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PERFECT SIMULATION FOR IMAGE RESTORATION

Mark Huber � Department of Mathematics, Duke University,
Durham, North Carolina, USA

� The coupling method has been an enormously useful tool for studying the mixing time of
Markov chains and as the basis of perfect sampling algorithms such as Coupling From the
Past. Several methods such as Wilson’s layered multishift coupling and Breyer and Roberts’
catalytic coupling have been introduced to use the coupling approach on continuous state spaces.
This work builds upon these approaches by using a simple coupling for small Metropolis moves
together with catalytic coupling. As an application, the analysis of a Markov chain for the
autonormal distribution in the Wasserstein metric of A. Gibbs is extended to an analysis in
total variation distance. Moreover, a perfect sampling algorithm is constructed that has mean
running time O (N lnN ) time for fixed values of the parameters of the model.
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1. INTRODUCTION

Monte Carlo algorithms generate random variates from a target
distribution �. These variates can be used as the basis for approximation
algorithms for �P complete problems (Ref.[15]), finding exact p values for
statistical tests (see for example Ref.[7]), or sampling from the posterior
distribution in a Bayesian analysis (Ref.[8]).

In these problems, the target distribution � is typically described
through a density whose normalizing constant is unknown. The classical
approach to this type of problem is to construct a Markov chain whose
stationary distribution matches �, and then run the chain forward for a
number of steps. The central question with this method is how many steps
must be taken in the Markov chain before the state is close to stationarity?
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Let � and � be probability distributions on a common measurable
space (�,� ). A common way of measuring how close � is to � is the total
variation distance:

dTV (�, �) = sup
A∈�

|�(A) − �(A)|� (1)

Let x0 ∈ �, and �Xt�
∞
t=0 be a Markov chain on (�,� )� Then let �(Xt |X0 =

x0) denote the distribution of Xt given that the chain started at x0, and

�x0(	) = inf�t : dTV (�(Xt |X0 = x0), �) ≤ 	�, (2)

is the mixing time of the Markov chain. In order for the Markov chain to
be used as a means of generating random variates, practitioners need some
means for bounding this mixing time.

One commonly used method for upper bounding the mixing time is
coupling. A bivariate process (Xt ,Yt) is a coupling of a Markov chain if the
marginal processes �Xt�

∞
t=0 and �Yt�

∞
t=0 are both Markov chains with the

same transition probabilities as the original Markov chain. The coupling
lemma (Refs.[1,5]) states that if Y0 ∼ �, then

dTV (�(Xt |X0 = x0), �) ≤ �(Xt �= Yt)� (3)

Coupling has been used very successfully in discrete spaces (see for
example Refs.[11,12]), but Gibbs[9] pointed out that in practice it can be
difficult to bound for continuous state spaces. Therefore she considered
the Wasserstein metric:

dW (�, �) = inf�[d(X ,Y )], (4)

where d is a metric on�, and the infimum is taken over all bivariate random
variables (X ,Y ) where X has distribution � and Y has distribution 
.

The advantage of dW (�, �) for continuous state spaces is that a coupling
(Xt ,Yt) need not completely come together in order to get an upper
bound. In fact, what Gibbs showed was that if for a coupling (Xt ,Yt) with
X0 = x0 and Y0 ∼ � and

�[d(Xt+1,Yt+1) |Xt ,Yt ] ≤ c · d(Xt ,Yt), (5)

for all t and some c ∈ (0, 1), then after (ln c−1)−1(ln 	−1 + ln supx ,y∈� d(x , y))
steps dW (�(Xt |X0 = x0), �) < 	. In other words, the fact that the Xt and
Yt processes are coming together exponentially is enough to upper bound
Wasserstein distance, having Xt = Yt is not needed.

Gibbs applied her result to the autonormal distribution that arises
in statistical physics and in Bayesian image restoration. More details on
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this distribution are provided in Section 2. For the Gibbs sampler Markov
chain for this distribution, Gibbs showed the Wasserstein distance between
Xt |X0 = x0 and � is at most 	 after

N (��2 + −2)(��2)−1[ln(�N ) + ln 	−1] (6)

time steps, where N� is a measure of the input size of the problem,
and � and  are parameters of the model. In addition, Gibbs noted that
because the Markov chain studied is monotonic, ideas such as multigamma
coupling of Murdoch and Green[13] can be used to create a perfect
simulation algorithm for this problem, although she did not complete an
analysis of the running time.

In this paper the following results are shown.

1. When a result similar to (5) is possible for monotonic chain, it is
possible to obtain a multishift coupler applicable in more situations than
the one employed by Wilson[17] by combining the catalytic coupling idea of
Breyer and Roberts[3] with a small nonmonotonic Metropolis chain move.
This coupler can then be used to create a perfect sampling algorithm for
the problem.

2. For a bounded continuous state space like those studied by Gibbs,
a result similar to (5) can usually be used to obtain a bound on the total
variation distance in addition to the Wasserstein metric bound.

3. For the particular autonormal distribution studied by Gibbs, it is
possible to obtain perfect samples in O(N lnN ) expected time for fixed
values of  and �, and O(N 2 lnN ) expected time for arbitrary  and �.

The essential idea of the new procedure is to first use a coupling for a
Gibbs sampler Markov chain for a fixed number t of steps. The value of t
should be large enough that starting from any possible state, after t steps
the resulting Markov chain states are likely to be close to one another. Then
one more step is taken using a Metropolis Markov chain that proposes a
new state that is likely to be accepted from all of the closely bunched states.

The next section describes the autonormal distribution and image
restoration application in detail. Section 3 illustrates the basics of perfect
sampling with coupling from the past, and Section 4 shows how a coupling
satisfying (5) can serve as the basis of a perfect sampling algorithm by
modifying the Markov chain utilized. Section 5 shows how the mixing time
for the original Markov chain can be analyzed in terms of total variation
distance instead of Wasserstein.

2. IMAGE RESTORATION

In order to illustrate the methodology, consider the following approach
to image restoration. Suppose that a greyscale image is represented by
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assigning each of N pixels a color from 0 to 1, where a white pixel is 0, a
black pixel is 1, and in between values are grey. Therefore the state space
is � = [0, 1]N . The pixels are connected to their nearest neighbor by a set
of edges E . Let � be the maximum degree of the graph. Typically (N ,E) is
a 2 dimensional square lattice in which case � = 4.

A Bayesian statistical model first puts a prior distribution on the set
of configurations. This represents the fact that even though the state
of the configuration is unknown before the data/picture is taken, some
configurations of pixels are relatively more likely to occur than others.
Then data is collected, and the prior distribution conditioned on the data
becomes the posterior distribution.

One such prior of Besag[2] puts greater probability on configurations
where neighboring pixels are given similar greyscale values. This prior has
density

��(x) = Z−1
� exp

(
−

∑
�i ,j�∈E

(1/2)�2(x(i) − x(j))2
)
1(x ∈ [0, 1]N )� (7)

The parameter � measures how much influence the neighbors of a node
have upon its value. When � = 0 the nodes are independent, as � goes to
infinity they become more tightly clustered. A more general model assigns
different values of � to different edges. While the methods presented here
can be easily generalized to varying �, for purposes of presentation only the
� constant across edges case is dealt with here.

The second component of a Bayesian approach is a model of how
the data is gathered conditioned on the value of the true picture. In the
model used here, independent Gaussian errors are placed on each pixel,
conditional on the value of the pixel remaining in [0, 1]. Hence, the density
for the distribution of the data given the true picture X is:

�(d |X = x) = Z−1
x , exp

(
− 1

22

N∑
i=1

(d(i) − x(i))2
)
1(y ∈ �)� (8)

Combining the two using Bayes’ rule gives the final posterior (target)
density for the true picture given the data D:

�(x |D = d) = Z−1 exp(−H (x , d))1(x ∈ �), where (9)

H (x , d) = − 1
22

∑
i

(x(i) − d(i))2 −
∑
�i ,j�

1
2
�2(x(i) − x(j))2� (10)

The dependence of the normalizing constant Z on , �, and d is suppressed
in the notation.
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The random scan Gibbs sampler technique chooses a pixel uniformly at
random at each step, and then updates the value for that pixel conditioned
on its neighbors. Let x (−i) denote the vector x(1), x(2), � � � , x(i − 1), x(i +
1), � � � , x(N ). The form of � is such that the distribution of x given x (−i) will
have a normal distribution. Let

b(i) = (−2 + n(i)�2)−1, a(i) =
[
−2d(i) + �2

∑
j :�i ,j�∈E

x(j)
]
b(i), (11)

where n(i) is the number of neighbors of i in the graph. Then x(i) given
x (−i) has the distribution of a normal random variable with mean a(i) and
variance b(i) conditioned to lie in [0, 1].

3. PERFECT SIMULATION USING CFTP

Perfect simulation algorithms are a means around the problem of
finding the mixing time of a Markov chain. These algorithms draw samples
exactly from �, the target distribution, with no measure of closeness
needed. Unfortunately, they have the drawback that their running time
is itself a random variable that could be arbitrarily large. Therefore these
algorithms have expected running times rather than deterministic running
times.

The perfect sampling protocol used here is the Coupling From the Past
(CFTP) idea of Propp and Wilson[14]. There are many different forms of
CFTP (Refs.[6,10,16]), here a framework is presented that allows the most
flexibility in design. Call � : � × [0, 1] → � stationary with respect to a
distribution � if for U uniform over [0, 1] and X ∼ �, then �(X ,U ) also
has distribution �. For example, taking 17 steps in a Markov chain which
has � as its stationary distribution yields a stationary function.

The powerful observation of Propp and Wilson that drives CFTP is that
if for the random choice of U , �(·,U ) maps the entire state space into a
single state, then that state has the stationary distribution �. If �(·,U ) does
not map the entire state space into a single state, then recursively find a
stationary state and map it forward using the same U in order to generate
a stationary state.

CFTP Output: Y

1) Generate U ← Unif([0, 1])
2) If |�(�,U )|= 1
3) Let Y be the sole element of �(�,U )
4) Else
5) Let Z ← CFTP
6) Let Y ← �(Z ,U )
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Propp and Wilson showed that if �(·,U ) has positive probability of
collapsing to a single state, then the above CFTP procedure terminates
with probability 1 and outputs a random variate with distribution �.
Suppose that �(�,U ) consists of running a Markov chain forward in time
for a fixed number of steps t using the random bits encoded in the uniform
random variable U . Let F b

a (·,U ) be a function such that for a Markov chain
�Xt�, F b

a (x ,U ) has the same distribution as Xb conditioned on Xa = x . Then
�(�,U ) will be a singleton if and only if for the fixed number of steps t ,
F t
0 (�,U ) is a singleton.

One situation where it is possible to quickly determine if F t
0 (�,U ) is a

singleton is when the function F is monotonic. Suppose that the state space
has a partial order � on �� Say that F b

a is monotonic if

(∀u ∈ [0, 1])(∀x , y ∈ �)(x � y ⇒ F b
a (x ,u) � F b

a (y,u))� (12)

That is, if x is smaller than y in a monotonic Markov chain, then after
taking a fixed number of steps in the Markov chain x is still smaller than y.
For the autonormal distribution application, it was noted in Ref.[9] that
the Gibbs sampler run using an inverse cdf method for choosing the new
value of a node conditioned on its neighbors yields a monotonic Markov
chain under the partial order where x � y if and only if x(i) ≤ y(i) for all
i ∈ �1, � � � ,N �.

Suppose that � has a minimum element xmin and a maximum element
xmax under the partial order. Then to test whether or not |F b

a (�,U )|= 1,
simply evaluate F b

a (xmin,U ) and F b
a (xmax,U ). Note for any x ∈ �, xmin � x �

xmax. So monotonicity gives

F b
a (xmin,U ) � F b

a (x ,U ) � F b
a (xmax,U )�

Therefore, if F b
a (xmin,U ) = F b

a (xmax,U ), then this common value is the
singleton element of F b

a (�,U ).
For monotonic CFTP to work, there must be a positive chance

that F b
a (xmin,U ) = F b

a (xmax,U ). For the autonormal distribution, the Gibbs
sampling chain is monotonic, and xmin = �0�N and xmax = �1�N , so it is
set up to utilize monotonicity. However, it is easy to see that running the
Markov chain forward from xmin and xmax using the inverse cdf method,
the two chains will never meet one another. They can get very close to one
another, but will never match exactly.

Wilson[17] introduced the idea of layered multishift coupling to deal
with this problem for certain distributions. Wilson’s method applies when
the marginal distribution at each node is a shifted (or scaled) distribution
whose mean depends on the neighbors of the node. For instance, in the
autonormal distribution where the value of each node is unbounded, the
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marginal distribution is a normal distribution with variance that depends
only on the model, and mean that depends on the neighbors.

Unfortunately, in the bounded case, the marginal distributions are
no longer simply shifted (or scaled) versions of a reference distribution.
Instead, they are shifted normal distributions conditioned to lie between
0 and 1, which means that both the mean and variance of these marginal
distributions are changing. Therefore, layered multishift coupling cannot
be applied here.

4. PERFECT SIMULATION USING A SMALL METROPOLIS MOVE

To solve the problem of the chain never quite coalescing, an idea of
Breyer and Roberts[3] called catalytic coupling can be used. They noted
that instead of running the same Markov chain for a fixed number of steps
and letting that be the stationary update �, for continuous state spaces it
is helpful to take a number of steps using one Markov chain and then a
final step taken using a different Markov chain that actually brings all the
states together completely. They utilized an Independence Sampler chain
for their purposes; here a small Metropolis move is introduced and used so
that a trivial form of multishift coupling can be utilized.

An alternate approach to the Gibbs sample in designing Markov chains
is the Metropolis method, where a proposal state is created from the
current state. Let Xt be the current state and b(y |Xt) the density of the
proposed point Y . Then Xt+1 = Y with probability

min�1, b(Xt |Y )�(Y )/[b(Y |Xt)�(Xt)]�, (13)

otherwise Xt+1 = Xt .
The new idea in this work is to couple the choice of proposal state

together by making a very small uniform move. Here is how it operates in
one dimension. Given Xt = x , the proposal state Y will have the uniform
distribution over [x − 	, x + 	].

In order to deal with the bounded state space, the uniform over
[x − 	, x + 	] will be generated in a two step process. First, flip a fair coin. If
the coin comes up heads, generate the uniform over [x , x + 	], and on tails
generate over [x − 	, x]. The reason for this coin flip step will be explained
below when multiple dimensions are considered.

Now suppose that X is bounded so that a ≤ X ≤ b. Suppose that
b − a < 	 and that the coin flip is heads so that Y is uniform over [x , x + 	]�
The choice of Y for different values of x ∈ [a, b] can be coupled in the
following fashion, called multishift coupling. Let � be the set of points
�a, a + 	, a + 2	, � � � �, and U be uniform on [0, 	]. Then for any x in [a, b],
let Y be the point of � + U that lies in [x , x + 	]. This point Y has
the uniform distribution over [x , x + 	], moreover, if U > b − a the same
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choice of Y will be used for every x ∈ A. This happens with probability
1 − (b − a)/	. A similar approach is used when the coin flip is tails, to
obtain Y uniform over [x − 	, x].

That covers the choice of proposal state—the second piece of
Metropolis then accepts or rejects the proposal state with probability (13).
In this case b(y, x) = b(x , y) so the probability of accepting the state is just
�(x)/�(y). In the case that �(x) = Z−1f (x) for known f and unknown Z−1,
this makes the probability that everything moves to the same state in one
dimension is at least (

1 − b − a
	

)(
min

a≤x ,y≤b+	

f (x)
f (y)

)
� (14)

Now consider the multidimensional case, and suppose that a and b are
N dimensional vectors where a(i) ≤ X (i) ≤ b(i) for all i . Then in some
dimensions a(i) is close to 0, in which case the good coin flip from a
coupling point of view is to propose a point uniformly over [X (i),X (i)+ 	].
In other dimensions, b(i) is close to 1, and a good coin flip is to propose a
point uniformly over [X (i) − 	,X (i)].

Therefore, the choice of coin flip is coupled across dimensions. When
the coin flip is heads, then in every dimension the proposal state is uniform
over [x(i), x(i) + 	] if a(i) is close to 0, and is uniform over [x(i) − 	, x(i)]
when b(i) is close to 1. This means that when the coin flip is heads,
the proposal state tries to move the state away from the boundary in
every dimension. Since the proposal state is uniform over [x(i), x(i)+ 	]
or [x(i) − 	, x(i)] for each dimension, multishift coupling can be used,
as is summarized in the following pseudocode (SMM stands for Small
Metropolis Move).

SMM Input: a, b Output: CoupleFlag , Y

1) Let H ← Uniform(�−1, 1�), let CoupleFlag ← TRUE
2) For i ∈ �1, � � � ,N � do
3) Let U (i) ← Uniform([0, 	])
4) Let B(i) ← H 1(b(i) < 1/2) − H 1(b(i) ≥ 1/2)
5) Let Y (i) ← (a + U (i))1(B(i) = 1) + (b − U (i))1(B(i) = −1)
6) If U (i) < b − a then let CoupleFlag ← FALSE
7) End for
8) Let U ← Uniform([0, 1])
9) If U > f (Y )/max�x :a�x�b� f (x) then let CoupleFlag ← FALSE

Lemma 4.1. Suppose that the input vectors a and b to SMM satisfy
b(i) − a(i) < min�N −2[1�5−2 + 2�25�2�]−1,N −1� for all i, and suppose 	 =
N maxi�b(i) − a(i)� in line 3) of SMM. Then the probability that SMM coalesces
the states (so CoupleFlag = TRUE) is at least (1/2) exp(−1).
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Proof. When H = 1, this is a “good coin flip” in the sense that in every
dimension the proposal state moves away from the boundary at 0 or 1.
This event occurs with probability 1/2. Conditioned on H = 1, each node
i has a (1 − (b(i) − a(i))/	) ≥ 1 − 1/N > exp(−1/N ) chance of coalescing
at the proposal point. There are N nodes, and each choice is independent,
so that leaves at least an [exp(−1/N )]N = exp(−1) chance of choosing the
same proposal point for each node.

Finally there is the Metropolis acceptance step. Let x satisfy a � x � b,
and y be any state with |x(i) − y(i)| ≤ 	. Note |(y(i) − d(i))2 − (x(i) −
d(i))2|< 2	d(i) + 	2 < 3	. Also for any edge �i , j�, |(y(i) − y(j))2 − (x(i) −
x(j))2|< 4	(x(i) − x(j)) + (1/2)	� Hence

|H (x , d) − H (y, d)| ≤ 1
22

∑
i

3	 +
∑
�i ,j�

�2

2
(4�5	)

≤ N 1�5−2	 + N�2�25�2	�

But this last expression is at most 1 from the bound on b(i) − a(i) and
choice of 	. Hence, the chance of accepting y is at least exp(−1) and the
lemma is proved.

Now SMM is one step in the Markov chain within the larger CFTP
algorithm from Section 3. When the output of SMM has CoupleFlag =
TRUE, line 3) from CFTP is executed and the output Y of SMM is the
output of CFTP. When CoupleFlag is FALSE, lines 5) and 6) of CFTP are
executed: the output Y of SMM is not used, but instead CFTP is called
again recursively by line 5) to generate Z . Line 6) then uses the same
updates so that Z is updated to state Y , which is the final output of CFTP.

The stationary update � for CFTP proposed here has two parts: run the
Gibbs sampler monotonic chain forward a fixed number t steps, and then
take one step in SMM. The chance that this leads to coupling is bounded
below by the chance that 1) the Gibbs sampler brings xmin and xmax close
together and 2) SMM finishes the job.

Theorem 4.1. Let

t = N 2(−2 + ��2)−1) ln[2N 2(1�5−2 + 2�25�2�)] (15)

After running the monotonic Gibbs sampler for t steps and then taking one step of
SMM, there is at least a (1/4) exp(−2) chance that the state has coalesced.

Proof. Gibbs showed in Theorem 3.1 of Ref.[9] that running the Gibbs
sampler with X0 = xmin and Y0 = xmax gives

�[d(Yt ,Xt)] ≤ c td(xmax, xmin), for c = 1 − N −1−2(−2 + ��2)−1, (16)
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where d(x , y) = ∑N
i=1 degree(i)|x(i) − y(i)|. Hence d(xmax, xmin) ≤ �N and

if d(Yt ,Xt) < � then |Xt(i) − Yt(i)|< � for all i .
Let � = (2N 2[1�5−2 + 2�25�2�])−1, so after ln �−1/ ln c−1 steps �[d

(Xt ,Yt)] is at most �. By Markov’s inequality there is at least a 1/2 chance
that d(Xt ,Yt) ≤ 2�, which is a bound needed by Lemma 4.1 so that
SMM coalesces with probability at least (1/2) exp(−1). Using 1/ ln c−1 ≤ 1/
(1 − c) completes the proof.

Remark 4.1. This gives an O(N lnN ) expected time algorithm for fixed
values of , and �. When  is allowed to vary and becomes large so that
the dependence on the data is very weak, simply insert arbitrary data
with ̃−2 = 1/N . Once a sample using ̃ is obtained, acceptance/rejection
can be used to decide whether to use it as a sample from . Acceptance
occurs with probability at least exp(−1/2), and so this gives an O(N 2 lnN )
expected time algorithm for arbitrary  and �.

5. TOTAL VARIATION BOUND

Section 4 shows that it is possible to generate perfect samples from
the model distribution in (9) in bounded expected time by using a
modified Markov chain, but what about the mixing time of the original
Gibbs sampler Markov chain? Bounding this mixing time can be useful in
obtaining knowledge about the spectral gap of the chain for comparison
purposes (Ref.[4]).

In this section it is shown how the ideas of the previous section can
be utilized to show a total variation bound in the original Markov chain.
The idea is as follows. Again follow an upper (Yt) and lower (Xt) process
and when Xt is close to Yt change the method by which the marginal
distribution is generated at each step. First, generate from the marginal
distribution exactly, then take one step in the Metropolis Markov chain that
has the marginal distribution as its stationary distribution. The Metropolis
proposal moves will just be the same as before: flip a fair coin and then
based on the coin flip either add or subtract a value uniformly drawn
from [0, 	]. Using these moves from the last section allows the reuse of the
analysis there to prove the following.

Theorem 5.1. Let 	TV > 0, t1 := 2N lnN , and

t2 := N 2(−2 + ��2) ln(�N + t1 + 160Nt 21 (1�5
−2 + 2�25��2)) (17)

Let Zt be the random scan Gibbs sampler Markov chain where at each step a node
is chosen uniformly at random and updated by a draw from � conditioned on the
values of its neighbors. For any z0 ∈ �, after t = �1�6 ln 	−1

TV (t1 + t2) steps, the
total variation distance between �(Zt |Z0 = z0) and � is at most 	TV .
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Proof. Let z0 ∈ �, and let (Xt ,Yt ,Zt , St) be four monotonically coupled
Markov chains whose transition probabilities are given by the random
scan Gibbs sampler for �, with initial states X0 = xmin, Y0 = xmax, Z0 = z0,
and S0 ∼ �. Equation (3) says that the total variation distance between
�(Zt |Z0 = z0) and �(St) = � is bounded above by the probability that
Zt �= St , which is in turn bounded above by the probability that Xt �= Yt . The
goal of the proof is to show that after t steps this probability is at most 	TV .

As mentioned in the paragraph immediately before the theorem
statement, the coupling will be monotonic until the gap between the upper
and lower processes is small. At this point the coupling switches over so
that a single move in the Markov chain is accomplished by choosing a
node i uniformly at random followed by a random draw from the marginal
distribution, followed by the small Metropolis move that preserves that
marginal distribution.

As with the SMM moves of the previous section, the Metropolis move
here only effectively couples the state space when the moves are away from
the boundary. This is where the coin flip comes into play: with probability
1/2 the proposal state moves away from the boundary and coalesces the
states. Let � be the number of steps needed to randomly select each node
and have the coin flip go the right way so that the proposal state moves
away from the boundary. Then finding �[�] is a variant of the famous
Coupon Collector problem. After t1 steps the chance that a particular node
has not been selected with a good coin flip is at most (1 − 1/[2N ])t1 ≤
exp(−t1/[2N ])� So for t1 = 2N (lnN ), there is at most an exp(−1) chance
that any of the N nodes have not been selected with the good coin flip.

Recall that �[d(Xt ,Yt)] is bounded above by c t�N , where c = 1 −
N −1−2(−2 + ��2)−1. Let 	 := [N (20t1)(1�5−2 + 2�25��2)]−1 Therefore,
after t2 = N 2(−2 + ��2) ln(�N + t1 + 20t1/	) steps, �[d(Xt ,Yt)] ≤
t−1
1 	(20t1)−1 for all t from t2 to t2 + t1 − 1. Hence the probability that
d(Xt ,Yt) > 	t−1

1 for any of these time steps is (by Markov and Bonferroni
inequalities) at most 1/20.

Now consider the probability that each of the steps from time t2 to t2 +
t1 − 1 is a good event in the sense that every proposal state coalesces, and is
accepted if they do coalesce. Let b − a be the difference between the upper
and lower process at the chosen node. Then the probability that this move
is a good move is at least (see (14) and the proof of Theorem 4.1)

(
1 − b − a

	

)
exp(−	N (1�5−2 + �2�25�2)) > exp(−2(20t1)−1)� (18)

Since there are t1 such moves, the chance that all of them are good moves
is at least exp(−�1), so the chance of failure is at most 1 − exp(−�1).

Combining these three bounds, the total chance of not coupling after
t1 + t2 moves is at most exp(−1) + 1/20 + 1 − exp(−�1) < �52. If the chain
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fails to coalesce, begin the process over again independently. Therefore
after t = k(t1 + t2) steps, the chance of failure to coalesce is at most �52�k�

steps, and for k = �ln 	TV / ln �52 this is at most 	TV . Note −(ln �52)−1 < 1�6
to finish the proof.

Remark 5.1. Whether t1 or t2 is larger depends on the size of  and �. For
fixed  and � the mixing time bound is �(N lnN ).

6. CONCLUSIONS

Gibbs[9] pointed out that in the continuous state space situation it
is often straightforward to bring a chain started at xmax and one started
at xmin close together, yielding a bound on the mixing time using the
Wasserstein metric. This work illustrates that the final piece of bringing
them exactly together can be accomplished in an automatic fashion, by
utilizing a small Metropolis move with multishift coupling on the proposal
state. This not only yields a perfect sampling algorithm, but the idea can
also be used to show bounds on the total variation distance (which is a
stronger metric than Wasserstein.) Therefore, this method is helpful from
a practical simulation standpoint as well as in analysis of Markov chains.
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