P(Tx > km(T)) < (1/2)% <
2(1/2)*. If T has finite expectation, then m(T) < 2E[T] by Markov’s inequality, and the
bound is (1/2)%/2) < 2(1/2)*? and (2.2) follows. .

3. INTERRUPTIBLE PERFECT SAMPLING WITH UNKNOWN RUNNING TIME

The previous section dealt with the situation where the median or expectation of the running
time 7 was known before starting the algorithm. Unfortunately, this is rarely the case.
In their original paper on Coupling From the Past, Propp and Wilson [13] suggested a
way around this problem: doubling the amount of time given to each block, as shown
in Fig. 2.

Their technique can be applied to interruptible perfect simulation as follows.
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Doubling algorithm for interruptible perfect sampling

Output: Y
1) Lettr <1
2) Repeat

3) Lett < 2¢
4) Let Y be the result of TIMED_ALG(t)
5) UntilY #£ L

The expected running time for the doubling algorithm will be the same order as the
(3/4)-quantile of 7. When T has finite expectation, the doubling algorithm has expected
running time of the same order as E[T'] and the tail declines faster than any polynomial, but
not exponentially fast.

Lemma 3.1. Let T be the running time of the original interruptible perfect sampling
algorithm, and Tp be the running time of the doubling algorithm for interruptible perfect
sampling. Let s(T) be the smallest (3/4)-quantile of T, so that P(T > s(T)) > 1/4. Then

E[Tp] < 3s(T) and (Yk > 0)(P(Tp > k - s(T)) < 4/k%). (3.1)
If T has finite expectation then
E[T)] < 3E[T] and (Vk > 3)(P(T)p, > kE[T]) < 0.242 k"7 nk=2.09 (3.2)

Proof. Letk > 2, and suppose T > k - s(T'). Then there must be at least one block that is
of size between s(7") and 2s(T') that returned L. In fact, because the block size is doubling
at each step, there will be |log, k] blocks of size at least s(7T"). The probability that any one
of these blocks returns L is at most 1/4, therefore the probability that all these blocks return
L is at most

(1/4)toe2kl < (1/4)l0e2b=1 — 4 /2 (3.3)
soP(Tp > k-s(T)) < 4/k*.Fork < 2,4/k* > 1 and the bound also holds.
It remains to bound E[7)p]. Since T is a nonnegative random variable,

E[T)] = f £ APy, (1)
0

< D ke s(MP(tk = Ds(T) < Tp < k-5(T)
k=1

= s(T) [Z P(Tp > k- s(T)):|

k=0

<s(T) |:P(TD > 0) + 2(1/4)Llogz kJ:|

k=1

<s(D)[1+ 1/ +2(1/9)" +4(1/4)° +...] =3s(T).

Now suppose that E[T] < co. Markov’s inequality provides a means to obtain a stronger
upper bound. Fix k > 2 and let t = kE[T]. Then for T > ¢, the last run between ¢ — 2!!°82"]
and ¢ has to fail, and the previous block as well. Let £, := ¢ — 2227 and ¢, := (1/2)2ll°=2]
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denote the lengths of these two blocks. Block size doubles at each step, and so the lengths
of all the other blocks combined is exactly £, — 1. Hence €; + £, 4+ £, — 1 = t. So either
£y >1t/30rdl, >1/3.

Hence there is a sequence of blocks of length at least ¢/3,1/6,¢/12, . ... By Markov’s
inequality, a block of length 7/a has probability at most E[T]a/t = a/k of returning L. So,
the probability that all of the blocks return L is at most

3.6 32llnd)

R (34)

Note for integer i, when k = 3 - 2/, f(k) = 2-@+40/2 and Inf(k) = —0.51n2)(® +
i). Since f(k) decreases in k, for all k: Inf(k) < —0.5(In2)((log, k/6)* + log, k/6), so
Inf(k) <0.5In6—0.5(In6)>/In2+Ink[—Ink/(21n2)+1n6/1In 2 —0.5]. Exponentiating
and bounding the constants yields f(k) < 0.242/k%"21!k=209 " oiyving the desired upper
bound on P(Tp > kE[T]).

Bound E[Tp] by considering P(Tp > t). As above, Tp > ¢ implies that there is a block
of size at least #/3. The probability that this block fails is P(T > t/3), so:

> P(Tp>1) <Y P(T >1t/3) =3E[T]. (3.5)

=0 t=0

Remark.  The most important property of the doubling method is that even if T does not
have finite expectation, the doubling procedure will.

Remark.  In Lemma 3.1, the (3/4)-quantile is utilized. In fact, any «-quantile could be
used where o € (1/2,1) to achieve similar results. The closer « is to 1, the greater the
polynomial decrease for the tail.

4. TRIPLING METHOD FOR INTERRUPTIBLE PERFECT SAMPLING

In the previous section, the doubling method was described for interruptible perfect sam-
pling. The analysis shows that when T has finite expectation, the tails decline exponentially
at a rate of order (logk)?. For most applications, the simplicity of the doubling method
combined with this dropoff in running time will be sufficient.

It is possible to do better. In this section a new method is described that has expected
running time that is of the order of «-quantiles for any «. Moreover, the tail of T declines
exponentially at rate of order k™3, The cost is that the algorithm is somewhat more
complex.

As in the previous section TIMED_ALG(#) will denote the interruptible algorithm
which aborts and returns L if the running time is greater than 7. The goal is to divide the
allotted time into three pieces. Two of these pieces are recursive copies of the original, and
the last piece is just a run of TIMED_ALG. Because of the division by 3, this algorithm is
named 3_REC.
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3_REC

Input: t (where t = 3¢ for some integer d)  Output: Y
) Ifr=1

2) Let Y < TIMED_ALG(1)

3) Else

4) Let Y < 3_REC(z/3)

5) Ify=21

6) Let Y < 3_REC(z/3)

7 Ify=_1

8) Let Y < TIMED_ALG(¢/3)

This creates a block structure shown in Fig. 3. Although the block size is still increasing
exponentially, there are far more smaller blocks in this structure. In a run of length ¢, a block
of length /37 will be repeated at most 3-2¢~! times.

In order to be useful when the median of 7 is unknown, it is necessary to create this
block structure in a forward fashion. After running forward 3¢ steps, the next 3¢ steps need
an identical block structure, and then the next 3¢ steps are just a straightforward run of
TIMED_ALG. This is encoded as follows:

3_REC_FORWARD

Output: Y

1) Lettr < 1,letY <« TIMED_ALG(1)
2) While Y = 1 do {

3) Let Y < 3_REC(?)

4) fy=.1

5) Let Y < TIMED_ALG(?)

6) Lett < 3t }

Lemma 4.1. Let T be the running time of the original interruptible perfect sampling
algorithm, and Ts be the running time of 3_REC_FORWARD. Let m(T) be the smallest
median of T, and f = In2/1In3 ~ 0.6309. Then

E[T5] < 15.9m(T) and (Vk > 0)(P(T5 > km(T)) < 4 exp(—0.447k"). 4.1)
If T has finite expectation then
E[T3] < TE[T] and (Vk > 0)(P(T; > kE[T]) < 4exp(—0.280k"). 4.2)

Proof. Letk > 0 and ¢t = km(T). Suppose that km(T) is a power of 3. The recursive
structure of 3_REC is two recursive blocks followed by a block of length (k/3)m(T). Let
d = |log; k]. Then P(T > km(T)) < f(k), where

fk) =f(k/3)*(1/2) fork > 3,f(k) = 1 otherwise. 4.3)

Fig. 3. 3_REC block length.
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Suppose k = 3¢, and let g(d) = f(3%), so that g(d) = g(d — 1)*(1/2),g(0) = 1. Taking
the logarithm base 2 yields the more tractable log, g(d) = 2log, g(d — 1) — 1 which has
solution log, g(d) = —[2¢ — 1]. Exponentiating gives f(3?) = exp(—(In2)(2? — 1)) =
2 exp(—(In2)kP).

Now suppose that for some d, 3¢ < k < 2-3¢. So there exists some k' = 3% such thatk’ >
k/2. Since f is decreasing, f (k) < f(39) = 2exp(—(n2)(k)?) < 2exp(—(n2)(k/2)?) <
2 exp(—0.447kP).

Finally,if2-3? < k < 3-3¢ thenagainletk’ = 3¢ andnote thatk’ > k/3. There are atleast
two blocks of size k', and so f (k) < f(k')* < 2?exp(—(In2)(k/3)?)? < 4exp(—0.447k*),
yielding the bound in (4.1). Note

E[T;] < Zm(T)P(T3 > km(T)) < 15.9m(T). (4.4)

k=0

The last inequality comes from first summing min{1, 4 exp(—0.447k?)} for k from 0 to 99,
then grouping the remaining terms in blocks of size 100, 200, 400, etc., to bound the rest
of the sum by (100)e=0470100° /(1 _2/3) < 0.09.

Now suppose T has finite mean. Then m(7T) < 2E[T], and the bound (4.2) follows from
(4.1) replacing k with k/2. When t = 3¢ the longest block is of length 3%~! = ¢/3. As ¢
grows, this 397! block remains the longest until the end block of length ¢ — 2-3¢ takes over
as the largest block. This happens when ¢t = 7-3¢"!, and so the largest block at this point is
t/7. As t grows toward 3¢*!, this end block becomes the largest, and grows from 1/7 the
size of t back down to 1/3 the size of ¢. Hence there exists a block of length #/7, and this
bound is tight. So

E[T3] =) P(Ts>1) <Y P(T >1/7) =TE[T]. (4.5)

=0 =0

Remark. It was not necessary to use the median in the statement of the lemma. Changing
the quantile used changes the constant in front of the k? in the exponent of the bound.

4.1. Generalization

The log of the tail grows as k'"*/"3 in the tripling procedure, but by varying the recursive
structure, the exponent of k£ can be made to match any number in (0, 1).

y_REC

Input: t,y  Output: Y

) Ifr<1

2)  LetY <« TIMED_ALG()

3) Else

4)  LetY < y_REC ([t(1 —y)/2))

5) Ify =1

6) LetY < y_REC ([t(1 — y)/2])

7) Ity =1

8) Let Y < TIMED_ALG( —2([(1 — y)/2])
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When t = 3¢ and y = 1/3, this block structure is exactly the same as 3_REC. The
number of blocks always doubles at each level for all y, but the size of lower levels is about
(1 —y)/2, so the exponent for ¢ changes fromIn2/In3 toIn2/In[2/(1 — y)]. As y goes
to 1, the exponent goes to 0, and as y goes to 0, the exponent goes to 1.

Having y = 0 corresponds to the block structure where every block has the same length,
and y = 1 just uses the time allotted for 1 long block. As long as y € (0, 1) the essential
nature of the tails remains unchanged: the tail continues to decline exponentially in a power
of ¢, and even if T itself does not have finite expectation, the recursive algorithm will.

5. COUPLING FROM THE PAST

The most widely used perfect simulation protocol, the Coupling From the Past (CFTP)
technique of Propp and Wilson [13], is not interruptible. Still, the methods of the previous
section can be applied to CFTP with similar results.

CFTP works as follows. A Markov chain {X,};°__ on measurable state space (€2, F) is
usually simulated through the use of an update function ¢ : 2 x [0, 1] — 2 where for all

measurable A, and a uniform [0, 1] random variable U,
P@x,U) € A) =P(X,y; € AlX; = x). (5.1
Let...,U_,,U_{,Uy, U,, Us,,...Dbeiid uniform on [0, 1], and define:

F(}:(x) = ¢(¢(¢(x’ Ua)a""Ub72)» Ub*l)’ (52)

so that if X, = x, then X, = F’(x). The simple fact underpinning CFTP is that if F° () =
{X} for some ¢ > 0, then X ~ m. That is, if the choices of U; lead to the entire state space
coalescing to a single state at time 0, that state is stationary.

That idea is half the CFTP algorithm. The other half is some means for determining
when |F?,(Q)| = 1. Let CC be such an algorithm. The input to CC is the number of steps
in the Markov chain to be taken, r = b — a, and the uniforms needed for the update function
(U4, Uysty - .., Up_1). Examples of mechanisms for such a determination include bounding
chains [7-9] and monotonicity [13].

Given a set of uniforms and time ¢, if F' 91(52) = {Y}, then CC returns either the
state Y or L. If F° () is not a single state, then CC must return L. Let T := inf{r :
CC(t,U_;,...,U_y) # 1}. Then it is desirable that runs of CC longer than t also do not
return L.

Definition. Call CC consistent if for all t > ¢, CC(¢,U_,,...,U_;) # L.

Note that even when F° () is a singleton, the algorithm CC is not guaranteed to return
that singleton. The fact that CC returns a state is a sufficient but not necessary condition
for |[F°, ()| = 1.

An ideal CFTP algorithm would call CC at time 7 and be done. The simplest
implementation of CFTP checks backwards in time using blocks of fixed length.
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CFTP with fixed block size

Input: typer, Output: Y

1) Lett <0

2) Repeat

3) Lett < t + tyom, let Y < CC(t,U_,, U_ii1y.-., U*’*’blockfl)
4) UntilY # L

5) LetY « Fﬂtﬂbmk(Y).

When E[7] or the median of t is known, then the fixed length CFTP has a running time
similar to that of interruptible algorithms in Lemma 2.1. The proof of the following lemma
is nearly identical to that of Lemma 2.1, the difference being that line 5) causes the actual
work of CFTP to be almost double that of a forward running interruptible algorithm.

Lemma 5.1. Let t be the random variable that is the optimal running time for a run of
CFTP (with median m(t)), and Tk be the running time of CFTP with fixed block size m(t).
Then

E[Tx] < 4m(t) and (Vk = 0)(P(Tx > k - m(1)) < 2(1/2)"/?). (5.3)

If the median of t is unknown but E[t] < oo is known, then running CFTP with fixed block
length 2E[t] yields

E[Tx] < 8E[t] and (Vk > 0)(P(Tx > kE[t]) < 2(1/2)"%). (5.4)

However, as with the interruptible algorithms, 7 is generally unknown at the beginning of
the procedure, and so some means of increasing the length of a block is needed. Propp and
Wilson suggested the doubling method used for interruptible algorithms in Section 3. This
can be implemented in several ways, the version most suitable to analysis is as follows:

Doubling CFTP

Output: Y

1) Lett <1

2) Repeat

3) Lett (—Zt,letY <—CC(t/2, U,,,...,U,(t/z),])
4) UntilY # L

5) LetY <—F3,/2(Y)

Now line 3) only runs from time —¢ up to time —¢/2 in CFTP. If successful, line 5)
finishes the run by moving the Markov chain up to time 0. Because the number of steps is
doubling at each level, if —¢ to —¢/2 is the last block considered, the total number of steps
taken by the algorithm will be (for r > 1) equal to (3/2)¢. The proof of the following lemma
is exactly the same as for Lemma 3.1 with the 3/2 factor taken into account. These bounds
are equivalent to replacing k by (2/3)k.

Lemma 5.2. Let t be the optimal running time for CFTP with a consistent CC, and Tp be
the running time of the doubling algorithm for CFTP Let s(t) be the smallest (3/4)-quantile
of T, so that P(T > s(t)) > 1/4. Then

E[Tp] < 4.55(7) and (Vk > 0)(P(Tp > k - s(1)) < 9/k%). (5.5)
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Time (in base 3) 10100 10200

Next Block Size (in base 3) 00001 00100

Fig. 4. The next block size given the current time.

If T has finite expectation then

E[Tp] < 4.5E[t] and (Vk > 4.5)(P(Tp > kE[t]) < 0.092 k07?1 nk=2.68 (5.6)

As before, the tripling algorithm with recursive structure can be used to give a tail that
is exponential in a polynomial in k. For CFTP, it is helpful given the current time ¢, to know
the next block size s. From the recursive description, it is possible to build a method for
finding the next block size.

When ¢ is written in base 3, the next block size will be 1 if the least significant nonzero
digit is 1, and if this digit is 2, the next block size has this digit 1 and all digits of less
significance 0. (See Fig. 4).

The following code calculates this value.

Block_Size

Input: t  Output: s

1) Letb <« 1/3

2) Repeat

3) Letb < 3b

4) Let a be /b modulo 3

5) Untila # 0

6) Lets < 1(a=1)+ 3b)1(a=2)

Now CFTP is run as before, only the next block size comes from Block_Size rather than
simple doubling.

Tripling CFTP

Output: Y

1) Letr <0

2) Repeat

3) Let s < Block_Size(r)

4) Lett < t+s

4) LetY < CC(s,U_,,...,U_;15_1)
5) UntilY # L

6) LetY « F° . ,(Y)

The length of the final block that does not return L might be arbitrarily small compared
to the the ¢ 4 s steps taken in line 6). Hence the total running time could be close to 2 times
the final value of 7. This modifies the analysis in Lemma 4.1 to give the following.

Lemma 5.3. Let t be the optimal running time for CFTP with a consistent CC, and T;
be the running time of the tripling algorithm for CFTP. Let m(t) be the smallest median of
T,and B =1n2/In3 ~ 0.6309. Then

E[T5] < 31.8m(t) and (Vk > 0)(P(T3 > k - m(t)) < 4exp(—0.289k"). (5.7)
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If T has finite expectation then

E[T3] < 14E[t] and (Vk > 0)(P(T3 > kE[7]) < 4exp(—0.186k"). (5.8)

5.1. Reducibility

Often CC has a property that makes the doubling algorithm alone run much faster. For
t <t <, PENQ) = {X}) < PF_2(Q) = {XDPF_(Q) = {X}). The desire to
have a similar property for CC motivates the following definition.

Definition. CC isreducibleif forallt, < t, < 3, P(A) < P(B)P(C), where A, B, and C
are the events that {CC(t3 — 1, U_,,,...,U_,_) # L}, {CC(ts — 2, U_y;,..., U_,_1) #
1}, and {CC(t, —1,,U_,,,...,U_, 1) # L}, respectively.

In other words, CC is reducible if when a single block is broken into two subblocks, then
the chance of failure on the large block is bounded above by the chance that both subblocks
fail.

An example of a reducible CC method is monotonic CFTP, which was one of the first
methods proposed by Propp and Wilson [13]. Suppose that the state space €2 has a partial
order <, a minimum state x,;, and maximum state X,,,,. Then the update function ¢ is
monotonic if forallu € [0, 1], x <y — ¢ (x,u) < d(y,u).

To determine if F?(2) has collapsed to a single state with monotonic updates is easy:
simply see if F?(xmx) = F2(xmin). If they are equal, then every other state is squeezed
between them down to the single state. And if they are not equal then F?(2) is not a single
state. Therefore monotonicity is one of the rare situations where it is possible to exactly
determine if |[F?(€2)| = 1 for a given update function. Because a monotonic chain keeps
track of F” exactly, CC is immediately reducible.

Running CFTP with a reducible CC yields exponential tails with the simple doubling
scheme.

Lemma 5.4. Let t be the optimal running time for CFTP, and T be the running time of
CFTP using a reducible CC where at stage d, CC(2¢71, U_sa,...,U_a-1_,) is evaluated.
Let m(t) be the smallest median of t. Then

E[T] = 8m(t) and (Vk > 0)(P(T > k- m(7)) < 2exp(—(In2)k/4) 5.9
If T has finite expectation then
E[T] < 4E[t] and (Vk > 0)(P(T > kE[t]) < exp(l — ¢ 'k/4). (5.10)

Proof. Letk > 0. Then for T to be greater than km(t), a run of length at least (k/4)m(t)
must have failed since t will be at most twice the length of the largest block, and T < 2t.
Because the CC algorithm being used is reducible, this large block can be broken into
L(k/4)] blocks of length m(7). Each of these blocks has a 1/2 chance of failure, hence the
total probability of failure is at most

P(T > k-m(7)) < (1/2)M ¥ < 2exp(—(In2)k/4). (5.11)
SoE[T] <m(1) Y,y P(T > k-m(z)) <m(x) Y ;o (1/2)%4 = 8m(7).
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When t has finite expectation, then the longest block is at most 27, and 7 is twice the
size of the longest block, so E[T] < 4E[r]. Markov’s inequality means that the probability
that a block of length ¢ E[7] fails is at most 1/«. Putting that into the argument for m(t)
yields

P(T > k- E[1]) < aexp(—(Ina)a'k/4). (5.12)

Setting ¢ = e maximizes (In ) /«, and yields the rest of (5.10). .

There are ways other than monotonicity for creating a reducible CC. For example, the
method of bounding chains (see [8] for details) will generate CC algorithms with this
property as well.

6. INTERRUPTIBILITY

The reason why the exponential tails are so important for CFTP is because CFTP is not an
interruptible algorithm. This introduces an unknown amount of bias to the samples based
on the (typically unknown or unacknowledged) user impatience. The exponential tail is
helpful in that the user impatience is unlikely to have a large impact as long as the user
commits to running at least a constant times the expected running time.

Dyer and Greenhill [3] noted that any rapidly mixing Markov chain can be turned into a
noninterruptible exact sampling algorithm. Without going into details, the running time of
their method is polynomial p(n) with extremely high probability, and exponential x(r) with
extremely small probability. (Here n measures the size of the problem input.) As long as
the x(n) branch is taken with small enough probability, the overall expected running time
will be polynomial.

Of course, in practice if the x(n) branch is taken, the user would actually abort the
procedure. This is an example of an algorithm design where user interruption is expected
to happen. This is in sharp contrast to CFTP, where user interruption is typically never
expected to happen by the user. This is usually an unjustified assumption on the part of the
user since in reality a CFTP algorithm could be interrupted at any time.

However, the exponential declining tail on the running time for CFTP explains why with
practitioners this has never been an issue: with the doubling algorithm and a reducible CC
algorithm a user could run millions of iterations and still be extremely unlikely to have to
double more than a few times more than average.
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