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Abstract— Sulcal fundi are 3D curves that lie in the depths of
the cerebral cortex and, in addition to their intrinsic value in
brain research, are often used as landmarks for downstream
computations in brain imaging. In this work we present a
geometric algorithm that automatically extracts the sulcal fundi
from magnetic resonance images and represents them as spline
curves lying on the extracted triangular mesh representing the
cortical surface. The input to our algorithm is a triangular
mesh representation of an extracted cortical surface as computed
by one of several available software packages for performing
automated and semi-automated cortical surface extraction. Given
this input we first compute a geometric depth measure for
each triangle on the cortical surface mesh, and based on this
information we extract sulcal regions by checking for connected
regions exceeding a depth threshold. We then identify endpoints
of each region and delineate the fundus by thinning the connected
region while keeping the endpoints fixed. The curves thus defined
are regularized using weighted splines on the surface mesh to
yield high-quality representations of the sulcal fundi. We present
the geometric framework and validate it with real data from
human brains. Comparisons with expert-labeled sulcal fundi are
part of this validation process.

Index Terms— Brain imaging, MRI, sulcal fundi, brain warp-
ing, surface splines, thinning.

I. INTRODUCTION

HEN viewed from the outside, a human brain appears

as a volume with a highly wrinkled boundary surface
having numerous long furrows. The term sulci (plural of
sulcus) is associated with these furrows and the term gyri
(plural of gyrus) designates the regions between the sulci.
In the computational neuroanatomical literature, “sulcus” is
used to describe the area of the pial surface within the sulcal
depression and/or the volume of cerebrospinal fluid (CSF)
contained therein. That is either the space of a given concavity
or else the portion of the surface immediately adjacent to
the concavity. Accordingly, sulci have been represented as
connected regions of the sulcal surface and as connected
voxels lying within the sulcal depression. Informally, the
fundus of a sulcus is the curve of maximal average “depth”
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that spans the length of the sulcus. The concepts of sulcal
depth and fundus can be made precise in different ways; we
introduce novel geometric methods of defining and computing
sulcal depth and sulcal fundi below.

Beyond the possible intrinsic relevance of sulcal research,
the importance of curvilinear representations of sulcal fundi
lies in their use as landmarks for creating deformation fields
in brain-surface warping algorithms, e.g., see [1], [2] and
references therein. The surface-to-surface warping approach
has been used for longitudinal and cross-sectional studies of,
e.g., brain structure and function, cortical thickness, and gray-
matter density, see again [2] and the references therein. Tra-
ditionally cortical sulci and sulcal fundi have been manually
defined by labeling voxels in an MRI brain volume using a
GUI which displays three orthogonal 2D brain slices. This
process is extremely tedious, time consuming and notoriously
prone to error (e.g., due to the fact that only a limited
number of viewing directions are available for the volume).
Furthermore, manually labeled fundi in the volume data have
to be projected onto the extracted surface for use as landmarks
in surface based brain warping algorithms. Automating sulcal
fundi extraction can ultimately improve the quality and repro-
ducibility of the process as well as yielding considerable time
savings.

A. Problem Statement and Contributions

A fully automated method for the extraction of sulcal fundi
from MRI brain volumes combines an automated method for
extracting a 3D triangular mesh representation of the brain
cortical surface with an automated method for defining fundal
curves that lie on the mesh surface. In this paper, we do not
introduce a new approach to cortical surface extraction; rather,
we describe a method for defining sulcal depth and sulcal
fundi given a mesh representation of the gray-matter (GM)
surface as an algorithmic input. Reference [3] provides an
overview and discussion of methods that have been proposed
to extract the cortical surface in implicit, parametric, or mesh
representations. These methods have been primarily developed
for cortical surface mesh extraction from “high resolution”
(e.g., Imm cubic voxels) Tl-weighted brain images. We
optimized the parameters for our examples of normal human
adult brains. However, by adjusting these parameters the same
method can be employed for different types of brains (children,
non-normal, ...).

So far experts only agree on the nomenclature for the
major sulci, e.g., the calcarine, central, olfactory, precentral,
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superior frontal, and temporal sulci. The secondary and tertiary
sulcal patterns vary greatly from individual to individual, and
the nomenclature used by different anatomists is inconsistent.
Even for the major sulcal fundi their endpoints and branchings
are rarely defined. In this paper we present a geometric
algorithm that aims at extracting the complete set of sulcal
fundi as a network of partially connected curves that are
guaranteed to be on the extracted brain surface. To validate our
results we compare a subset of automatically extracted fundi
to manually extracted ones as marked by expert anatomists in
the volume image. This comparison is done at hand of the
fundi of the above mentioned six major sulci.

A flow chart illustrating the major steps of our algorithm is
shown in Fig. 1. First, a given brain is segmented into different
regions, e.g. white matter (WM), gray matter (GM), and
cerebral-spinal fluid (CSF) regions, and the triangular mesh
representing the cortical surface is extracted and considered as
the input to our technique. Second, an outer hull surface which
wraps the cortical surface is constructed. Third, a geodesic
depth to the outer hull surface is defined and computed for
the cortical surface mesh. Fourth, based on the geodesic depth
measure, the sulcal fundi are extracted. Fifth and finally, the
fundi curves are smoothed using weighted splines on the
surface mesh to yield a high-quality curve representation. Each
step of the algorithm is described in detail in Section II of the
paper. Our key contributions are

e a novel geodesic depth measure that is anatomically

reasonable,

e an automatic algorithm that aims at the extraction of a

complete set of sulcal fundi, and

e a high-quality representation of the fundi as smooth

curves lying on the pial surface.

The above points lead to a complete system for automatic
extraction of fundi curves, here validated via comparison with
curves traced by two experts.

B. Previous Work

Previous work on automatically extracting curvilinear rep-
resentations of sulcal fundi can be roughly divided into two
approaches: those based on curvature and those based on

Overview of the main steps of our algorithm. (All figures of the paper are in color.)

distance functions. Curvature based approaches define sulcal
fundi as curves lying within areas of the extremal mean or
principal surface curvature, whereas distance based approaches
define them as curves whose distance to a hull bounding
the cortical surface is locally maximal in the plane that is
transverse to each given point on the curve.

Previous curvature based approaches are only semi-
automatic: two or more end points of a sulcus are manually
defined, and then a curve connecting these points lying within
areas of extremal mean or principal surface curvature is com-
puted. The proposed methods that follow this approach are,
for example, dynamic programming [4], weighted geodesics
computed by fast marching methods on triangular meshes [5],
or fast marching methods on implicit surfaces [6]. Tracing
in principal curvature directions has also been proposed in
the volumetric setting [7] and in the parameter domain of a
conformal parametrization [8].

Distance-based approaches often compute medial sulcal
surfaces (“sulcal ribbons”) from volumetric data, and define
the fundi as the deepest boundaries of these surfaces [9],
[10], or as the projection of these boundaries onto a triangle
mesh representing the cortical surface [11]. Previous work
that combines curvature- and distance-based computations are
semi-automatic algorithms that compute fundal curves using
a modified fast-marching algorithm on triangular meshes [12]
or on a flat map of the cortical surface [13].

Distance-based computations are generally more stable than
curvature-based computations due to the perturbation damping
properties of the L? distance norm and perturbation amplifying
properties of differential operators typically used in computing
curvature. Our method, based on distance computations, can
be expected to yield more robust results. This is of signif-
icant concern for this application domain because current
technologies for surface mesh extraction necessarily operate
on noisy, undersampled MRI images of the geometrically
convoluted human cortex, and as such are highly unstable
[14]. Preliminary results of the present paper appeared in a
short conference paper at ISBI 2006 [15].
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II. METHODS

In this section we explain in detail the main steps of our
algorithm, which can be sketched as follows. The input to our
algorithm is a T1-weighted MRI human brain volume. For
skull stripping, segmentation of the brain into white matter,
gray matter, and cerebrospinal fluids, and for extraction of
a triangle mesh surface from the MRI volume data, we use
publicly available software. Then we use a regular grid to
derive an implicit representation of the pial surface. Using
a level set technique we compute an outer hull surface that
encloses the pial surface in a shrink-wrap type fashion. The
outer hull is such that one can still distinguish the gyri, but
the sulcal regions are now covered. Then we define a novel
depth measure for the pial surface as the shortest distance
that connects each surface point to a point of the outer hull
such that the point path stays inside the sulcal regions. The
computational realization uses a fast sweeping algorithm. We
are now able to extract the sulcal regions by thresholding the
computed depth. We identify endpoints of the sulcal fundi and
extract the fundi by a thinning algorithm. The such extracted
curves are then smoothed using weighted splines in manifolds.

A. Segmentation, Surface Extraction, and Representation

A topologically correct triangular mesh representing the pial
(GM-CSF) surface of the cerebral cortex was extracted by
FreeSurfer! [16] after skull stripping using BET? [17]. Other
publicly available brain surface extraction software methods
include SurfRelax? [18], and BrainVisa* [19]. In Fig. 2 we
show front and top views of the extracted pial surfaces (using
FreeSurfer) for different human brains.

By T we denote a triangle mesh with faces T4, ...,T;
we require T3 to be a closed and orientable 2-manifold in
Euclidean 3-space. Our approach to the definition of sulcal
depth is based on a level set technique. In order to apply it, the
triangular-mesh representation is transformed into an implicit
representation by computing the signed distance function to
the surface on a Cartesian grid. In the implicit form, the pial
surface becomes the zero level set {® = 0} of the signed
distance function ®. We obtain the signed distance function
in two steps.

In the first step, the signed distance function @ is efficiently
computed (within machine accuracy [20], [21]) up to a given
maximum distance d, i.e., in a band of width 2d extending
from both sides of the surface. We choose d = 5mm in
our implementation. For each component (face, edge, and
vertex) of the triangular-mesh, a polyhedron which contains
its Voronoi cell as a subset is constructed. By using the scan
conversion algorithm, one can determine which grid points
are possibly within the given distance of the component and
compute the distance. Since there are overlapping regions of
polyhedra, some grid points may be scan converted more than
once. In this case, the distance which has smaller magnitude
is chosen.

! FreeSurfer, see http://surfer.nmr.mgh.harvard.edu/

2Brain Extraction Tool (BET), see http://www.fmrib.ox.ac.uk/fsl/bet/
3SurfRelax, see http://www.cns.nyu.edu/~jonas/software.html
4BrainVisa, see http://www.brainvisa.info/

Fig. 2. Pial surfaces (left) and outer hulls (right) for different brains: Front
and top view. The black line marks where we cut the brain open for the
illustration in Fig. 4.

In the second step, the Eikonal equation

IV®(z,y,2)| = ,/@%—l—@%—i—@% =1

is solved for the remaining grid points which have distances
greater than 5mm. This is done using a fast sweeping algo-
rithm [22], [23], [24]. This gives the first order approximation
of the distance function for the grid points away from the
surface. We combine these two algorithms in order to maintain
high accuracy near the surface and efficiency for the overall
distance computation.

Now for the pial surface we have both, an explicit triangular-
mesh representation, and an implicit level-set representation
on a Cartesian grid. This is an essential difference between
our approach and other approaches mentioned above, which
use either one or the other representation. We exploit both
representations.

B. Outer Hull Surface Extraction

An outer hull surface, which wraps the pial surface is
computed using a morphological closing operation applied
to the level set function ® [25]. Note that even the gross
shape of the human cortex is far from being convex (see e.g.
Fig. 2), so computing convex hulls after smoothing would not
produce desirable results. For morphological closing we move
the surface outward by a time parameter 7" and then move the
surface inward by the same amount of time. The governing
equation is

O, +V(H)|VE| = 0
O(r,y,2,0) = ®(x,y,2),
where 1 for LT
or <
V(t)_{ ~1 for T<t<2T }

In our algorithm we choose 7' = 10 (mm/unit time). This is
based on the width of sulcal regions. We want to choose the
parameter 7' to be large enough to close the sulcal regions and
small enough to maintain the overall shape of the brain. The
above equation is implemented with standard numerics.

The implicit representation of the outer hull surface is given
by

U(x) = min{®(z,y, z,27T), ®(z,y, 2,0)}.
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Fig. 3. Axial, coronal, and sagittal slices of the MRI brain volume and the
outer hull surface of one hemisphere.

Fig. 4. (Left) A 2D illustration motivating the depth computation as explained
in the text. (Middle) One slice through the pial surface at height indicated in
Fig. 2 with a black line. (Right) The bottom half of the pial surface in top view.
The color corresponds to the computed depth from the hull where shallow is
indicated in blue and deep in red.

The minimum in the formula enforces the condition that the
outer hull surface wraps — but does not penetrate — the pial
surface. We illustrate the computed outer hull surface for
different brains in Fig. 2. In Fig. 3 we show an axial, coronal,
and sagittal slice of the original MRI brain volume combined
with the intersection curve of the outer hull surface in these
slices.

C. Geodesic Depth Computation

After we obtain the outer hull surface, we calculate the
geodesic depth (distance) for any given point on the pial
surface to the outer hull. The desired geodesics correspond
to the shortest paths from each pial surface location to the
outer hull which do not cross the surface of the brain, i.e.,
the volume enclosed by the pial surface is considered as an
obstacle that needs to be avoided by the paths. Our approach
is different from that of previous work of [10] and [26], which
either consider the Euclidean distance to the outer hull or the
geodesic distance on the triangular mesh. In Fig. 4 (left) we
explain the different distance measures using an illustrative
drawing. By the depth measure of [10], point C' and point D
are approximately the same Euclidean distance from the hull
curve h, and by the depth measure of [26], point A and point
B are approximately the same geodesic distance to the hull
h along the curve s. In our approach the order of the depth
is d(C) > d(B) > d(A) = d(D), which is intuitively more
correct.

The geodesic depth calculation is done in three dimensions
by applying the fast sweeping method [22], [23], [24] to the
restricted (CSF) region between the outer hull and the pial
surface {¥ < 0 and ® > 0}. The calculation is performed on

Fig. 5. Color coded geodesic depth displayed on axial, coronal, and sagittal
slices of the pial surface overlaid onto the MRI brain volume.

a refined rectangular grid. Then, using trilinear interpolation,
we propagate the depth information onto each triangle 7} of
the triangular-mesh surface T);. In Fig. 4 (right) we show in
a top view the bottom part of the pial surface with the top
part removed. The color coding corresponds to the computed
geodesic depth, where blue indicates shallow and red indicates
deep. The pial surface is cut open by the plane indicated
in Fig. 2 as a black line, and Fig. 4 (middle) illustrates the
corresponding intersection curve. In Fig. 5 we display axial,
coronal, and sagittal slices of a MRI brain volume onto which
we overlay the color coded geodesic depth of the extracted
pial surface.

D. Sulcal Fundus Extraction

The algorithmic steps described above result in the associ-
ation of a sulcal depth estimate d(7;) with each mesh triangle
T;. Next, we use a depth threshold dr to define the sulcal
regions of the pial surface as those triangles with a depth
d(T;) > dr, see Fig. 1 (second image from the right). In
the literature [26], dr is usually considered to be 2 — 3 mm.
We use dr = 2.5 mm (using an adaptive threshold is open
to future refinements). Within these sulcal regions we find the
connected components C; by a connected components labeling
algorithm [27]. For the remainder of the algorithm we only use
those components that have more than a minimum number of
triangles (see Section III for details).

For each component C; we compute the strip B; of bound-
ary triangles. The next stage of our algorithm identifies a
small subset of each B; which constitutes the endpoints of
the sulcus (a non-branching sulcus has exactly two endpoints;
a branching sulcus is illustrated in Fig. 6). The algorithm for
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Fig. 6. Fundi endpoints p1,...,ps of a component C' are those points of
the boundary of the C' that are extremal according to the principal component
direction in a local neighborhood Ny, .

identifying endpoints uses the barycenters p; of the triangles
in the set B;, and is based on the concept that the point set
{p;} is of a curve-like nature with one or more endpoints. To
identify these endpoints we associate with each point p; of B;
a principal component direction of the set of points NV, in a
local neighborhood around p;, and we identify as endpoints
those points p; which are extremal according to the principal
component direction in their local neighborhood N,,.. We use
a moving least squares (MLS) algorithm [28] to compute the
local principal component directions. The example shown in
Fig. 6 illustrates a component C; with the set of boundary
triangles B; and the four endpoints p,...,ps identified by
our algorithm.

In the next step of our fundi extraction algorithm we run
for each component C; a surface thinning algorithm. Take
those triangles of the boundary strip B; that correspond to
the computed endpoints p; and add them to an initial skeleton
list S;. Then repeat the following two steps until all triangles
of the component C; have been processed:

1) Find the triangle A of B; with the least depth.

2) If removing A would change the connectivity of the
mesh, then add A to the skeleton list S;. Else, we remove
A from the list of boundary triangles B; and add the
edge neighbor triangles of A to B;.

The result of the thinning algorithm is the skeleton .S; of
each connected component C;;, which is made up of connected
strips of triangles. We then use a minimum spanning tree
algorithm [29] to construct the tree structure of S;. The
longest non-branching path within the tree can be calculated by
iteratively discarding the shortest branch leaving each vertex
that has degree greater than two until only vertices of degree
one and two remain. The thick 3D curve in Fig. 7 illustrates
the longest non-branching path for the component shown in
Fig. 6 (the other fundal branches for this component are
not shown). By connecting the barycenters of the triangle
strips we get our initial fundi curves. In Fig. 8 we show
all automatically extracted fundi as thick 3D curves, where
the color corresponds to the geodesic depth (blue is shallow,
yellow is medium, and red is deep).

b2

Fig. 7. The longest non-branching path (illustrated as a thick 3D curve c)
for the component shown in Fig. 6 runs from endpoint p; to endpoint pa.

E. Sulcal Fundi Smoothing

The extracted sulcal fundi are so far only polygons connect-
ing the barycenters of the extracted triangle strips. We smooth
these polygons by an algorithm that minimizes a counterpart
to the cubic spline energy for curves on surfaces. For that
purpose we extend the algorithm of [30] to weighted spline
curves ¢(u) in manifolds, minimizing the energy

co- [

under the constraint that ¢(u) is on a surface. If we want the
curve to stay in the deep part of the sulcus, then we have to
choose a small weight w for these regions. This is achieved
by choosing the weight w as a function depending on the
computed geodesic depth d(c(u)) at the curve point c(u),

1

w(e(w)) := T d(e(a))™

The weight so defined is locally smaller for the fundi area
than for the remaining sulcal region with shallower geodesic
depth. The basic idea of the smoothing algorithm involves
interleaving the steps of numerically minimizing the energy
of a weighted spline curve and projection of the curve to
lie on the mesh surface. A detailed analysis for splines on
manifolds (without weights) is given in [30]. Here we present
the extension to weighted splines using a straightforward
optimization procedure for minimizing (1) with a projected
gradient descent algorithm.

We consider a polygon p = (p1,p2,...,pK), Which is
an ordered sequence of K points p; € R3, as a discrete
curve representing a sulcal fundi. Furthermore we have an
associated sequence of weights (wi,...,wy). The weight
wy, == 1/(14d(px)®) belongs to the point p;, whose geodesic
depth is d(py) and we set « = 2. In the present application, the
polygon always has two endpoints and all polygon vertices are
constrained to lie on the pial surface S. We want to minimize
the discrete version of the energy (1) under the nonlinear side
condition that the polygon p is constrained to S. The discrete
energy F(p) is given by

w(e(w))llé(u) | *du, M

K
E(p) = > wi| A%,

)
k=1
where the second difference vector is given by
A’pi=pr1 = 2ok +prs1, (1<k<K), )
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Fig. 8. All automatically extracted sulcal fundi illustrated as thick 3D curves
for the brains of Fig. 2: Front and top view. The color visualizes geodesic
depth. To better see all fundi curves we do not show the pial surface.

and we set A%p; = A?pg 0. We collect all second
difference vectors in a second difference polygon of length
K’

A?%p = (A2pl7 A%ps, ..., AQpK). )

We define qi, := wi(pr—1—2pr+pr+1) for 1 < k < K. Using
this notation the gradient VE(p) of the energy function E(p)
can be written as

VE(p) = 2(¢2,—2¢2 +q3,qk—1 — 2q + qr+1,
qK—2 — 20K -1,qK-1), ®)
where £k = 3,..., K — 3. Let us now compute the optimal
stepsize s for the current descent direction ¢ = —VE(p).

Note that the energy function E(p + sq) for p and ¢ fixed is
a quadratic function in s. A simple calculation shows that the
optimal choice of s is given by

(A%q, A%p)
T A% A
where the second difference polygon AZp is defined in (4)
and AZ2q is defined completely analogous; (-,-) denotes the
standard scalar product in R3%.

Geometrically we interpret the gradient VE(p) as a se-
quence of vectors vq,...,vx that are attached to the points
p1,-..,pK of our polygon. Since we want to minimize the
energy of the polygon p under the nonlinear constraint that p
lies on the surface S, we project the vectors vy, into the tangent
spaces of S at pi. Given two unit length basis vectors ay, by
of the tangent space at each point py, the projected vectors
are 1}%1 = (ak,vk>ak + <bk, ’Uk>bk.

Now the polygon for the next iteration step is obtained by
projecting the points py + sv{ back onto the surface S. For
those points that shall be kept fixed we simply set vg = 0.
In Fig. 9 we compare typical fundi polygons before and after
smoothing. For better comparison we only show the vertices
of the polygon.

6

Fig. 9. Surface constrained sulcal fundi smoothing illustrated for typical
fundi: Black dots indicate the points of the fundi polygon after extraction (e)
and after smoothing (s). Note for example the regions inside the circles.

ITII. DATA ANALYSIS AND EVALUATION

The Imm cubic T1-weighted MRI human brain volumes
that we used for evaluating our algorithm were acquired at
the Montreal Neurologic Institute and provided to us by Dr.
Alan C. Evans.

A. Evaluation of our Algorithm

For the six brains that we use for analysis, the extracted pial
surfaces consist of an average number of 392455 triangles per
hemisphere with a standard deviation of 10047. On average
the area of the outer hull surface compromises 37.1% of the
area of the pial surface (with a standard deviation of 0.0061%).
The maximum geodesic depth of the sulcal regions assumes
for the six brains a mean value of 38.36mm with a standard
deviation of 2.30mm. By using a threshold of dp = 2.5mm
the extracted sulcal regions (see Sect. II-D) compromise a
mean 66.7% of the pial surface with a standard deviation of
0.008% (for 6 brains). The average geodesic depth of the sulcal
regions for the six brains has a mean value of 11.73mm with
a standard deviation of 0.17mm.

As mentioned in Sect. II-D, we next find the connected
components in the sulcal regions. For the six brains we use
in our study, the average number of sulcal region components
per hemisphere (for dpr = 2.5mm) is 43.25 with a standard
deviation of 3.54. However, several of these components only
consist of a few triangles and are therefore not useful for
further processing. We discard all components that have less
than 50 triangles which leaves us with an average number
of 33.5 (and a standard deviation of 4.03) components per
hemisphere. Note that the threshold dp is not critical for
our algorithm. By using a smaller value the fundi endpoints
we find move closer to the outer hull. A larger threshold
will move the fundi endpoints further inward and return
more components per hemisphere. However, e.g., the olfactory
sulcal fundi is rather shallow and will be missed if dr is too
large. It is interesting to note that the sulcal regions are highly
connected:

« the largest component compromises an average 62% of

the sulcal regions (with a standard deviation of 12%), and

« the largest five components compromise an average 86%

of the sulcal regions (with a standard deviation of 5%).
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Fig. 10. (Left) The 6 sulcal fundi manually-labeled by an expert anatomist

on each of the brain hemispheres for a single brain. (Right). The sulcal
fundi automatically extracted by our algorithm closest to the manually marked
voxels shown as black dots. The symbol X marks areas where the extracted
pial surface obviously is incorrect.

Note that the number of components per se is not relevant
for our algorithm. However, the small number of components
that make up a large part of the human brain indicate the inter-
connectedness of the sulcal regions. Our sulcal fundi extraction
algorithm preserves these connections. Our algorithm returns
a rich set of automatically-extracted sulcal fundi which are
illustrated in Fig. 8 in top and front view as thick 3D curves,
where the color indicates the geodesic depth.

Remark. To use our automated extraction technique for
applications where two endpoints for each fundal landmark
are explicitly required, one could proceed as follows: After
our large network of sulcal fundi has been extracted and
smoothed on the pial surface, one could interactively mark
the two endpoints of as many fundi curves as needed and
then use the such chosen curves as landmarks for downstream
applications in Computational Anatomy.

B. Comparison of Automatic to Manual Results

We analyzed the performance of our algorithm on six brains
by comparing a subset of the extracted fundi with fundal
traces marked by two expert anatomists, who indicated a set
of voxel locations corresponding to the fundi of 12 major
sulci (6 per brain hemisphere) on the MRI image volumes.
Those major sulcal fundi are the calcarine, central, olfactory,
precentral, superior frontal, and temporal in each hemisphere,
see Fig. 10. The manual labeling is usually carried out in the
MRI volume data and thus the manually marked voxels are in
general not lying on the extracted pial surface. For landmark-
based surface warping, the manually marked fundi are usually
projected onto the pial surface. Thus, for comparison of our
automatic results to the hand-marked ones, it makes sense to
also perform this projection. In the following we denote an
automatically extracted fundi point by p,, a manually marked
fundi point by p,,, and the projection of p,, onto its closest
point on the extracted pial surface by ps, see Fig. 11 (left).
Then we adopt, as a basic unit of error, the Euclidean distance
r=[lps = pall-

Since the set of manually marked sulcal fundi is not
intended to be exhaustive in any sense, our basic notion of

r

DPa Pm

Fig. 11. (Left) We compute the closest points ps of manually-labeled voxels
Ppm on the pial surface S, and then measure the distance r = ||ps — pq|| to
the automatically extracted points p,. (Right) The two images illustrate the
cortical surface in relation to the brain parenchyma, a manually-labeled point
Pm, and an automatically-labeled point p, on the fundus of the left superior
temporal sulcus.

performance for this experiment is the extent to which for
all manually labeled points p,, the error r is small. Aside
from any potential shortcomings in our definition of sulcal
depth and fundal location, there are several possible other
reasons for geometric divergence. These reasons include errors
in the underlying extracted mesh surface (see the symbol X
in Fig. 12) and errors in the manual labeling (see the circled
areas in Fig. 12).

In Figure 13 we illustrate the manual fundi labeling process
at hand of several consecutive slices of the MRI volume
data for the central sulcus. Figure 14 displays the frequency
histograms of the error r = ||ps — p,|| for different brains and
two different raters (experts). The histograms show that there
are outliers with large values of r up to 12mm, although the
total number of such outliers is small. The numbers n,no of
manually-labeled voxels p,, in each of the six brains, and the
total percentages mi,my of points p,, for which » < 2mm
are given in the following table (the first two rows are rater 1,
and the second two rows are rater 2; the columns correspond
to the six different brains).

ny || 639 | 663 | 604 | 578 | 594 | 611
my || 77% | 83% | 66% | 77% | 78% | 70%
ng || 632 | 639 | 641 | 577 | 614 | 638
meo || 69% | 62% | 63% | 79% | 73% | 73%

Following a careful examination of the automatic and man-
ual labeling results, we can conclude that most of the errors
arise for one of two reasons:

(1) An erroneous manually-labeled point. The sulcus pen-
etrates deeply into the brain, and the fundus is difficult to
visualize on the traditional three orthogonal planes. In Fig. 11
the automatically-labeled point, which lies on the fundus, is
approximately 8mm away from the manually-labeled point,
which lies above the fundus. Clearly our automatic algorithm
outperforms the manually-labeled one in this case.

(2) The sulcus is extremely curvaceous, and the manually-
labeled points are not contiguous because of the difficulty of
identifying the sulcus on the three orthogonal planes. This
is illustrated in Fig. 12, where we visually compare the
automatically extracted fundi of two different central sulci to
the manually obtained results by two different raters. If the
sulcus is perpendicular to the plane of section, the manually-
labeled points are quite accurate; however, if the sulcus is
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rater 2

Fig. 12. Comparison of the automatically extracted fundi (thick curve) with
the manually marked voxels (black dots) for two different central sulci. Note
the different results of the two raters and that both miss the middle part marked
by a circle (which happened in all six brains we looked at). The symbol X
marks an error in the extracted pial surface.

Fig. 13.
of the original MRI volume: If the sulcus is parallel to the plane of section,
manual-labeling may miss points in the areas indicated in Fig. 12.

Manual labeling of the central sulcus fundi in 6 consecutive slices

parallel to the plane of section (see Fig. 13), the manually-
labeled points may be far from each other in three dimensions.
For the central sulci of Fig. 12 this is especially true for the
curvaceous middle part which both raters miss consistently.

To give a more detailed analysis per major sulcal fundi
we give the results of our comparison in the next table. The
mean values per major sulci are taken over six brains for two
different raters. We denote by 7 the mean of the number n
of handmarked voxels per sulcal fundi, by 7 the mean of the
distance value r, and by m the mean of the total percentage
of voxels for which r < 2mm. Further, by o) we always
denote the corresponding standard deviation.
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Fig. 14. The histograms of r» = ||ps — pa|| for three different brains. The
horizontal axis is r and the vertical axis is the number of fundi points. The
two rows show the results for the same brains for two different human raters.

Fig. 15. (Left and middle) The 6 sulcal fundi manually-labeled by two expert
anatomists overlaid for six different brains: calcarine A, central C, olfactory
O, precentral P, superior frontal SF, temporal T. (Right) All automatically
extracted fundi overlaid for six different brains.

calc. | cent. | olfa. | prec. | supe. | temp.

n || 545 | 63.5 | 457 | 155 | 484 | 820

on || 42 | 3.8 | 43 40 | 109 | 100
T 1.0 1.1 1.0 1.8 2.5 24
oy 04 | 04 | 04 | 09 0.8 0.6

m || 86% | 86% | 87% | 63% | 52% | 55%

om || 9% | 9% | 9% | 28% | 19% | 11%

The results suggest that it is more difficult to manually mark
the precentral, superior frontal, and temporal sulcal fundi, than
it is to manually label the calcarine, central, and olfactory
sulcal fundi. Figure 15 shows overlaid axial projections for
extracted fundi from six different brains as given by two raters
and our automated procedure. Note that the raters’ explicit
task was to label voxels corresponding to only six named
sulci per hemisphere and this task required approximately
12 hours per brain volume, while our automated procedure
returns spline curves for all locations that correspond to our
geometric/algorithmic definition of sulcal fundi.

To conclude, our detailed examination of individual cases
of high divergence between the automatically and manually
labeled fundi, showed that these cases are generally due to
either errors in the surface mesh extraction or errors in the
manual labels, not in the automatic fundal extraction procedure
we propose. The automatically extracted fundal curves are
similar to the “gold-standard” fundal outlines defined manually
by the anatomist. If the extracted pial surface is correct, then
the automatic results look more accurate than the manually-
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labeled ones.

IV. CONCLUSIONS AND FUTURE RESEARCH

In this paper we proposed a geometric approach for the
automatic extraction of sulcal fundi. This approach provides
a novel definition of fundal depth and extracts the fundi as
curves lying on a triangular-mesh representation of the pial
surface. Extraction of the curves directly on the pial surface
is useful for downstream applications that employ sulcal
fundi as anatomic landmarks for surface-based intersubject
registration. We analyzed the performance of our algorithm
on six T1-weighted MRI brain volumes in which major sulcal
fundi were manually labeled by expert anatomists. Our results
demonstrate that the algorithm is robust, stable, and consistent
with anatomical theory. Future research includes the use of
an extracted network of fundal curves, perhaps enriched with
the corresponding geodesic depth, as boundary conditions for
surface-based brain warping algorithms.
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