Positive externality: consumer side

Definition – When an individual's consumption in a market increases the wellbeing of others, but the individual is not compensated by those others.

Source: Gruber, J. (2018). Public Finance & Public Policy

Intuition — Sometimes one person's purchase of a good or a service has indirect benefits for others. If the person, the origin of the positive effects, were rewarded for these spillovers, then they would do more. Essentially, the market amount of the activity is too low. By accounting for the extra benefits, we can find the optimal amount, which occurs at a lower price for the consumer. A lower price makes the person want more of the good or service, a win-win.

Mathematical / Technical

- The free market equilibrium is at (Q^M, P^M) , where the marginal cost (MC) and marginal benefit (MB) curves intersect.
- A positive consumption externality affects the inverse demand curve, shifting it out by the amount of the marginal external benefit (*MEB*) to society. The name of this new curve is social marginal benefit (*SMB*).

$$SMB(Q) = MB(Q) + MEB(Q)$$

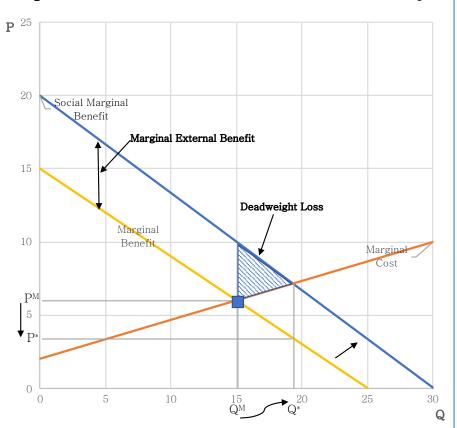
- The intersection of SMB with the MC curve reflects the **socially optimal price** for consumers, P^* , and **quantity**, Q^* of the good.
- Find Q^* such that

$$SMB(Q) = MC(Q)$$

• Then, solve for

$$P^* = MB(Q^*)$$

• With positive consumer externalities, the free market outcome is under-consumption.


$$Q^* > Q^M$$
 and $P^* < P^M$

 A deadweight loss (DWL) is a cost to society created by market failure when supply and demand are out of equilibrium. In this case, the reduction in social efficiency arises from a higher amount of social benefit as compared to private benefit.

$$DWL = \frac{[SMB(Q^M) - P^M](Q^* - Q^M)}{2}$$

• Example: Josh's neighbor Sarah is considering improving her landscaping, each additional unit which will cost \$1,000, but is worth only \$800 to her. Josh's bedroom faces her house, and he would like a nicer landscaping to look at, he values an additional unit at \$300. That is, the marginal benefit of improved landscaping is \$1,100, while the private marginal benefit to Sarah is \$800. Thus, additional landscaping is socially efficient. However, because Sarah's private costs exceed her private benefits, she will not do it; too little occurs.

Graphical - Positive Consumer Externality

The free market equilibrium is denoted by a square, MB shifts out to SMB by the amount of benefit to society, the MEB. P^{M} decreases to P^{*} , and Q^{M} increases to Q^{*} . The deadweight loss is denoted by the shaded in triangle.

Real-world aspects - An example of a positive consumption externality is vaccinations. When many people are vaccinated against an infectious disease, they become immune to it, and stop it from spreading. This is referred to as herd immunity.^a Another example is electronic security/alarm monitoring services outside homes, and offices. Neighbors whose homes are covered under the scope of these services benefit from this additional layer of security. Flood protection on large reserves of land is also known to have positive spillovers to neighbors who derive benefits from being better protected from floods.^b For each of these examples, the consumption by individuals creates benefits for society as a whole. Sources: a https://tinyurl.com/yco8wwyg, b https://tinyurl.com/ybhersp3

Practice questions

- 1. Let us look at the market for polio shots. Suppose the 1st unit provides marginal external benefits of \$60, but by the 300th unit the external benefits are \$0.
 - A. Find the market outcomes. Is the quantity too much or too little?
 - B. Draw the line that accounts for the MEBs. What is the term for this line?
 - C. Find the socially optimal outcome, and shade in the deadweight loss.
- 2. If the quantity of small pox vaccines is determined by the market forces of demand and supply, will it be at an efficient level? Explain.
- 3. Let us consider the market for landscaping. MC = 10 + Q and MB = 100 Q. Each additional unit provides an external benefit to society of \$10.
 - A. What is the market quantity?
 - B. Is this the socially optimal quantity? Explain.
 - C. What is the value of the external benefits of the current level of production (quantity)?

Numerical solutions: **1A.** P^{M} =\$55, Q^{M} =165, **1C.** $P^{*} \sim 40 , $Q^{*} \sim 200$, **3A.** 45 units, **3C.** (\$10)(45 units) = \$450.