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Abstract 

WC present two algorithms for uniformly sampling from the 
proper colorings of a graph using k colors. We use exact 
snmpling from the stationary distribution of a Markov chain 
with states that are the k-colorings of a graph with maxi- 
mum degree A, As opposed to approximate sampling algo- 
rithms based on rapid mixing, these algorithms have termi- 
nntion criteria that allow them to stop on some inputs much 
more quickly than in the worst case running time bound. For 
the first algorithm we show that when k > A(A + 2), the 
algorithm has an upper limit on the expected running time 
that is polynomial, For the second algorithm we show that 
for b > rA, where r is an integer that satisfies rp > n, 
the running time is polynomial, Previously, Jet-rum showed 
that it was possible to approximately sample uniformly in 
polynomial time from the set of k-colorings when k 2 2A, 
but our algorithm is the first polynomial time e~uct sampling 
algorithm for this problem. Using approximate sampling, 
Jerrum also showed how to approximately count the num- 
ber of b-colorings, We give a new procedure for approx- 
imntcly counting the number of k-colorings that improves 
the running time of the procedure of Jerrum by a factor of 
(m/n)2 when k 2 2A, where n is the number of nodes in 
the graph to be colored and m is the number of edges. In 
addition, WC present an improved analysis of the chain of 
Luby and Vigoda for exact sampling from the independent 
sets of a graph. Finally, we present the first polynomial time 
method for exactly sampling from the sink free orientations 
of a gmph. Bubley and Dyer showed how to approximately 
sample from this state space in O(m3 In(@)) time, our al- 
gorithm takes 0(m4) expected time. 

1 Introduction 

Recently a number of exciting results have appeared in the 
area of Monte Carlo Markov Chain (MCMC) theory. One 
such result is the procedure of Propp and Wilson [lo] known 
as coupling from the past (CFIP), which allows us to sample 
directly from the stationary distribution of certain Markov 
chains without visiting each state in the chain. Many chains 
that arise naturally out of statistical mechanics and approxi- 
mate counting problems have a number of states exponential 
in the size of the input. Although this makes it impossible 
to efficiently compute the entire stationary distribution, us- 
ing CFTP we can still sample efficiently from the stationary 
distribution. 

The state space we are primarily interested in sampling 
from here is the set of proper colorings of a graph G = 
(V, E) using k colors. A proper coloring of a graph G is 
an assignment of colors to nodes so that no two neighboring 
nodes receive the same color. This state space is a special 
case of a framework from statistical mechanics known as the 
Potts model. 

The ability to sample efficiently from state spaces such 
as the Potts model leads to better approximate counting algo- 
rithms and has applications in statistical mechanics (see [l]). 
The k-coloring problem is of interest in complexity theory. 
Jetrum, Valiant, and Vazirani [6] showed that for a class of 
problems which includes k-colorings that a method for ef- 
ficient approximate sampling from the state space could be 
used to construct an efficient method for approximating the 
size of the state space. Counting the number of k-colorings 
of a graph is a //P-complete problem, making it unlikely that 
an efficient algorithm will be found to solve it exactly. 

In the next section we describe the Potts model in more 
detail, after which we present a brief description of CFI’P, 
along with our first algorithm for exact sampling from the 
k-colorings of a graph. In section 5 we present our exact k- 
coloring sampling algorithm, which is the first to run in poly- 
nomial time. We then present a second exact sampling algo- 
rithm for the k-coloring chain that uses both CFIT and re- 
jection sampling, and has polynomial running time. We then 
briefly discuss the extension of these methods to the gen- 
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era1 Potts model. We then present an algorithm for approx- 
imately counting the number of L-colorings that improves 
upon the running time of the previous method (due to Jer- 
rum) by a factor of O(m?/n”). Finally we present the first 
polynomial time method for exact sampling from the sink 
free orientations of a graph. This algorithm has a longer run- 
ning time than the previous approximate sampling algorithm 
due to Bubley and Dyer [2]. 

We use the total variation distance to quantify what we 
mean by approximate and exact sampling. If the distribu- 
tions p and n put probability mass on a finite set, the total 
variation distance between them is 

In approsimate sampling, the goal is to prove that the total 
variation distance between the algorithm’s distribution and 
the desired distribution is smaller than some fixed E > 0. In 
esact sampling, the total variation distance is zero, that is, 
we are exactly sampling from the desired distribution. 

Many algorithms in this area are based on sampling from 
the stationary distribution of a Markov chain, and for con- 
venience we measure the running times of these algorithms 
by the number of steps that need to be taken in a Markov 
chain. Let Pz,t be the probability distribution of a particle 
on a Markov chain that started at state z and ran fort steps, 
and let T,(E) be the smallest t for which IP,,, - nl~v 5 e. 
The mixing time of the chain is r(e) = ma.x% rZ (e) . W will 
say that a chain is rapidly mixing if r(e) is bounded above 
by a polynomial in n and ln(l/e), where n is a variable that 
parameterizes the size of the chain. 

Previously, Jerrum [5] eshibited a chain for S-colorings 
that was rapidly mixing provided that k 2 24 where A 
is the maximum degree of the graph G that we are color- 
ing. His algorithm took 0 (& In (a) n In(n)) steps in 
the Markov chain to ensure that the total variation distance 
was below E. We present an algorithm for which we can show 
the following. 

Theorem 1 Suppose that k > A(A + 2). Then ourjirst 
algorithm is an cuact sampling algorithm for which the run- 
ning time is a random variable T that satisfies 

W’l 5 S 
k - A 

k - A(.A + 2) > nln(n)’ 

and P(T > 6E[T]) < (l/4)‘. 

Our second algorithm has a running time that is better 
than the first when Aa > n. 

Theorem 2 Suppose that k > rh, where r is an integer: 
Our second algorithm is also an exact sampling algorithm 
for which the running time is a random variable T satisjjing 
P(T > SE[T]) < (1/4)5, where 

WI 5 &nln(n) 1 + ( (q’“‘)^. 

These algorithms are weaker than Jerrum’s in that they 
require more colors to run in polynomial time. However, 
they are exact sampling algorithms whereas Jerrum’s method 
only generates an approximate sample. Moreover, these al- 
gorithms might finish running before the bounds given on 
the the running time would indicate. In the algorithms which 
rely on rapid mixing, the algorithm must always take the 
same worst case amount of steps in the Markov chain. In 
algorithms like ours, which are based on CFTP, we have ter- 
mination criteria that allow us to end the algorithm before 
the worst case analysis would indicate. 

In addition, our algorithms are exact samplers, and so 
the running time does not depend on E, making them faster 
than Jerrum’s method by a factor of ln(l/c). Unlike Jcr- 
rum’s method, however, the running time of these algorithms 
is random, and to ensure that the algorithm terminates with a 
probability of at least 1 - 6, it is necessary to run for an extra 
factor of ln(l/c5) tr ‘me. Note that E, which bounds the total 
variation, will usually be much smaller than 6 which bounds 
the probability our algorithm does not complete on schedule. 
Since these sampling algorithms are often run many times 
(for example in the counting applications) the running time 
is often even more closely concentrated around the espected 
running time. 

In the chains we consider here, there is a color set C, 
a vertes set V, and the state space of the Markov chain is 
52 s Cv. For example, in the &colorings of a graph, 1’ is 
the vertex set of our graph G = (l’, E), and fl is the set of 
proper colorings of the nodes of V. Some esnmples of chains 
in this class include the hard core gas model and the sink free 
orientations of a graph, which are discussed in section 2. 

2 Models 

The problem of sampling from the I;-colorings of a graph 
is a special case of the Potts model. The Potts model, de- 
veloped in 1952 [9], is a framework where we are given 1; 
colors with which to color an underlying graph G = (lr, E), 
either properly or improperly. For simplicity, here we will 
only discuss the Potts model with no external field. Let z be 
such a coloring, and let S denote the number of edges in the 
graph whose endpoints are colored by x with the same color, 
The Hamiltonian of a state Z, denoted H(z), is defined as 
H(x) = - JS, where J is a constant. Then we wish to sam- 
ple from the Gibbs distribution where the relative probability 
of state x is esp(-@H(x)), where /3 is a positive constant 
known as the inverse temperature. The Potts model, like nll 
the models we will discuss, comes from statistical mechanics 
where it is used to model material behavior (see [ 12J). 

If the parameter J is negative, then higher probability is 
assigned to states x where the endpoints of edges are col- 
ored the same way. This is often referred to as the ferromng- 
netic Potts model, and algorithms for esact sampling from 
this distribution are known [lo]. If J is positive, however, 
then states x where endpoints of edges are identically col- 
ored have low probability. This is known as the antiferro- 
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mngnetic Potts model. 
The parameter /3 is inversely proportional to the temper- 

ature, so as p 3 cc the temperature goes to zero. As the 
temperature decreases, the antiferromagnetic Potts model is 
mom likely to select a proper coloring of the graph, where 
no two adjacent nodes are given the same color. Therefore it 
in customary to consider the problem of uniformly sampling 
from the proper b-colorings of a graph as the antiferromag- 
netic Potts model with zero temperature. 

2.1 The lslng Model 

The Potts model is a generalization of an earlier model called 
the Ising Model. In the Ising Model the numbers of colors 
is 2. In this special case our algorithm reduces to algorithms 
previously developed by Propp and Wilson [lo] (in the fer- 
romagnetic case) and Hlggstriim and Nelander [3] (in the 
antifcrromagnetic case). 

In combinatorial terms the Ising Model may be thought 
of as sampling from weighted cuts of a graph. When the tem- 
pcraturc is low, with high probability the sampled cut will be 
the maximum cut in the graph. Finding the maximum cut 
in a graph is an NFcomplete problem, and so in general 
it will not bc possible to efficiently sample when the tem- 
perature drops below a threshold value. In section 6.1 we 
show bounds on the temperature which guarantee that the 
nlgorithm runs in polynomial time. 

2.2 The Hard Core Gas Model. 

In this model we have a graph G = (V,E), which is usu- 
ally n lattice, The color set C = (0, 1). A node colored 1 
indicates that a gas molecule occupies that node, and a node 
colored 0 indicates that that node is empty. The state space 
consists of all colorings (placement of gas molecules) such 
that no two adjacent nodes are colored 1, that is, no two gas 
molecules arc next to one another. This is equivalent to the 
state space being the independent sets of the graph, where 
a node is colored 1 if it is part of the independent set and 
colored 0 otherwise, 

Exact sampling algorithms have been given for this prob- 
lem by Htiggstom and Nelander [3] and more recently by 
Luby and Vigoda [7]. In section 5 we bound the running 
time of the procedure of Hlggstijm and Nelander and give 
an improved analysis of the method of Luby and Vigoda. 

23 Sink Free Orientations of a Graph. 

An oricntntion of an undirected graph G = (N,E) is an 
assignment of a direction to each edge in the graph. A sink 
free orientation is an orientation in which no node in N has 
outdcgrce 0, This can tit our framework by considering the 
“vcrtcx ret” V to be the set of edges in G and the color set to 
be (0, l}, where 0 indicates one direction for the edge and 1 
indicates the other, Then as before the state space is a subset 
OCC", 

Bublcy and Dyer proved a chain for this problem was 
rapidly mixing using path coupling [2]. In section 8 we 

present the first polynomial time algorithm for sampling ex- 
actly uniformly from this state space. 

3 Coupling From the Past 

The procedure that we use is based on coupling from the past 
(CFTP), a technique developed by Propp and Wilson [lo] 
that gives an exact random sample from a Markov chain. In 
CFTP, we assume that a particle has been running on the 
Markov chain since time -co. We are concerned with the 
location of the particle at time 0. The particle has been mov- 
ing on the chain for all time, and so intuitively one would 
believe that the particle at time 0 is distributed according to 
the stationary distribution. In fact Propp and Wilson were 
able to show that this is true. 

The idea behind CFTP is to start at time -T with a sep 
arate particle for each possible state in the chain. Then run 
the chain forward in time as a coupling process. That is, if 
two particles collide in the chain, from then on they move 
together as one particle. We will refer to such a collision as 
a coalescence. If all the particles coalesce into one particle 
by time 0, then Propp and Wilson showed that the coalesced 
particle has the stationary distribution. [lo]. 

To make CFI’P work for a specific Markov chain, two is- 
sues need to be addressed. Since the number of states of the 
Markov chain may be exponentially large in the input, we 
cannot track all of the particles to see when coalescence oc- 
curs. We need a method to efficiently determine when only 
one particle remains so that we know when to stop the algo- 
rithm. In addition, we would like a polynomial upper bound 
on the expected time needed for all the particles to coalesce, 
so that we have a provably efficient algorithm. 

3.1 Our Framework. 

We will be considering Markov chains with a state space sat- 
isfying n E Cv, where C is a color set and V is a vertex set. 
Our approach to showing coalescence will be to keep track 
of what information we know about the particle in the chain. 
At the beginning, the particle may be any one of the set of 
proper colorings, and so for each vertex we do not know what 
color the vertex is. We can record this information (or lack 
of information) by saying that the set of possible colors for 
each vertex is C. 

As we move in the Markov chain, we gain information 
about the set of possible colors at a vertex. Suppose a step 
in the chain changes a particular vertex 21 to either blue or 
red. The color of u is still indeterminate, but there are fewer 
possibilities for the color of v than at the start of the process. 
If the set of possible colors for 21 is only a single color, say 
(green}, then we know that vertex v is colored green. If all 
of the vertices in the graph have only a single possible color, 
then all of the particles have coalesced into a single particle 
and we are done. 

Let MI be the Markov chain with state space 0 C Cv, 
and let X denote a particle on this chain. We now desire a 
second chain whose states record the set of possible colors 
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for vertices of the graph. We will call such a chain a bound- 
ing chain. This bounding chain Ms will have state space 
$2’ = (2”)“, that is, at each vertex 21 we assign a set of pos- 
sible colors. We create a particle W on this chain Ma that 
satisfies X(w) E W(v) for all v. To ensure that this is true 
even when we know nothing about X, we start W at state 
c”. 

We will run particle X on Mr and particle W on Ms 
simultaneously. The particle X is unknown until the algo- 
rithm terminates, but we know the state of W at all times. 
If jI17(v)l = 1 for all vu, then knowing W will enable us to 
determine X. (In physics, the entropy of a system is the log- 
arithm of the number of states the particle may be in. In our 
case, the entropy is C, ln( IIT7(v) I) and we wish for the en- 
tropy to go to 0, indicating that only one state is possible for 
the particle.) 

Define the set D to be {u : Ill~(v)l > l}. D is the set of 
vertices where X is not determined by H’. Let A = V \ D, 
so A is the set of vertices where IIT determines exactly what 
S is. The algorithm terminates when IAl = n. 

3.2 Monotonicity and Antimonotonicity. 

Propp and Wilson observed that GFI’P could always be ap- 
plied to the class of monotonervlarhov chains, and Haggstiim 
and Nelander extended their results to the case of antimono- 
tone Markov chains. Suppose we denote our color set by 
c = (1,. . .) n.}. Without going into the definitions of mono- 
tone and antimonotone, we remark that both Propp and Wil- 
son and HaggstGm and Nelander’s results for chains on Cv 
may be regarded as using a bounding chain where each W(v) 
is an interval {L(v), . . . , U(v)}. 

Unfortunately neither the k-coloring chain (with b 2 4) 
nor the sink free orientations chain are monotone or anti- 
monotone, so these previous methods do not apply. 

4 The Bounding Chain for k-colorings 

Our bounding chain will give information about a particle 
moving according to the heat bath Markov chain of Salas and 
Sokal [ 111 that has as its state space the proper b-colorings 
of a graph G. In one step of the heat bath chain, we choose a 
vertex uniformly at random and choose a color for the vertex 
uniformly at random from those which make a proper col- 
oring. The vertes is then changed to the new color. This 
chain is symmetric and so has a stationary distribution that is 
uniform over all E-colorings. 

Jerrum showed that a different L-coloring chain lmown 
as the Glauber dynamics chain is rapidly mixing. Salas and 
Sokal showed independently of Jerrum that both the Glauber 
dynamics chain and the heat bath chain were rapidly mixing 
for b 2 2A using a technique known as Dobrushin unique- 
ness [ 111. 

We now present our method of determining when coa- 
lescence at time 0 has occurred for the heat bath chain. Let 
./Ml be the heat bath chain. We now describe our bounding 
chain Jbf2. An alternate way of viewing the heat bath chain 

Ml (Unknown) 

green 

M2 (Known) 

{red, br0wn,~l@~1 
blue, black} {green)’ 

Figure 1: One Step in &fl and Mz 

is the following. Select a vertex uniformly at random. Then 
randomly choose colors from C without repetition until we 
get a color that is not blocked, that is, until we choose a color 
such that no neighbor of V has that same color, Then switch 
V to that color. 

This equivalent view of the heat bath chain is how we 
find s(W) from W. First select a vertex 2) uniformly at ran- 
dom. We set s(W)(V \ v) = W(V \ v), and so we are only 
concerned with the value of s(‘tv) at ‘u. We know the color 
of some of the neighbors of v, those neighbors which lie in 
A. Let B = {c : {v,w} E E, W(w) = {c}}, that is, B 
is the set of colors that we know for sure we cannot choose 
for v. Let F = {c : (v,w} E E,c E W(w)), that is, F is 
the set of colors that might possibly be blocked for 2). Now 
from the colors in C \ B, choose colors uniformly at random 
until we either get a color in C \ F or we have chosen A + 1 
colors. Let s(W)(v) be the set of colors chosen. 

There is guaranteed to be at least color is s(W)(v) that 
is not blocking, since we selected colors until either we had 
A + 1 different colors or the color selected was in C \ F. 
Let s(X)(u) be thefirst color selected that was not blocking. 
Then we have maintained that for each step of the Markov 
chain, X(v) E W(v) + s(X)(v) E s(W)(v) for all 2). 
Figure 4 shows one step for Mr and Ms. 

5 Running Time of Algorithm 

For the algorithm to terminate, we desire IAl = TZ, that is, 
IW(v)l = 1 for all u. Let At be A after t time steps. Then 
lAtl is a random walk on the numbers (0, . . . , n}, with 0 be- 
ing a reflecting barrier (since we always know the color of at 
least 0 nodes) and n being an absorbing barrier (once all the 
colors are known, they stay known). We wish to determine 
how long it takes before we hit n (this event will happen in fi- 
nite time with probability 1 as long as P(IAt+r I > IAt!) > 0 
when At < n). Let wi denote the number of times that 
wh I = i. We will develop bounds on the wi that will al- 
low us to bound the overall expected time until coalescence 
occurs. 
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5.1 Random Walk with Absorbing and Reflecting 
Barriers. 

Our approach will be to show that the random walk is a sub- 
martingale and then apply several theorems from martingale 
theory, Recall that the random variables Xl, X2,. . . form a 
oubmartingale if E[Xi+l - XijXe, . . . Xi] 2 0. The random 
variable 7 is a stopping time for the submartingale if for each 
n we can determine whether r > n. 

Three results from martingale theory will be needed [S]. 

Lemma 1 (Martingale Stopping Theorem) Let Xt be a sub- 
martingale and let r be a stopping time for Xt satisfying 
P(r < 00) = 1 and E1X71 < 00. Then E[X,] 2 E[Xo]. 

A well known corollary of this result is Wald’s Lemma, 
which we will utilize later. 

Lemma 2 (Wald’s Lemma) Let Xl, X2, . . . be independent, 
identically distributed random variables with stopping time 
T satisfying E[r] < 00. Then 

We first show part 2. Suppose E(Nt+l - NJ 1 L > 0 
for all Nt < n. Then Nt -.& is a martingale fort < T, and so 
we may apply the martingale stopping theorem to state that 
E[N, -me] 1 E[No] 2 0. Since NT = n and e is a constant, 
we have that E[7] < n/e which completes the proof. / 

For part 1, we consider what can happen so that Nt = i. . 
Either Nt-1 = i or a step was taken. Let Vi denote the ex- 

/ 
I 

petted number of times Nt = i and Nt-1 # a’. Then by 
Wald’s Lemma we have that Wi = Vi/P(Nt+l # NtjNt = 
i). To determine the Vi, we note that if we took a step to get 
to i, then it was either an upcrossing or a downcrossing. As 
in the upcrossing inequality, say that Nt upcrosses (a, /3) if 
Nt-1 5 cy < p 5 Nt, and Nt downcrosses (a,@) when 
Nt-1 2 p > (Y 1 Nt. Since NO = 0 and NT = n, the num- 
ber of downcrossings D((Y, p) that occur are bounded above 
by the number of upcrossings U(a, p). Using the upcrossing 
inequality is simple for intervals of length 1. 

EU(i,i + 1) 5 $E(n - i) - 0] = n - i. 
! 
I 
I 

= E[7]E[XI]. 

For any real 5, let z+ = max{z, 0). 

Lemma 3 (Upcrossing Inequality) Suppose Xl, . . . , X, is 
a submartingale and let iZ.J(a, /I) be the number of times that 
Xt 4 LY 4 /3 < Xi+l, Then 

EU(q3) < k[E(Xn - a)+ - E(Xl - a,O)+]. 

It is easy to extend this result from fixed n to arbitrary 
stopping times that are finite with probability one. We are 
now nble to state our result. 

Thcorcm 3 Let Nt be a random walk on (0,. . . , n) with 
n an absorbing state and 0 a rejecting state. Suppose that 
NO = 0, INt+l - Ntl 5 8, P(Nt+l # Nt) > 0, ~ndwi Zk 

the expected number of times that Nt = i. 

I, IfE(Nt+l - Nt) 2 0 then 

w 5 
2s(n -i) 

P(Nt+l # NtlNt = i> * 

2, If E(Nt.i.1 - Nt) 2 f2 > 0 for all Nt < n, then 
Cr=, wi 15 n/e. 

Note thnt which conclusion of the theorem is stronger 
will depend on whether P(Nt+l # Nt) ore is smaller. 

Proof. Let 7 be the first time Nt = n. Then Nt forms a 
aubmartingalc and 7 is a stopping time. Also note that 

,m$ Wt+l # Nt) > 0 * E(T) < 00, t 

a fact that we will need later. 

Nt is a random walk on the integers where I Nt - Nt,1 I 5 
s, and so I 

Vj 5 E EU(j, j + 1) + ‘+e’ ED(j, j + 1) 
j=i-s j=i 

ifs-l 

5 c W.5 j + 1) 
j=i-s 

ii-s-l 

I En-i 
j=i-8 

< 2s(n-i) .Cl 

Intuitively, our theorem says that the expected time spent 
at high levels such as n - 1 or n - 2 is small since it is 
likely to bump into the absorption state at n after a short 
while. More time is spent at low levels such as 1 or 2, since 
the walk may spend considerable time there before moving 
upwards. Another thing to note is that the proof of part 2 
of the theorem ignored the fact that 0 is a reflecting barrier. 
That is why part 1 may give a stronger bound when .! is very 
small. Part 2 of this theorem has the following well known 
variant, which is proved in a similar fashion. 

Theorem 4 Let Nt be a random walk on (0,. . . , n) with 
n an absorbing state and 0 a reflecting state. Suppose that 
No = 0, INt+l -NJ 5 S, P(Nt+l # Nt) > 0, and wi is the 
expected number of times that Nt = i. ZfE(Nt+l - Nt 1 Nt = 
i) 2 Li > 0 for all Nt < n, then Cl0 wi 5 Cy!.o l/Li. 

5.2 Application to the Hard Core Gas Model. 

The results of the preceding section can be used to analyze 
algorithms for exact sampling from the hard core gas model 
(see section 2.2), one due to HIggstrGm and Nelander [3], 
and the other due to Luby and Vigoda [7]. Hlggstriim and 
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Nelander did not analyze their method’s running time in [3], 
but our results can be used to show that the method is poly- 
nomial when X 5 l/(A - 1). The bound on the running 
time of the method of Luby and Vigoda is somewhat faster, 
so we only describe our analysis of their method. For their 
method: E(Nt+r -Nt) > 0, P(Nt+r # Nt) = O(i/n), and 
I&-l - ArtI < 2. They then used a weaker martingale re- 
sult to conclude that the running time was bounded above by 
O(n3). Using Thm 3, the expected running time is bounded 
above by CL0 24i/(i/n) = Sn2, and so in fact the running 
time of their algorithm is O(n”). 

5.3 Analyzing our Algorithm. 

Now we are ready to show that our algorithm runs quickly 
when the number of colors is large. Since we are using the 
CFTP methodology, we only need to bound the expected 
running time until coalescence to bound the expected nm- 
ning time of the algorithm. Jcrrum’s proof that the Glauber 
dynamics chain was rapidly mixing [5] will form the tem- 
plate for our proof. 

Proof of Thm 1 We wish to find E( 1 At+1 1 - IA&l) so 
that we may apply Thm 3. Let 1I’t be our particle after f time 
steps, and as before let At = {v : Ilvt(v)l = 1}, and set 
Dt = 17 \ At. Our chain has coalesced to a single particle 
when IAtl = n,, and so we wish to determine the probabili- 
ties that A$ increases and decreases in size at each step. We 
will then apply our random walk result to bound the expected 
running time. 

Let 6 = I At+r I - 1 At 1. For the set At to increase in size 
after one step of the chain (6 = 1), we must have selected a 
vertex in Dt, and then picked a color that was not blocked by 
the neighboring nodes. For node w, let d(v) be the number of 
neighbors of ‘u that are in Dt. Each of the d(v) nodes could 
be one of at most A -k 1 colors, since IW(v)l ,< A+ 1 for all 
2r E D. Let b(v) be the number of colors known to be in use 
by neighbors of,u, so b(v) = I{c : (v,‘w} E E and w E A}l. 
The total number of colors that may be in use by neighbors 
of u is d(v)(A + 1) + b(v). The probability that 21 goes from 
Dt to At is the probability that a node is Dt is chosen, and 
then a free color is picked from C. 

Now for the bad case, where At decreases in size. For this 
to happen, we must choose a vertex in At, and then we must 
pick a color that is blocked by a neighbor in Dt. There are 
d(w) (A + 1) such colors, and so 

Let 
e = E(S) = P(S = 1) - P(6 = -1). 

Something interesting interesting happens when we perform 
this subtraction. The expression for P(S = 1) contains a 
term like -(A + l)/(k - A) cuEDi d(v) and -P(6 = -1) 
contains a term like -(A + 1)/(/c - A) ‘&,lr d(u). Com- 
bining these terms yields the sum over Dt U At which is all 
nodes. The sum of the d(v) over all nodes is just the number 
of edges incident to the set Dt, which is bounded above by 
IDJA. Hence 

lDtl k-A-A(A+l) 
‘(‘) 2 -’ n 1; _ A ’ 

This will be greater than 0 precisely when 1: > A(A + 2). 
When this occurs, from Thm 3 we have that the expected 
time until 1 AtI = n is 

Utilizing the CFI’P methodology completes the algorithm 
and its proof. 0. 

6 The Second Algorithm for k-Colorings 

Our second algorithm for &olorings combines the ideas 
of the bounding chain and rejection sampling. It runs in 
0 (&nln(n) (1 + ($)r)n) time. Herer = [k/Al -3, 
so that k > (T + 2)A. When 9 > n, this is an improve- 
ment over the first algorithm. Even when T’ < n, this pro- 
vides a bound (albeit exponential) on the running time. The 
first algorithm is not guaranteed to complete at all when the 
running time is not polynomial. The trivial rejection exact 
sampling algorithm for the &coloring problem would be to 
choose a coloring uniformly at random from all of the 1;” col- 
orings (either proper or improper) and if it is proper, keep it. 
This algorithm requires roughly (1 + A/Ic)~ samples before 
a proper coloring will be found, where each sample takes 
time O(n). 

The outline of our procedure is as follows. We will take 
exact samples from a state space a’ that contains the set s2 of 
proper colorings. The samples from 51’ will be obtained us- 
ing CFTP using 0( &n In(n)) steps of the Markov chain. 
We will then show that the probability that a uniform sample 
from 0’ lies in 52 is at least (1 + (A/!c)~)(-~), and so the 
expected number of samples from KY that we need to take 
before getting a sample in fl is (1 f (a/]~)~)~. 

The improvement comes from a modification of our first 
algorithm. Instead of letting the size of W(v) grow to A+ 1, 
now we will force IW(v)l 5 rfl. The technique we will use 
involves adding a dummy color, which we will call white. 
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Unlike other colors, we will allow both endpoints of an edge 
to be colored white. 

Our chain works as follows. Pick a node uniformly at 
random. With probability at most bp change the color of the 
node to white. If we don’t change the color of the node to 
white, pick a color from those colors that don’t neighbor our 
chosen node, and change the node to that color. This chain 
is a slight modification of the heat bath chain. Let Wi denote 
those colorations that have i nodes colored white. We are 
interested, of course, in obtaining a sample from Wc. This 
chain is reversible with all states in a class Wi having same 
stationary probability. We derive n(wi) by noting: 

dWi+d 
b,(n - i) 

5 T(wd (1 _ b# + 1) 

4Wf) I n(Wo> 

Hence 

= (l+ b,/(l- bp))-n, 
nnd (1 I- bJn upper bounds the expected number of samples 
needed before we get a sample from WO. 

We now set b,, = (A/h)“. We can simulate this value 
for bp in the chain as follows. Choose a node uniformly at 
random, Choose r colors one after another uniformly at ran- 
dom, If all T colors chosen are blocked, then set the color 
to white, Let b(v) denote the number of blocked colors at 
our chosen node u. The probability that all T colors will be 
blocking is (b(v)/k)’ 5 bp. If we do not turn the node white, 
WC assign it the first color out of the T we chose that makes a 
proper coloring for the graph. 

To take one step in M2, we choose a node u at random, 
then r colors. If the first color c is not blocking, we set 
WV) = c, Otherwise we let W(v) be the set of T colors 
plus white. The total number of blocking colors around any 
one node is now not (A + l)A, but is instead just 9-A. 

We may now prove Thm 2. Since (1 + ( $)r) n samples 
arc taken, we need only show that the time needed to take 
each sample is n ln(n)h/(h - A). The proof is quite similar 
to that of Thm 1, except that now everywhere we used A + 1 
as the maximum size of W(v), we may use r instead (tech- 
nically, the maximum size of W(v) will be T + 1, but one of 
those colors will be white and so the maximum number of 
blocking colors is r). The same procedure employed in the 
proof of thm 1 may be used again here, yielding 

From our section on random walks, we have that the running 
time is bounded above by C&1 4 s 9 I vnln(n), 
which completes the proof of Thm 2. 0 

6.1 The Antiferromagnetic Potts Model with 
Positive Temperature 

We have presented two algorithms for the antiferromagnetic 
Potts model with zero temperature. Both of these algorithms 
run faster when the temperature is positive. When the tem- 
perature of the Potts model is above 0, i.e., p < co, improper 
colorings are possible, they merely have a lower probability 
of occurring. As stated in section 1, the relative probability 
of an coloring with H(z) edges having both endpoints shar- 
ing a color is exp(-J@H(z)). Therefore the probability that 
a node moves from D to A is greater, since even if we pick a 
blocking color there is a small chance that the chain will ac- 
cept it. If the temperature is high enough, it will run quickly 
even if Ic is small. 

Specifically, the heat bath chain for positive temperature 
works as follows. For MI, pick a vertex v ER V, and 
choose a color c E C randomly with relative probabilities 
exp(-J/3m(c,v)), where m(c, w) is the number of neigh- 
bors of v colored c. For Mz, we also start by choosing 
v CR V, and setting W(v) = 0. What happens next de- 
pends on the number of colors. 

If Ic 2 A + 1, we then pick colors one at a time uniformly 
at random from C and add them to R’(v), stopping when 
either we have chosen A + 1 different colors, or a (0,l) 
uniform random variable we choose along with each color 
lies below exp(-Jpm(c, v)). 

Suppose L 5 A. The worst that can happen is that the 
unknown nodes all block our chosen color. So we choose 
one (0,l) uniform random number, 17, and then assign an 
interval to each color c of length 

The length of this interval is the minimum probability that 
color c will be chosen. If U falls into the interval associated 
with color c, set W(v) = c. Otherwise set IV(v) = C, the 
whole color set. 

Theorem 5 Using these bounding chains, the algorithm run 
in random t:me T saris&& P(T > 6B[T]) < (l/2)&. Let 
t=A l+(k.-lIeJB + 1 - A. Ife 2 0, (equivalently, ifJ@ < 

In 
( 
1 f w)), then 

Proof. We consider the case where k _< A. As before, let 
6 = IAt+ll - IAtl. In order for 6 to be 1, the chosen vertex 
2) must lie in Dt and the random (0,l) uniform U must lie in 
one of the color intervals. Similarly for S = -1, v E At and 
U lies outside the color intervals. The intervals are disjoint, 
and so their total length is the sum of their individual lengths. 
The length of the interval for c can be lower bounded by 

e--JBd(4 
e-JPm(Ctu) 

Cc e-Jh(Gu) ’ 
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making e-Jfld(w) a lower bound on the sum of the lengths of 
the intervals. Hence 

5 1 (IDtlAesJP + n - IDJA - n + lIltI) n 

-( y (AeoJp -I- 1 - A). 

A more careful analysis shows that the sum of the lengths 
of intervals is bounded above by l+(,..-ll etp(Jfld(u)). Also 
note P(At+l # At) > (n, - I&l) es~(-A) Use of Thm 3 
completes the proof. 

In the case where k = 2, we have Propp and Wilson’s 
csact sampler for the Ising model [lo]. This shows that their 
method runs in polynomial time for Jp < ln(1-k 2/(A - 
1)) < 2/(A - 1). Although previous results on the mix- 
ing time of Markov chains for the Ising model are known 
(see [ 141, 141, and [ 131) this is, as far as we know, the first 
upper bound on running times for an exact sampler for this 
problem. 

7 Counting the Number of k-colorings 

Determining the number of proper k-colorings of a graph is 
a flP-complete problem, so it is unlikely that an exact method 
that runs in polynomial time will be discovered. However, 
methods for approximating the number of b-colorings exist. 
Jerrum, Valiant, and Vazirani [6] showed that for the class 
of self-reducible problems, the problem of approximately 
counting could be reduced to the problem of taking a poly- 
nomial number of approximate samples. In fact, they show 
that the number of samples needed to come up with an ap- 
proximation that comes within 1 f E of the true answer with 
probability at least 314 is polynomial in the input and l/e. 
Such a method is known as a fully polynomial randomized 
approximation scheme, or fpras. 

Jerrum [5] applied their procedure to the specific prob- 
lem of counting b-colorings. He showed that when k > 2A, 
that a fpras existed with running time 0( $ - & In (%)). 
We now present a fpras that takes fewer samples than Jer- 
rum’s algorithm by a factor of m2/n2 

Theorem 6 When k > 2A, afpras exists for counting the 
number of b-colorings of a graph that has running time 

Proof. Our method recursively reduces the problem by 
removing a single node at each of w steps. At each step, we 

will take n2/e2 samples, and each sample can be taken in 
A& In ($)) time. 

Suppose we choose a node 21, and then color the graph 
with our node deleted. Returning w to the graph, we may 
complete the coloring in 1; - b(v) ways, where a(v) is the 
number of colors used to color nodes adjacent to 2). Since 
1 2 b(v) 5 A, the number of ways to color the graph is just 
CG = cE1(k - i)Ci, where Ci is the number of ways to 
color the graph without our node using only i colors on the 
nodes adjacent to v. Let CG\{,} be the number of ways to 
color the graph with v deleted. Then 

Since C’~/C’G\{~) is just the probability that a random color- 
ing of G \ {TJ} uses i colors on the nodes adjacent to v, we 
have that CL, k$ylwl = k and C~, i,Oylul is just the 
expected number of colors used on neighbors of v. 

Suppose that the node set of G is {v1,v2,. . . , v,). Let 
Ri = CG\{Ot,...,Vi-~}/CG\{Vl,...,Vt} (using the convention 
that C~\{tt,,...,,~> = 1). Then nF=‘=, Ri = CQ, and WC 
have reduced our problem to estimating each of the Ri val- 
ues. Let bi be the number of colors neighboring node vi in a 
uniformly random coloring of {G \ (~1, ‘~2,. . . , vi-~}}. By 
what we showed above the problem of estimating Ri is es- 
actly the problem of estimating b - E(bg). We can estimate 
these values using sampling. 

As with Jerrum’s method, we will use approximate sam- 
pling to draw samples from the set of all proper k-colorings. 
The running time for his sampler is &nln ($), where 
the total variation distance between the distribution the sam- 
ple is drawn from and the uniform distribution is E’. Denote 
the number of samples which we take by t, 

Suppose we take t = [17mA2/((k - A)c)~~ samples 
at each step i, and let by) be the number of blocking colors 
used in sample j. Let .Z’i = l/(kt) & by), so that our 
estimate for .& will be &.. = k(1 - Zi), and our estimate for 
CG will be CG = n21 Ri = k” nE,(l - &). 

Since by’ 5 A, we have that that 

varzi < &d[A2 - (W21 

Similarly, we know that 

E(1 - Zj) = 1 - ,?#I > 1 - A/l+ I - 0: 

and so 

Vdl- -5) < 1 (4) 
[E(l - .%)I2 - t (1 - A/k)” 
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5 c2/(17m). 

Let ERROR be the event where I& - E&l 2 eE&/2 
From Chcbyshcv’s inequality, the independence of tbe Zi’s, 
and the fact that 1+x ,< ez we have that 

P(i3RROR) 5: 
4Var <lying, (1 - G)) 
e2 n;fl E(l- .Q2 

= 4E (rIZ,(l - G2) _ L 
c2 n;a=, E(l - &)2 3 

= 1+ v41 - a 
E(l - Zi)2 ) 1 _ 1 

5 $ [exp (E2/17) - l] 

< 114, 

when c < l,- 
Now EOQ = l-I?=‘=, E&, and 0~ = nF=, .&. If & 

is the total variation, then jE& - &I 2 e&/(472) for all 
i and IE& - Cal -5 cOa/3 for E 5 1. We know that 
I& - EGGI ,< eE0~ with probability at least 3/4. Taken 
together, we have (fore 5 1) that 10~ - 0~1 5 EGG with 
probability at least 3/4, which completes the proof. 0 

The previous theorem used the approximate sampling 
technique of Jcrrum so that we could have k > 2A. If 
b > A(A I- 2), we may use our exact sampling algorithm. 
A similar proof shows that 

Thcorcm ‘I Witen k > A(A + 2), there exists a firus for 
countklg the number of E-colorings of a graph which runs in 

0 ( $ e ~&&$J > time. 

8 Sink Free Orientations of a Graph 

Bubley and Dyer [2] showed using path coupling that the 
heat bath chain for finding a random sink free orientation of 
a graph is rapidly mixing. In the heat bath chain, an edge 
in chosen uniformly at random, and its direction is chosen 
uniformly from the set of acceptable directions (those that 
do not create a sink in the orientation). They also noted 
that the problem of finding a sink free orientation can be 
reduced to finding a satisfying assignment in a mice-SAT 
problem, In mice-SAT, each literal appears exactly twice. 
Regular edges have one of two orientations. Suppose that 
WC have some edges which either have both orientations or 
nono, Then this generalized sink free orientation problem 
is equivalent to ‘Avice-SAT. The chain of Bubley and Dyer 
works for the generalized sink free orientation problem and 
hence for ‘lSvicc-SAT as well. Our algorithm only applies to 
the regular sink free orientation problem. 

The chain of Bubley and Dyer required O(m3 ln(e-‘)) 
steps to find an approximate sample with total variation dis- 
tance bounded above by 6. Our method takes longer for large 

E, but we note that unless e 5 1/2m, their method does not 
guarantee that a particular sink free orientation will be sam- 
pled with positive probability. When E 5 l/2m, their run- 
ning time is comparable to our expected running time. 

Theorem 8 Suppose Bubley and Dyer’s chain for approxi- 
mate sampling from the sink free orientations of a graph is 
ergodic. Then our algorirhm exactly samples from the sink 
free orientations of a graph, with random running time T 
satisfying E[T] = O(m4) andP(T > 6E[T]) < (1/2)6. 

We outline the proof and our algorithm simultaneously. 
The idea is to run the chain in two alternating phases. In 
Phase I the chain is run normally. Bubley and Dyer [2] 
showed that any two particles on the chain in Phase I will co- 
alesce in O(m3) time with probability at least l/2. In Phase 
II, the chain will be run in such a way that all of the possible 
orientations will coalesce down to two particles with some 
constant positive probability in O(m4) time. By running the 
chain in Phase II followed by Phase I, all the particles will 
have coalesced down to one particle with some constant pos- 
itive probability. 

Let At denote the edges we know the direction of at time 
t, and set Dt = m \ At. We will show that the probability 
that I&[ goes to m as t goes to infinity is positive. This 
is different from the k-coloring problem in that both 0 and 
m are absorbing states. That is, if ever iAt1 = 0, we cannot 
gain any information by running the chain since we can never 
tell if switching the direction of an edge is a valid move. 
Alternatively, if 1 At I = m, then all of the edges are known 
and they will stay known for all times after t. 

Suppose that lAoI 2 1. As before, let 6 = IAt+ll- IAtl. 
We will show that E[S] 2 0. Consider an edge a in At that 
is leaving node 21. If any other edge is known to be leaving 
v, then v will not be a sink even if edge a flips direction, 
and so a cannot move from At to &+I. Similarly, if all the 
other edges adjacent to v are known to be entering v, then 
a cannot flip direction, and cannot move from At to Dt+l. 
The only way for a to switch from At to Dt+l is for v to be 
adjacent to some unknown edge b. If we select b and change 
its direction so that it enters v, that is an acceptable move 
since a leaves v. This moves b from Dt to At+1 . The prob- 
ability of selecting b and its good direction in this manner 
is equal to the probability of selecting a and its bad direc- 
tion, and so if we only change these two edges we would 
have that P(6 = 1) = P(6 = -1). Since we have said 
that a is the only known edge that leaves b, we only use the 
edge b in this manner once. Therefore, we have that overall 
P(6 = 1) 2 P(6 = -l), and so IAtl is a submartingale. 

Let S be he starting time for a run of Phase II. Let a 
be any edge of the chain. Now this edge has one of two 
directions, either 0 or 1. Partition the set of particles into 
two classes based on the direction of a at time S, so XI = 
{XIX(a) = 1 at time S} and X2 = {XIX(a) = 0 at S}. 

Throughout Phase II, we will force the two classes to 
evolve independently. Particles within each class will cou- 
ple, pairs from different classes will not. First choose an edge 
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b uniformly at random, and then pick two independent ran- 
dom variables uniformly from 10, 11. All particles in class X1 
take a step in the chain according to the first random number, 
and all particles in class X2 take a step according to the sec- 
ond random number. If IAt 1 is the number of known particles 
at time t in class 1, and IA: 1 is the number of known particles 
in class 2, then at the start we have that IAil = IAfl = 1, 
since we know the direction of edge a for each class. Each 
Id$l is a submartingale which is absorbed at m and has pos- 
itive probability of increasing by 1 at each time step, hence 
P(A: = m)-,L2l/mast-,cx,foriE{1,2). 

Whenever either IA: 1 or I$1 equals 0, we have to start 
over by picking an edge a and resetting classes Xl and X; 
so that IAil = IAPl = 1. There is exactly one run where 
both hit m. To bound the time it takes for this good event 
to occur, we examine a related martingale Nt = (Nt, Nf) 
whereP(Ni+, = Ni+l) = F($+, = N,i-1) = 1/2,and 
if either &! = 0 or A$? = 0, Nt+l = N&l = 1. Finally, 
let m be an absorbing state for each Nj. Since we know that 
[.$I is a martingale with unit changes, the Nt lower bounds 
the value of I&l if the size of ilt changed at every time step. 

Let GOOD(j) denote the event where Nj = j reaches 
m before hitting 0. Then P(GOOD(1)) = l/m, and the 
expected running time for both N; and Nf to hit m is l/m2. 
Hence the expected running time (by Wald’s Lemma) is m2 
times the expected running time for one of the Nj to hit 0 
given that we know one hits 0, plus the expected time needed 
for both to hit m given that they both hit m. 

Knowing that A$’ ends at m means that at each step it 
is even more likely to go up. In particular, it is still a sub- 
martingale, and we can use Theorem 3 to conclude tha.t the 
expected number of times l\‘i = i is at most 2(n - i). 

Similarly, the probability that 6 = -1 given that it ends 
at 0 is greater than the old probability that S = -1, and so 
IV/ is then a supexmartingale. That makes n - iVt a sub- 
martingale, and the Upcrossing Inequality can be used once 
more to conclude that the expected number of times Nl = j 
is at most 2. There are m steps between 0 and m, and so the 
total number of changes is 2m. The difference between iVi 
and [ Ai 1 is that IA: I doesn’t always change at every time step. 
However, as long as there exists an unknown edge, there also 
exists at least one edge which when selected changes the size 
of IAil, Therefore the P(IAiI) changes is at least l/m, and 
the expected number of time steps between each change is 
m. Hence the total number of steps taken in this part of the 
algorithm is 2&. The remaining run only takes 2m3 steps, 
so the total number of steps needed is O(m”). 

By then running Phase I for O(m3) more time we then 
coalesce the two particles from Phase I into one state, dis- 
tributed according to the stationary distribution. The running 
time for the approximate counting algorithm follows directly 
from the analysis of Bubley and Dyer, substituting our sam- 
pler running time for theirs. 
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