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ABSTRACT: The greatst drawback of Monte Carlo Markov chain methods is lack of knowledge
of the mixing time of the chain. The use of bounding chains solves this difficulty for some chains
by giving theoretical and experimental upper bounds on the mixing time. Moreover, when used with
methodologies such as coupling from the past, bounding chains allow the user to take samples drawn
exactly from the stationary distribution without knowledge of the mixing time. Here we present a
bounding chain for the Swendsen-Wang process. The Swendsen-Wang bounding chain allow us to
efficiently obtain exact samples from the ferromagnetic Q-state Potts model for certain classes of
graphs. Also, by analyzing this bounding chain, we will show that Swendsen-Wang is rapidly
mixing over a slightly larger range of parameters than was known previously. © 2002 Wiley
Periodicals, Inc. Random Struct. Alg., 22: 43–59, 2003

1. INTRODUCTION

Many distributions are difficult to sample from directly. One method for approximately
sampling from these hard distributions is to run a Markov chain with the desired
distribution as its stationary distribution for “a long time.” The fundamental problem in
Markov chain theory is discovering exactly how long a long time is, known as the mixing
time of the chain.

The idea of a bounding chain solves this problem for some chains. A bounding chain
is itself a Markov chain that in a certain sense contains the original Markov chain. A
bounding chain gives a means for determining when complete coupling of a Markov chain
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has occurred. Complete couplings are stronger than simple couplings, and so, with
bounding chains, the user obtains theoretical bounds on the mixing time similar to those
obtained using coupling arguments. Moreover, using a bounding chain, simulations can be
used to obtain upper bounds on the mixing time that are correct with high probability.
Older techniques such as the autocorrelation function can only give evidence that a chain
has not mixed, but the bounding chain technique can actually show that a chain has mixed.
More importantly, the bounding chain idea can be used together with recent ideas such as
coupling from the past [16] to draw samples that come exactly from the stationary
distribution of the chain.

Bounding chains were first introduced independently in [9] and [8] for the problem of
uniformly generating k-colorings of a graph. Since then, the technique has been applied
to a variety of examples [13, 12]. Here we present a bounding chain for the Swendsen-
Wang Markov chain. Previously, a bounding chain for Swendsen-Wang was presented in
[11, 10]; the one presented here is stronger in the sense that it always finishes at the same
time or before the earlier chain. Variants of this work also appeared previously in the
author’s Ph.D. thesis [11].

The Swendsen-Wang chain is a Markov chain whose stationary distribution is that of
the ferromagnetic Potts model [19]. Just running the Swendsen-Wang chain for a fixed
length of time will give samples that only approximately come from the stationary
distribution, since there is always some bias from the choice of starting state. With the
bounding chain we will obtain exact samples; moreover, when a parameter of the chain
lies in a specified range, this technique will have a near linear expected running time.

2. SWENDSEN-WANG

The Ising model and its extensions have been extensively used by statistical physicists to
model the behavior of magnetic materials and alloys. Simon [17] gives a detailed analysis
of the Ising model; we present a summary here. In the Ising model, each node of a graph
is assigned one of two values, spin up or spin down, that we record as 0 or 1. Such an
assignment for every node is called a configuration. The set of possible configurations is
{0, 1}n. Let x be a configuration. We say that x has energy H( x), which is equal to the
negative of the number of edges in the graph with endpoints labeled the same way. For
physical reasons, a probability distribution known as the Gibbs distribution is assigned to
the set of states, defined as

g�x� �
e�JH�x�/�kT�

ZT
,

where ZT is the normalizing constant that makes g a probability distribution. Often, ZT is
referred to as the partition function. The parameter T is a measure of the temperature, and
k is Boltzmann’s constant. When J � 1, this measure assigns higher weight to cases
where neighboring nodes are colored alike—this situation is known as the ferromagnetic
Ising model. When J � �1, configurations with large numbers of edges colored
differently are more likely. This is the antiferromagnetic Ising model.
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While in the ferromagnetic case a polynomial time algorithm exists for drawing
approximate samples [14], it is far from linear time, and the practical method for drawing
random samples from this model is to run a Markov chain which has the set of
configurations as its state space, and the Gibbs distribution as its stationary distribution.

One extension of the Ising model is to the Potts model. Here, each state is assigned a
value from {1, . . . , Q}. When Q � 2, we, of course, just have the standard Ising model.
Again H( x) is just the negative of the number of edges with identically labeled endpoints,
and the Gibbs distribution is the same as before.

Fortuin and Kastelyn [5] showed that there was another way of looking at the Potts
model, known as the random cluster model. Suppose that our graph is G � ({1, . . . , n},
E). Then the random cluster model considers subsets of the edges. Let B � E. The
probability assigned to B is just

��B� � p �B��1 � p� �E�B�QC�B�/Zp,Q,

where Z is again the normalizing constant that makes this a probability distribution, p is
a parameter of the model which varies from 0 to 1, and C(B) is the number of connected
components of the subgraph formed by B (note that isolated vertices count as a component
in this scheme).

The remarkable fact about the random cluster model is that if B is drawn according to
�(B), and each resulting connected component is colored uniformly at random from
{1, . . . , Q}, then the result is a Q-state Potts model configuration with p � 1 �
e�1/(kT). Note that the random cluster model defines a distribution even if Q is not integer;
hence it is a nontrivial extension of the Potts model.

On the other hand, if we have a sample from the Potts model, we can obtain a sample
from the random cluster model as follows. Given the coloring X, consider the set of edges
e � {v, w} with X(v) � X(w) and retain each of them independently with probability
p.

One widely used approach for drawing samples from the random cluster and Potts
models is Swendsen-Wang [19]. Let � be the maximum degree of the graph. We will
show two properties the Swendsen-Wang process in the next section. First, the Swendsen-
Wang chain completely couples in polynomial time when p is smaller than 1/[3(� � 1)].
Under these conditions the chain is rapidly mixing, i.e., the chain need only be run for a
polynomial amount of time before the distribution of the particle on the chain is very close
to the stationary distribution. (This provides an independent proof of a recent result of
Cooper and Frieze [3].) Second, we show that is is possible to determine algorithmically
when complete coupling occurs. This allows us to use a procedure known as coupling
from the past (described in Section 6) to use Swendsen-Wang to take samples exactly
drawn from the stationary distribution. Finally, we also show that Swendsen-Wang
couples quickly when p is extremely close to 1.

The Swendsen-Wang approach to sampling from the Potts model works as follows.
Given a configuration from the random cluster model it generates a random state from the
Potts model. From the Potts model state, Swendsen-Wang then generates a random state
from the random cluster model. For a subset of edges A, let �A denote the set of connected
components of (V, A). Given an ordering of the vertices from 1 through �V�, and for each
component C, let minvC denote the lowest numbered vertex in component C. We say
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a �U A to mean choose a uniformly at random from the set A. Using this notation, one
step of the Swendsen-Wang chain may be written as follows.

Swendsen-Wang Step: ( A, p, Q)

1. For each edge e of the graph choose U(e) �U [0, 1]
2. For each node v of the graph choose c(v) �U {1, . . . , Q}
3. Choose a uniformly random ordering of the vertices {1, . . . , �V�}
4. For all C � �A set X(w) 4 c(minvC) for all w � C
5. Set A 4{e � {v, w} : X(v) � X(w)} � {e : U(e) � p}

All random choices lie in lines 1, 2, and 3. Line 4 converts the random cluster state to
a Potts state and line 5 converts the Potts state back to a random cluster state. Since any
state can move to any other state in one step, this chain is ergodic.

The total variation distance is often used to measure how far away two distributions are
from one another. Let p and � be two distributions which put probability mass on a finite
set. The total variation distance between them is

�p � ��TV �
1

2 �
x

�p�x� � ��x��.

If � is the unique stationary distribution of a Markov chain, and px,t is the distribution of
a particle which started in state x and was run forward for t time steps, then �px,t � ��TV

goes to 0 as t goes to infinity.
Mixing time is a measure of how fast px,t converges to �. Let �TV(�) be the smallest

t for which �px,t � ��TV � � for all possible starting states x. Then �(�) is the mixing time
of the chain. A chain is rapidly mixing if �TV(�) is bounded above by a polynomial in n
and ln(1/�), where n is a variable that parameterizes the size of the chain.

While not completely understood, a few results are known about the mixing time of the
Swendsen-Wang chain. Gore and Jerrum [6] showed that this process is not rapidly
mixing in the case of the complete graph. Recently, Cooper and Frieze showed that the
chain is not rapidly mixing for a random graph; however, they also gave a positive result
that proved the chain to be rapidly mixing for some p. Our result (independently derived)
also proves that Swendsen-Wang is rapidly mixing over similar parameters using a
different method. In fact, we will show that not only is Swendsen-Wang rapidly mixing,
but it is completely coupling over this range of parameters.

3. BOUNDING CHAINS

Bounding chains are a means for detecting complete coupling in a Markov chain. In a
complete coupling, a Markov chain step is given as a random function f : � 3 �. At
each time t, we choose function ft at random from a family of functions and let Xt�1 �
ft(Xt). The distribution on the functions must satisfy the transition probabilities of the
Markov chain, that is, we must have P( f(Xt) � x) � P(Xt�1 � x�Xt).

Note that the above description of the Swendsen-Wang chain is a complete coupling.
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Once the uniform [0, 1] random variables are chosen for each of the edges and the uniform
{1, . . . , Q} colors are chosen for each of the nodes, we have defined the function f. Lines
4 and 5 finish the computation of f( x) for the starting coloring x.

Now let Ft be f0 � f1 � . . . � ft. Then Ft(X0) is equal to Xt. Furthermore, if Ft(X0) �
Ft(Y0) for some t, then Ft�(X0) � Ft�(Y0) for all t� � t. A chain with this property is said
to be coupling.

We say that a chain has completely coupled at time t if Ft is a constant, that is, Ft(�) �
{ x}. One way to check if the Swendsen-Wang chain has completely coupled at time t is
to do a brute force check that Ft( x) has the same value for every x � �. Since ��� � 2�E�,
this is not an efficient method. Instead we will utilize the idea of a bounding chain to keep
track of how close the chain is to completely coupling.

The benefits of having a means for detecting complete coupling are profound. First,
complete coupling is stronger than a simpler coupling. Doeblin [4] and Aldous [1] showed
for simple couplings that the total variation distance is bounded above by the probability
that a simple coupling has not occurred. Since complete coupling is stronger than simple
(pairwise) coupling, this result implies that �pt � ��TV � P(Ft(�) � { x}), giving us a
bound on the mixing time of the chain.

Even better, the idea of coupling from the past (CFTP) of Propp and Wilson [16] may
be used to generate samples which are exactly drawn from the stationary distribution of
the Markov chain. This is true even when the mixing time of the chain is unknown.
Although we shall prove that for certain values of the parameter T the Swendsen-Wang
chain is rapidly mixing, CFTP gives a way to sample effectively even when the temper-
ature value is outsides these values.

Bounding chains were introduced independently in [9] and [8] as a generalization of
antimonotonicity [7], here we give a generalization of the idea. First we set up the type of
Markov chains for which bounding chains will be useful. For any set S the state space for
chain M must be a subset of the set of c-tuples ( x1, x2, . . . , xc), where each xi � S. Most
sample spaces of interest fall into this category; for instance, in the random cluster model,
S is the edges of the graph, c � 1, and A is the set x1. The state space for the random
cluster model is exactly the set of subsets of edges.

We could also model the Ising model with c � 1, but it is more convenient to use c �
2 and set up two subsets one of which corresponds to spin up nodes and one of which
corresponds to spin down nodes. That is, we write the state space as partitions of the
vertex set of the form ( xspin up, xspin down). In fact, any state space which is a coloring of
a set S may be represented in this fashion. Given a coloring x, just set xi � {s : x(s) �
i}.

The advantage of this formulation over simple colorings of S is twofold. First, it easily
allows for state spaces where a point can receive more than one color. Second, there is no
difficulty dealing with examples where S is countably or uncountably infinite, for instance,
point processes in Rd.

In the original chain, each element of the state space is the form ( x1, . . . , xc), where
xi � S. To be a bounding chain, the chain MB must have a state space �MB

, that is, a
subset of all c-tuples of the form (( y1, z1), ( y2, z2), . . . , ( yc, zc)), where yi, zi � S,
and yi and zi are disjoint. Intuitively, yi will keep track of points that we know are in the
original chain, while zi will keep track of points that are possibly in the original chain.
More precisely,

A BOUNDING CHAIN FOR SWENDSEN-WANG 47



Definition. MB is a bounding chain for M if there exists a coupling between M and MB

so that, for the coupled process ((X1, . . . , Xc), ((Y1, Z1), . . . , (Yc, Zc)),

� 	 i��Yi,t � Xi,t � Yi,t � Zi,t� f � 	 i��Yi,t�1 � Xi,t�1 � Yi,t�1 � Zi,t�1�.

In effect, the sets Yi and Yi � Zi “sandwich” Xi at each time step. A simple induction tell
us that if Yi,0 � Xi,0 � Yi,0 � Zi,0 for all i, and when we run the bounding chain
according to this coupling, then Yi,t � Xi,t � Yi,t � Zi,t for all i at all times t � 0. Setting
Yi,0 � A and Zi,0 � S for all i will meet our starting condition for any X � �M. In terms
of a complete coupling for M, this implies that Yt � Ft(�) � Yt � Zt for all t. Therefore,
if Zi,t � A for all i, then Ft(�) is a constant, and complete coupling has occurred.

A straightforward way to design a bounding chain MB given a complete coupling on
M is as follows. Suppose MB at time t is in state ((Y1,t, Z1,t), . . . , (Yc,t, Zc,t)). Then
choose ft for M according to the complete coupling. Let A � {Xt � �M : (@i)Yi,t � Xi,t

� Yi,t � Zi,t}, and A� � ft( A). Finally, set Yi,t�1 � �x�A� xi and Zi,t�1 � {�x�A�

xi}�Yi,t�1. It is easy to see that this gives a bounding chain. Moreover, a bounding chain
constructed in this fashion will have the nice property that if Zi,t � A for all i at some
time t; then Xt � Yt for all t� � t.

Utilizing this method of construction, one bounding chain for Swendsen-Wang is given
below. To couple the bounding chain with the original Swendsen-Wang chain, we just use
the same choices for U(e), c(v), and the random ordering of vertices. We begin with edge
sets Y and Z for the bounding chain. Say that C 	 v if component C and node v are
connected using edges in Y � Z. Let �Y be the set of connected components using only
edges in Y, and Cv be the component in �Y which contains v. We can also turn any
ordering of vertices into an ordering on �Y by saying that CY1


 CY2
if and only if

minvCY1

 minvCY2

. We let G(v) denote the set of possible colors for node v in the
intermediate stage of the algorithm where nodes are assigned colors.

Swendsen-Wang Bounding Chain Step: (Y, Z, p, Q)

1. For each edge e set U(e) �U [0, 1]
2. For each node v set c(v) �U {1, . . . , Q}
3. Choose a uniformly random ordering of the vertices {1, . . . , �V�}
4. For all v set G(v) � �C�Cv,C	v c(minvC)
5. Let Y 4 Y � {{v, w} � E : Cv � Cw}
6. Let Y 4 Y � {{v, w} � E : G(v) � G(w), �G(v)� � �G(w)� � 1}
7. Let Z 4 {{v, w} � E : �G(v) � G(w)� � 1}�Y
8. Let Y 4 Y � {e : U(e) � p}
9. Let Z 4 Z � {e : U(e) � p}

Lines 1, 2, and 3 make random choices in exactly the same way as the original chain.
Suppose that C1 and C2 in �Y are connected by an edge in Z, and that minv C1 

minv C2. Then the nodes in C1 never receive the color of minv C2, but the nodes in C2

might receive the color of minv C1. Line 4 keeps track of all the possible colors that a
given node might possibly receive.
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Line 5 computes those edges whose endpoints both lie in the same component (with
respect to Y) and makes sure that those edges are added to Y. This, of course, does not
change the nodes of the connected components of Y.

Now, the set G(v) holds all the colors that a node v could possibly receive. This
includes the color assigned component vC as well as colors assigned components C 
 vC

that are connected to v by edges in Z. This is accomplished in line 8.
Line 6 adds edges to Y based on the coloring G. Certainly any edge that was in Y before

is still in Y, but now we must also include any edge whose endpoints both have the same
color. Unlike the original chain, where X(v) was always a single color, here G(v) is a set
of colors. The only way that we can be sure that G(v) and G(w) have the same color is
if G(v) � G(w) � {c} for some color c, which is equivalent to the condition checked
for in line 6.

In line 7 we look at new edges that might possibly be in the random cluster set. These
are edges whose color sets G(v) and G(w) overlap. Of course, if an edge is in Y it cannot
be in Z, so we remove from Z all the edges of Y. Finally lines 8 and 9 implement the edge
removal phase. If U(e) � p, that edge must be removed whether in set Y or in set Z.

4. BOUNDING CHAIN RUNNING TIME

Our main theorem concerns the running time of this procedure, the time needed for all of
the uncertainty to disappear, and Z to reach A.

Theorem 4.1. Set


 � p� � � 2

1 � p�� � 1�
� 2� .

If 
 
 1, the Swendsen-Wang bounding chain will have detected complete coupling by
time �log
 2m with probability at least 1/2.

Proof. Imagine that in the bounding chain step we insert a line between 8 and 9 that
reads: set Z� 4 Z. Then Z�t is also a process that records the subset of edges before the
edge retention step. Clearly, if Z�t � A, then Zt � A as well. Similarly, we define Y�t to
be the edges of Yt remaining before the edge retention step.

We will show that �Z�t� decreases on average at each step. Consider how an edge e �
{v, w} in Z�t leads to an edge in Z�t�1. Edges in Z�t lead to edges in Zt which lead to nodes
with �G(i)� � 1 in the next step which lead to edges in Z�t�1. First, to be in Zt, the edge
must survive the edge retention phase in line 9. Retention occurs with probability p. After
this the step terminates, with Zt 4 Z and Yt 4 Y.

We then begin the next step of the chain with Y 4 Yt and Z 4 Zt. Let us examine the
probability that �G(i)� � 1 for a given node i. For each i, there is a collection of
components C1, . . . , Cr(i) in �Y connected together by edges in Z, and one of these
components contains i. Say, without loss of generality, that i � C1. Now, for each a �
{0, . . . , r(i) � 1}, there is a 1/r(i) chance that C1 is larger than exactly a of these
components, with respect to the randomly chosen total ordering.

Note that only components lower than C1 in the partial ordering can possibly make
�G(i)� � 1, and only if not all of them choose the same color as C1. The chance that they
all choose the same color for a given value of a is just (1/Q)a. Hence
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P��G�i�� � 1�r�i�� � 1 � � 1

r�i��� �
a�0

r�i��1 � 1

Q� a� � 1 �
1

r�i� �1 � �1/Q�r�i�

1 � 1/Q � .

Now let e1 be an edge in Z�t�1. Then e1 must be adjacent to a node i such that �G(i)�
� 1. In other words, e1 is adjacent to a node i that is part of a set of connected components
in �Y, call them C1, . . . , Cr(i), that are connected via ae1

edges in Zt. Then, for each such
edge e2 in Zt that is connected to e1 by edges in Yt � Zt, we set g(e1, e2) � 1/ae1

. If
e1 and e2 are not connected by edges in Yt � Zt, or if e1 � Y�t, set g(e1, e2) � 0.

Using this, note that

�Z�t�1� � �
e1�E

�
e2�Zt

g�e1, e2�

(this would be equality except for the case that edge e1 connects two components that
were previously disconnected in Yt � Zt). All our edge sets are finite, so we can write:

E��Z�t�1� �Y�t, Z�t � E� �
e2�Zt

�
e1�E

g�e1, e2��Y�t, Z�t� .

We now upper bound ¥e1
E[ g(e1, e2)�Y�t, Z�t] by looking at the expected size of the

component C connected to edge e2 using edges in either Yt or Zt. Let EC be the set of
edges adjacent to nodes in C that are not in Y�t; these are the candidates for edges e1 with
g(e1, e2) � 0. For a node v � C, let d(v) denote the number of edges adjacent to v in
EC. Further, let rC be the number of components of �Y in C. Since these components are
connected by edges in Zt, we know for any relevant e1 that ae1

� rC � 1.
Let � be the maximum degree in the graph. There are at most ��C� edges leaving nodes

in C. Of these edges, we are counting at least �C� � 1 of them twice, and so there are at
most ��C� � (�C� � 1) edges touching nodes in C. Recall that if we only include edges
in Yt, C is broken into at most rc components. Hence �C� � 1 � rc of these edges must
be in Y�t, and we should not include them in our count of edges in EC at all. Therefore, we
upper bound the number of edges in EC by ��C� � (�C� � 1) � (�C� � 1 � rC) �
�C�(� � 2) � rC � 2. Let i 	 e2 if node i and edge e2 are connected via edges in Z�t
� Y�t. Then for a given e2 � Z�t that survives the edge retention step,

�
e1�E

E�g�e1, e2��Y�t, Z�t � E��
i�V

d�i�
1 �G�i���11i	e2

rC � 1
�Y�t, Z�t�

� E�E��
i�V

d�i�
1 �G�i���11i	e2

rC � 1
�Zt, Yt� �Y�t, Z�t�

� E�
i�C

d�i�
P��G�i�� � 1�Zt, Yt�

rC � 1
�Y�t, Z�t�

� E��
i�C

d�i�
1

rC � 1 �1 �
1

rC �1 � �1/Q�rC

1 � 1/Q �� �Y�t, Z�t� ,
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and so our final upper bound for ¥e1�E E[ g(e1, e2)�Y�t, Z�t] is

E� ��C��� � 2� � rC � 2�� 1

rC � 1��1 �
1

rC
�1 � �1/Q�rC

1 � 1/Q ���Y�t, Z�t� .

This last expectation is very difficult to compute directly. Instead, we simply maximize

the expression in rC and then bound E[�C�]. Fortunately, the (rC � 2)� 1
rC � 1��1 � 1

rC

�1 � �1/Q�rC

1 � 1/Q �] term is at most (rC � 2)/rC for very large Q, and so is at most 2, given that

rC � 2. The � 1
rC � 1��1 � 1

rC
�1 � �1/Q�rC

1 � 1/Q �� term is at most 1 � 1/rC, and so at most 1/2. These

estimates are worse case bounds for all Q; for a specific value of Q it is possible to do
better.

Now we turn to E[�C�]. Recall that each edge at the retention phase is kept with
probability p. The process where each edge of a graph is kept with probability p is also
known as bond percolation. Finding E[�C�] exactly is very difficult for arbitrary general
graphs; however, we can get an upper bound by treating it as a branching process. Each
node is considered to have from 0 to � � 1 “children,” where each child is born with
probability p. Each child then begins a new branching process. Therefore, the size of a
single branching process satisfies the recursion E[�BP�] � 1 � p(� � 1) E[�BP�], so
E[�BP�] � 1/(1 � p(� � 1)). We can think of C as a branching process begun from
either endpoint of the edge e2 in Z�t, and so E[�C�] � 2/(1 � p(� � 1)).

The edge in Z�t survives the retention phase with probability p, and so

E��Z�t�1� � �Z�t� � �Z�t�p� � � 2

1 � p�� � 1�
� 2� � 
�Z�t�.

An induction gives us that E[�Z�t�] � Z�0
t � m
t. After �log
 2m time, we have that
E[�Z�t�] 
 1/ 2, and so by Markov’s Inequality, P[�Z�t� � 0] 
 1/ 2, completing the proof.

�

As noted in the proof, we may do slightly better for specific values of Q. We now
compare this with the mixing time result of Cooper and Frieze. Below is a table listing
some values for the critical point p where our algorithm is guaranteed to run in polynomial
time. Our analysis is slightly stronger, and is best when Q is as small as possible. We give
two rows of numbers for our method, one when Q � 2, and one which is valid for all
values of Q. Naturally for Q � 3, the actual number will fall somewhere in between these
two extremes.

� 2 3 4 5 6 7

Cooper/Frieze 0.416 0.209 0.136 0.100 0.079 0.065
Q � 2 0.930 0.356 0.231 0.171 0.136 0.113
Any Q 0.500 0.250 0.167 0.125 0.100 0.083

We wish to reiterate, however, that our algorithm gives more than just a mixing time,
it gives a complete coupler. This gives a method for estimating the mixing time even when
the mixing time cannot be analyzed directly, and through coupling from the past gives a
means for obtaining samples drawn exactly from the stationary distribution.
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4.1. Low Temperatures

When the temperature is low, the Gibbs distribution for the ferromagnetic Ising model is
dominated by states which have most of the nodes colored identically. In contrast, the
antiferromagnetic Ising model at low temperatures is dominated by states which represent
the maximum size Q-way cut in the graph. In general, finding the max Q-way cut is an
NP-complete problem, and so it is unlikely that a method for sampling from the
antiferromagnetic Ising model at arbitrarily low temperatures will be found.

Since Swendsen-Wang only samples from the ferromagnetic Ising model, no such
restrictions apply, and in fact we may show that it converges when the temperature is
extremely low, that is, when the parameter p approaches 1. In the version of Swendsen-
Wang above, we labeled the vertices randomly, then colored in order of label. We could
have instead picked an arbitrary ordering and colored in that order. We use that idea to
prove the following theorem, which applies to all graphs.

Theorem 4.2. Suppose that p � 1 � 1/(mQ). Then Swendsen-Wang couples completely
with probability at least 1/2 in time 2(mQ)2.

The probability of throwing away an edge is very low here, less than 1/(mQ). But
through coloring, an edge turns to {1} when its endpoints are colored the same way. This
good event happens with probability 1/Q. Hence the expected change in the number of
edges colored {1} (call it �At�) will be ��At�/(mQ) � 1/Q, which is positive when �At�

 m. Hence on average more edges become colored until the entire edge set is labeled
{1}, at which point coupling has occurred.

In the case of the complete graph (also known as the Curie-Weiss model), we may
make a much stronger statement. Here p does not have to be very large at all before a
component which spans the entire graph becomes a real possibility.

Theorem 4.3. On the complete graph, for p � 2 ln(3Qn)Q/n, the expected complete
coupling time for the Swendsen-Wang chain is at most O(Qn).

Proof. First note that by the pigeonhole principle the largest component will always have
size bounded below by n/Q. We concentrate on the size of the largest component, and
show that with constant probability it grows to encompass the entire graph in polynomial
time.

Let At denote the set of nodes in this component at time t. The size of At can expand
and shrink over the course of an iteration of Swendsen-Wang. In the coloring phase, if a
node outside of the large component is colored with the same color as the large
component, then it becomes part of the large component. Therefore, during this phase, the
expected change in the size of At is 1/Q, since that is the probability of a node being added
to the large component.

In the pruning phase, removal of edges can shrink the size of At. The large component
is a complete graph on At nodes, where each edge is kept with probability p, so work
similar in flavor to results on random graphs (see [2]) can be used. We wish to find the
expected size of the large component after pruning.

Pick any node v in At. Then �At�1� is certainly at least as large as the number of nodes
in At connected to v. Pick any w � v. The probability that v is not connected to w is just
the probability that at least one cut between v and w gets pruned. This is bounded above
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by the sum of the probability over all cuts between v and w that the cut gets pruned. Say
a cut separating v and w contains i � 1 nodes on the side with v and �At� � (i � 1) nodes
on the w side (there are at most ��At� � 2

i � such cuts). Let Dv,w denote the event that nodes
v and w are disconnected. Then there are (i � 1)(�At� � i � 1) edges to prune in order
for this cut to be removed, so

P�Dv,w� � �
i�0

�At��2 � �At� � 2
i � �1 � p��i�1���At�2�i�1��.

Let m(i) � min{i, �At� � 2 � i}. Then we bound ��At� � 2
i � by (�At� � 2)m(i) and (1 �

p) by e�p. Then

P�Dv,w� � �
i�0

�At��2

��At� � 2�m�i� exp��
2 ln�2n�

n/Q
�m�i� � 1���At� � 2

2
� 1�	

� �
i�0

�At��2 ��At� � 2

4nQ �m�i� 1

�3nQ��At�Q/n

�
1

�3nQ��At�Q/n .

There are �At� � 1 nodes that could be connected to w, so including w we have

E��At�1��At � 1 � ��At� � 1��1 �
1

3Qn� �
1

3Q
.

Hence from Wald’s Lemma we have that P(�At� � n) � 1/ 2 for t � 3n/Q. �

Therefore, on the complete graph, Swendsen-Wang runs quickly when p 
 1/(3n) or
p � 2 ln(3Qn)Q/n, but from [6] we know Swendsen-Wang runs slowly when p � 2 Q�1

Q�2
ln�Q � 1�

n .

4.2. Worse Case Running Time

We now compute a worst case bound on the expected running time of this algorithm when
the parameter p is neither sufficiently high nor low enough to allow a proof of complete
coupling in polynomial time. Our time bound will be exponential, since our only goal here
is to show that our algorithm is never worse than the exponential running time of a brute
force approach to the problem. Let Kt be the number of components connected by edges
in Yt in the graph at time t. Then with probability (1/Q)Kt, each of these components are
colored the same way, and the state immediately becomes known. Since Kt � n, we have
that the chain will have coupled with probability at least 1/2 after Qn ln 2 time steps,
regardless of p or �. Note that the number of states is Qn, so Swendsen-Wang is never
worse (in order) than the time needed for a direct sample to be taken using the trivial
method.
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5. SWENDSEN-WANG ON TREES AND CYCLES

Physically, the Ising model does not have a phase transition in the case of a cycle or a tree
[17]. This would indicate that algorithms of interest for sampling from the Ising model
should run efficiently at all temperatures on these graphs. Cooper and Frieze [3] did in fact
show Swendsen-Wang to be rapidly mixing on these graphs. We now modify the
bounding chain slightly so that samples can be taken in polynomial time regardless of p,
and improve upon the Cooper/Frieze mixing time for cycles.

The bounding chain step again starts with a state Y, Z. We will change the recoloring
phase to eliminate as many edges from Z as possible. We do not pick colors directly.
Instead we just record for each edge e � {v, w} whether or not the component connected
to v receives the same color as the component connected to w. With probability 1/Q, the
endpoints of the edge will receive the same color, regardless of whether the edge is in Z
or E�(Y � Z). This leads to the following bounding chain.

Swendsen-Wang Bounding Chain Step for Trees: (Y, Z, p, Q)

1. For each edge e set U1(e) �U [0, 1]
2. For each edge e set U2(e) �U [0, 1]
3. Let Y� 4 {e : U2(e) � 1/Q}, Let Y 4 Y � Y�, Let Z 4 Z�Y�
4. Let Y 4 Y � {e : U(e) � p}
5. Let Z 4 Z � {e : U(e) � p}

This approach does not work with general graphs because of the presence of cycles. For
example, supposed that vertices v1, v2, and v3 are all connected by edges in Z, and so form
a three cycle. Then, if we say v1 and v2 are colored the same way, v2 and v3 are colored
the same way, and v2 and v3 are colored differently, this gives a contradiction. Since there
are no cycles in trees, contradictions of this sort cannot occur.

Theorem 5.1. On trees, let T be the complete coupling time for Swendsen-Wang. Then,
for all a,

P�T � ��a � ln n�/ln��1 �
1

Q�p��  e�a.

Remark. This implies that the mixing time of the Swendsen-Wang process on trees for
fixed Q and p is O(ln n), an improvement over the O(n) result of Cooper and Frieze [3].
Also note that, for all p, �1/ln[(1 � 1

Q) p] � Q, so this factor is never very large.

Proof. Note that edges in Z are only removed, never created, during the course of a
bounding chain run. Edges are removed from Z during the recoloring phase with
probability 1/Q and during the retention phase with probability 1 � p. Therefore,

E��Zt�1���Zt� � �1 �
1

Q�p�Zt�,
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We start with n � 1 edges, and so after t steps, E[�Zt�] � [(1 � (1/Q)) p]t(n � 1).
From Markov’s Inequality, we know that P(�Zt� � 1) � E[�Zt�], and the theorem follows.

�

For cycles, we must use several different bounding chains to prove the following result.

Theorem 5.2. On cycles, the Swendsen-Wang process completely couples in O(ln n)
time. That is, letting � be the first time the bounding chain completely couples, for all a
there exist constants C1 and C2 such that

P�� �
ln n

ln�1/p�
� a� � C1e

�a/C2.

The chain begins by treating the cycle as though it is a tree; this is phase 1 of the
bounding chain. Suppose the edge {w, v} is not in Y or Z. Then the graph with E� �
E�{{w, v}} is a tree, and we can run the bounding chain step for trees on it. Effectively,
this means that we start at node v and move clockwise around the cycle, at each node
rolling to see if it is the same color as the previous node or not. The difference between
the cycle and the tree is that when we get back to node w, we do not know whether v and
w are colored the same way or differently, so we must add {w, v} to Z. We then run the
edge retention step as before.

If all the edges of the graph are still in either Y or Z after the edge retention step, then
nothing changes between this step and the next. So the worst that can happen is that after
the edge retention phase the number of edges in Z increases by 1. Hence

E��Zt�1� � �Zt� � p�Zt� � 1.

Since �Z0� � m, after t steps an induction gives us E[�Zt�] � ptm � 1
1�p . Let Dt

1 �
max{�Zt� � 1

1�p , 0}. Then E[Dt
1] � ptm and since Dt

1 � 0 we may use Markov’s
Inequality to say that after (ln m � a1)/ln(1/p) steps, the probability that Dt

1 � 0 is at
most e�a1. Let �1 be the first time that Dt

1 � 0, that is, �Zt� �
1

1�p . The bounding chain
then changes approach in phase 2.

At this point we have very few edges in Z�1
, but they are scattered all over the cycle.

We would like them to be together in the cycle so that they form one arc of the cycle (we
call a set of edges in a cycle an arc if they form one connected component.) Let e be an
edge in Z�1

. This will be the first edge in Z�1

arc. Assume without loss of generality that e �
{1, 2}. Then we take a step in the Swendsen-Wang bounding chain as before, but we let
our starting edge {V, V � 1} be the edge with smallest value of V that is not in Z�1

�
Y�1

. (It could have been dropped during the edge retention step or just been absent from
earlier.) Then we add edges {2, 3}, . . . , {V, V � 1} to form Z�1

�1arc . (Note: we can
always add any edge to Z and still have a bounding chain, just usually it isn’t a wise move.
Here it is.) Because of the edge retention step, the expected value of V is at most 1 �
1/(1 � p), so we expect to have added at most 1/(1 � p) edges to Zarc. At the next step,
we again look for the missing edge to run the bounding chain that increases the size of the
arc as little as possible. After taking t � �1 steps, the expected number of edges in Zt

arc

will be bounded above by 1
1�p (t � �1).

While the arc is growing, other edges in Z are being removed through the edge
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retention step. Let Dt
3 denote the number of such edges in Zt that are not in Zt

arc. Ignoring
the fact that the Zarc is growing and swallowing edges in Dt

3, we know that the edge
retention step is pruning edges, and E[Dt

3] � pt��1 1
1�p . After (ln 1

1�p � a2)/ln(1/p)
steps, the probability that Dt

3 � 0 is at most e�a2. Let �2 be the first time that Dt
3 � 0.

We now begin phase 3, where we try to get the size of Zarc to go to zero. Our main
focus in phase 3 is on the number of components of any state bounded by the bounding
state. In the Swendsen-Wang process where some edge is not in the state, each edge that
is in the state can reduce the number of connected components by 1. Let Dt

4 � m � �Yt�
� �Zt� and Dt

5 � m � �Yt�. Then, for any bounded state, the number of connected
components lies in [Dt

4, Dt
5]. Note that the only special case to worry about is when all

of the edges are either in �Yt� or �Zt�. In this case Dt
4 � 0, however, the actual minimum

number of connected components is 1. Still, Dt
4 does act as a lower bound in this situation,

so this is not a problem. Note that �Yt� 
 m; otherwise �Zt� � A, so Dt
5 doesn’t encounter

this difficulty at all.
During phase 3 we abandon our tree bounding chain approach. Instead, at each step we

assign to each component from 1 up to Dt
5 a color. Previously, we attached to each edge

e � E a uniform [0, 1] random variable that determined whether or not it survived the
edge retention step. Now we only attach uniforms to edges that are in the state. Any
bounded state has from �Yt� to �Yt� � �Zt� edges, so generating �Yt� � �Zt� uniforms
suffices. During the edge coloring step, the first Dt

4 values are the same for all states, and
only affects edges in Yt, so everything is the same up until this point. However, once past
the first Dt

4 values, the next colors may collapse components. For instance, suppose Dt
4 �

2, Dt
5 � 5, Q � 2 and the random colors were 1, 2, 1, 1, 2. Then any state having 4 or

5 components would have the third and fourth component colored 1, thereby reducing the
number of connected components by 1.

Each of the Dt
5 � Dt

4 components has a 1/Q chance of being eliminated, so E[Dt�1
5

� Dt�1
4 �Dt

5 � Dt
4] � (1 � 1

Q)(Dt
5 � Dt

4).
At the same time that the number of components is coming together, the set Zt is

growing. As in phase 2, after each step the first gap (an edge not in Zt or Yt) clockwise
from the arc Zt gets added to Zt�1. In fact, we add all the edges between Zt and this gap
to Zt, removing them from Yt if necessary. As we noted earlier, this grows Zt by an
expected value of 1/(1 � p).

Now for the edge retention step. This works in the opposite direction from the coloring
stage, adding new components by removal of edges. Here the number of edges is states
bounded by the bounding state go from m � Dt

5 up to m � Dt
4, so again there is a difference

of Dt
5 � Dt

4 edges. When an edge is removed with probability 1 � p the num-
ber of components rises by 1, therefore E[Dt�1

5 � Dt�1
4 �Dt

5 � Dt
4] � p(1 � 1

Q) (Dt
5 � Dt

4).
At time �2, we had E[D�2

5 � D�2

4 ��2, �1] �
1

1�p (�2 � �1). Therefore, after an in-
duction, we have that E[Dt

5 � Dt
4��2, �1] �

1
1�p (�2 � �1)[ p(1 � 1

Q)]t��2. In particular,
taking t3 � �[ln((�2 � �1)/(1 � p))/ln( p(1 � 1/Q))] steps in phase 3 ensures that Dt

5

� Dt
4 with probability at most e�a3. Let �3 be the first time Dt

5 � Dt
4.

To call phase 3 a success, we require that Dt
5 � Dt

4, but we also need that �Z�3
� is small.

Fortunately, �Z�3
� is stochastically bounded above by the sum of geometric random

variables with mean 1/(1 � p), and so standard concentration results (see [15] for details)
can be used to show that the probability that �Z�3

� � 2t3/(1 � p) is at most exp(�t3/
[4(1 � p)]).

We are now ready to enter the final phase, phase 4. In this phase, we maintain the
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invariant that all bounded states have the same number of components, and work to
eliminate Zt.

Again at each step we choose a color for the set of components, and choose a uniform
for each edge in the bounded state in order to determine if that edge is retained. Our
situation at this stage is as follows. The edges in Zt form a contiguous arc of the cycle.
Start coloring with the known nodes and edges in Yt. Consider the first edge {v, w} in Zt.
If we roll to color the component connected to v the same color as the next component,
then {v, w} will always be an edge at the next time step, so it does not appear in Zt�1

but does appear in Yt�1.
The edge retention step has a similar story. If the first unknown edge is rolled to

remove, then it can be removed from Zt with probability 1 � p. Therefore, we expect to
remove at least 1/Q edges due to coloring and 1 � p edges due to edge retention until Zt

is empty. We know that E[Z�3
] � (�3 � �1)/(1 � p), so we expect to take at most

�3 � �1
1 � p � 1

1 � p � 1/Q steps before Zt is empty. Taking a4e
�3 � �2

1 � p � 1
1 � p � 1/Q steps insures that the

probability that Zt � A is at most e�a4 by the end of this stage. Let �4 be the first time
that Zt � A.

Putting everything together, we would like to bound the probability that �4 is less than
the number of steps taken. For i � {1, 2, 3, 4}, let Ei denote the event that phase i did
not complete successfully. Then we have shown that P(E1) � e�a1, P(E2�E1

C) 
 e�a2,
P(E3�E2

C, E1
C) � e�a3, and P(E4�E3

C, E2
C, E1

C) 
 e�a4, so P(E1
CE2

CE3
CE4

C) � ¥i e�ai �
e�a if we set ai � a � ln 4.

6. COUPLING FROM THE PAST

We have stated that bounding chains together with coupling from the past (CFTP) may be
used to obtain exact samples from the stationary distribution of a Markov chain. CFTP
was developed by Propp and Wilson [16], and we now briefly describe the procedure.

First a starting time is chosen, say t � �1000. The chain is run from t to 0. If the chain
couples completely in that time, we return the value of the chain at time 0 and stop.
Otherwise, we run the chain from 2t to t, and again see if the chain has coupled
completely. If it has, we then run the chain from t to 0 using the same moves as the first
time we ran the chain from t to 0. This means that at each step in the complete coupling,
we must take the same values for our random choices as we did the first time. The state
of the chain at time 0 is then our sample. If it has not coupled, then we run from 4t to 2t,
and so on. For this algorithm to be correct, it is necessary that the chain couple completely
with probability 1 in finite time. We have showed that the Swendsen-Wang chain has this
property for all p, and so CFTP may be applied.

This procedure returns a sample that is exactly from the stationary distribution of the
Markov chain. Since we have shown that the chain couples in polynomial time with
probability 1/2, the total running time of the CFTP procedure is also polynomial.

Utilizing this method has other benefits as well. A metric often used for measuring the
closeness of two distributions is the total variation distance. When running the chain a
long time, the chain must always be run for the mixing time multiplied by ln(1/�), where
the distance from the actual distribution to the stationary distribution is bounded above by
�. Since CFTP draws exact samples (� � 0), this factor does not enter into the running
time.
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In addition, when running the chain and just taking the particle, there is no stopping
early. Under coupling from the past, we stop whenever we have completely coupled,
which may happen sooner than expected (our analysis was a worst-case scenario; the
actual complete coupling time may be much lower).

There is one drawback to CFTP, however. The running time of the algorithm is now
a random variable, and our polynomial bounds only give an expected running time. We
can guarantee that the algorithm stops with probability 1 � �, by adding a factor of ln(1/�)
to the running time. However, our requirement for stopping (represented by �) is often
much less stringent than our requirement for accuracy (� � �), and so this factor is not as
important as it might appear at first.

7. CONCLUSIONS

The idea of a bounding chain has proven useful in determining when a Markov chains has
completely coupled. In [9] it was shown that the single-site heat bath chain for the Ising
model completely couples when p �

2
��1 . This is clearly a much higher value of p than

is theoretically known for Swendsen-Wang, but Swendsen-Wang appears to run much
faster in practice, indicating that the chain most likely couples more quickly than our
analysis indicates. Both Swendsen-Wang and the single-site heat bath chain have a critical
value of p at which they do not completely couple quickly. The single-site heat bath does
not completely couple quickly for any value of p higher than the critical value. In contrast,
we have seen that Swendsen-Wang does completely couple quickly when p is very high.

There are other Markov chains for the Ising and Potts models which do not yet have
running time analysis. The method of Sweeny [18] is known to be a complete coupling
chain, but no bounds on how quickly it couples are known. The method of Wolff [20] is
a variation on Swendsen-Wang, and it is unknown whether it may be run as a complete
coupling chain or not. Hopefully bounding chains or similar techniques will be useful in
analyzing these chains.
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