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Abstract. We report on our recent progress investigating geometric prop-

erties of lattices obtained via an algebraic construction from finite Abelian

groups. These lattices generalize the well-known function field lattices of
Rosenbloom and Tsfasman and have many interesting properties. In particu-

lar, we prove that many of them have bases of minimal vectors, are strongly

eutactic, and have large automorphism groups.

Function field lattices were originally introduced by Rosenbloom and Tsfasman
in [6], where they were studied for their good asymptotic packing density properties.
This construction is reviewed in [9] as follows. Let F be an algebraic function field
(of a single variable) with the finite field Fq as its full field of constants. Let
P = {P0, P1, P2, . . . , Pn−1} be the set of rational places of F . Corresponding to
each place Pi, let vi denote the corresponding normalized discrete valuation and let
O∗P be the set of all nonzero functions f ∈ F whose divisor has support contained
in the set P. Then O∗P is an Abelian group,

∑n
i=1 vi(f) = 0 for each f ∈ O∗P , and

we let

deg f :=
∑

vi(f)>0

vi(f) =
1

2

n−1∑
i=0

|vi(f)|.

Define the homomorphism φP : O∗P → Zn (here n = |P|, the number of rational
places of F ) by

φP(f) = (v0(f), v1(f), . . . , vn−1(f)).

Then LP := Image(φP) is a finite-index sublattice of the root lattice An−1.
We discuss an algebraic construction of lattices which generalizes the func-

tion field lattices. Given a finite Abelian group G and a subset S = {g0 :=
0, g1, . . . , gn−1} of G, we define the sublattice LG(S) of An−1 by

(1) LG(S) =

x = (x0, . . . , xn−1) ∈ An−1 :

n−1∑
j=1

xjgj = 0

 .

The general problem we consider is the following.

Investigate geometric properties of lattices LG(S). Specifically, what are their
minimal norms and determinants? How many minimal vectors do these lattices
have? Are they well-rounded? Generated by their minimal vectors? Have bases of
minimal vectors? What can be said about their automorphism groups?
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2 A. BÖTTCHER, L. FUKSHANSKY, S. R. GARCIA, AND H. MAHARAJ

The answers to these questions certainly depend on the group G and the set S.
As the result of the abstract construction of function field lattices outlined above,
we obtain LP = LG(S), where

S = {[Pi − P0] : 0 ≤ i ≤ n− 1}

is a set of divisor classes and G is the subgroup of the divisor class group Cl0(F )
generated by S. Thus, in this case S is not simply a subset of G, but a generating
set for G, and lattices defined in (1) are a generalization of function field lattices.
In [4], [2], [1] we addressed the questions raised above in several situations:

• The field F is the function field of an elliptic curve of a finite field, in which
case G = S and the groups that can appear this way are always of the
form Z/m1Z× Z/m2Z (with further restrictions on the pairs (m1,m2)) as
characterized by Rück [7].

• The Abelian group G is arbitrary, but the set S coincides with all of G;
this is a generalization of function field lattices from elliptic curves.

• The field F is a Hermitian function field, in which case the generating set
S is a proper subset of the group G.

Here we state our results. For an Abelian group G, write LG for the lattice
LG(G). The automorphism group Aut(LG) can be identified with a finite sub-
group of GLn−1(Z). We also identify Sn−1, the group of permutations on n − 1
letters, with the corresponding subgroup of GLn−1(Z) consisting of permutation
matrices.

Theorem 1 ([2]). Let G be an Abelian group of order n. Then:

(1) For every G, detLG = n3/2.

(2) |LG| =


√

8 if G = Z/2Z,√
6 if G = Z/3Z,

2 for every other G.
(3) For G = Z/4Z, the lattice LG is not well-rounded.
(4) For every G 6= Z/4Z, the lattice LG has a basis of minimal vectors.
(5) For every G, Aut(LG) ∩ Sn−1

∼= Aut(G).

As mentioned above, the lattices coming from elliptic curves via the Rosenbloom-
Tsfasman construction were considered in [4] and [8], and they are a special case of
the lattices LG in Theorem 1. In addition to these results, we also have a formula
for the number of minimal vectors in lattices LG.

Theorem 2. Assume that n ≥ 4 and let κ denote the order of the subgroup G2 :=
{x ∈ G : 2x = 0} of G. Then the number of minimal vectors in LG is

(2)
n

κ
· (n− κ)(n− κ− 2)

4
+
(
n− n

κ

)
· n(n− 2)

4
.

The result of Theorem 2 was established for lattices from elliptic curves in [4], but
the argument is the same for any lattice of the form LG. Furthermore, we obtained
bounds for the covering radii of the lattices LG. Recall that the covering radius of
a lattice L is defined as

µ(L) = inf

{
r ∈ R>0 :

⋃
x∈L

(B(r) + x) = spanR L

}
,
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where B(r) is the ball of radius r centered at the origin in spanR L. In [8], Min
Sha, building on our previous results from [4], proved that

(3) µ(LG) ≤ µ(An−1) +
√

2,

where

µ(Am) =

{
1
2

√
m+ 1 if m is odd,

1
2

√
m+ 1− 1/(m+ 1) if m is even;

see [3, Chap. 4, Sec. 6.1]. In [2], we derived an improvement of (3) for the case
when G is a cyclic group:

(4) µ
(
LZ/nZ

)
<

1

2

√
(n− 1) + 4 log(n− 2) + 7− 4 log 2 + 10/(n− 1).

We also have some partial results on the properties of the lattices LG(S) in
the more general situation when S is a proper subset of G containing the identity.
Suppose |G| = n and |S| = m ≤ n. Define

Aut(G,S) := {σ ∈ Aut(G) : σ(g) ∈ S ∀g ∈ S} .

Notice that every element of Aut(G) fixes 0 and permutes the other elements of
G, which allows us to identify Aut(G) with a subgroup of Sn−1, the group of
permutations on n−1 letters. Think of Sm−1 as the subgroup of Sn−1 consisting of
all permutations of the corresponding subset S\{0} of m−1 letters. Each element of
Aut(G,S) induces a permutation of S, and hence gives rise to an element of Sm−1.
Let us write Aut(G,S)∗ for the group of permutations of S which are extendable to
automorphisms of G. In other words, every element of Aut(G,S)∗ is a restriction
σ|S : S → S of some element σ ∈ Aut(G,S) and every element of Aut(G,S) arises
as an extension τ̂ : G→ G of some element τ ∈ Aut(G,S)∗.

Theorem 3 ([1]). With notation as above, Aut(G,S)∗ is isomorphic to a subgroup
of Aut(LG(S)) ∩ Sm−1. If S is a generating set for G, then

Aut(G,S)∗ ∼= Aut(LG(S)) ∩ Sm−1.

In the more concrete situation where the lattice LG(S) comes from a Hermitian
curve

(5) yq + y = xq+1

over a finite field Fq2 , where q is a prime power, we obtained some further results.

Theorem 4 ([1]). Let LG(S) come from a Hermitian curve over Fq2 as in (5).
Then:

(1) |LG(S)| =
√

2q.

(2) detLG(S) =
√
q3 + 1(q + 1)q

2−q.
(3) The lattice LG(S) is generated by minimal vectors.
(4) The lattice LG(S) contains at least q7 − q5 + q4 − q2 minimal vectors.

Additional observations on these lattices involve a connection to spherical de-
signs. Let n ≥ 2. A collection of points y1, . . . ,ym on the unit sphere Σn−2 in
Rn−1 is called a spherical t-design for some integer t ≥ 1 if∫

Σn−2

f(X) dν(X) =
1

m

m∑
k=1

f(yk)
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for every polynomial f(X) = f(X1, . . . , Xn−1) with real coefficients of degree ≤ t,
where ν is the surface measure normalized so that ν(Σn−2) = 1. For n = 2, this
means that

f(−1) · 1

2
+ f(1) · 1

2
=

1

m

m∑
k=1

f(yk)

with y1, . . . , ym ∈ {−1, 1}. Recall that a full-rank lattice in Rn−1 is called strongly
eutactic if its set of minimal vectors (normalized to lie on the unit sphere) forms
a spherical 2-design. Strongly eutactic lattices are of great importance in extremal
lattice theory (see [5]). The lattices LG coming from Abelian groups are full-rank
sublattices of An−1 and may hence be viewed as full-rank lattices in Rn−1. For
these lattices, we have the following result.

Theorem 5. The lattice LG is strongly eutactic if and only if the Abelian group G

has odd order or G = (Z/2Z)
k

for some k ≥ 1.

References
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