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Abstract

Approximation of the permanent of a matrix with nonneg-

ative entries is a well studied problem. The most successful

approach to date for general matrices uses Markov chains to

approximately sample from a distribution on weighted per-

mutations, and Jerrum, Sinclair, and Vigoda developed such

a method they proved runs in polynomial time in the input.

The current bound on the running time of their method is

O(n7(log n)4). Here we present a very different approach

using sequential acceptance/rejection, and show that for a

class of dense problems this method has an O(n4 log n) ex-

pected running time.

1 The Permanent.

Definition 1.1. The permanent of an n by n matrix
A = (A(i, j)) is

(1.1) per(A) :=
∑

σ∈Sn

n∏
i=1

A(i, σ(i)),

where Sn is the set of permutations on {1, . . . , n}.

While similar in form to the determinant, finding the
permanent of a matrix is a #P complete problem [27].
Even approximation is only possible when the entries
of the matrix are nonnegative [17]. Aside from its
interest as a #P problem, approximating the permanent
of a matrix with nonnegative entries has applications
in nonparametric correlation tests [7] and problems in
computer vision [24].

Various approaches have been tried to approximate
the permanent, such as problem decomposition [16] and
using determinants of random matrices [2]. Linial et
al. [20] used scaling together with the van der Waerden
lower bound on the permanent of a doubly stochastic
matrix. All of these methods either had exponential
running time or only approximated the permanent to
an exponential factor.

An alternate approach is to sample from the set
of permutations in Sn according to distribution π with
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probability mass function

(1.2) π(σ) = per(A)−1
n∏

i=1

A(i, σ(i)).

Since permutations are self-reducible (fixing an element
of the permutation leaves a smaller permutation prob-
lem of the same form), any technique for generating
samples approximately from π can be used to approxi-
mate the permanent efficiently (see [15] for details.)

This gives rise to the Markov chain approach:
construct a Markov chain whose state space Ω contains
Sn and whose stationary distribution on Sn is π. First
consider the case where A(i, j) ∈ {0, 1} for all i and
j (call A a 0-1 matrix). The problem remains #P
complete with this restriction. Such a 0-1 matrix can
be viewed as an adjacency matrix for a bipartite graph,
where permutations with weight 1 are just perfect
matchings in the graph.

Broder [5] designed such a Markov chain. Jerrum
and Sinclair showed this chain could be used to generate
approximate samples from π in time O(n8 log n) [13, 6,
14] when the problem was (1/2)-dense, meaning that
the row and column sums of the 0-1 matrix are at
least (1/2)n. This gives an O(n9 log n) method for
approximating the permanent. Broder showed that
even when restricted to γ-dense problems for fixed γ ∈
(0, 1), finding the permanent remains #P hard [5].

Jerrum, Sinclair and Vigoda [17] developed a dif-
ferent Markov chain where parameters of the chain
were fine tuned to approach the desired π. This
method allowed approximation of the permanent in
O(n10(log n)3) time, and was the first fully polynomial
randomized approximation scheme (FPRAS) for find-
ing the permanent of a matrix with nonnegative en-
tries. and was later improved by Bezáková et al. [3] to
O(n7(log n)4).

Given that a FPRAS exists for this problem, two
questions remain.

1. What is the smallest polynomial running time for
restricted classes of matrices?

2. When is it possible to sample from π exactly?

For example, Kasteleyn showed that for 0-1 matrices
whose associated graph is planar, the permanent can be
found exactly in O(n3) time [19].
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The purpose of this work is to present a perfect sam-
pling algorithm that generates random variates exactly
from π where the running time of the algorithm is it-
self a random variable. In addition, the time used to
generate these variates can be used to approximate the
permanent of the matrix at no additional cost. Finally,
the expected running time of the method is polynomial
when the original problem is dense.

Theorem 1.1. For any ε ≥ 0 and δ ∈ (0, 1], there ex-
ists a randomized approximation algorithm whose out-
put comes within a factor of 1+ δ of the permanent of a
nonnegative matrix A with probability at least 1− ε with
random running time T satisfying: for a function R(n),

E[T ] = O(n4 log n + R(n)δ−2 log ε−1),(1.3)
P(T > sE[T ]) ≤ 21−s/2, for all s > 0.(1.4)

When A is a 0-1 matrix such that all the row and
column sums are at least γn and γ ∈ (0.5, 1], then
R(n) = O(n1.5+0.5/(2γ−1)). In particular, if γ ≥ .6,
then the running time is O(n4[log n + δ−2 log ε−1]).

The primary tool in this algorithm is a version of
Bregman’s Theorem similar in form to an inequality of
Soules [26]. Let us first define:

(1.5) h(r) =
{

r + (1/2) ln(r) + e− 1, r ≥ 1
1 + (e− 1)r, r ∈ [0, 1]

Our bound is as follows:

Theorem 1.2. Let A be a matrix with entries in [0, 1].
Let r(i) be the sum of the ith row of the matrix.

(1.6) per(A) ≤
n∏

i=1

h(r(i))
e

.

The next section describes the algorithm in detail.
Section 3 describes the history of the original Bregman’s
Theorem and proves Theorem 1.2. In Section 4, the
bound on the running time in Theorem 1.1 is proven.
In Section 5 further applications are considered.

2 The Algorithm.

The algorithm is an extension of ideas in [12]. There the
algorithm only ran on 0-1 matrices, and had a provably
polynomial running time only when the matrix was γ
dense (defined below) for some γ ∈ (0, 1] and regular
in the sense that all the row and column sums were
identical. The algorithm presented here dispenses with
the regularity requirement by first scaling the matrix so
that all the row and column sums are close to 1, then
scaling the matrix to make the row sums as large as

possible, then applying the idea in [12] using the new
generalization of Bregman’s theorem.

For simplicity, in this section the algorithm is
presented only for 0-1 matrices, and where the δ of
Theorem 1.1 lies in (0, 1]. For arbitrary nonnegative
matrices, see Section 5. Let A be a 0-1 matrix. Then
to determine if the permanent is zero or nonzero, the
Hopcroft and Karp algorithm [11] can be used to find
a permutation in O(n2.5) time (for weighted bipartite
graphs, the Hungarian Algorithm [1] can be employed,
but takes O(n3) time.) When the permanent is nonzero,
this method finds a permutation σ with A(i, σ(i)) = 1
for all i, so per(A) ≥ 1. Then changing any zeros in A
to α1 = (δ/3)(n!)−1 increases the permanent by at most
a factor of 1 + δ/3.

Definition 2.1. A 0-1 matrix A is γ-dense if every
row and column sum is at least γn.

When a matrix is (1/2)-dense the choice of α1 need
not be so extreme. Work in [5, 14] implies that for (1/2)-
dense matrices, when α1 = (δ/3)n−3, the permanent
increases by at most a factor of 1 + δ/3.

Phase I: Nearly Doubly Stochastic Scaling.
For diagonal matrices X and Y , XAY is a scaling of the
matrix A where each row i is multiplied by X(i, i) and
each column j is multiplied by Y (j, j). In our work A
must be scaled to be nearly doubly stochastic so that the
rows and columns each sum to almost 1. To be precise,
following the same definition in [18], we say diagonal
matrices X and Y scale A to accuracy α2 if

(2.7) ||XAY~1−~1||∞ < α2, ||Y AT X~1−~1||∞ < α2,

where ~1 is the vector of all 1’s. In [18], the ellipsoid
method was used to show that accuracy α2 could
be achieved after O(n4 log(nα−1

2 log α−1
1 )) arithmetic

operations on numbers with O(log(n/(α1α2))) digits,
where α1 is the minimum nonzero element of the matrix.
In our algorithm, α2 will be Θ(n−2).

The drawback of the ellipsoid method is its com-
plexity. A slightly slower but much easier method to
implement is the Sinkhorn method [25]. First all the
rows are normalized by dividing by their row sum,
then the columns, and this two step procedure is re-
peated until the accuracy falls below α2. This re-
quires O((α−1

2 + log n)
√

n log α−1
1 ) steps, each of which

take Θ(n2) time. This makes the Sinkhorn method
O(n4.5[n log n + log δ−1]) for general matrices, and
O(n4.5[log n+log δ−1]) for (1/2)-dense matrices. There-
fore in the dense case this method is slower than the
ellipsoid method by a factor of n1/2.

Phase II: row scaling. Let m(i) denote the max-
imum entry of row i of the nearly doubly stochastic
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matrix. Then each row can be scaled once more by di-
viding by m(i). Note that after this phase, each element
of the matrix is still in [0, 1], but the row sums are now
r(i) ∈ [(1− α2)m(i)−1, (1 + α2)m(i)−1]. Note Phases I
and II need only be done once.

Phase III: acceptance/rejection. In [15], self-
reducibility of permutations is used to turn a method for
sampling into a method for counting. The self-reducible
property can also be employed to construct an accep-
tance/rejection algorithm for a particular problem.

The idea is as follows. The goal of the algorithm is
to randomly generate variates W over Ω that satisfy
P(W = x) = w(x)/Z, where w(x) is a nonnegative
weight for all x, and Z =

∑
x∈Ω w(x) is a difficult to

compute normalizing function. Furthermore, suppose
that Ω can be partitioned into Ω1, . . . ,Ωn, each with its
own normalizing constant Zi =

∑
x∈Ωi

w(x).
Also, assume that there is an upper bound function

U satisfying Zi ≤ U(Ωi), and the upper bound respects
the partition in the following way:

(2.8)
n∑

i=1

U(Ωi) ≤ U(Ω).

Finally, if |Ωi| = 1, then U(Ωi) = Zi.
Then at the first step of the algorithm, consider

the random variable I where P(I = i) = U(Ωi)/U(Ω).
By (2.8) these sum to at most 1, so let P(I = 0) =
1 −

∑n
i=1 P(I = i). Draw a random variate I from this

distribution. If I = 0, reject and start over, otherwise
recursively sample from ΩI . Either: 1) at some point
the procedure rejects and starts over, or 2) eventually
the sets are reduced to a single state that is the output.
This procedure is summarized in pseudocode as follows:
Self-reducible Acceptance/Rejection
Input: w(·), Ω, U(·) Output: W
1) Repeat
2) Let Ωtemp ← Ω
3) Repeat
4) Partition Ωtemp into Ω1, . . . ,Ωn

5) For i from 1 to n,
6) Let p(i)← U(Ωi)/U(Ωtemp)
7) Let p(0)← 1−

∑n
i=1 p(i)

8) Choose I using P(I = i) = p(i)
9) If I > 0 let Ωtemp ← ΩI

10) Until (I = 0) or (|Ωtemp| = 1)
11) Until |Ωtemp| = 1
12) Let W be the single element of Ωtemp

The above is a version of acceptance/rejection, and
so has the correct output. To be complete we reprove it
here for this particular variation.

Theorem 2.1. The above procedure for self-reducible
acceptance/rejection outputs W ∼ w(x)/Z.

Proof. Let x ∈ Ω, and consider P(W = x). Suppose
k uses of the repeat loop in steps 3 through 10 are
necessary to get from Ω down to {x}, and let I(1)
through I(k) be the indices of the partition chosen at
line 8. So

{x} = ΩI(k) ⊂ ΩI(k−1) ⊂ ΩI(k−2) ⊂ · · · ⊂ ΩI(0) = Ω.

Since the choice at each level was independent of the
other, the probability of making these particular choices
in lines 3 through 10 are the telescoping product:

(2.9)
U(ΩI(1))
U(ΩI(0))

·
U(ΩI(2))
U(ΩI(1))

· · ·
U(ΩI(k))

U(ΩI(k−1))
=

w(x)
U(Ω)

.

So the probability of hitting x in one run of lines 3
through 10 is w(x)/U(Ω). This makes the probability of
accepting

∑
y w(y)/U(Ω) = Z/U(Ω). The outer repeat

loop (from line 1 to line 11) ensures that the final output
is conditioned on acceptance, and so

P(W = x) =
P({x} in lines 3 to 10)

P(acceptance)
=

w(x)/U(Ω)
Z/U(Ω)

which means P(W = x) = w(x)/Z as desired. �

Note this method (like standard accep-
tance/rejection) can be easily modified to deal with
continuous problems and a target distribution defined
by an unnormalized density, however, for estimating
the permanent we only need the discrete version.

The set of permutations can be partitioned into per-
mutations with σ−1(1) = 1, σ−1(1) = 2, . . . , σ−1(1) =
n. In other words, the choice of which row goes with
column 1 provides a natural way of partitioning the set
of permutations. At the first step of the algorithm col-
umn 1 will be assigned a row σ−1(1). At the next step,
column 2 will be assigned σ−1(2), and so on until the
entire permutation σ has been generated.

Suppose that column j is assigned σ−1(j) as its row.
Then that row and column cannot be used again, and so
it helps to have notation where the matrix is altered to
reflect this. Let f(A, i, j) be a matrix equal to A except
that row i and column j are all zero, except entry (i, j)
which is 1 (illustrated in Figure 1.)

For a matrix with row sums r(i), define

(2.10) M(A) :=
n∏

i=1

h(ri)
e

.

Then Theorem 1.2 states that per(A) ≤ M(A). Set
the weight of a permutation on A to be w(σ) =∏n

i=1 A(i, σ(i)). Let Ω = {σ : w(σ) > 0}. So if columns
1 through j have already been assigned to rows, and the
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A .2 0 .7
.5 .9 0
.3 .6 .1


f(A, 1, 1) f(A, 2, 1) f(A, 3, 1) 1 0 0
0 .9 0
0 .6 .1

  0 0 .7
1 0 0
0 .6 .1

  0 0 .7
0 .9 0
1 0 0


Figure 1: Example of reduced matrices.

matrix has been reduced to Aj , then an upper bound
on the normalizing constant is

U(Aj) :=

[
j∏

k=1

A(σ−1(k), k)

]
M(Aj)

≥

[
j∏

k=1

A(σ−1(k), k)

]
per(Aj).

If we are considering the step where column j is as-
signed, then if σ−1(j) = i, Aj = f(Aj−1, i, j). Note
that many factors in U(Aj)/U(Aj−1) cancel out, so:

U(Aj)
U(Aj−1)

=
A(i, j)M(f(Aj−1, i, j))

M(Aj−1)
,

and inequality (2.8) is satisfied if for all matrices with
entries in [0, 1]:

(2.11)
n∑

i=1

A(i, j)M(f(A, i, j)) ≤M(A) for all j.

This will be proved as Lemma 3.2 in the next section.
So in the first two phases, the algorithm scales

the matrix so that it is almost regular and the
maximum entry is 1. Putting this in pseudocode:
Scale Matrix
Input: A, Output: X, Y , Z, C
1) If A is not (1/2)-dense,
2) let α1 ← (δ/3)(n!)−1

3) Else
4) let α1 ← (δ/3)n−3

5) For all i, j
6) If A(i, j) = 0, let A(i, j)← α1

7) Let B = XAY so row and col. sums of B
in (1− (.1)n−2, 1 + (.1)n−2) via ellipsoid

8) For all i,j,
9) If i = j,

10) let Z(i, j)← mink B(i, k)−1

11) Else
12) let Z(i, j)← 0
13) Let C ← ZB

Once scaled, use self-reducible acceptance/rejection
to generate variates. The algorithm will run through
the columns one at a time from 1 to n. At col-
umn j, row σ−1(j) = i is chosen with probability
A(i, j)M(f(Aj−1, i, j))/M(Aj−1). Putting this in
pseudocode gives us:
Generate Samples/Estimate Permanent
Input: C, X, Y , Z, ε, δ Output: σ1, . . . , σk, p̂er(A)
1) Let d← 0, let k ← 14δ−2 ln(2/ε)
2) For c from 1 to k
3) Repeat
4) Let D ← C
5) Let σc be undefined everywhere
6) Let d← d + 1
7) For j from 1 to n do
8) For i from 1 to n do
9) Let p(i)← D(i, j)M(f(D, i, j))/M(D)

10) Let p(0)← 1−
∑

i>0 p(i)
11) Choose i ∈ {0, 1, . . . , n} randomly,

using p(i) as probability mass function
12) If i > 0, let σc(i)← j, let D ← f(D, i, j)
13) Until σc(i) defined for all i
14) Let s←

∏n
i=1[X(i, i)Z(i, i)Y (i, i)]

15) Let p̂er(A)←M(C)kd−1s−1

It follows from Chernoff bounds (see [23]) that
setting k = 14δ−2 ln(2/ε) will return a result within a
factor of 1 + δ/2 of the answer with probability at least
1− ε. Combined with the fact that the modified matrix
has permanent within a factor of 1 + δ/3 of the orginal
ensures that the final estimate will be within a factor of
1 + δ of the correct answer for δ ≤ 1.

By Markov’s inequality P(d > 2E[d]) ≤ 1/2. Now
consider P(d > sE[d]). Break the sE[d] steps into blocks
of size 2E[d]. Then the chance that each block fails
is at most 1/2, and the chance that they all fail is at
most (1/2)bsE[d]/(2E[d])c which is at most 2(1/2)s/2, and
so P(d > sE[d]) ≤ 21−s/2.

To prove Theorem 1.1, it remains to show inequality
(2.11), and verify R = R(n) for γ-dense matrices.

3 Generalizing Bregman’s Theorem.

Minc made the following conjecture [22], later proved
by Bregman [4], which states given a 0-1 matrix A:

(3.12) per(A) ≤
n∏

i=1

(r(i)!)1/r(i),

where r(i) is the sum of the ith row of the matrix. Even
when starting with a matrix that is 0-1, after scaling the
entries will lie between 0 and 1, and so a more general
form of Bregman’s Inequality is necessary.

Soules [26] proved one such inequality, unfortu-
nately, Soules’ bound cannot be proved by direct in-
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duction on the size of the matrix, and so it cannot be
used within the framework of our algorithm.

Therefore we create a new version of Bregman’s
Theorem that is slightly weaker than Soules’ Inequal-
ity, but which can be proven by direct induction on
the size of the matrix. Note (1!)1/1 = h(1)/e = 1
and approximating r(i)! by Stirling’s formula yields
limr→∞[h(r)/e]/(r!)1/r = 1. Therefore, the factor of
h(r)/e as given in (1.6) in Theorem 1.2 is a generaliza-
tion of the Bregman factors to noninteger matrices.

To prove Theorem 1.2, let A be a matrix with
entries in [0, 1]. Our goal is to show (1.6):

per(A) ≤
n∏

i=1

h(r(i))
e

.

It suffices to prove (2.11) for M(A) =
∏

i(h(r(i))/e),
since then an induction on n yields the theorem.

Fix i and j, and consider how M(A) and
A(i, j)M(f(A, i, j)) are related. First, in M(f(A, i, j))
all rows i′ 6= i have their row sum reduced by A(i′, j).
Second, the factor h(r(i)) gets removed entirely. Last,
a factor of e is removed. Hence
(3.13)
M(f(A, i, j))

M(A)
=

e

h(r(i)−A(i, j))

n∏
i′=1

h(r(i′)−A(i′, j))
h(r(i′))

.

It is easier to deal with the product using exponen-
tials, which is the motivation behind the next lemma.

Lemma 3.1. For matrices with entries in [0, 1], and
A(i′, j) ≤ r(i′),
(3.14)

exp
(
− A(i′, j))

h(r(i′))−A(i′, j)

)
≥ h(r(i′)−A(i′, j))

h(r(i′))
.

The proof, while technical, is straightforward, and
left to the appendix. The three graphs in Figure 2
illustrates Lemma 3.1 for A(i′, j) equal to either 1, .5
or .1 by plotting the left hand side of inequality (3.14)
minus the right hand side. Note that 0 is achieved only
when A(i′, j) = 1 and r(i′) = 1.

Lemma 3.2. For matrices A with A(i, j) ∈ [0, 1] for all
i and j:

M(A) ≥
n∑

i=1

A(i, j)M(f(A, i, j)) for all j.

Proof. Multiply (3.13) by A(i, j) and then sum both
sides to get:

(3.15)
∑

i′′ A(i′′, j)M(f(A, i′′, j))
M(A)

A(i′, j) = 1 A(i′, j) = .5 A(i′, j) = .1

0

.1

0

.1

0

.1

0 5 0 5 0 5
r(i′) r(i′) r(i′)

Figure 2: Graphs of LHS - RHS for inequality (3.14).

≤ e

[
n∑

i′′=1

(
n∏

i′=1

h(r(i′)−A(i′, j))
h(r(i′))

)
A(i′′, j)

h(r(i′′)−A(i′′, j))

]
.

Notice the product in the sum does not depend on i′′

and can be brought out of the sum. Now use (3.14)
to replace the factors in the product with exponentials,
and the product turns into a sum:

(3.16)
∑

i′′ A(i′′, j)M(f(A, i′′, j))
M(A)

≤ e exp

(
n∑

i′=1

−A(i′, j)
h(r(i′)−A(i′, j))

)
n∑

i′′=1

A(i′′, j)
h(r(i′′)−A(i′′, j))

.

The last line is of the form ye1−y, which is easily
shown to have a global maximum of 1 at y = 1. But
y = 1 is equivalent to inequality (2.11), and that is
indentical to the statement of Lemma 3.2. �

As noted above, (2.11) is exactly what is needed
to show by induction that per(A) ≤

∏n
i=1[h(r(i))/e],

thereby proving Theorem 1.2.

4 Dense Matrices.

The R(n) in Theorem 1.1 equals n2M(C)/per(C),
where C is the scaled version of the matrix A, and
M(C) =

∏
(h(rC(i))/e) for rC the vector of row sums

of C. The n2 factor comes from the time needed to
generate a single sample, and the M(C)/per(C) is the
expected number of samples generated before one is ac-
cepted. In this section we show that when A is a dense
0-1 matrix, that R(n) is polynomial in n.

Lemma 4.1. Let γ ∈ (1/2, 1], and A be an n by n
matrix with entries in [0, 1] and at least γn entries
equal to 1 in every row and column. Let B = XAY
with X and Y diagonal matrices so that B is doubly
stochastic with accuracy n−2, and let C = ZB where Z
is a diagonal matrix whose ith element is the inverse of
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the maximum entry of the ith row of B. Then

(4.17) R(n) = n2 M(C)
per(C)

= O(n1.5+0.5/(2γ−1)).

In order to lower bound the permanent of C, first
study the permanent of B. Van der Waerden conjec-
tured the following result: matrices whose row and col-
umn sums are exactly 1 (called a doubly stochastic ma-
trix) have permanent bounded below by n!/nn. This
was later independently proved by Egorychev [8] and
Falikman [9].

Linial, Samordinisky, and Wigderson [20] presented
an argument that the permanent of matrices whose row
and column sums are close to 1 is similarly bounded
below. Here we recast their argument using the notion
of accuracy in (2.7). The first step is to put limits on
accuracy when the permanent of a matrix is 0.

Lemma 4.2. Any nonnegative matrix B such that
|rB(i) − 1| < 1/(2n − 1) and |cB(j) − 1| < 1/(2n − 1)
for all i and j has per(B) > 0.

Proof. Consider the contrapositive. Let B be a matrix
with per(B) = 0 and accuracy α2. Then the König-Hall
Theorem (see [21]) states B is of the form

(4.18) B =
(

O B1

B2 B3

)
,

where O is an s by (n − s + 1) zero submatrix. Given
B has accuracy α2, the sum of entries in B1 and B3 is
at most (s− 1)(1 + α2). Similarly the sum of entries in
B3 and B2 is at most (n− s)(1+α2). Hence the sum of
entries in the entire matrix is at most (n− 1)(1 + α2).

However, the same accuracy requires the sum of
entries in the matrix to be at least n(1 − α2). Hence
n(1− α2) ≤ (n− 1)(1 + α2), and α2 ≥ 1/(2n− 1).

Lemma 4.3. Let B = XAY be A scaled to accuracy
α2 ≤ .79/(2n). Then

(4.19) per(B) ≥ n!
nn

exp(−4n2α2).

Proof. Linial et al. [20] noted that any nonnegative
matrix B can be written as λD + W , where λ ≥ 0,
D is exactly doubly stochastic, W is nonnegative, and
per(W ) = 0. Since W ≥ 0, per(B) ≥ λnper(D) ≥
λnn!/nn. If λ ≥ 1, then λn ≥ 1, so this case is proved.

Say λ ∈ [0, 1), and consider W ′ = W/(1−λ). Then
rB(i) = λ+(1−λ)rW ′(i) and rW ′(i) = (rB(i)−λ)/(1−
λ). Note rB(i) is doubly stochastic to accuracy α2, so:

(4.20)
1− λ− α2

1− λ
< rW ′(i) <=

1− λ + α2

1− λ
,

and a similar pair of inequalities holds for cW ′ . There-
fore W ′ has accuracy α2/(1 − λ). Since W ′ is just
a scaled version of W , per(W ′) = 0, which means
from Lemma 4.2 that α2/(1 − λ) ≥ 1/(2n − 1), so
λ ≥ 1− α2(2n− 1) ≥ 1− 2nα2.

Since 1 − x ≥ e−2x for all x ∈ [0, .79], this yields
per(B) ≥ exp[−n(2)(2nα2)]n!/nn which is just (4.19).

Now suppose that B is A scaled to accuracy (.1)n−2

and consider per(C). The matrix C is just B scaled by
the diagonal elements of Z. Let z(i) = Z(i, i), so
(4.21)

per(C) = per(B)
n∏

i=1

z(i) ≥ n!
nn

exp(−.4)
n∏

i=1

z(i).

On the other hand, the row sums of C will be at
most z(i)(1 + α2), so we have M(C) ≤

∏
i h(z(i)(1 +

α2))/e. By Stirling’s formula n! >
√

2πn(n/e)n, so

M(C)
per(C)

(
e.4(2πn)−1/2

)−1

≤
∏

i

(z(i)(1 + α2) + .5 ln(z(i)(1 + α2)) + e− 1)
z(i)

≤
∏

i

exp
[
α2 +

.5 ln z(i) + .5 ln(1 + α2) + e− 1
z(i)

]
.

Let m = max{1, n maxi,j B(i, j)} so B(i, j) ≤ m/n
for all i and j. Then for all i, z(i) ≥ n/m and it
is straightfoward to show (.5 ln z(i) + e − 1)/z(i) ≤
(.5 ln(n/m)+ e−1)(m/n). Since α2 = .1n−2, [exp(α2 +
ln(1 + α2))]n ≤ 1.22 and

(4.22) M(C)/per(C)

≤ e.4(2πn)−1/21.22 exp((.5 ln n− .5 ln m + e− 1)m)

≤ 4.1
(

31.1
m

n

).5(m−1)

.

It remains to show that if A is a 0-1 γ-dense matrix with
γ > 1/2, then m is small in the scaled matrix B.

Lemma 4.4. Let A be a matrix with entries in (0, 1],
γ ∈ (1/2, 1], and suppose every row and column of A
has at least γn entries equal to 1. Let B = XAY (with
X and Y diagonal) be doubly stochastic to accuracy α2.
Then for 2γ − 1− 3α2 > 0:

(4.23) max
i,j

B(i, j) ≤ (1 + α2)2

(2γ − 1− 3α2)n
.

Proof. For convenience let x(i) := X(i, i) and y(i) :=
Y (i, i). Let i and j be indices from 1 to n. Then
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B(i, j) = x(i)A(i, j)y(j). Since B(i, j) is α2 accu-
rate as in (2.7),

∑n
i′=1 x(i′)A(i′, j)y(j) ≤ 1 + α2, and∑n

j′=1 x(i)A(i, j′)y(j′) ≤ 1 + α2. Hence

(4.24)
∑
i′ 6=i

x(i′)A(i′, j) ≤ y(j)−1(1 + α2 −B(i, j)),

(4.25)
∑
j′ 6=j

A(i, j′)y(j′) ≤ x(i)−1(1 + α2 −B(i, j)).

Let Sr = {j′ 6= j : A(i, j′) = 1}, and Sc = {i′ 6=
i : A(i′, j) = 1}. Under our assumptions both |Sr|
and |Sc| are at least γn − 1. Use Sr and Sc to break
A into four submatrices: A1 := {i′ ∈ Sc, j

′ ∈ Sr},
A2 := {i′ ∈ Sc, j

′ /∈ Sr}, A3 := {i′ /∈ Sc, j
′ ∈ Sr},

and A4 := {i′ /∈ Sc, j
′ /∈ Sr}, with B1, B2, B3, and B4

corresponding to the same submatrices in B.
For a matrix D, let s(D) denote the sum of the

entries in D. Then since B is doubly stochastic to
accuracy α2,

s(B1) + s(B2) ≥ |Sc|(1− α2)
s(B1) + s(B3) ≥ |Sr|(1− α2).

Let nα2 := n(1 + α2). Then

nα2 ≥ s(B1) + s(B2) + s(B3) + s(B4)
≥ B(i, j) + |Sr|(1− α2) + |Sc|(1− α2)− s(B1).

To lower bound −s(B1), note

s(B1) ≤
∑

i′∈Sc

∑
j′∈Sr

x(i′)A(i′, j′)y(j′)

≤

[∑
i′∈Sc

x(i′)

] ∑
j′∈Sr

y(j′)


each of which factors is bounded in (4.24) and (4.25),
respectively. Using this bound together with |Sr| +
|Sc| ≥ 2(γn− 1) yields:
(4.26)

nα2 ≥ B(i, j)+ 2(γn− 1)(1−α2)−
(1 + α2 −B(i, j))2

x(i)y(j)
.

Since B(i, j) ≤ x(i)y(j), inverting and negating gives
−B(i, j)−1 ≤ −[x(i)y(j)]−1, which means

nα2B(i, j) ≥ B(i, j)2 + 2(γn− 1)(1− α2)B(i, j)
−(1 + α2 −B(i, j))2.

In the RHS the B(i, j)2 terms cancel, and solving for
B(i, j) and using 2γ + 1 ≤ 3 yields (4.23).

Proof of Lemma 4.1 Let A be a [0, 1] matrix with at
least γn 1’s in each row and column, and B a scaling
of A that is doubly stochastic to accuracy .1n−2. From
the previous lemma m ≤ (1 + α2)2(2γ − 1− 3α2)−1, so
by (4.22), we have the following

M(C)/per(C) ≤ 4.1(31.1n).5[(1+α2)
2(2γ−1−3α2)

−1−1]

≤ O(n−0.5+0.5(2γ−1)−1
).

Multiplying both sides by n2 finishes the proof. �

5 Permanents for Matrices That Are Not 0-1.

To deal with matrices with arbitrary nonnegative en-
tries, we employ a method similar to that used in [17].
First solve the maximum assignment problem in O(n3)
time to find the highest weight permutation. This gives
a lower bound on the permanent α3. Then scale the
matrix by dividing each entry by the largest entry in
the matrix. Finally, change any entries whose value is
less than

(5.27) α1 := (δ/3)α3(n!)−1,

to α1. This changes line 6) in the Scale Matrix
pseudocode of Section 2. While this increases the
permanent by a factor of at most 1 + δ/3, it ensures
that the ratio between the the maximum and minimum
entry of the matrix has at most n lnnδ−1 digits. The
rest of the algorithm continues as before.

6 Conclusions.

This work shows that for very dense matrices, approx-
imating the permanent or generating weighted perfect
matchings exactly from their correct distribution can
be accomplished in O(n4 log n + n1.5+.5(2γ−1)−1

) time.
This is an improvement in running time by a factor of
n3 for matrices that are .6-dense [3]. This work extends
earlier work in [12] that required the matrix to be both
dense and regular in the sense of having equal row and
column sums. This is an important step on the way to
an efficient perfect sampling method applicable to all
nonnegative matrices.

For estimating the permanent of a 0-1 matrix to
within a factor of 1+δ with probability at least 1−ε, the
expected running time is bounded above by O(n4 log n+
n1.5+.5/(2γ−1)δ−2 log ε−1).

It is important to note that our method can be ap-
plied to generating perfect matchings from any matrix
with nonnegative entries, but there is currently no a
priori bound on the running time.

References

687



[1] R. Ahuja, T. Magnanti, and J. Orlin, Network Flows,
Prentice Hall, 1993.

[2] A. Barvinok, Polynomial time algorithms to approx-
imate permanents and mixed discriminants within a
simply exponential factor, Random Structures Algo-
rithms, 14 (1999), pp. 29–61.
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7 Appendix

In this appendix we prove Lemma 3.1. First we
restate the lemma by inverting both sides and removing
references to row sums and entries of a matrix.

Lemma 7.1. Let a ∈ (0, 1] and b ≥ 0 satisfy a ≤ b.
Then

(7.28)
h(b)

h(b− a)
≥ exp

(
a

h(b− a)

)
.

Proof. Set g(x) := 1 + x + .5x2 + (e− 2.5)x3. Then

(7.29) (∀x ∈ [0, 1])(ex ≤ g(x)).

To see this, let f1(x) := g(x)− ex so f1(0) = f1(1) = 0.
Now f ′′1 (x) = 1 + 6(e − 2.5)x − ex. The zeros of this
function occur where the line 1 + 6(e − 2.5)x and the
curve ex intersect. Since ex is convex this happens
either 0, 1, or 2 times. Now f ′′1 (0) = 0, f ′′1 (.5) > .006,
f ′′1 (1) < −.4 so there are two zeros, one at 0, and one
at α4, where α4 ∈ [.5, 1]. Since f ′1(0) = 0, and f ′′1 is
nonnegative on [0, α4], then f ′1(0) ≥ 0 on [0, α4]. Also,
f ′′1 is negative on (α4, 1], and so f ′1 has at most one
zero in (0, 1]. By Rolle’s Theorem, this means f1([0, 1])
is either in [0,∞) or (−∞, 0]. Since f1(.5) > 0.003,
f1(x) ≥ 0 for all x ∈ [0, 1].

To show (7.28), consider the LHS - RHS:

(7.30) f2(b, a) =
h(b)

h(b− a)
− exp

(
a

h(b− a)

)
.
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So (7.28) is true if and only if f2(b, a) ≥ 0 for all b ≥ a
and a ∈ (0, 1].

Case I: b− a ≥ 1. We can use (7.29) to bound the
exponential term since 0 ≤ a/h(b − a) ≤ 1. To bound
the first term, first note that

h′(x) =
{

1 + 1/(2x), x > 1
e− 1, x ∈ [0, 1]

is nonincreasing. This means that
(7.31)

h(b) = h(b− a) +
∫ b

b−a

h′(x) dx ≥ h(b− a) + a · h′(b).

Let ã = a/h(b− a), then

(7.32) f2(b, a) ≥ 1 + ãh′(b)− g(ã).

Since b > 1, h′(b) = 1 + 1/(2b). So

(7.33) f2(b, a) ≥ ã[1/(2b)− (1/2)ã− (e− 2.5)ã2],

which is nonnegative if and only if the bracketed term
is nonnegative.

Now ã = a(b − a + (1/2) ln(b − a) + e − 1)−1 ≤
(b + e− 2)−1, and
(7.34)
1
2b
− 1

2(b + e− 2)
− e− 2.5

(b + e− 2)2
=

(3− e)b + (e− 2)2

2b(b + e− 2)2
.

Since (3 − e) > 0, the RHS is greater than 0 and
f2(b, a) > 0.

Case II: b − a < 1. Fix a ∈ [0, 1], and again let
ã := a/h(b − a) = a/(1 + (e − 1)(b − a)). Rearranging
gives a = ã[1 + b(e− 1)]/[1 + ã(e− 1)], so

(7.35)
1

h(b− a)
=

ã

a
=

1 + ã(e− 1)
1 + b(e− 1)

.

So (7.28) is equivalent to

(7.36)
h(b)(1 + ã(e− 1))

1 + b(e− 1)
≥ exp(ã).

The LHS is just a line in ã, and the RHS is a convex
function, and so it is sufficient to show that the equation
holds for the endpoints of an interval containing all the
values of ã. Consider ã as a function of a. Then this
has the form:

(7.37) ã =
a

c1 − c2a
,

where c1 − c2a ≥ 1. The derivative becomes:

(7.38)
dã

da
=

(c1 − c2a) + c2a

(c1 − c2a)2
> 0.

So ã is strictly increasing in a, and 1-1 over any interval.
That means to evaluate (7.36) at the extreme points for
ã, we need only evaluate (7.28) at the extreme points of
a. These extreme points vary depending on the value of
b, and so two subcases are necessary.

Subcase IIa: b ≤ 1. Then a lies in [0, b], so
evaluating (7.28) at 0 and b gives:
(7.39)

1 =
h(b)
h(b)

= exp(0) = 1,
h(b)
h(0)

= 1 + b(e− 1) ≥ exp(b).

(The second inequality holds for all b ∈ [0, 1] since
exp(b) is convex and the inequality is satisfied at b = 0
and b = 1.)

Subcase IIb: b > 1. Then a lies in [b − 1, 1].
Evaluating at a = b− 1 gives:

h(b)
h(1)

=
b + .5 ln b + e− 1

e
= 1 +

b− 1
e

+
.5 ln b

e

Using g((b − 1/e) ≤ exp((b − 1)/e) on the first two
terms of the RHS means it suffices to show .5(ln b)/e ≥
.5(b − 1)2/e2 + (e − 2.5)(b − 1)3/e3 for b ∈ [1, 2]. The
inequality holds with equality at b = 1 and strict
inequality at b = 1.5 and b = 2. The derivative of
.5(ln b)/e is strictly decreasing on (1, 2), while that of
.5(b− 1)2/e2 +(e− 2.5)(b− 1)3/e3 is strictly increasing,
so the derivative of the difference has at most one zero in
(1, 2), and so the inequality holds on the entire interval.

Now suppose a = 1. Then set f3(b) = f2(b, 1), and
define f4(b) as: d

db
f3(b) = f4(b)/(h(b− 1)2), where

f4(b) := h(b− 1)h′(b)− h(b)h′(b− 1)

+ exp
(

1
h(b− 1)

)
h′(b− 1).

For b ∈ (1, 2) and b−1 ∈ (0, 1), h(b) = b+ .5 ln b+e−1,
h′(b) = 1 + 1/(2b), h(b − 1) = 1 + (e − 1)(b − 1), and
h′(b− 1) = e− 1. After simplifying

h(b− 1)h′(b)− h(b)h′(b− 1)
= .5 + 1.5e− e2 − .5(e− 2)b−1 − .5(e− 1) ln b,

we have

f ′4(b) =
e− 2
2b
− e− 1

2b
−
(

e− 1
h(b− 1)

)2

exp
(

1
h(b− 1)

)
.

This makes f ′4(b) < 0 for b ∈ [1, 2], and f4(b) a strictly
decreasing function on [1, 2]. Since sgn(f ′3) = sgn(f4),
f ′3 has at most one zero in [1, 2].

Now f3(1) = 0, f3(2) > .05 and f ′3(1) = 1.5, so the
fact that f ′3(b) = 0 at most once in [1, 2] means f3(b) ≥ 0
for all b ∈ [1, 2].

Hence for any value of a and b, f2(b, a) ≥ 0, and the
lemma is proved.
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