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Preface

This volume contains the proceedings of the Industrial Mathematics Modeling Workshop for Graduate Students
that was held at the Center for Research in Scientific Computation at North Carolina State University (NCSU),
Raleigh, North Carolina, July 22 - July 30, 2002. This workshop which was the eigth one held at NCSU brought
together 39 graduate students. These students represented a large number of graduate programs including

Auburn University, Brown University, California State University, Fullerton, Clemson University, Duke
University, Georgia Tech, Michigan State University, Mississippi State University, Montana State University,
NJ Institute of Technology, North Carolina State University, Northeastern University, Southern Methodist
University, SUNY at Stony Brook, Texas Tech University, UCLA, UNC Chapel Hill, UNC Charlotte, UNC
Wilmington, University of Illinois at Chicago, Universität Mainz, University of Maryland at College Park,
University of New Hampshire, University of South Florida, University of Toledo, University of Waterloo, Utah
State University.

The students were divided into seven teams to work on “industrial mathematics” problems presented by
industrial scientists. These were not the neat, well-posed academic exercises typically found in coursework, but
were challenging real world problems from industry or applied science. The problems, which were presented to
the students on the first day of the workshop, required fresh insights for their formulation and solution. Each
group spent the first eight days of the workshop investigating their project and then reported their findings
in half-hour public seminars on the last day of the workshop.

The following is a list of the presenters and the projects they brought to the workshop.

• Lawrence “Robbie” Robertson (US Air Force Research Lab, Kirtland AFB) Design of a membrane
aperture deployable structure

• Pamela J. Williams (Sandia National Laboratories) Energy consumption and interference in the BART
system

• Fred Parham, Chris Portier, Shree Whitaker (NIEHS) Mathematical Modeling of Comparative
Initiation/Promotion Skin Paint Studies of B6C3F1 Mice and Swiss CD-1 Mice.

• Farshi Guilak (Orthopaedic Research Laboratories, Dept. of Surgery, Duke University Medical Center)
Mathematical models for articular cartilage: molecular diffusion in photobleaching experiments and signal
transmission in a chondron

• Yu Chen (Summus, Inc) Recognizing sand ripple patterns from side-scan sonar images

• Tony Royal (Jenike & Johanson, inc) Surface profile of granular material around an obstacle

• S. Stanley Young (CG Stat) Predictive toxicology: benchmarking molecular descriptors and statistical
methods

These problems represent a broad spectrum of mathematical topics and applications. Although nine days
is a short time for a full investigation of some of the aspects of such industrial problems, the reader will observe
remarkable progress on all projects.

We, the organizers, strongly believe that this type of workshop provide very valuable non-academic research
related experiences for graduate students while contributing to the research efforts of industrial participants.
In addition, this type of activity facilitates the development of graduate students’ ability to communicate and
interact with scientists who are not traditional mathematicians but require and employ mathematical tools in
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their work. By providing a unique experience of how Mathematics is applied outside Academia, the workshop
has helped many students in deciding what kind of career they aspire to. In some cases in past workshops,
this help has been in the form of direct hiring by the participating companies. By broadening the horizon
beyond what is usually presented in graduate education, students interested in academic careers also find a
renewed sense of excitement about Applied Mathematics.

The success of the workshop was greatly enhanced by active participation in a very friendly atmosphere and
almost uninterrupted work during the nine days of attendance. The organizers are most grateful to participants
for their contributions. The organizers would like to thank the National Science Foundation (Grant DMS-
0204515), the Center for Research in Scientific Computation and the Department of Mathematics at North
Carolina State University for their generous financial support. Special thanks are due to the faculty and staff
of the Center for Research in Scientific Computation, the Department of Mathematics and North Carolina
State University for the provision of excellent facilities and services. Finally, we would like to thank Brenda
Currin, Kathleen McGowan and Rory Schnell for their efforts and help in all administrative matters. We are
also grateful to Brian Lewis and Michael Zager for their help in providing transportation for the participants
and to Terry Byron from the Department of Statistics for helping with setting up working computer accounts.

Pierre Gremaud, Zhilin Li, Ralph Smith, Hien Tran,
Raleigh, 2002.
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Design of a membrane aperture

deployable structure

Joerg Enders1, Said Kas-Danouche2, Wenyuan Liao3,
Bryan Rasmussen4, Tai Anh Vo5, and Karen Yokley6

Problem Presenter:
Lawrence “Robbie” Robertson

US Air Force Research Lab, Kirtland AFB

Faculty Consultant:
Ralph Smith

North Carolina State University

Abstract

Ultra-lightweight, membrane primary mirrors offer a promising future for space telescope technology. However,
the advantages of the lightweight structure of the mirror are restricted by an extremely high susceptibility to
microyield. Hence, careful packaging of the membranes is required when transporting mirrors of this type into
space. Four packaging models, a cylindrical roll, an umbrella model, a multi-cut model and a single cut model,
are presented and compared with each other. Factors such as curvature of the compressed membrane, stability
after deployment, and the size of the launch vehicle are considered. All four packaging models appear to be
feasible with certain materials and hence warrant physical testing.

1.1 Introduction and Motivation

As described in [2], there has been a dramatic improvement in technologies and concepts for large telescopes for
both ground and space applications. However, the act of launching objects into space poses specific constraints
on the structure and deployment of the cargo transported. Due to the high launch cost, ultra-lightweight,
membrane primary mirrors have long been sought after by both NASA and the Department of Defense as a
technology that could realize large aperture systems with low areal densities. Research on membrane structures

1Michigan State University
2New Jersey Institute of Technology and Universidad de Oriente, Venezuela
3Mississippi State University
4Georgia Institute of Technology
5California State University Fullerton
6North Carolina State University
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2 REPORT 1. DESIGN OF A MEMBRANE APERTURE DEPLOYABLE STRUCTURE

primary mirror

secondary mirror
D

Figure 1.1: Schematic representation of membrane mirror system.

has culminated in the fabrication of meter-class lightweight structures with optical quality surfaces. These
membranes are 10-100 microns thick and have surface qualities usable in visible spectrum applications, but
the available structures that provide boundary support are so heavy that they eliminate the benefit derived
from such lightweight apertures. Since these membranes must maintain an extremely high surface quality after
release into space, the membranes cannot be packaged in ways that deform their shape outside an extremely
small acceptable range. Thus, many factors must be taken into consideration when planning the folding of
such membranes.

A sketch of a prototypical telescope used to resolve objects is provided in Figure 1.1. As the length of the
diameter of the primary mirror increases, so does its power of resolution. Currently, the size of such telescopes
has been bounded by the size of the rocket. More recently, however, researchers have begun to consider ideas
regarding packaging methods that would enable the compactification of much larger mirrors without creating
damage beyond desired accuracy. In order to attain the successful packaging of a large mirror, one must
carefully consider the size of such an aperture, the size of the launch vehicle, the ease of deployment of the
membrane into space, stability, the curvature of the folding method, as well as the allowable deformation of
the material after being compacted.

Four different compacting schemes are considered in the following analysis. These schemes include folding
arrangements for an uncut aperture as well as arrangements that require cutting the aperture at certain places.
The radius of curvature necessary for each folding will be evaluated and compared to the minimum radius of
curvature allowed by potential aperture materials.

1.2 Cylindrical Roll

As stated in the introduction, one goal of any membrane folding is to assure that it fits into the rocket. In
this section and in Section 1.3, two ways to compress the membrane without cutting it are developed while
noting that control of the maximal curvature is necessary.

The usable surface of the membrane also cannot be too small in order to guarantee a good resolution.
The mathematical tool to compute whether the effective size of a membrane is sufficiently big is based on the
Modulation Transfer Function (MTF ). Consider the doubly curved membrane as depicted in Figure 1.2. Let
D be the diameter of the aperture when projected into the xy−plane, and let d be the diameter of the hole in
the membrane. If the matrix M has an entry of one wherever there is membrane material and zero elsewhere,
the resulting Autocorrelation Function computes the convolution of M with itself. Dividing this matrix by the
number of ones in M yields the MTF of M . If the MTF value at a point inside the perimeter of the original
shape falls below 20%, it becomes difficult or even impossible to resolve certain objects. In Figure 1.3 values
under 20% are black. Once those parts intrude into the black circle representing the size of the disk, the size
of the surface is too small. In the case of the washer, d needs to be smaller than approximately 0.5D in order
for the mirror to have a sufficient resolution. (Remark: In Figure 1.3 and later figures of the MTF , only the
center part of the MTF matrix, which is the relevant part, is plotted.)
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Figure 1.2: Doubly curved membrane.

Figure 1.3: The MTF of the membrane matrix M for d = 0.1D, d = 0.5D, and d = 0.6D.
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D

d

Ri Ro

L

L

L

D

h

l
aperture

α

(a) (b)

Figure 1.4: Cylindrical roll (a) and computing the different radii of curvature of the cylindrical roll (b).

Since the optimization of the total aperture weight is also desirable, the maximum d (i.e., d ≈ 0.5D) is used
in this and most of the other sections. However, one might want to go with a smaller d in order to increase
stability.

When trying to find a way to fit the membrane into the rocket, probably the most straightforward idea is
to roll the membrane once as drawn in Figure 1.4(a). If the membrane were flat, pulling two opposite sides
of the aperture together would result in a cylindrical roll. In reality a more complicated shape would result
because the mirror is doubly curved. Computation of the the maximal radius of curvature for this cylindrical
roll begins by considering the radius Ri of the inner circle.

Assume that the aperture can be looked viewed as a circle, even if in fact it has a parabolic shape.
This is reasonable as long as the radius of curvature L of the mirror is much bigger than its diameter D.
From Figure 1.4(b) it follows that

α = sin−1 D

2L
.

Therefore the arc length once across the membrane is

` = 2αL

and hence

Ri =
αL

π
=

L

π
sin−1 D

2L
. (1.1)

From Figures 1.4 (a) and (b) one can see that when rolling the membrane, the outer radius of curvature
Ro is bounded below by

Ro ≥ Ri − h

where

h = L−
√

L2 − D2

4
.

Therefore the highest curvature will appear at the outside of the roll. Hence, for the minimal radius of
curvature Rf = min{Ro, Ri} = Ro of the cylindrical roll, the estimate

RF ≥ L

π
sin−1 D

2L
− L +

√

L2 − D2

4
(1.2)
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Figure 1.5: Cross-section of the folded umbrella (a) and analysis of the folded umbrella (b).

holds. Since the material can only sustain a limited curvature due to optical constraints, (1.2) sets bounds on
L and D (See Section 6.4).

Finally, consider the constraint that the folded membrane has to fit into the rocket, and let Rrocket be the
radius of the rocket. It follows from (1.1) that if the cylindrical roll is in an upright position, this condition is
satisfied if

Rrocket ≥ Ri =
L

π
sin−1 D

2L
. (1.3)

Clearly the height of the roll is given by D.

If, for example, the rocket has radius Rrocket = 2 m and the mirror has radius of curvature of L = 20 m,
then we can send a membrane mirror of 12.3 meters into space using the cylindrical roll.

1.3 Umbrella

The umbrella design, while one of the easiest to assemble, is also one of the least compact. Simply put,
this design is a doubly-curved washer, folded down an axis through the center like an umbrella. The only
action required to unfurl it is a one-dimensional slide along a rod. Like the cylindrical roll, the umbrella
design requires no cuts of the material and can therefore tolerate a large inner diameter while maintaining a
sufficiently dense modular transfer function.

Of course, there is no canonical way to fold a circular, doubly curved washer along the inner wall of a
cylinder, so this design requires a choice of folding patterns. The following discussion is an analysis of one
particular – and particularly straightforward – choice of folding geometry, but others may be more efficient.

Figure 1.5(a) shows a cross-section of the folded mirror with the proposed folding geometry. It is a set of
nine circles arranged in a ring, with nine circles on the outside of the ring. As discussed below, this design may
accommodate more or fewer circles, depending on the compactness requirements. The folded mirror weaves
through the circles in a natural pattern, as indicated by the solid lines. Figure 1.6 shows a diagram of a full,
three-dimensional, compressed mirror.

The use of circles in the folding pattern makes the overall shape easy to analyze. Figure 1.5(b) shows an
expanded region of a cross section of the folded design. Let N be the total number of circles in either the
inner or outer ring, and let D, d, and Rrocket be defined as in Section 1.2. A few trigonometric computations
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Figure 1.6: The folded umbrella

yield the angles and lengths

α =
2π

N
(1.4)

β =
5π

3
(1.5)

γ = π

(

1

3
+

2

N

)

(1.6)

L = R
(

1 +
√

3 + cot
π

N

)

. (1.7)

Thus, the arc length from point 1 to point 2 is πR (5/3− 2/N) and the arc length from point 2 to point 3 is
5πR/3. The total arc length is

s = NπR

(

10

3
− 2

N

)

. (1.8)

The number of folds, N , should be as small as possible in order to keep the minimum radius of curvature, RF ,
as large as possible.

Two geometrical constraints determine the minimum N . First, the total arc length at the bottom (i.e.,
the widest part) of the umbrella must be πD. Second, the folded design must fit inside a payload bay with
radius, Rrocket, so L ≤ Rrocket, again at the bottom of the umbrella. The constraints, together with (1.7) and
(1.8), show that N must be large enough to satisfy

Rrocket ≥
D

(

1 +
√

3 + cot(π/N)
)

(10N/3− 2)
. (1.9)

In order to support the membrane properly, N should be at least 5, but this does not usually constrain
the design, since the size of the payload bay dictates that there be at least 8-9 folds in most cases.
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Figure 1.7: Design parameters versus D.

The total arc length on top is πd, so (1.8) gives the minimum radius of curvature

RF =
d

(10N/3− 2)
. (1.10)

In summary, the design algorithm for the folding umbrella can be summarized as follows:

• Start with a given D and Rrocket. Choose d to be as large as possible while still satisfying the required
optical properties (usually d ≈ 0.5D).

• Use (1.9) to compute the minimum N required to fit the umbrella into the payload bay.

• Use (1.10) to compute the minimum radius of curvature at the top.

• This will dictate the material composition and maximum thickness of the membrane.

Figure 1.7 shows the behavior of N and RF as functions of D for d = 0.5D and Rrocket = 2 m.
Clearly, the number of folds becomes too large and the minimum radius becomes too small as D grows

above 15 m. The reason for this is that the design uses only circular folds, whereas other choices might be
more efficient in other situations.

Figure 1.8, for example, shows a cross section at the bottom of the umbrella for Rrocket = 2 and D = 18,
which together force N = 57. The circular folds in this case are obviously inadequate, since the center of the
cross section is an large open space with no material, while the folds form a highly twisted perimeter.

Therefore, for larger mirrors, other choices of folding patterns besides circles – such as stacking more layers
of circles, using ellipses, etc., – are superior. As the folding patterns become more complicated, analysis of
the design becomes more difficult.

1.3.1 Folding Pattern that Does not Work

To illustrate the possibility of other folding patterns, consider one choice that turns out to be inadequate. Let
ro, p, and θ be a fixed radius, a fixed integer, and an angular coordinate respectively. Define a cross-section
of the umbrella as the image of a parameterized curve given in radial coordinates by

x(θ) = (r0 + ρ sin(pθ), θ). (1.11)

The sine function applied along a circle becomes very sharp near the origin, thus inciting an unacceptably
small radius of curvature. For example, consider Rrocket = 2 and D = 10, with p = 10. Then setting r0 = 1.25
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Figure 1.8: Failure of the circular folding pattern.

Small R
F
 

Figure 1.9: Parametric sine folding pattern.

at the bottom of the umbrella seems reasonable. The total arclength of the cross-sectional curve must be πD,
which leads to a value of ρ = 0.74.

Figure 1.9 shows what happens next. A ring on the outside indicates the dimension of the payload bay,
and the inner curve is the wrapping pattern. As the picture shows, the minimum radius of curvature that
occurs nearest the origin is untenable. In fact, it has a closed-form representation:

Rmin,curve = min

{

(r0 + ρ)
2

r0 + ρ + ρp2
,

(r0 − ρ)
2

r0 − ρ− ρp2

}

. (1.12)

The minimum radius of curvature of the parametric curve with the given values is about 0.035 m – obviously
too small for most materials.

1.4 Multi-cut Model

This section contains the analysis of a model which consists of dividing the membrane in N parts and then
rolling them such that they can fit inside the rocket.

1.4.1 Analysis of one piece of the membrane

The multi-cut configuration is illustrated in Figure 1.10. Basically, N number of cuts are made along a diameter
of the lens, from the outer disk to the inner one. This particular configuration allows an excellent original-to-
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Figure 1.10: The multi-cut mirror with N = 5.

Table 1.1: Radius of curvature of each piece for different values of N (the number of pieces) and D (the
aperture diameter)

N Radius of curvature for D = 10 Radius of curvature for D = 20
2 1.59154943091895 3.18309886183791
3 1.37832223855448 2.75664447710896
4 1.12539539519638 2.25079079039277
5 0.93548928378864 1.87097856757728
6 0.79577471545948 1.59154943091895
7 0.69054741807754 1.38109483615507
8 0.60905959900277 1.21811919800554

packaged compression ratio, and thus larger lens would fit into current launch vehicles. The analysis of this
configuration is not complicated and begins by reducing the three-dimensional lens down to a two-dimensional
circle. This simplifying assumption is reasonable since the original three-dimensional lens curvature is low for
telescope and focusing mirror applications.

As shown in Figure 1.10 and Figure 1.11, after a cut is made, the piece is rolled along chord S to form a
shape that is circular near its bottom but somewhat parabolic at the top. The whole folded piece now looks
like a cylinder with a diagonal part removed. The top portion probably would naturally go into a state of
lowest energy, and the implication is that the curvature of the top is not high enough to cause concern. The
bottom circle is where greatest curvature Kb will occur. This Kb can be expressed as

S = 2πRb = D sin(π/N)

Rb =
D

2π
sin(π/N)

Kb =
1

Rb
=

2π

D sin(π/N)
,

where N is the number of cuts, N > 1, and Kb is the curvature value at the bottom of the rolled up piece.

Since natural stability of the lens after deployment is a consideration, a large value of N would not be
advantageous in that regard. However, cutting the lens into a large number of pieces does have its merit.
When N goes past a certain value, pieces no longer need to be rolled for them to fit into the launch vehicle,
and therefore curvature is no longer a consideration. For this particular configuration, a relatively small N in
the range of three to eight was considered. Values of Rb for different N are summarized in Table 1.1.
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S = 2Rsin(       )π/Ν

π/Ν π/Ν

R

Aperture

Figure 1.11: A single piece of the multi-cut mirror, viewed flat.
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Figure 1.12: The MTF of the multi-cut mirror

Regarding the criterion concerning the modulation transfer function (MTF ), Figure 1.12 shows that our
lens achieves an overall value of 20% or better. Stability of the multi-cut model is questionable, but discussion
of the natural frequencies of the mirror will not be presented here. To insure maximum stability for the multi-
cut configuration, set the thickness, t of the material as high as possible. Curvature restraints dependent on
thickness are contained in Section 6.4.

1.4.2 Packing and Deploying Procedure

The last subsection contained an analysis of each piece of the membrane, and the radius of curvature versus
the maximum curvature of the material and the rocket radius can be used to decide the number of cuts to
make in each membrane. Here, steps required in the packing and deployment procedure for the multi-cut
model are summarized.

First the membrane is cut in N parts. Each part has a mechanism attached which acts as a sliding
track. This will allow each membrane part to slide over the one next to it. This action is very similar to the
mechanism used in sliding door closets. A string which connects and keeps all parts together goes through the
holes on top of each sliding track. One part slides on top of the next one, then this set of two parts slides on
top of the next part, and so on in successive process until all parts are in one stack. Figure 5.4 shows a stack
of the membrane parts.
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Figure 1.13: Stack of membrane parts.

Figure 1.14: General view of all parts after the rolling process.

In the next step the membrane parts are rolled from top to bottom in such a way that the outer corners
of the first part (on top) will touch each other, almost forming a cylinder. Next the other pieces roll around
the first piece in a similar fashion.

A diagram of the whole set after the rolling process can be seen in Figure 1.14. A new concern appears
in this process of packaging; the curvature of the most inner rolled part must satisfy the maximum curvature
criteria, and the radius of curvature of the outermost rolled part must be less than the rocket radius.

In order to recover the original membrane, the unfolding proceeds in an inverse way: all the parts unroll
and each part slides in the opposite direction as in the original packaging process. Finally, the string will
tighten the separate pieces together.

1.5 The Single Cut Model

Cutting the disk in one place and then rolling the resulting strip around itself is another folding possibility. A
sketch of the rolling model is contained in Figure 1.15. The single cut in the membrane can be described as
a small width removed radially from the circle when evaluating the MTF , and the resulting information can
be used to determine the largest usable diameter, d, for the hole in the center of the mirror. Using the largest
possible d will help lower the radius of curvature of rolling the mirror around itself because the roll will likely
have the highest curvature near the hole of the membrane. With only one cut, the mirror can retain more
stability than in the multi-cut packaging scheme, but it obviously loses some of the stability of the original,
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Figure 1.15: The single cut mirror rolled around itself.

Figure 1.16: MTF of the aperture with D = 10 m and d = 5 m and d = 5.5 m, respectively.

uncut mirror in the umbrella and rolled folding patterns. Also, the single cut mirror rolled around itself would
easily return to its original shape when released into space without the need of such elaborate support systems
as in the multi-cut model.

A matrix describing the usable surface of the aperture can be generated and then sent to the MTF . A
generous width of 0.3m was used to simulate the single radial cut for the MTF in order to estimate the
maximum usable d.

The MTF of the matrix of an aperture with overall diameter 10 m and inner diameter 5 m is shown in
Figure 1.16 on the left, and the MTF of an aperture with overall diameter 10 m and inner diameter 5.3 m is
on the right. According to the MTF , a hole of diameter 5 m is acceptable, but black spots appear within the
circle of the MTF on the right showing that a 5.3 m diameter for the inner circle is not feasible. A similar
result is observed if D = 20 m and d = 10 m and d = 10.7 m, respectively, as shown in Figure 1.17. The
maximum value of d for an aperture with a single cut appears to be close to 0.5D as in Section 1.2. Hence,
the single cut does not seem to greatly affect the MTF .

Although the actual mirror would probably retain a parabolic shape when rolled, estimates for the curvature
of rolling the mirror are quite easy to compute when considering the overall shape as a cone. The original
curvature of the mirror is ignored when considering different lengths in the geometry of the cone model (see
Figure 1.18). To insure that the cone fits within the rocket, Rb (the radius of the base of the cone) can be set
equal to Rrocket. Further, Rt (the radius of the top of the cone) can be used as an estimate of the smallest
radius of curvature in this packaging model, and hence, using similar triangles,



1.5. THE SINGLE CUT MODEL 13

Figure 1.17: MTF of the aperture with D = 20 m and d = 10 m and d = 10.7 m, respectively.
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Figure 1.18: The geometry of the cone model.

Rt

d
=

Rrocket

D

⇒ RF ≈ Rt =
d

D
Rrocket.

Hence, the maximum curvature of rolling the mirror around itself can be estimated using the known constraint
of rocket size, the diameter of the overall mirror, the diameter of the hole in the aperture found from the MTF ,
and simple geometry. Further, the inside of the rocket has known radius Rrocket = 2 m, and an estimate for
Rt can be computed using the results from the MTF . Hence,

Rt ≈ 2 · d

D

≈ 2 · D/2

D
= 1,

and further, RF ≈ 1.
One could consider other single cut packaging methods, such as using a parabolic function instead of a

cone or stretching the mirror out into more of a spiral. The parabolic idea does warrant more study, but a
spiral wrapping scheme may require too high a curvature for any accessible materials.
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Table 1.2: Minimum allowable radii of curvature for different materials and different widths for the cylindrical
roll, single cut, and multi-cut models.

thickness (t) RF for 2014-T6 Aluminum RF for I-400 Beryllium RF for 304 Stainless Steel

10µm 0.0012 m 557.3210 m 0.1187 m
20µm 0.0026 m 3340.2 m 0.2990 m
30µm 0.0040 m 9520.7 m 0.5135 m
40µm 0.0055 m 20018 m 0.7535 m
50µm 0.0069 m 35627 m 1.0147 m

1.6 Results and Conclusions

The estimated RF values for various materials were computed using a formula from [1],

w ≈
(

t

2RF

E

H

)
1

n D̂2

4t
,

where t is the thickness of the aperture, RF is the radius of curvature of the folding model, E is the elastic
modulus of the material, n is the strain hardening exponent, H is the plasticity model constant, D̂ is the
length of the surface being curved, and w is a measure of deflection. The value of w should be kept very
low because the mirror will not reflect properly after even small deformations. As a result, w = 1µm was
deemed an appropriate estimate of allowed deflection and was used to approximate the minimum RF value (or
alternatively, the maximum curvature, 1/RF ) that the specific material can be shaped to hold without losing
the necessary properties of the mirror. For the single cut and multi-cut models as well as the cylindrical roll
model, D̂ can be estimated by the circumference of the circle with highest curvature. Hence, in these models,
D̂ = 2πRF . The equation from [1] can then be rewritten

w ≈
(

t

2RF

E

H

)
1

n (2πRF )2

4t
(

4tw

4π2R2
F

)n

≈ t

2RF

E

H
(

(tw)n

π2n

)

2H

Et
≈ R2n−1

F

and therefore the minimum allowable radius of curvature can be computed using thickness and material
properties. Using the outside loop of the umbrella base curve model, the value D = 5

3πRF can be used to
approximate the minimum allowed RF for different materials by using

w ≈
(

t

2RF

E

H

)
1

n ( 5
3πRF )2

4t
(

36tw

25π2R2
F

)n

≈ t

2RF

E

H
(

36tw

25π2

)n
2H

Et
≈ R2n−1

F .

Using Equations 1.13 and 1.13 and material constants from [1], the minimum allowable radii of curvature for
the single cut, multi-cut, and cylindrical roll models for different materials were computed and are summarized
in Table 1.2 for various thicknesses of the aperture.
Estimations for the minimum allowable radii of curvature for the umbrella model are contained in Table 1.3.
These values can be compared to the radii of curvature needed for each model to fit within the rocket to decide
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Table 1.3: Minimum allowable radii of curvature for different materials and different widths for the cylindrical
roll, single cut, and multi-cut models.

thickness (t) RF for 2014-T6 Aluminum RF for I-400 Beryllium RF for 304 Stainless Steel

10µm 0.0012 m 312.8706 m 0.1051 m
20µm 0.0025 m 1875.1 m 0.2648 m
30µm 0.0039 m 5344.8 m 0.4547 m
40µm 0.0053 m 11238 m 0.6673 m
50µm 0.0068 m 20000 m 0.8985 m

if each scheme is usable. As long as a particular RF from the tables is smaller than the RF needed for a model,
that material at that thickness will work for the model being considered. For all apertures that are 10-50 µm
thick, both aluminum and stainless steel appear to be feasible materials if using any of the presented models
with appropriate choices for the number of cuts in the multi-cut model and for the number of folds in the
umbrella model. Beryllium does not appear to be an appropriate material for the aperture, but the physical
properties of beryllium make it a less than favorable choice for the mirror regardless of curvature. Adequate
stability of the aperture can possibly be achieved simply by maximizing the thickness of the mirror within
the constraint that the radius of curvature of the model is larger than the radius of curvature allowed by the
material.

Since the models are simplifications, physical testing is definitely suggested. Despite some of the simplifi-
cations with regard to original mirror curvature, all models presented do warrant the further study of physical
models. The value for allowable deflection of the mirror, w, should also be thoroughly tested and may vary
with material. Higher stability is achieved by higher natural frequency, and further study with these models
with regard to natural frequency is suggested as well. Also, more research on possible support structures for
the mirror would help the analysis of optimal mirror packaging.
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Abstract

Train passengers expect a smooth, comfortable ride and timely arrival to their destination. However, com-
muters on the Bay Area Rapid Transit system often experience jarring rides as trains speed up and slow down
to avoid colliding with the train in front of them and still stay on schedule. This interference between the
trains can result in customer dissatisfaction as well as increased fuel costs. We develope a model to reduce
interference by minimizing the energy consumed during acceleration. Using nonlinear optimization methods,
we obtain results that show less interference when the variation in acceleration over a short time interval is
limited. We also observe the effects of changing the length of the timestep, the initial conditions, and the length
of a train on the amount of interference between two trains.

2.1 Introduction

Commuters in the San Francisco Bay Area expect a dependable train system; one which is capable of trans-
porting them in a timely and comfortable manner. The automatic train control system for Bay Area Rapid
Transit (BART) has the important job of controlling the train in a fashion that will transport passengers to
their destinations as quickly and smoothly as possible. A passenger might assume that the train will travel as
fast as possible in order to arrive at each station at the scheduled time. However, safety regulations require
that a minimum distance be maintained between any two trains traveling in the system, sometimes a hard

1North Carolina State University
2University of North Carolina at Charlotte
3University of South Florida
4University of New Hampshire
5Brown University
6Texas Tech University

19



20 REPORT 2. ENERGY CONSUMPTION AND INTERFERENCE IN THE BART SYSTEM

distance to maintain when station spacing is close, in areas like downtown San Francisco. Thus, when a train
approaches too closely to the train ahead of it the control sytem commands the train to decelerate in order
to maintain a safe distance from the lead train. This situation occurs frequently near stations, where the
lead train makes its scheduled station stop for passenger boarding and trains behind it are drawing nearer
to the station. When the lead train accelerates as it pulls out of the station, the following train will also
accelerate, as long as the safe distance is maintained. There are two difficulties associated with this situation:
the calculation of the required safe following distance, and the levels of acceleration to maintain that distance.

The current automatic train control system (ATC) for San Francisco’s BART district uses hard-wired
circuitry to determine train locations and communicate with trains. The ATC has limited capabilities for
locating trains and controlling speed. There are only 8 selectable speed commands, which results in trains
often traveling below the safety-enforced speed limits. Additionally, the current control system, as well as any
future system, computes commands for a train’s acceleration by assuming that the train immediately ahead
of it is stationary. This situation results in frequent switching between acceleration and deceleration for the
following train, a phenomenon termed interference. This cycle of deceleration and acceleration may continue
for the full length of the line, increasing energy consumption by the engine as well as passenger irritation.

A new generation of train control systems called communication based train control (CBTC) is under
development. Features of the CBTC system include radio communication between trains, more accurate train
location and the ability to use increment speed commands every 1 mph. A system that allows for finer control
commands reduces the necessary distance between two consecutive trains. This, in turn, reduces interference
since trains that are sufficently far apart they do not affect each other’s behavior. Reductions in speed limits
also allows for reduced headway and limits interference, but reducing speeds adds to trip time, which is
unacceptable both to the BART district and passengers. The train control system we consider here is within
the context of the new CBTC.

In this project we will minimize the energy consumed. By doing so, we can cut fuel costs as well as increase
customer satisfaction through a smoother ride and adherance to the established train schedule.

2.2 Problem Statement

Does minimizing the energy consumed during acceleration minimize the interference? To answer this question,
we developed a simplified model of the BART system. Considering only two trains traveling through one
station, we formulate an energy cost function to be minimized, subject to appropriate motion and boundary
constraints. Using optimization tools, we seek to minimize the cost function; i.e. minimize the function
describing work done by the train, and compare the resulting graphs of acceleration and velocity over time to
determine the success of our model.

There are several ways that one may define interference. One posibility would be a limit on the number of
jumps between acceleration and deceleration on a given section of track. However, this option would exclude
the possibility of allowing a large number of very small jumps, which go largely unnoticed by passengers. We
want to allow for this possibility. An unacceptably large degree of interference consists of jumping from a large
acceleration rate to a large deceleration rate in some short period of time. In this formulation the number of
such jumps is irrelevant. Thus, we define interference as the amplitude of the oscillations in acceleration that
occur over a period of time. If our model produces a level of interference with a number of jumps of smaller
amplitude, we consider this to be an improvement. Within this framework, there are several aspects we want
to address:

1. How does energy consumption vary when the rate of change of acceleration is constrained, thereby
forcibly reducing interference?

2. How does variation in train length affect interference levels?

3. How does varying the speed limit affect the level of interference?

4. How does varying the train schedule affect interference?
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2.3 Methods

2.3.1 Assumptions

Energy is consumed as a train accelerates. We therefore define energy consumption as the amount of work
done by the train during acceleration and velocity maintenance. We neglect deceleration, as energy is not
used by the motors during deceleration. By minimizing the energy consumed we hope to obtain the optimal
level of overall acceleration/deceleration and velocity necessary to maintain the safe distance between trains,
thus reducing interference. This will result in significant financial savings for BART and also provide a more
comfortable ride for passengers. We have previously generated data containing the position, velocity, and
acceleration of the first train and are attempting to minimize the energy the second train uses in response to
the actions of the first train. We assume the following in our model.

• The system consists of two trains and one station.

• Train tracks are straight and on level terrain.

• Tracks are covered; weather effects, road crossings, and debris can be neglected.

• Effects of friction and air resistance are neglected.

• Trains have identical attributes (length, mass, and engine capabilities).

• Trains are capable of attaining any acceleration value in a continuous range.

• Station location is fixed.

• Position, velocity, and acceleration of the first train are given.

• A train’s wait time at the station (referred to as dwell time) is constant.

• Trains always adhere to the schedule; there are no delays.

• The train controller has perfect knowledge of the system: the exact location, velocity, and acceleration
of all trains are known at all times.

To begin working towards our ultimate goal of minimizing interference on the BART system, we considered
a simplified situation. Adding complexity to the system later will be a relatively easier task. For our problem
to be computationally feasible using the Matlab optimization toolbox, we could only consider a track with
one station and two identical trains, in which we knew exactly what the trains were doing at all times. With
proper choice of initial conditions and other variables, interference is still observed near the station in the
unconstrained model. In this initial formulation of the train system, we did not include any factors that could
contribute to delays. As anyone who has used public transportation knows, delays in scheduled arrival time
are not infrequent. A more accurate model would be probabilistic rather than deterministic, and include an
element of randomness in travel time. This variation could be due to deceleration at road crossings or for
debris on the tracks, or fluctuations in engine power. However, we believe the model we have created is a
reasonable one, and will provide some insight on the reduction of train interference.

2.3.2 Mathematical Formulation

Our goal is to minimize the total energy consumed by the second train within the system. We begin with the
trajectory information for the first train known completely. We define energy consumption as the work done
by a train during acceleration and velocity maintenance [3], since no energy is consumed during deceleration.
We define the positive part of acceleration for train 2 by

a+
2 (t) =

1

2

[

a2(t) + | a2(t) |
]

,

where a2(t) is the acceleration of train 2 at time t. Before stating the problem, we define the variables and
parameters necessary for our formulation:
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xi(t) : Position of train i at time t [ft]
vi(t) : Velocity of train i at time t [ft/s]
ai(t) : Acceleration of train i at time t [ft/s2]

T2 : Time for train 2 to travel from the start point to the station
vmax : Speed limit

L : Distance from start point to station
h : Time step size for discretized numerical computation
ε : A parameter defining the allowed tolerance for acceleration

trainlength : Length of train

To minimize the work integral defined [3] by

∫ T2

0

a+
2 (t)v2(t)dt, (2.1)

subject to the constraints:

ẋ2(t) = v2(t) (2.2)

v̇2(t) = a2(t) (2.3)

x2(0) = 0 (2.4)

v2(0) = 0 (2.5)

a2(0) = 2.2 (2.6)

x2(T2) = L (2.7)

v2(T2) = 0 (2.8)

a2(T2) = 0 (2.9)

0 ≤ v2(t) ≤ vmax (2.10)

−3.2 ≤ a2(t) ≤ 4.4 (2.11)

x1(t)− x2(t) ≥ trainlength + 50 +
v2
2(t)

9
+ 8v2(t) (2.12)

|a2(t)− a2(t + h)| ≤ εh (2.13)

Equations (2.2) and (2.3) are Newton’s equations of motion, governing the movement of the trains along
the track and equations (2.4)-(2.9) are boundary conditions for the three main variables. Equations (2.10)
and (2.11) are upper and lower bounds on velocity and acceleration respectively, which are determined by the
maximum speed limit on a particular length of track, and the propulsion and brake limitations of the trains.
Inequality (2.12) is the minimum safety distance between the front ends of two trains, which includes the
length of the train, the 50 feet train buffer distance, and the braking distance of the second train dependent
upon its velocity. Inequality (2.13) limits the rate of change of acceleration, to within a small tolerance ε .

For our simulation, we used the following parameter values:

T2 = 60

vmax = 88

L = 2640

h = 0.5

trainlength = 700

Our implementation assumes that train 1 has already left the starting point and has been sitting at the
station for 15 seconds before train 2 begins to accelerate. When train 2 begins its trip, train 1 dwells for
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another 15 seconds in the station before continuing its journey. It may be assumed that train 1 is continuing
along the track to its next station stop, but this detail is beyond the scope of our simulation. We also require
that train 2 reach the station 60 seconds after the start of the simulation. Our paper focuses on the effects of
varying the parameter ε on the energy consumption of train 2.

Figure 2.1: Position of trains at time zero

2.3.3 Numerical Method

In order to solve this optimization problem, we discretized both the objective function (2.1) and the equations
of motion defined in the constraints. We use the trapezoid rule to discretize the integral in the objective
function, giving:

∫ T2

0

a+
2 (t)v2(t)dt ≈ T2

2M



a+
2 (t0)v2(t0) + 2

M−1
∑

j=1

a+
2 (tj)v2(tj) + a+

2 (tM )v2(tM )



 ,

where tj = jT2/M , where M is the number of grid points. To implement this discretization, we employ the
Matlab function trapz, which determines the approximate integral given the velocity and acceleration at each
time step. To discretize the equations of motion, we use the backward Euler method, yielding

tj = tj−1 + h

x2(tj)− x2(tj−1)− v2(tj)h = 0

v2(tj)− v2(tj−1)− a2(tj)h = 0

This constraint is implemented as a matrix equation of the form A~z = ~b, where ~z consists of the position of
train 2 at each time step, its velocity at each time step and its acceleration at each time step.

2.3.4 Algorithm

We ran simulations in Matlab using the built-in minimization routine fmincon. The fmincon function uses a
quasi-Newton line-search method to find the minimum. Our algorithm consists of preparing inputs for fmincon.

Step 1. Initialization of parameters

• Time in seconds when train 2 will reach the station.

• Length of train.

• Size of each discrete time step and consequent number of grid points.
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• Interference tolerance ε.

• Speed limit, maximum possible acceleration and maximum possible deceleration.

• Distance to station and train’s dwell time in station.

• Initial position, velocity and acceleration of train 2.

• Position, velocity and acceleration of train 1 at each grid point.

• Initial guess vector for the minimization routine fmincon.

• Upper and lower bounds for each variable at each time step.

Step 2. Set up objective function and constraints

• Use the trapezoidal rule to construct a discretized cost function f .

• Construct a matrix of equality constraints (2.2)-(2.8), called AE and corresponding vector bE , which
forces the method to follow the discretized equations of motion and the initial and terminal conditions.

• Construct a matrix of inequality constraints (2.10) and (2.11) AI and corresponding vector bI , which
force a solution to be within the acceleration tolerance defined in constraint (2.13).

• Create an m-file for the nonlinear constraints CI , which enforce constraint (2.12).

Step 3. Optimize the objective function

• Minimize the discretized cost function f using the function fmincon().

2.4 Results

In our initial model, we changed the tolerance ε of the absolute difference in acceleration of the train at two
close time steps and observed the resulting interference. We found that decreasing the tolerance resulted in
a lower value for the work energy integral, and thus a lower amount of energy consumed. In Fig. 4 the
graphs of acceleration versus time for smaller values of ε have shorter, smaller spikes than those with larger
tolerances. By our definition, we have reduced interference and confirmed our hypothesis that minimizing
energy (corresponding to lower ε values) does decrease interference. A curious feature of these graphs is the
sharp drop in acceleration of train 2 occuring immediately after the simulation begins. Since there is no
physical reason why the acceleration should drop to zero at first, and the size of this peak decreases with
decreasing tolerance values and is unobservable in tolerances of 1 and smaller, we believe that this may be
a numerical side-effect of the computation. Future investigation will hopefully provide some insight into the
cause of these spikes.

We also observed the dependance of interference on other parameters, such as the length of the train, the
length of the time step, and the initial starting point guess for the fmincon Matlab solver. We found that
changing the length of the trains does not appear to decrease the overall interference of the system, although
the interference pattern is much different. Changing the time step from one-half second to one second decreased
interference, although this could just be due to less fine resolution. We ran the minimization program with a
smaller time step of one-quarter; however, the fmincon function could not produce a solution after four hours,
and we did not consider time steps smaller than one-half. To test the stability of our solution to the original
formulation, we used the output solution for the ε = 2.5 as the initial guess for the problem with a larger
tolerance of ε = 20. We assumed that with such an optimal initial guess, even though there was virtually no
restriction on the rates of change of acceleration, the function output should be nearly the same. Instead, the
fmincon function determined that there was no minimum value, contrary to our intuition. More research will
be needed to understand this result.
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Figure 2.3: Velocity and acceleration plots for both trains with varying constraints on rate of change of
acceleration: ε = 20, ε = 10, ε = 5.
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Figure 2.4: Velocity and acceleration plots for both trains with varying constraints on rate of change of
acceleration: ε = 2.5, ε = 1, ε = 0.5.
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Figure 2.5: Velocity and acceleration plots for both trains with varying train lengths for tolerance ε = 2.5.
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Figure 2.6: Velocity and acceleration plots step size 1 with ε = 2.5 and step size 1/2 with ε = 5.
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2.5 Discussion

When we first began to address this problem, we tried to optimize a two-train, one-station system where the
motion of the first train is computed during the optimization process. This approach turned out to be compu-
tationally infeasible, as it required recording the values of variables for both trains, which eventually exceeded
the available memory. This problem can be avoided using a different software package with a nonlinear solver
more suited to handling the sparse matrices generated, or by coding the problem in a different programming
language. Making the best of our technological limitations however, we were able to utilize Matlab’s nonlinear
optimization solver to produce results consistent with what we had expected: train interference decreases as
the rate of change in acceleration over a short time interval is constrained.

Future research will expand upon these results. The most important modification to the code we have
developed would be to include more trains and stations in our model, more accurately matching the real
BART train line. Adding an element of randomness in arrival time to simulate delays will be crucial if this
formulation is to be applied to the real-world system. For a more accurate mathematical model, the effects of
friction and air resistance must be included in our work integral cost function. In addition to the alterations
we have already considered, changing the speed limit along a length of track and the scheduled stop time at
stations should provide interesting variations in interference patterns.

Expanding upon our results, BART engineers will be able to further minimize train interference, drastically
cutting fuel costs while increasing the level of customer satisfaction. The money saved by BART can go back
into the system to make further improvements. The improved operation of the trains will encourage more
people to use public transportation, increasing revenues for BART and reducing the strain on environmental
resources.
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Appendix

% FILENAME: t2g1.m

% PURPOSE: to solve the train control energy minimization problem

% Revision to train2.m

% IMMW Group 2

%

% This file assumes a given sequence of information regarding position, velocity

% and acceleration of train 1, in order to minimize energy of train 2

%

% Also needed: nonlincon2.m, cost2.m

%

clear all

timebegin=cputime;

global train1

train1=load(’train1_70s.txt’); % Train 1 information loaded from file

train2=load(’excel_train2.txt’); % Train 2 information loaded from file

T2=60; % T2 is the arrival time (s)for train2 at the station

T=T2; % time (s) length of simulation

small=0.0001; % Small number for numerical caluculations

imp=2.2; % initial acceleration (ft/(s*s)) when trains start to move

global h % time increments (one half a second)

h=1/2;

global gp % number of grid points needed for each variable

gp=T/h+1;

tol=5; % magnitude restriction on acceleration rate of change (ft/(s*s*s)),

% related to definition of interference

z0=zeros(3*gp,1); % initial condition (in the form [x_2,v_2,a_2])

% used as the initial guess in the search algorithm fmincon

%Initial guess consists of given data points

vmax=88; % maximum speed limit (ft/s)

amin=-3.2; % minimum deceleration rate (ft/s^2)

amax=4.4; % maximum acceleration rate (ft/s^2)

L=2640; % Distance (ft) to the last station from zero position

dwell=15; % dwell time (sec) at station

x20=0; v20=0; a20=amax/2; % initial conditions

x2T=L; v2T=small; a2T=0; % terminal conditions

lb=[zeros(gp,1); zeros(gp,1);amin*ones(gp,1)]; % lower bound for the vector z

ub=[L*ones(gp,1);vmax*ones(gp,1);amax*ones(gp,1)]; % upper bound vector for z

% Constraint Matrices to input into fmincon

nomat=zeros(gp-1,gp); % nomat is block zero matrix for construction of AI,AE

AIblock=diag(ones(1,gp),0)+diag(-ones(1,gp-1),1); AIblock=AIblock(1:gp-1,:);

AItop=[nomat,nomat,AIblock]; AI=[AItop;-AItop];

AI=sparse(AI); % AI is inequality constraint matrix

bI=sparse(tol*h*ones(2*(gp-1),1)); % bI is inequality vector
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AEblock=-AIblock; AEhbig=diag(-h*ones(1,gp-1),1); AEh=AEhbig(1:gp-1,:);

AE1=[AEblock,AEh,nomat]; AE2=[nomat,AEblock,AEh]; AE=[AE1;AE2];

AE=sparse(AE); % AE is equality constraints

bE=sparse(zeros(2*(gp-1),1)); % bE is equality vector

clear AE1 AE2 AEhbig AEh AEblock AIblock AItop nomat

% matrix used to assign the initial and

% terminal positions (x), velocities (v), accelerations (a)

% IT is a 6 row matrix

for i=1:3

IT(i,(i-1)*gp+1)=1;

IT(i+3,i*gp)=1;

end

itb=[x20;v20;a20;x2T;v2T;a2T]; % initial and then terminal points

AE=[AE; IT]; bE=[bE; itb];

clear IT itb imp train2 T2 T small vmax amin amax dwell x20 v20 a20 x2T v2T a2T

[z,fval,exitflag,output,lambda,grad,hessian]=fmincon(’cost2’,z0,AI,bI,AE,bE,lb,ub,’nonlincon2’);

timefinish=cputime-timebegin

% save tolerance2.5.mat

% Distance plots

figure

plot([1:gp]*h,train1(1:gp),’-.’,’LineWidth’,2)

hold on

plot([1:gp]*h,z(1:gp),’LineWidth’,2)

xlabel(’Time in seconds’,’FontSize’,12)

ylabel(’Position along track’,’FontSize’,12)

axis([0 60 0 6000])

title([’Relative positions of trains with tolerance ’,num2str(tol)],’FontSize’,12)

legend(’Train 1’, ’Train 2’,4)

% Velocity plots

figure

plot([1:gp]*h,train1(gp+1:2*gp),’-.’,’LineWidth’,2)

hold on

plot([1:gp]*h,z(gp+1:2*gp),’LineWidth’,2)

xlabel(’Time in seconds’,’FontSize’,12)

ylabel(’Velocity’,’FontSize’,12)

axis([0 60 -10 90])

title([’Relative velocities of trains with tolerance ’,num2str(tol)],’FontSize’,12)

legend(’Train 1’, ’Train 2’,4)

% Acceleration plots

figure

plot([1:gp]*h,train1(2*gp+1:3*gp),’-.’,’LineWidth’,2)

hold on

plot([1:gp]*h,z(2*gp+1:3*gp),’LineWidth’,2)

xlabel(’Time in seconds’,’FontSize’,12)
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ylabel(’Acceleration’,’FontSize’,12)

axis([0 60 -4 6])

title([’Relative accelerations of trains with tolerance ’,num2str(tol)],’FontSize’,12)

legend(’Train 1’, ’Train 2’,1)

function y=cost2(z)

% cost function for optimization

global h

global gp

% form a new acceleration vector

accel=[z(2*gp+1:3*gp)];

% form a new velocity vector

vel=[z(gp+1:2*gp)];

% Take the positive part of acceleration for Work

accel=.5*(accel+abs(accel));

% do Trapezoidal rule approximation of Work Integral

y=trapz(accel.*vel)*h;

function [c,ceq]=nonlincon2(z)

% function for nonlinear inequalities

% function enforces mininmum safety distance limits

global gp

global train1

for i=1:gp

c(i,1)=z(i)-train1(i)+550+(1/9)*z(gp+i)^2+8*z(gp+i);

end

ceq=0;
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In this study we mathematically describe a cancer initiation/continuous promotion mechanism and estimate the related

biological parameters. The data on Swiss CD-1 and B6C3F1 mice was collected by NTP(Design A, 1994). These mice

were initiated with DMBA and then promoted with TPA on a weekly basis. By varying the dosage of DMBA and the

type of mice, we analyze four different subsets of the original data. This study identifies a working model to describe the

mutation of normal cells to papillomas, then the final mutation of papillomas into carcinomas for each of the subsets.

Our model assumes that there are multiple stages from initiation to papilloma. For each stage of the mutation, we

assume any single cell will either mutate or not. Therefore, the underlying probability distribution of the number of

papillomas at the initiated stage is binomial. For similar reasons, at the final stage after promotion, the probability

distribution of the number of carcinomas is also binomial. We try to ascertain a general model, which would account

for the data from all four groups. Finally, we compare the cell birth rate for the papilloma model between two strains

of mice for the same dosage of DMBA. We also compare the birth rates for different dosage of DMBA within each

strain of mice.
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3.1 Introduction

An initiation/continuous promotion study typically involves a single sub-threshold application of a carcinogen
substance, followed by repeated applications of a non-carcinogen substance. This type of study is usually
conducted on mice because they are a far more responsive model for skin initiation/promotion studies than
other rodent species. At the same time, not all strains of mice are equally sensitive to the initiation/promotion
protocol [2].

The data for this paper have been obtained from a one-year study conducted by NTP (National Toxicology
Program, Study Design A in 1994). In that study, groups of 30 male and 30 female mice were administered 7,12-
dimethylbenz(a) anthracene (DMBA) as an initiator treatment in the first week of the 52-week study period,
followed by weekly application of 12-O-tetradecanoyl-phorbol-13-acetate(TPA) as a promoter treatment for
the remaining 51 weeks. Different doses of DMBA in combination with different doses of TPA were used for
three different strains of mice. For the purpose of our study, however, we use only the data on two different
strains (Swiss CD-1 and B6C3F1) of mice. We compare the sensitivity of Swiss CD-1 and B6C3F1 mice strains
in terms of the number of papillomas. We also compare different doses of DMBA ( 2.5 and 25.0µg). Each
group has the same repeated typical application of TPA (5 µg) Therefore, in our study, we have the following
four groups:

Swiss CD-1 DMBA: 2.5µg TPA: 5 µg
Swiss CD-1 DMBA: 25.0µg TPA: 5 µg
B6C3F1 DMBA: 2.5µg TPA: 5 µg
B6C3F1 DMBA: 25.0µg TPA: 5 µg

Consistency of the data was maintained by the standard method of recording clinical observations, whereby
the appearance and progression of any tumor development on the skin were recorded. When a skin tumor first
appeared, it was considered a tissue mass, until it became at least 1 mm in diameter and had been present
for 14 days. Then, the tissue mass was considered a papilloma. Furthermore, when a papilloma became
necrotic in appearance and was attached to the underlying tissue, it was recorded as a carcinoma. In addition,
microscopic evaluations were carried out to confirm the state of carcinoma.

3.2 The Model

The design of our model is two-fold, incorporating growth of papilloma and then carcinoma. First, we focus
on modeling the growth of a papilloma (see Figure 3.1) and then substitute the papilloma model into the
overall model of the probablility of a normal cell forming a carcinoma. In Figure 3.2, the papilloma stage is
represented by “Initiated Cells.” The meanings of the parameters of the model are explained below.
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β0: the birth rate of a normal cell (set equal to 0)
δ0: the death rate of a normal cell (set equal to 0)
β1: the birth rate of an initiated cell
δ1: the death rate of an initiated cell
µ0: the mutation rate of a cell from the normal to initiated state
µ1: the mutation rate of a cell from the initiated state to malignant state
ν: the instantaneous mutation rate from the normal to initiated state
m: the number of the normal cells at the beginning for each animal
M : the minimal number of initiated cells needed to comprise a detectable papilloma

Let Ii represent the ith initiated stage; i.e., the stage in papilloma development with i initiated cells
present, and let QiM (s, t) represent the probability that a cell at stage Ii at time t− s will not reach the stage
IM before the time t.

We now describe mathematically the model for the papilloma data (see Figure 3.1). We make the following
assumptions:

Assumption 1: Initiated cells follow a linear birth-death process with constant rates.
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Assumption 2: The minimal number of initiated cells, M , is large enough that we may
ignore stages after IM .

Assumption 3: One normal cell yields at most one papilloma.

Under these assumptions the papilloma stage of our two-stage model can be described by the following
system of differential equations and initial conditions (see Appendix for derivations):

dQ0M (s, t)

ds
= −Q0M (s, t)µ0 + Q1M (s, t)µ0 (3.1)

dQ1M (s, t)

ds
= Q2M (s, t)β1 −Q1M (s, t)(β1 + δ1) + δ1 (3.2)

dQiM (s, t)

ds
= iQi+1,M (s, t)β1 − iQiM (s, t)(β1 + δ1) + iQi−1,M (s, t)δ1 (3.3)

QMM (s, t) = 0, ∀s, t (3.4)

QiM (0, t) = 1, i = 0, 1, . . . , M − 1. (3.5)

The system (3.2) – (3.5) can be solved analytically [8], and the solution can be written as

Q1M (s, t) =



















1− (β1 − δ1)β
M−1
1

(

1− e−(β1−δ1)s
)M−1

[

β1 − δ1e−(β1−δ1)s
]M

, δ1 6= β1

1− (β1s)
M−1

(1 + β1s)M
, δ1 = β1

Now we use equation (3.1) to solve for Q0M (s, t).
Figure 3.1 illustrates that, when starting from m normal cells, the number of papillomas has a binomial

distribution since each normal cell can either evolve into a papilloma or not. Now consider the incidence of
papilloma over time.

PNP (t)
.
= P (1 normal cell reaching stage IM (papilloma) before t, starting at time 0)

= P (1 normal cell → papilloma | no mutation at t = 0)

×P (no mutation at time 0)

+ P (1 normal cell → papilloma |mutation at t = 0)× P (mutation at time 0)

= [1−Q0M (t, t)](1− ν) + [1−Q1M (t, t)]ν

For a particular group and a particular mouse, let X(t) be the number of papilloma before t, starting with
m normal cells at time 0. Then

P [X(t) = x] =
(m

x

)

(PNP (t))x(1− PNP (t))m−x, x = 0, 1, 2, ..., m,

and
E[X(t)] = mPNP (t) = m([1−Q0M (t, t)](1− ν) + [1−Q1M (t, t)]ν).

For the carcinoma incidence analysis, we have to treat the two-stage model as one system (see Figure 3.2).
To describe the system, two ordinary differential equations are needed. Let P02(s, t) denote the probability of
one normal cell not reaching carcinoma before time t, starting at time t − s and P12(s, t) the probability of
one initiated cell not reaching carcinoma before time t, starting at time t− s. Then

dP02(s, t)

ds
= β0P02(s, t)

2 + δ0 + µ0P12(s, t)− (β0 + δ0 + µ0)P02(s, t)

dP12(s, t)

ds
= β1P12(s, t)

2 + δ1 + µ1P12(s, t)P22(s, t)− (β1 + δ1 + µ1)P12(s, t)

Similarly to the papilloma stage, we have several conditions:

β0 = δ0 = 0, P02(0, t) = P12(0, t) = 1, P22(s, t) = 0.
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After simplification, we obtain

dP02(s, t)

ds
= µ0P12(s, t)− µ0P02(s, t)

dP12(s, t)

ds
= β1P12(s, t)

2 + δ1 − (β1 + δ1 + µ1)P12(s, t).

For a certain group, a certain mouse, consider the random variable Y (t) define by Y (t) = 1, if carcinoma
is detected before time t starting from m normal cells at time 0; Y (t) = 0, otherwise. By the definition of
P12(t, t), P02(t, t) and ν, we know that the probability of one normal cell not reaching carcinoma before time
t, starting from time 0 is νP12(t, t) + (1 − ν)P02(t, t). So P [Y (t) = 1] = 1 − [νP12(t, t) + (1 − ν)P02(t, t)]

m,
since we assume m normal cells act independently.

We now use the method of maximum likelihood to derive estimators for the parameters of our model.

1. The Papilloma Stage

Let xijk represent the number of papillomas for the i−th animal in the j−th experimental group at the
time k. The likelihood function for the number of papillomas can then be expressed as

L1 =
∏

i

∏

j

∏

k

P [X(t) = xijk ] . (3.6)

Taking the natural logarithm of (3.6) yields

ln L1 =
∑

i

∑

j

∑

k

ln

[(

m

xijk

)

P
xijk

NP (1− PNP )(m−xijk)

]

Since we are maximizing L1, or equivalently ln(L1), with respect to PNP , the constant term can be
ignored, leaving

∑

i

∑

j

∑

k

[xijk ln PNP + (m− xijk) log(1− PNP )].

2. The Carcinoma Stage

Let yjk represent the number of malignant tumors in the j−th experimental group at the time k. The
likelihood function is then defined as

L2 =
∏

j

∏

k

P [Y (t) = yjk]

having corresponding natural logarithm

ln L2 =
∑

j

∑

k

ln P [Y (t) = yjk]

To attain estimators {β̂1, δ̂1, µ̂0, µ̂1, ν̂}, the function ln L1 + ln L2 is maximized over all possible values
of {β1, δ1, µ0, µ1, ν}.
After achieving the optimally estimated parameters, we can calculate the incidence of papilloma PNP (t),
expected number of papilloma E[X(t)], the incidence of carcinoma 1 − P02(t, t)

m, etc. Then we can
compare the difference of all these values among different groups.(i.e. different initiators, promotors,
doses, strains, etc.)

3. Likelihood Ratio Test

The likelihood ratio test statistic is used for testing the null-hypothesis H0 : θ ∈ Θ0 versus H1 : θ ∈ Θc
0.

The corresponding statistic is

λ(x) =
L(θ̂0 |x)

L(θ̂ |x)
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where x is the data, θ̂0 = θ̂0(x) is obtained by maximizing L(θ|x) over the parameter subspace Θ0 and

θ̂ = θ̂(x) is obtained by maximizing L(θ|x) over the whole parameter space Θ.

The asymtotic distribution of the statistic −2 logλ(x) is a χ2 distribution with degrees of freedom being
the difference in number of parameters of the two hypotheses.[1].

We apply this theory to test the hypothesis that the cell birth rates between the two strains of mice in
our study are equal. Thus for our problem

H0 : βs
1 = βb

1, H1 : H0 is not true,

where the superscript s stands for Swiss CD-1 and b for B6C3F1. These hypotheses yield Θ0 =
{β1, δ

s
1, µ

s
0, ν

s, δb
1, µ

b
0, ν

b}, and Θ = {βs
1 , δ

s
1, µ

s
0, ν

s, βb
1, δ

b
1, µ

b
0, ν

b}, and therefore

log λ(x) =
[

log L(θ̂0|x) − log L(θ̂|x)
]

.

The value of −2 logλ(x) is compared with χ2(1). At 0.05 level of significance, the null hypothesis will be
rejected if −2 logλ(x) > χ2(1) = 3.84. In this case, the conclusion will be that the birth rates of initiated
cells are not same for the two different strains of mice. The results are summarized in Section 3.3.

3.3 Results

The method of maximum likelihood method was used to obtain expressions for estimators of the biological
parameters of the initiation/promotion model of skin cancer. The initial values for the parameters were
obtained from the work of Kopp-Schneider and C.J. Portier [4]. In their work, they found that the cell-cycle
time of an initiated cell with promotion is 20 hours. Since our data are the numbers of papillomas per week
for each mouse, the initial values for the biological parameters of an initiated cell with promotion translate
into In our model we considered the number of normal cells to be m = 12 ∗ 106 and number of initiated

β0 = 10 births/week β1 = 10 births/week
δ0 = 10 deaths/week δ1 = 10 deaths/week
µ0 = 1 mutation/week µ1 = 1 mutation/week
ν1 = probability of instantaneous mutation

Table 3.1: B6C3F1 Mice.
2.5 µg DMBA 25.0 µg DMBA

µ̂b
1 1.22 ∗ 10−6 1.9620 ∗ 10−3

β̂b
1 3.933 3.9075

δ̂b
1 3.9463 3.9830

ν̂b
1 3.5584 ∗ 10−4 1.2185 ∗ 10−2

Table 3.2: Swiss CD-1 Mice.
2.5 µg DMBA 25.0 µg DMBA

µ̂s
1 0.0713 0.0275

β̂s
1 5.922 4.1881

δ̂s
1 5.2961 4.2696

ν̂s
1 0.1015 0.8059

cells needed to form a visible papilloma to be M = 387 [3]. Maximum likelihood estimates for the parameters
related to B6C3F1 and Swiss CD-1 mice are presented in Tables 3.1 and 3.2 respectively.
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Analysis of the Results

1. Figures 3.3 and 3.4 depict the graphs of the empirical average (observed) and expected numbers of
papillomas (under the model) for B6C3F1 mice with DMBA dosage of 2.5 and 25.0 µg respectively. For
DMBA dosage of 2.5 µg, the fit appears to be reasonably good after the 27-th week (Fig. 3.3). The poor
fit in the early stages of the study may be due to the assumption of zero birth and death rate of normal
cells in our model. The fit appears to be quite good for DMBA dosage of 25.0 µg (Fig. 3.4).
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Figure 3.3: Model fit to the papilloma count for B6C3F1 mice initiated with 2.5 µg DMBA.
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Figure 3.4: Model fit to the papilloma count for B6C3F1 mice initiated with 25.0 µg DMBA.
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2. Figures 3.5 and 3.6 depict the graphs of the empirical average and expected numbers of papillomas
(under our model) for Swiss CD-1 mice with DMBA dosage of 2.5 and 25.0 µg respectively. The fit
appears to be quite good for both DMBA dosages of 2.5 µg (Fig. 3.5) and 25.0 µg (Fig. 3.6).
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Figure 3.5: Model fit to the papilloma count for Swiss CD-1 mice initiated with 2.5 µg DMBA.
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Figure 3.6: Model fit to the papilloma count for Swiss CD-1 mice initiated with 25.0 µg DMBA.
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3. In order to find out whether the two different strains of mice are significantly different with respect to
their birth rates, we use the likelihood ratio test statistic [1] to test the following hypotheses:

H0: Swiss CD-1 and B6C3F1 mice have equal birth rates.
H1: Swiss CD-1 and B6C3F1 mice have unequal birth rates.

0 10 20 30 40 50 60
0

1

2

3

4

5

6

Swiss CD−1 and B6C3F
1
, initiator: 25 µg, Promoter: 5 µg

weeks

nu
m

 o
f p

ap
ill

om
a

B6C3F
1
 observed

Swiss CD−1 observed
B6CF

1
 expected

Swiss CD−1 expected

B6C3F
1

µ
1
e = 6.026x10−4,   

β
1
e = 4.0911,        

δ
1
e = 4.15846,      

ν
1
e = 4.81086x10−3, 

NLL = 1.507605952 x 105 

Swiss CD−1
µ

2
e = 2.69939    

β
2
e = 4.08797  

δ
2
e = 4.168828

ν
2
e = 0.755715   

Figure 3.7: Model fit to the papilloma count for Swiss CD-1 and B6C3F1 mice assuming different birth rates
(both groups were initiated by 25.0 µg DMBA).
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Figure 3.8: Model fit to the papilloma count for Swiss CD-1 and B6C3F1 mice assuming equal birth rates
(both groups were initiated by 25.0 µg DMBA).
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From Figures 3.7 and 3.8, the difference in birth rates is apparent. Moreover the difference in likelihoods
is 10.448 (1.5077104× 105− 1.507605952× 105), is significant having a p-value of 0.0012. Therefore, the
null hypothesis is rejected. We can conclude that the Swiss CD-1 and B6C3F1 mice have unequal birth
rates.

4. To find out whether different levels of initiation dosage have any effect on the same strain of mice, we
test the following hypotheses

H0: Equal birth rates for DMBA dosages of 2.5 and 25.0 µg in Swiss CD-1 mice
H1: Unequal birth rates for DMBA dosages of 2.5 and 25.0 µg in Swiss CD-1 mice
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Figure 3.9: Model fit to the papilloma count for Swiss CD-1 mice initiated by 2.5 and 25 µg DMBA (assuming
different birth rates for different dosages).

From Figures 3.9 and 3.10 (next page), it is apparent that the birth rates are different. The observed
difference in likelihoods under two hypotheses is 55.5981 (2.30463021×105−2.3040742297×105), which
is significant having a p-value that is less than 0.0001. Therefore, we reject the H0 and conclude that
different initiator dosages produce different birth rates for the Swiss CD-1 mice.
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Figure 3.10: Model fit to the papilloma count for Swiss CD-1 mice initiated by 2.5 and 25 µg DMBA (assuming
equal birth rates for different dosages).

3.4 Discussion

In this study we identify a general model which describes the mutation of normal cells to papilloma. We
studied two different strains of mice under two separate initiator dosages. We present 4 different working
models for these four cases. The underlying model is the same for all four cases based on the binomial
distribution likelihood function. It should be noted that in all of these four cases the promotor and its dosage
is the same (TPA 5 µg). The estimated values for the parameters tested significantly different for all four
cases. Specifically we have tested for the equality of birth rate between two different strains of mice, both
strains were initiated with 25 µg of DMBA. It is observed that Swiss CD-1 and B6C3F1 mice have different
birth rates even when the initiator dosage is the same. We also try to determine whether initiator dosage
affects birth rates. In particular for Swiss CD-1 mice, we performed the test for the equality of birth rates
under two different initiator dosages. Birth rates were found to be unequal for Swiss CD-1 mice for 2.5 and
25 µg DMBA.

The carcinoma data available to us were in the form of a set of summary statistics, giving insufficient
information about carcinoma to conduct a meaningful maximum likelihood analysis. Therefore our likelihood
function is only based on papilloma data. Once we get relevant carcinoma data, the likelihood function can be
directly applied to the data, since we have derived the incidence of the carcinoma in our model. One advantage
of our model is that we assume the numbers of papilloma and carcinoma have binomial distributions instead
of Poisson distributions. This allows us to describe the process more accurately. Based on our model, it will
be very easy to expand to a multi-stage model using a multinomial distribution. This approach should fit the
data better, since it takes into account the different stages a normal cell goes through to reach the stage of
papilloma. From the biological viewpoint, since there always exists some uncertainty, one may try to describe
the process with a system of stochastic differential equations or with a continuous time Markov chain.

Overall, it appears that our model works quite well in the present setting and can be applied to a more
general situation. However, it may be of interest to add more parameters in the model in order to account for
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inherent biological complexities, such as cellular interactions, regression of papillomas etc.
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Appendix

The system of ordinary differential equations derived in this section represents the probability of a normal cell
forming a papilloma. Correspondingly, this derivation does not include the malignant stage. The derivation
of the ordinary differential equations for the probabilities of two-stage mutation of normal cells into malignant
cells has been done previously by Marjo V. Smith and Christopher J. Portier [8]. We apply this tecnique to
the probability of a normal cell forming a papilloma. The difference is that we consider forming a papilloma
to be a multistage process (as described in Section 3.2) and thus the result of our derivation is a system of
differential equations rather than a single equation. As done by Smith and Portier, we will assume that cells
act independently and set the normal-cell birth rate (β0) and death rate (δ0) to zero (because the size of the
initial sample remains constant). In the notation introduced in Section 3.2, the following events may happen
over a time interval [t− s−∆s, t− s]:

1. A normal cell mutates with probability ∆s µ0.

2. A normal cell does not change with probability 1−∆s(β0 + δ0 + µ0).

3. An initiated cell replicates with probability ∆sβ1.

4. An initiated cell dies with probability ∆sδ1.

5. An initiated cell does not change with probability 1−∆s(β1 + δ1).

47
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We first derive the equations for two special cases, Q0M (s, t) and Q1M (s, t), followed by the general case,
QiM (s, t), i = 2, 3, . . . , M − 1.

3.4.1 The Equation for Q0M (s, t)

Following [8], there are only four events that may happen to a single normal cell over the interval [t−s−∆s, t−s]:

• nothing may happen, so there is still one normal cell at the time t− s;

• the normal cell may replicate, so that there are two normal cells at time t− s;

• the normal cell may die, so the probability of no papilloma is 1;

• the normal cell may mutate, so the stage I1 is achieved.

Thus we have:

Q0M (s + ∆s, t) = P (no papilloma is visible at t | one normal cell I0 at t− s−∆s)

= P (no papilloma is visible at t | one normal cell I0 at t− s)

×P (1 normal cell I0 at t− s | one normal cell I0 at t− s−∆s)

+P (no papilloma is visible at t | two normal cells I0 at t− s)

×P (two normal cells I0 at t− s | one normal cell I0 at t− s−∆s)

+P (no papilloma is visible at t | no normal cells I0 at t− s)

×P (no normal cells I0 at t− s | one normal cell I0 at t− s−∆s)

+P (no papilloma is visible at t | no normal cells I1 at t− s)

×P (no normal cells I1 at t− s | one normal cell I0 at t− s−∆s)

= Q0M (s, t)[1−∆s(β0 + δ0 + µ0)]

+(Q0M (s, t))2∆sβ0 + ∆δ0 · 1 + Q1M (s, t)∆s µ0

Subtracting Q0M (s, t) from both sides, dividing by ∆s, and taking the limit as ∆s → 0, we obtain

dQ0M (s, t)

ds
= (Q0M (s, t))2β0 −Q0M (s, t)(β0 + δ0 + µ0) + δ0 + Q1M (s, t)µ0. (3.7)

Since β0 = δ0 = 0, equation 3.7 becomes

dQ0M (s, t)

ds
= −Q0M (s, t)µ0 + Q1M (s, t)µ0. (3.8)

3.4.2 The equations for Q1M (s, t)

In this case, there are only three events that may happen to a single initiated cell at the stage I1 over the
interval [t− s−∆s, t− s]:

• nothing may happen, so there is still one initiated cell at the time t− s;

• the initiated cell may replicate, so that there are two initiated cells at time t− s;

• the initiated cell may die, so the probability of no papilloma is 1.
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Thus, we have:

Q1M (s + ∆s, t) = P (no papilloma is visible at t | I1 at t− s−∆s)

= P (no papilloma is visible at t | I1 at t− s)

×P (I1 at t− s | I1 at t− s−∆s)

+P (no papilloma is visible at t | I2 at t− s)

×P (I2 at t− s | I1 at t− s−∆s)

+P (no papilloma is visible at t | no cells I0 at t− s)

×P (no cells I0 at t− s | I1 at t− s−∆s)

= Q1M (s, t)(1−∆s(β1 + δ1)) + Q2M (s, t)∆sβ1 + ∆sδ1 · 1.

Subtracting Q1M (s, t) from both sides, dividing by ∆s, and taking the limit as ∆s → 0, we obtain:

dQ1M (s, t)

ds
= Q2M (s, t)β1 −Q1M (s, t)(β1 + δ1) + δ1. (3.9)

3.4.3 The Equations for QiM(s, t), i = 2, 3, ..., M − 1

In this case, there are only three events that may happen to the initiated cells at the stage Ii over the interval
[t− s−∆s, t− s]:

• nothing may happen, so there are still i initiated cells at the time t− s;

• any one of the i initiated cells may replicate, so that there are i + 1 initiated cells at the time t− s and
the stage Ii+1 is achieved;

• any one of the i initiated cell may die, so that there are i − 1 initiated cells at the time t − s and the
process returns to the stage Ii−1.

Thus, we have:

QiM (s + ∆s, t) = QiM (s, t)(1− i ∆s(β1 + δ1))

+iQi+1,M (s, t)∆sβ1 + iQi−1,M (s, t)∆s δ1.

Subtracting QiM (s, t) from both sides, dividing by ∆s, and taking the limit as ∆s → 0, we obtain:

dQiM (s, t)

ds
= iQi+1,M (s, t)β1 − iQiM (s, t)(β1 + δ1) + iQi−1,M (s, t)δ1. (3.10)

Finally, to complete the system (3.8)-(3.10), we need initial conditions for QiM (s, t). Since we consider the
papilloma stage irreversible, we have

QMM (s, t) = 0, for all s, t,

and, by definition,
QiM (0, t) = 1, i = 0, 1, . . . , M − 1.
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Abstract

We consider two mathematical models that are relevant to current experimental studies of articular cartilage
that aim to understand: (i) the effect of matrix anisotropy on molecular diffusion, and (ii) the effect of
pericellular matrix permeability on mechanotransduction in the cartilage cell-matrix unit, called a chondron.
For the first model, we develop diffusion models for photobleaching experiments with a circular region of
bleaching. Our simulations indicate that a continuous bleaching model predicts sharp fluorescence images that
increase the ability to detect matrix anisotropy via image analysis. For the second model, we analyze the effect
of permeability of the pericellular matrix on signal transmission in a chondron using a finite difference model
in a parametric analysis. Our simulations indicate that 80-100% signal transmission is achieved when the
PCM is much stiffer than the cell and the PCM permeability is two orders of magnitude larger than that of
the cell.

4.1 Introduction

Articular cartilage is a hydrated biological soft tissue that lines the surfaces of diarthroidal joints such as
the knee, shoulder and hip. The primary function of cartilage is to distribute stresses in load-bearing and to
provide a low-friction surface for joint motion. While cartilage can perform these functions over a lifetime, the

1North Carolina State University
2Southern Methodist University
3University of Mainz, Germany
4Montana State University
5State University of New York at Stoney Brook
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Figure 4.1: (a) A layer of articular cartilage showing chondrocytes embedded throughout the extracellular
matrix. (b) A schematic of the variation of extracellular matrix anisotropy with depth in a cartilage layer

degeneration of cartilage, called osteoarthritis (OA), is a widespread condition that progresses with age. The
structure of cartilage arises from an extracellular matrix (ECM) of cross-linked collagen fibers and entrapped
proteoglycan macromolecules. In the surface zone of cartilage, the ECM fibers are oriented parallel to the
layer surface while in the deep zone they align parallel to the subchondral bone. In the mid-zone, the fibers
are isotropic (Fig. 4.1b).

Embedded in the ECM are specialized cells, called chondrocytes, whose metabolic response dictates main-
tenance and turnover of the ECM (Fig. 4.1a). Cartilage is avascular and aneural. Consequently, chondrocyte
metabolism depends not only on inherent genetic and biochemical factors but also on mechanical and physico-
chemical factors in the local cell environment. These factors include stress and ionic charge density of the
ECM, pressurization of the interstitial fluid, and molecular diffusion of nutrients through the ECM to the cells.
An important component of the local cell environment is the pericellular matrix (PCM), which encapsulates
the chondrocyte and is believed to regulate transmission of mechanical signals to the cell. In contrast to
the ECM, which is dominated by type-II collagen, the predominant collagen type in the PCM is type-VI.
Together, the cell and PCM are termed a chondron. As a joint undergoes loading, mechanical signals are
transmitted via the ECM to each chondron and, via the PCM, to each cell which, in response, can alter its
metabolic activity. It is believed that the functional role of the PCM is to protect the cell from excessive load
while, simultaneously, facilitating the transmission of mechanical signals from the ECM to the cell. A key
physiological question is what components of the local mechanical and physico-chemical environment the cell
uses to detect changes, and hence alter its metabolic activity.

One of the goals of the Orthopaedic Research Lab is to study the causes of osteoarthritis (OA) and the
factors that influence the degenerative impact of this disease on the body’s joints and soft tissues. It is believed
that the disease’s degenerative effect on articular cartilage is due to a complex combination of both mechanical
and biological factors. The lab is working to identify and understand these factors on several length scales. In
this particular study, we consider two mathematical models that are relevant to current experimental studies
of articular cartilage that aim to understand: (i) the effect of ECM anisotropy on molecular diffusion, and (ii)
the effect of pericellular matrix permeability on mechanotransduction in the chondron.

4.2 2-D Models of Local Diffusion in the FRAP Experiment: Cir-

cular Bleaching

We consider a 2-D model of fluorescence recovery after photobleaching (FRAP), an experiment that is used
to determine local effective diffusion coefficients in soft tissues. Our model incorporates the effect of diffusion
anisotropy which is believed to be induced by the ECM anisotropy in articular cartilage. In the photobleaching
experiment, fluorescent tracer particles are introduced into a region of tissue and their diffusion is monitored
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Figure 4.2: An example of a fluorescence output curve in an instantaneous photobleaching experiment.

using confocal microscopy. Knowledge of local diffusion coefficients can be used to quantify the variation
of diffusion properties with site in a sample and across sample populations. Since cartilage is aneural and
avascular, local diffusion properties impact the transport of nutrients and pharmaceutical agents through the
ECM to the cells.

As an extension of previous FRAP models, which considered bleaching of a rectangular region, we consider
the case of a circular photobleaching region. The primary advantage of the circular models is that we expect
to see an elliptical diffusion profile that, automatically, aligns its long axis to the direction of preferential
diffusion.

4.2.1 Mathematical Model - Governing Equations

The mathematical model is formulated based on the Conservation of Mass Balance Equation:

d

dt

∫

Ω

C(x, t)dV =

∫

Ω

f(x, t)dV −
∫

∂Ω

J · ndA, (4.1)

where Ω ⊂ R
2 is a smoothly bounded region representing a sample of cartilage ECM, C(x, t) denotes the

concentration (fluorescence intensity) at the point x = (x1, x2) ∈ Ω , J(x, t) denotes the flux across the
boundary ∂Ω and f(x, t) is the distributed reaction. Assuming that C and J are differentiable, we obtain the
partial differential equation:

∂

∂t
C(x, t) +∇ · J(x, t) = f(x, t) for x ∈ Ω. (4.2)

We assume that the diffusive flux is governed by Fick’s Law:

J = −κ(x) · ∇C(x, t), (4.3)

where κ(x) is the diffusion coefficient.
We model the FRAP photobleaching experiment for cartilage for length scales on which the tissue is

assumed to be homogeneous. Consequently, the effective diffusion coefficient is assumed to be constant. In
the FRAP experiment, a small area of tissue is exposed to an intense beam of light from a laser microscope
causing irreversible photobleaching of the flourophore in that region. An attenuated laser beam is then used
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to measure the recovery of the fluorescence in the bleached area due to diffusion of fluorescent molecules from
the surrounding unbleached areas.

4.2.2 Instantaneous Bleaching Model

The data from a FRAP experiment in which the photobleaching is applied in a short instant of time is shown
in Fig. 4.2. The label 1 indicates the fluorescence level in the sample before the experiment, 2 indicates
almost instantaneous photobleaching of a small region of the sample, 3 indicates the percentage of fluores-
cence recovered over time, and 4 shows the final percentage of fluorescence recovered. The effective diffusion
coefficient of the fluorescent tissue can then be computed by fitting a model to the recovery curve for diffusion
of fluorescence into the bleached area.

We consider the isotropic 2-D diffusion equation:

Ct = κ(Cxx + Cyy) on Ω = [0, R]× [0, R], t > 0 (4.4)

with the homogeneous Dirichlet boundary condition:

C(x, y, t) = 0 for (x, y) ∈ ∂Ω.

We model photobleaching of a circle Ba

(

R
2 , R

2

)

with radius a in a short instant of time via the initial condition:

C(x, y, 0) =

{

C0 for (x, y) ∈ Ba

(

R
2 , R

2

)

0 otherwise
. (4.5)

where C0 is the intensity in the “burned out” region. Via separation of variables, the exact solution of (4.4)
is given by:

C(x, y, t) =
∞
∑

n=1

∞
∑

n=1

Amn sin
(nπ

R
x
)

sin
(mπ

R
y
)

exp
(

−λ2
mnt

)

,

where:

λmn = π

√

κ

(

m2

R2
+

n2

R2

)

Amn =
4

R2

R
∫

0

R
∫

0

C(x, y, 0) sin
(mπ

R
x
)

sin
(nπ

R
y
)

dydx. (4.6)

Inserting the initial condition (4.5) into (4.6) and transforming to polar coordinates (ρ, θ) in the integral, we
obtain:

Amn =
4C0

R2

2π
∫

0

a
∫

0

ρ sin

(

πm

R

(

ρ cosφ +
R

2

))

sin

(

nπ

R

(

ρ sin φ +
R

2

))

dρdφ

=
2C0

R2

2π
∫

0

a
∫

0

ρ
{

cos
(

(m− n)
π

2
+

ρ

R
W (2π − φ)

)

− cos
(

(m + n)
π

2
+

ρ

R
W (φ)

)}

dρdφ, (4.7)

where W (φ) ≡ π(m cosφ + n sinφ).

The mathematical form of (4.7) suggests that the coefficients can be separated into two separate cases:

(i) If n is even then (m + n)− (m− n) ≡ 2n ≡ 0 (mod 4). In this case, it can be shown that:

Amn = 0. (4.8)
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(ii) If n is odd then (m + n)− (m− n) ≡ 2n ≡ 2 (mod 4). In this case:

Amn = 4C0

2π
∫

0

1

W 2(φ)

[

cos

(

(m + n)π

2

)

− cos

(

(m + n)π

2
+

a

R
W (φ)

)

− a

R
W (φ) sin

(

(m + n)π

2
+

a

R
W (φ)

)]

dφ. (4.9)

In regions of articular cartilage near the surface and bone, the collagen fibers tend to have a preferred
alignment in directions that are tangential and normal to the interfaces, respectively. As a first approximation,
we hypothesize that this alignment will cause the tissue to exhibit anisotropic diffusion with the diffusion
coefficient of the form:

κ(x) =

[

κ1 0
0 κ2

]

κ1, κ2 constant (4.10)

Hence, for the anisotropic case, we consider the following 2-D diffusion equation:

Ct = κ1Cxx + κ2Cyy on Ω = [0, R]× [0, R], t > 0 (4.11)

with the same initial and boundary condition as in the isotropic case.
Via the coordinate transformation

x̄ ≡ x√
κ1

, ȳ ≡ y√
κ2

, C̄(x̄, ȳ, t) ≡ C(
√

κ1x̄,
√

κ2ȳ, t),

equation (4.11) can be written as C̄t = C̄x̄x̄ + C̄ȳȳ and the isotropic solution can be employed to obtain:

C(x, y, t) =

∞
∑

n=1

∞
∑

n=1

Amn sin
(nπ

R
x
)

sin
(mπ

R
y
)

exp
(

−λ̄2
mnt

)

, (4.12)

with

λ̄mn = π

√

κ1
m2

R2
+ κ2

n2

R2

where the coefficients Amn are given by (4.8) and (4.9).
Since we have a rapidly decaying series in t, we truncated the series (4.12) (m ≤ 20, n ≤ 20) and evaluated

the integral in (4.9) numerically using the trapezoidal rule with 2(m + n) points. As we are interested
in analyzing the extent to which ECM anisotropy induces preferential molecular diffusion in cartilage, we
generated results for the case of relatively weak anisotropic diffusion (Fig. 4.3). We observe that the primary
advantage of the circular model over previous rectangular models of instantaneous bleaching as being that the
long axis of the elliptical diffusion pattern aligns along the axis of preferential diffusion.

4.2.3 Continuous Bleaching Model

While the circular model of instantaneous bleaching improves upon previous models, the process of instanta-
neous bleaching has the disadvantage that diffusion recovery occurs on a relatively fast time scale. As such,
images in the photobleaching experiment become rather diffuse at very short times making it difficult to detect
diffusive anisotropy via image analysis.

Consequently, we consider a model for a continuous photobleaching experiment in which the laser bleaches
a very small region of tissue for a continuous period of time. We model this experiment via a point-source
bleaching term in the diffusion equation written on the infinite plane. The assumption of an infinite domain
is reasonable as the bleached area is much smaller than the area of the tissue sample. The nonhomogeneous
isotropic diffusion equation is written in the plane as:

Ct = κ(Cxx + Cyy) + q(x, y, t) on R
2, t > 0 (4.13)

with homogeneous initial condition C(x, y, 0) = 0 on R
2.
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t = 0+s t = 1s t = 2s

t = 3s t = 4s t = 5s

Figure 4.3: Simulations of instantaneous photobleaching images for a square tissue sample of size R = 100µm
with a circular photobleaching region of radius a = 5µm. The diffusion coefficients where taken as κ1 =
10µm2s−1 and κ2 = 20µm2s−1 and the intensity in the bleached region was set at C0 = 255
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t = 0+s t = 1s t = 2s

t = 3s t = 4s t = 5s

Figure 4.4: Simulations of continuous photobleaching images for an infinite sample with a continuous bleaching
of power Q0 = 50, 000 at the origin. The diffusion coefficients where taken as κ1 = 10µm2s−1 and κ2 =
20µm2s−1 and images are shown on the domain [−50µm, 50µm]× [−50µm, 50µm]
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The exact solution of (4.13) can be written as

C(x, y, t) =

t
∫

0

∞
∫

−∞

∞
∫

−∞

S2(x − ξ, y − η, t− s)q(ξ, η, s)dξdηds, (4.14)

where S2 is the heat kernel

S2(x, y, t) =
1

4πkt
exp

(

x2 + y2

4kt

)

.

To model continuous bleaching at a point, we let q(x, y, t) ≡ Q0δ(x)δ(y) which represents a source of strength

Q0 located at the origin, where Q0 is the bleaching power of the laser. For this model, (4.14) reduces to:

C(x, y, t) = Q0

t
∫

0

1

4πk(t− s)
exp

(

− x2 + y2

4k(t− s)

)

ds =
Q0

4πk
E1

(

x2 + y2

4tk

)

,

where E1 is the exponential integral function:

E1(x) ≡
∞
∫

1

e−xt

t
dt =

∞
∫

x

e−t

t
dt

For the anisotropic case, we have the differential equation for fluorescence intensity in the anisotropic
infinite area:

Ct = κ1Cxx + κ2Cyy + q(x, y, t) on R
2, t > 0 (4.15)

with the same initial condition and source term as in the isotropic case. Via the coordinate transformation:

x̄ ≡ x√
κ1

, ȳ ≡ y√
κ2

, C̄(x̄, ȳ, t) ≡ C(
√

κ1x̄,
√

κ2ȳ, t)

equation (4.15) becomes:

C̄t = C̄x̄x̄ + C̄ȳȳ +
1√

κ1κ2
q,

which is formally equivalent to (4.13). Hence the anisotropic solution is given by:

C(x, y, t) =
Q0

4π
√

κ1κ2
E1

(

x2/κ1 + y2/κ2

4t

)

. (4.16)

Equation (4.16) can be evaluated directly using the expint command in MATLAB. Typical results are
shown in Fig. 4.4. We observe that the continuous bleaching source term in the model results in much sharper
images as compared to the instantaneous bleaching model. The bleached region grows as an ellipse and the
rate of expansion of the ellipse can be determined from the level curves of the solution (4.16), given by:

x2/κ1 + y2/κ2

4t
= const.

The time scale on which the ellipse grows is much slower than the recovery time scale in the instantaneous
bleaching model (Fig. 4.3). Consequently, the continuous bleaching model shows promise for improving the
quantification of diffusion anisotropy in the FRAP photobleaching experiment via modification of the bleaching
protocol to one in which the laser bleaches a smaller region for a continuous period of time.
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4.2.4 Reaction Model of Continuous Bleaching

We briefly considered a third model of continuous photobleaching, based on [1], by replacing q in (4.15) with
a reaction term that is proportional to C. Such a model may be more realistic in situations where there
is a limited supply of fluorescent molecules, as in the case of bleaching a finite region with an impermeable
boundary like an individual cell.

Let Ω ≡ [−R
2 , R

2 ]× [−R
2 , R

2 ] and let Ba be a circle of radius a centered at the origin. We model continuous
bleaching as a process by which the laser is continuously burning out a certain percentage of glowing molecules
in Ba. The anisotropic diffusion equation is:

Ct = κ1Cxx + κ2Cyy + gC on Ω, t > 0, C(x, y, 0) = C0 on Ω, (4.17)

with:

g(x, y, t) =

{

−g0 in Ba

0 otherwise

Equation (4.17) was solved numerically using a finite difference method. We employed central differences
in space and a Crank-Nicolson scheme in time. Typical results are shown in Fig. 4.5. We observe that the
photobleaching images remain relatively static in time as the transient changes in concentration are localized to
the bleached circle. As such, quantification of diffusion coefficients via image analysis may prove cumbersome
if this model is realistic. However, we believe that in FRAP experiments of the ECM, there are a large number
of molecules available to make the continuous bleaching model (Fig. 4.4) a more accurate representation of
the process of continuous bleaching. Future experiments in the Orthopaedic Research Lab will be designed to
incorporate continuous bleaching and refine the models presented in this study.

4.3 1-D Spherical Model for Mechanotransduction in a Chondron

We now consider a model for mechanical signal transmission in a chondron. The chondron consists of a cell
(chondrocyte) that is encapsulated by a pericellular matrix (PCM). It is believed that the functional role of
the PCM is to protect the cell and allow mechanical signals to reach the cell from the ECM. Some distinct
properties of the PCM are that it is much stiffer than the cell and, in contrast to the ECM, is dominated by
type-VI collagen.

4.3.1 1-D Spherical Model of the Chondron

In our model, we assume that a time-varying sinusoidal signal has been transmitted throughout the ECM and
arrived at the chondron. We model the chondron as a spherical cell with an attached layer that represents
the PCM and introduce spherical coordinates (ρ, θ, φ). We model the cell as a linear and isotropic biphasic
continuum and assume that all deformation and fluid flow occurs in the radial direction ρ (Fig. 4.6). Under
these assumptions, the governing equations of linear biphasic theory can be reduced to:

∂tu =

{

kCHA
C

(

ρ−2∂ρ(ρ
2∂ρu)− 2ρ−2u

)

0 < ρ < a
kP HA

P

(

ρ−2∂ρ(ρ
2∂ρu)− 2ρ−2u

)

a < ρ < b
, t > 0 (4.18)

p =

{

HA
C (2ρ−1u + ∂ρu) + fC(t) 0 < ρ < a

HA
P (2ρ−1u + ∂ρu) + fP (t) a < ρ < b

, t > 0 (4.19)

where the unknowns are the displacement u and pore pressure p. The subscripts C and P denote quantities
associated with the cell (0 < ρ < a) and PCM (a < ρ < b), respectively and fC(t) and fP (t) are arbitrary
functions of time. We model the arrival of a mechanical signal at the chondron via a boundary condition at
ρ = b with sinusoidal input:

u(b, t) = u0 sin(ωt) ≡ I(t) t > 0 (4.20)

Along the cell-PCM interface (ρ = a), the biphasic jump conditions for the solid phase reduce to:

u(a+, t) = u(a−, t) (4.21)
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t = 1s t = 2s t = 3s

t = 4s t = 5s t = 6s

Figure 4.5: Simulations of images for a reaction model of continuous photobleaching for square sample of
width R = 100µm and radius of the bleached circle of a = 5µm. The diffusion coefficients were taken as
κ1 = 10µm2s−1 and κ2 = 20µm2s−1 and the bleaching intensity and decay coefficient were C0 = 255 and
g0 = 16s−1, respectively. The parameters in the finite difference scheme were ∆t = 1

30s and ∆x = ∆y = 1µm.

ρ

a b
Chondrocyte

PCM

I(t)
O(t)

Figure 4.6: A spherical model of the chondron in articular cartilage. The chondron is modeled as a biphasic
spherical cell (chondrocyte) with attached biphasic spherical layer. A displacement input signal is applied at
the outer boundary (ρ = b) and signal transmission is measured by calculating the transmitted output signal
at the cell-PCM interface (ρ = a).
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HA
P ∂ρu(a+, t)−HA

C ∂ρu(a−, t) =
2λC

a
u(a−, t)− 2λP

a
u(a+, t) (4.22)

The biphasic jump condition for continuous pressure across the interface can be enforced through an appro-
priate choice of the arbitrary functions fC(t) and fP (t) in (4.19).

For this model, the displacement u(ρ, t) and pressure p(ρ, t) uncouple and our signal transmission model
consists of the solution of (4.18) subject to (4.20)-(4.22). In particular, we are interested in the relation
between the input signal in (4.20) and the (output) displacement signal at the cell-PCM interface:

O(t) ≡ u(a, t) = B sin (ωt + δ) (4.23)

We perform a parametric analysis on the amplitude B of the transmitted signal. This amplitude measures the
performance of the PCM as a signal transmitter as a function of the forcing frequency and material parameters
in the model.

4.3.2 Finite Difference Solution

The spherical chondron model is a linear interface problem and, under certain circumstances, has a solution
representation in terms of an eigenfunction series expansion. However, the condition for real eigenvalues in
the series expansion (self-adjointness of the operator) is that kC = kP . Using our numerical model, we are
able to relax this condition. Hence, the focus of this study will be to quantify the effect of permeability on
signal transmission in the PCM.

Equation (4.18) is re-written as:

∂tu = α

(

∂2
ρu +

2

ρ
∂ρu−

2

ρ2
u

)

0 < ρ < b, where: α =

{

kCHA
C 0 < ρ < a

kP HA
P a < ρ < b

(4.24)

We employ a forward finite-difference approximation for the time derivative:

∂tu(ρ, t + ∆t) =
u(ρ, t + ∆t)− u(ρ, t)

∆t
(4.25)

and a centered finite-difference approximation for the spatial derivatives:

∂2
ρu(ρ, t + ∆t) =

u(ρ + ∆ρ, t + ∆t)− 2u(ρ, t + ∆t) + u(ρ−∆ρ, t + ∆t)

(∆ρ)2
(4.26)

∂ρu(ρ, t + ∆t) =
u(ρ + ∆ρ, t + ∆t)− u(ρ−∆ρ, t + ∆t)

2∆ρ
(4.27)

We also assume that u(0, t) = 0 since there is no displacement at the center of cell (ρ = 0).
Introducing a regular mesh in time and space, let uj

i = u(ρi, tj) where ρi = ih, tj = jk, h = ∆ρ, and
k = ∆t. Equation (4.24) can be written as:

uj+1
i − uj

i

k
= α

[

uj+1
i+1 − 2uj+1

i + uj+1
i−1

h2
+

2

ρi

uj+1
i+1 − uj+1

i−1

2h
− 2

(ρi)2
uj+1

i

]

(4.28)

To enforce the interface conditions at ρ = a, we mesh so that no point on the mesh is coincident with the
interface. Denoting the index i of the mesh point immediately to the left of the interface by A, we discretize
the interface condition in (4.22) as:

HA
P

[

uj+1
A+2 − uj+1

A+1

h

]

−HA
C

[

uj+1
A − uj+1

A−1

h

]

=
2λC

a
uj+1

A − 2λP

a
uj+1

A+1 (4.29)

and also enforce the interface condition in (4.21):

uj+1
A+1 = uj+1

A (4.30)

Hence, our scheme consists of solving (4.28) with α = kCHA
C for i = 1, · · · , A−1, equation (4.29) for i = A−1,

equation (4.30) for i = A and equation (4.28) with α = kP HA
P for i = A + 1, · · · , N − 1. At i = 1 (ρ = 0) and

i = N (ρ = N) the appropriate boundary conditions are enforced. Marching in time, we then solve a linear
algebraic system at each time step using MATLAB to obtain the numerical solution of the spherical chondron
model for a specific set of parameter values.
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N=2
0

N=4
0 N=80N=40N=20

(a)

(b)

kp=10kc
kp=2kc

kp=kc

Figure 4.7: Finite difference simulations of transmitted displacement signals at the cell-PCM interface (ρ = a):
(a) Numerical convergence of the scheme is rapid and a steady state signal is achieved within a short period
of time. (b) The effect of increasing permeability of the PCM on the transmitted signal at the cell-PCM
interface.
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(a) (b)

(c) (d)

EP=10EC

EP=20EC

EP=50EC

EP=10EC
EP=20EC

EP=50EC

EP=10EC

EP=50EC

EP=20EC

EP=10EC

EP=20EC
EP=50EC

kC=10^(-15), kP=10^(-13) kC=10^(-15), kP=10^(-15)

kC=10^(-15), kP=10^(-16) kC=10^(-15), kP=10^(-17)

Figure 4.8: A parametric analysis of the effect of permeability on the amplitude of the transmitted signal
at the cell-PCM interface. The amplitude of the steady-state transmitted displacement signal at the cell-
PCM interface is plotted as a function of the frequency of the applied displacement signal at the outer PCM
boundary. Each point on a graph represents one run of the finite difference code. (a) kP = 100kC (b) kP = kC

(c) kP = 0.1kC (d) kP = 0.01kC
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4.3.3 Results: Parametric Analysis of the Effect of Permeability

Since the PCM serves as a protective layer for the cell, its elastic modulus is significantly stiffer than that
of the cell. Initial micropipette aspiration experiments at the Orthopaedic Research Lab have indicated that
the ratio of Young’s moduli EP /EC can be as large as 100 in healthy tissue, and somewhat diminished in
the case of osteoarthritis. We use our finite difference model to simulate signal transmission in a chondron
with the representative properties a = 10µm, b = 12.5µm, νC = 0.45, νP = 0.1 for three different moduli
ratios EP /EC = 10, 20, 50. We consider the effect of changing the permeability of the PCM kP relative to the
permeability of the cell kC in a range of frequencies that is representative of human motion (f = 0-3Hz). To
quantify signal transmission, the input amplitude was taken as u0 = (b− a)/10. For a typical case, we found
that our numerical scheme converged rapidly (Fig. 4.7a) and N = 80 was sufficient for our parametric analysis.
We see that the displacement signal at the cell-PCM interface has a transient component that rapidly tends
the the steady-state oscillatory signal. The effect of increasing the permeability of the PCM is demonstrated
in Fig.4.7b. We observe that increased permeability of the PCM enhances signal transmission through the
PCM to the cell.

For a comprehensive analysis of the effect of permeability on signal transmission, we ran our code for
30 values of forcing frequency in the range 0 − 3Hz for three different Young’s moduli ratios and several
permeabilities. In the case of equal permeability, amplitudes were compared to an analytical series solution
based on an eigenfunction expansion and found to agree. The effect of permeability on the amplitude B of the
steady state transmitted signal at the cell-PCM interface is shown in Fig. 4.8. We observe that decreasing the
permeability of the PCM relative to the cell by two orders of magnitude has a significant detrimental effect
on signal transmission in the chondron (Fig. 4.8c-d). As the PCM permeability increases up to 100 times the
cell permeability, signal transmission is enhanced. In our simulations the optimal case, with 80− 100% signal
transmission, occurs when the PCM permeability is 100 times that of the cell and the PCM is 50 times stiffer
than the cell (Fig. 4.8a).

It is interesting to observe that, given recent experiments, EP /EC ≈ 50 is a reasonable representation
of the ratio of stiffness moduli for chondrons from healthy cartilage. Consequently, our spherical chondron
model parametric analysis indicates that a relatively large ratio of PCM to cell permeability enhances signal
transmission in the chondron. While steady state permeation is typically used to determine the permeability
of the ECM in cartilage, this technique is limited to the length scale of a layer of cartilage. In future work, the
Orthopaedic Research Lab will attempt to design microscopic experiments that allow for in vitro determination
of permeability in the chondron. For the case of optimal transmission of displacement signals, an analysis of
the normal stress at the cell-PCM interface will also be performed to ensure that the cell is not exposed to
excessive amounts of normal stress.
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Abstract

Sand ripples are an important aspect of the seafloor makeup. Being able to detect them from sonar imaging is
valuable in understanding the geologic makeup of the seafloor. They have unique properties which differentiate
them from other areas of the seafloor. The first property is a dominant direction of the ripple. The second
property is a continuity of the ripples. Based on these properties we developed two tests to allow one to
mathematically detect these ripples from large sonar images.

5.1 Introduction and Motivation

In the past two years Summus worked on a research program sponsored by the Office of Navel Research to
investigate side-scan sonar image processing technologies for the purpose of recovering structure and geological
information on the seabed. Such structure and geological information are crucial for US Navy’s bottom
mapping task. In such task sand ripples are one of most important bottom types.

Recognizing the pattern of these sand ripples from large images is difficult and requires several different
methods of analysis. Since scale is important to the recognition of these patterns the first step is to decompose
the images using ”steerable pyramid” filter[3]. From these decomposed images the ”oriented energy” is mea-
sured to examine the directionality of the images [1]. This information is represented in a histogram. Our task
was to analyze the histograms in order to accurately identify dominant orientation in the scaled images. The

1North Carolina State University
2University of Maryland, College Park
3University of California, Los Angeles
4University of Colorado, Boulder
5University of Illinois Chicago
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68 REPORT 5. RECOGNIZING SAND RIPPLE PATTERNS FROM SIDE-SCAN SONAR IMAGES

images that display a dominant direction in the histogram are then analyzed for spatial coherence in order to
detect the continuity of the image, thus giving a way to differentiate between ripple patterns and nonrippled
but oriented patterns.

Figure 5.1: Examples of (a)nonsand-ripple image. (b)sand-ripple image
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Figure 5.2: (a). A Histogram of the noisy data (original) and (b) the histogram after fast Fourier transform.

5.2 Methodology

5.2.1 Histogram Analysis

Our first task was to analyze the histograms. The histograms represent the data collected from calculating
the oriented energy of the image of different scales. For each image there were three levels of decomposition
of the data The x-axis represent the degree of orientation and the y-axis represent the energy. For each image
there were three levels of decomposition of the data, each with a histogram. Although finding the maximum
energy is simple, the question is finding whether this maximum represents a clear orientation of the image. A
maximum that represents a clear orientation of the image may be called a dominant peak. First to eliminate
some of the noise in the data we performed a fast Fourier transform (fft) on the data. We eliminated the
higher frequencies and performed an inverse fast Fourier transform on the data to smooth the curve.

From this we designed two criteria to determine whether the maximum was dominant. First we calculated
the height of the maximum relative to the average of the data, Havg.

Relative Height(Hreli) =
Hi −Havg

Havg
(5.1)

This method gives a criteria to determine whether the peak is dominant. From experimentation we found that
a peak with a relative height greater than 0.3 was often dominant. However peaks with high relative heights
but narrow bases often did not reveal dominant orientation in the original images. So we calculated the ratios
of the areas under the peaks,Ri =Area under the peak i /Area under the whole graph.
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Figure 5.3: Chart shows how the images get determined
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Figure 5.4: Chart describes the histogram
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A value of area ratio of peak greater than 0.3 often indicated a dominant peak. Using these criterion we
determine whether each histogram has a dominant peak. The final step for analyzing orientation is comparing
the dominant peaks of the various levels of decomposition. While the first level had the most data it often
also had the most noise. Histograms with dominant peaks at the same orientation at both the first and the
second level often had clear orientation in their images. We tested each level data and then compared them
to see if the orientations from each level were consistent. A deviation of +5 or -5 degrees of the orientations
are accepted. Since level 1 and 2 contain more information than level 3, we will accept the orientation that
agrees in both level 1 and 2, no matter what orientation level 3 gives or even when level3 does not detect any
orientations.

5.2.2 Result From Histogram Analysis

We tested those criterion to the histograms from various ripple images provided by our presenter. Here are
orientations (degree) returned from each level and compared to the original images.

Image’s name Level1 level2 level3 Images has Ripples Angle agree with image

09mar12xR3500C100ap 90 90 90 Yes Yes
b2eCutDno 45 30 - Yes Yes
bigSandrip 155 160 165 Yes Yes

106-1024-1Cut 15 15 - Yes Yes
spatialCohDno 90 95 95 No No

The corresponding images and histograms are as below.
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Figure 5.5: 09mar12xR3500C100ap and its histogram.
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Figure 5.6: 106-1024-1Cut and its histogram .

The results show that these criterion do relatively well in specifying the dominant peak from the histogram.
Most of the cases return the same orientation at least from level 1 and 2 and they agree with their images. The
question remains what to do with histograms that give different orientations in the different levels. However,
for some images for example ”bigSandrip”, The 155, 160 and 165 degree orientations are returned from level
1,2, and 3 respectively. This image shows clear sand ripples and supports the idea that a differnce of five
degrees can be disregarded.
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Figure 5.7: b2eCut and its histogram .
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Figure 5.8: bigSandrip and its histogram .
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Figure 5.9: SpatialCohDno and its histogram .
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5.3 Spatial Coherence Test

Because the presence of dominant orientation of an image does not necessarily means it is an image of a sand
ripple, we needed to develop a test to filter out ”false alarm” pictures (fig. 9 shows such a picture).

First, we can see that one of the important properties of a sand ripple pattern is a continuity of its
structure. Intuitively what this means is ripple patterns look a good deal like continuous functions. Fig. 9, a
non-ripple pattern,does not possess such property. First we rotate the image to get a horizontal orientation
for all the images. To check this spatial coherence we shift the image along the dominant orientation and
evaluate correlation between the original and the shifted image. A picture which possesses spatial coherence
will have better correlation with the shifted counterpart than a picture which does not have such property.
In our implementation of the procedure an image is rotated first so that it has horizontal orientation. Then
we shift it a minimal distance, ie. 1 through 5 pixels. We have evaluated the correlation in a number of
experiments and found that threshold of 0.3, for a shift of five pixels works very well to differentiate between
such images as fig. 8 and fig 9.

5.3.1 Results From the Coherence Test

Here are the groups of data. First are results from the non-ripple patterns. Their histograms return the degree
of orientation but the low coherence number shows that there is no ripple. The second data are from the true
ripple sample, the angle and the higher correlation number reveal the correct orientation and the existence of
the ripple patterns. The third group did not pass the orientation test, so we did not use the correlation test.

Image’s name Location angle correlation number Ripple? Agree original image
09mar12xBigCut ( 100,200 ) 95 0.0545 No Yes

09mar13xCut2 (150,100) 95 0.1225 No Yes
09mr13xCut2 (100,200) 95 0.0193 No Yes

106-0920-1False (200,300) 95 0.1929 No Yes
09mar12xBigCut (300 ,100) 85 0.3756 Yes Yes

106-1024-1Cut (250,250) 10 0.4042 Yes Yes
106-1034-1-13000-400 (100,100) 25 0.5384 Yes Yes

b2-ecut (50,100) 35 0.5063 Yes Yes
SandRipplesBig (50,150) 150 0.627 Yes Yes

09mar12xBigCut (450,200) - - No Yes
09mar13xCut2 (150,100) - - No Yes
SansRippleBig (350,350) - - No Yes
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Figure 5.10: 09mar12xBigCut and 09mar13xCut2.
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Figure 5.11: 106-1024-1Cut and 106-1034-1-13000-400 .
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Figure 5.12: SandRipplesBig and b2eCut .
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5.4 Future Work

The combination of histogram analysis and spatial coherence anlysis has been shown to work well through
the experimentation carried out so far. However, it is still necessary to perform further experimentation
to state the limitations of the method more conclusively. The number of test cases corresponding to each
category should be increased and the test results should be reviewed carefully. Both levels of analysis mainly
reflect a straightforward implementation of the underlying idea. There is still some flexibility to improve
the performance of the method via fine tuning of the paramenters and modifying certain components of the
algorithm. Extensive testing is certainly necessary to find the right parameters (for example, thresholds). The
best choice between using all the angles from the histogram analysis or a weighted average of them or a range
including the peak angles may also be explored. The effect of a more accurate itegration scheme for the peak
areas may also be checked, as well as the effect of choosing a different displacement between cross sections
(i.e. one, two or several number of points).

Second, even though in most cases non-rippled butoriented patterns are successfully filtered out through
the spatial coherence test, some may have spatial coherence as strong as sand ripples and therefore can pass
the procedure. To deal with this problem we can note that another important property of a sand ripple is
its uniform structure, i.e. distance between ripples and the height of the ripples should be approximately the
same. Therefore, if an image passes the orientation and coherence tests, we can test the image on ”uniformity”.
This is done by taking several slices and finding variances of distances between maximums of slices and heights
of their maximums.

Another possibility to explore is to use machine learning methods to detect sand ripples in the given image
segments. Ther are a number of machine learning techniques used for pattern recognition and they have been
known to produce good results at certain implications. Neural networks and support vector machines are used
extensively for this purpose and it is expected that they may perform well for this problem since the problem
is a relatively simple case of pattern recognition. These two methods are also desirable for their robustness
properties; they produce good results with noisy data too.

5.5 Conclusion

We have developed two methods to test for sand ripples in sonar images. Based on the fact that the ripple
patterns have a dominant orientation and are ”quasi-linear” [1], we used histogram analysis to detect possible
candidates for ripple patterns. From these candidates we used the fact that ripple patterns are a good deal
like continuous functions to test the spatial coherence of the images. From these test we developed a relatively
good way to begin to analyze these images for sand ripples.
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Abstract

Closed and open flow corrective inserts are used in containers handling bulk materials in many industries to
improve the flow pattern upon discharge. During the filling process, an angle of repose is formed around the fill
point and an interesting free boundary problem occurs when the filling material has to flow around an insert.
We will attempt to solve this problem deriving and solving a differential equation to describe the surface and
investigate various algorithms similar to ray tracing techniques that might give a good approximation to the
solution. The goal is to end up with the fastest algorithm that can be implemented in C code as part of a larger
program used for analysis of solids flow.

6.1 Introduction and Motivation

The goal of our work is to find the surface profile of a granular material that is being poured into a hopper
equipped with flow corrective inserts. Our motivation in doing this is to provide a cost effective method for
measuring the volume of grain in the hopper.

The system to be modeled consists of an arbitrarily shaped hopper with arbitrarily shaped flow corrective
inserts, and grain being poured in from an arbitrary point above the hopper. In modeling this system, we
make several assumptions. First, we assume that the flow of the grain is slow enough that any kinetic energy

1Utah State University
2Duke University
3University of Maryland
4North Carolina State University
5State University of New York at Stony Brook
6Northeastern University
7North Carolina State University
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Figure 6.1: Angle of Repose: Balance of Forces

Figure 6.2: Surface Profile: No Obstruction (left), With Obstruction (right)

of the grain can be ignored. This allows us to consider the surfaces at each time to be solutions to a static
force equation. This leads to surfaces where the maximum angle of incline is equal to the angle of repose, δ,
for the granular material. The angle of repose is the angle at which the forces of friction and gravity cancel out
for a particle on the surface of the heap (See Figure 6.1). The solution in a region containing no obstacles is a
cone with angle equal to the angle of repose (See Figure 6.2). This angle is maintained even around obstacles.
This leads to a shadowed area “downstream” from the obstacle where the height at a given point is lower than
if the surface were a cone (See Figure 6.2).

Two methods were used to find the surface profile. The first is analogous to optical ray tracing techniques
used in computer graphics. The height, z = h (x, y), of the surface at any point is found by multiplying
the slope given by the angle of repose by the length of the shortest path between the source and that point.
For simplicity, we only considered prismatic inserts. This reduced the problem to finding the shortest path
between each point and the source in the x− y plane projection. This method is elaborated on in Section 6.2.

The second method used is the Fast Marching Method which is based on entropy-satisfying upwind schemes
and fast sorting techniques. This method is commonly used to solve a variety of static Hamilton-Jacobi
equations. The condition that the maximum angle of incline is equal to the angle of repose makes solving this
problem equivalent to solving the Eikonal equation ‖∇T‖ = F , where F = tan(δ) is constant. The Eikonal
equation is in the Hamilton-Jacobi class of equations, and therefore the Fast Marching Method is well suited
to this problem[14]. Section 6.3 describes this method in more detail.

6.2 Ray Tracing Algorithm

Ray tracing in computer visualization is a method of producing realistic images, in which the paths of individual
rays of light are followed from the viewer to their points of origin. In the light ray tracing process, the physics
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Figure 6.3: Shortest Path Around Obstacle

and mathematics of light is used. Though light rays are not being modeled in this problem, this method is
called a ray tracing method since a similar approach is used.

6.2.1 Why does shortest distance in x-y plane work?

It is observed that during the filling process, non-cohesive granular material discharged from a single source
will always form a surface that makes a constant angle with respect to the vertical. This angle is called the
angle of repose, and the surface of the granular material is well approximated by a cone. The whole filling
process can be approximated as a sequence of cones that build atop of each other as more volume flows in
from the source.

What happens in the case when there is an obstacle? The answer lies partly in the idea of visibility. Two
points are called visible if the line segment between them does not intersect an obstruction. The assumption
of constant angle of repose can be written as

|∇h| = tan δ

wherever ∇ ≡ (∂x, ∂y) is defined. It is assumed that any path on the surface that follows the height gradient
(in the positive direction) will not intersect the interior of an obstruction. This requires that at any point on
the surface of an obstacle

(

∇h, |∇h|2
)

· ν ≥ 0

where ν is any outward normal to the surface of the obstacle. If the obstruction is smooth, then ν will be
unique, and the above requirement will be strict for almost every point on the obstacle surface that is visible
from the source. This is because flow lines do not have to avoid the obstacle. However, if a point is not visible
to the source, the flow lines will have to move around the obstacle tangent to its surface. In this case, the
requirement above holds as an equality.

Both assumptions are physically very natural and with them, one can show that the height at any point
on the surface is determined using shortest paths (See Figure 6.3). To this end, let P be the set of all possible
paths between a point P = (a, b, h (a, b)) and the source S = (0, 0, h (0, 0)) along the surface of granular
material. Possible paths are those with end-points at P and S that do not intersect themselves and that do
not intersect the interior of any obstacle. Denote a typical path in P by Γ, and the projection of any path Γ
onto the x-y plane by Γ̄. Finally let Q = {Γ̄ : Γ ∈ P}, that is, Q is the set of all x-y projections of path in P .

By the assumptions above, |∇h| = tan(δ) wherever h is differentiable. Moreover, if we trace backward
from P along the surface in the direction of the height gradient, we will never intersect an obstacle. Thus
the height along that path will increase at a constant rate until we reach the height of the source. Since the
source is the only point on the surface at that height, the other end of the path must in fact be the source.
This means that there exists at least one path Υ such that Υ ∈ Q and

∫

Υ

∇h · d~̀ =

∫

Υ

|∇h| ds =

∫

Υ

(tan(δ))ds

where d~̀ is the differential oriented path length, ds =
∣

∣

∣
d~̀

∣

∣

∣
, and the integral along Υ is from P to S.
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We claim now that
length (Υ) = min

Γ̄∈Q
length

(

Γ̄
)

Suppose that this is not the case, that there exists a path Υ′ ∈ Q such that length(Υ′) <length(Υ). Even so,

h (0, 0)− h (a, b) =

∫

Υ′

∇h · d~̀ =

∫

Υ

∇h · d~̀ =

∫

Υ

(tan(δ))ds

Therefore if length(Υ′) < length(Υ), then at some point (x, y) on Υ′

|∇h (x, y)| > tan(δ)

However, this contradicts the original assumption and means that the angle of the surface with vertical was
smaller than the angle of repose. Thus the surface is too steep to be in static equilibrium and the granular
material has to slide down to a new position.

Now the formula above can now be used to compute the height drop between S and P :

h (0, 0)− h (a, b) =

∫

Υ

(tan(δ))ds = tan(δ)× length (Υ)

where Υ is a shortest path in Q between (0, 0) and (a, b) . Therefore the ray tracing algorithm focuses on
finding the shortest unobstructed path between a given point and the source.

Obstacles are assumed to be prismatic, i.e., cross sections parallel to the x − y plane have no variation
along the vertical axis. The reason for this restriction is the difficulty in determining visibility for a fully three
dimensional obstruction. In this case, visibility depends on the vertical position, thus affecting the possible
paths. The set of possible paths determines the minimum distance traveled which in turn, affects the vertical
position. The coupling of planar and vertical motion in this way makes implementation of a shortest distance
algorithm very difficult, especially when considering the practical restrictions imposed by the underlying mesh.

6.2.2 Outline of the Algorithm

Assumptions and remarks:

Obstacles are assumed to be right prisms with every cross section parallel to x-y plane identical. The base of
the prism can be any polygon. Let a0 be the source representing the fill point, and let a1, ..., an be polygonal
vertices of the obstacle base in either clockwise or counterclockwise order. Points are characterized by their
coordinates and a tag called ‘source’ which is equal to one if the point can be a source (with respect to the
point calculated at the moment, see Concavity test) and zero otherwise. The z coordinate of each point will
ultimately contain either its height on the surface we are trying to compute or zero if it is inside the obstacle.

Helpful routines:

. Computing visibility between an arbitrary point in the plane and the point in the array a (in a there
are source and vertices of the polygonal base of the obstacle). If the arbitrary point is outside the obstacle,
the routine reduces to checking whether line of sight crosses any of the edges in polygon. If computing the
visibility between the two polygonal vertices then concavity/convexity of the polygon at those points has to
be taken into account.
. Determining whether a point is inside a polygon or not.

Input:

. Source position (in 3D) and positions of the obstacle polygonal base vertices (in 2D).

. Slope = tan(δ) where δ is the angle of repose.

Initializing:

1. Determine the visibility between all pairs ai, aj for i, j = 0 . . . n.

2. Initialize the list Sources with original source a0.
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3. Heights of all polygonal vertices are set to 0 and the height of the source is given.

Main Loop:

While ( list Sources not empty) do the following:

1. Let ai be the first element in the list Sources

2. For all aj , j = 0..n in array such that aj is visible to ai calculate
height = height(aj) + distance(ai, aj) ∗ Slope

If (height > height(ai)) then

set height(ai) = height

if node aj satisfies Concavity test add it to the end of the list Sources

3. Go to 1.

Assume we have vertex ai and vertex aj that is visible from ai. Then Concavity test mentioned in the
algorithm simply determines whether vertex aj (whose height is bigger than the height of ai) can be a source
for ai, that is can the path of sight from a0 to ai go through aj . That decision at this point depends on the
geometry(or rather concavity) of the polygon. For instance, aj in the Figure 6.4 cannot be a source for ai,
but ai could be a source for aj .

Figure 6.4: Concavity test

6.3 Fast Marching Method

6.3.1 Theory

Fast Marching Methods, invented by J.N. Tsitsikls [17, 18] and thoroughly investigated by J. A. Sethian
[11, 14, 15], are numerical schemes used to compute solutions for a large class of Hamilton-Jacobi equations.
Of particular interest is the nonlinear Eikonal equation defined on a set Ω ⊂ R

2 with known values on Γ ⊂ ∂Ω

|∇T (x, y)| = F (x, y), (x, y) ∈ Ω
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T (x, y) = f(x, y), (x, y) ∈ Γ

If the surface of a cone with angle of repose δ is described by a height function

z = h(x, y), (x, y) ∈ Ω

h(0, 0) = h0

then h satisfies the Eikonal equation with constant F (x, y) = tan(δ) and boundary data h0 on Γ = (0, 0). If
the origin of the x − y plane corresponds to the fill point where the apex of the cone is formed), then level
curves of h are the set of all points equidistant from the origin in the x-y plane so that a contour plot of h
consists of concentric circles centered around the origin. In a more general setting, F may not be constant Γ
may be more than just a single point, and a contour plot is not be so trivial.

Another point of view is to consider the origin as the source for a disturbance that propagates radially.
Thus T (x, y) measures the arrival time for (x, y), i.e., the time it has taken for the disturbance to propagate
from the source to that point in the plane. When F (x, y) = tan(δ) the arrival time corresponds directly to
height drop from the top of the cone. Qualitatively, the picture for more general F and boundaries is easier
to understand from this point of view. Level curves of T represent points whose arrival time from the origin
is the same, and the speed at which a disturbance propagates can depend on the medium through which it
passes so that F has a spatial dependence. A larger value of F at a given point in the plane is corresponds to
a slower propagation speed. Letting F = ∞ corresponds then to an obstacle through which the front cannot
pass. This is key to our application.

The qualitative picture for more general boundaries Γ is more difficult and is representative of the typical
problem that any scheme must overcome – that solutions in general will not be differentiable even if the bound-
ary data is smooth. Although the Eikonal equation is a boundary value problem, the lack of differentiability is
analogous to the development of shocks in hyperbolic evolution equations. One can imagine, for example, the
case of a propagating fire line [16] in which two separate fires merge to form a non-convex curve. At this point
it is not clear mathematically how the fire-line will evolve since the question of arrival time requires knowing
from where the disturbance is coming. Mathematically, there are many solutions. (Consider, for example, the
Eikonal equation with constant right hand side in one dimension. Any saw-tooth wave with appropriate slope
and boundary value will be a solution). Thus conditions must be set that extract a unique solution. One way
to do this is to introduce an entropy condition of textit first arrival time. In terms of the fire line, this means
that once something burns, it can’t be burnt again; in optics, this idea is related to the well known Huygens
principle of light; in mathematics, the first arrival time solution corresponds to the viscosity solution of the
Eikonal equation, obtained in the limit as ε goes to zero of the sequence of unique solutions to

|∇T (x)| = F (x) + ε∇2T (x)

The viscosity solution is known to be the unique physically relevant, entropy satisfying solution to the Eikonal
equation [4]

Having set a uniqueness criterion, the question then is how to implement a consistent numerical recipe.
The idea is to use an upwind scheme that mimics the propagation of a front that at each iteration represents
a level curve of T . To this end, points are evaluated in a thin band which forms the boundary between grid
points who values are known at a certain iteration, and those which are not. Arrival times (and hence height
values) are then computed in such a way that respects the first arrival condition. This means that the arrival
time of a point P is approximated using, in both the x and y direction, the arrival time of its nearest neighbor
deemed most believable, that is, the neighbor having the shortest determined arrival time. In the context of
our application, this means the greatest height.

6.3.2 Algorithm

To begin, assume the obstacle is a right-angle prism. In this case, the problem reduces to solving the Eikonal
equation in two dimensions. This method can be extended to a non-prismatic obstacle [see below].

Assumptions and Remarks:

We are working on two-dimensional square grid. Points are characterized by their coordinates, T -value, and
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tag. At each step of the algorithm, each point on the grid is tagged as a BOUNDARY, OBSTACLE, ALIVE,
CLOSE or FAR point. Points on the boundary and obstacle will always be BOUNDARY or OBSTACLE points,
respectively. At each stage of the algorithm, FAR points are those which the algorithm has not incorporated
yet. A point is ALIVE if its value of T is permanently set to a finite number. When computing the T -value
at a point only values from its ALIVE neighbors can be used. A list of CLOSE points is maintained separately.

Input:

. BOUNDARY and OBSTACLE points.

. source position (or initial condition points) and the corresponding value(s) of T

. tan(δ) where δ is the angle of repose .

Initializing:

1. BOUNDARY and OBSTACLE points are tagged as such. Their values are irrelevant and set to infinity.

2. The initial condition points are tagged as ALIVE and their values are set to the given values. Initial
CLOSE points are the points that are neighbors of ALIVE points where square grid neighbors of ui,j are
ui−1,j , ui+1,j , ui,j−1 and ui,j+1. CLOSE points values are computed according to the upwinding formula
given in the next section. All other points have the FAR tag and their values are set to infinity.

Main Loop:

While (the list of FAR points non-empty) do the following:

1. Let TEST be the point with the smallest value among the current CLOSE points.

2. (Re)tag as CLOSE all of the FAR neighbors of TEST and add them to CLOSE list.

3. Recompute the values of all CLOSE neighbors of TEST.

4. (Re)tag the TEST point as ALIVE.

5. Go to 1.

This algorithm computes level sets of T . Since the angle of repose for a given material remains constant,
the height of the sand pile is proportional to T .

6.3.3 Two-dimensional implementation

The key to this algorithm is step three. We use a first order finite difference approximation of the gradient:

|∇T | = [max(D−x
ij T,−D+x

ij , 0)2 + max(D−y
ij T,−D+y

ij , 0)2]1/2

where
D−x

ij T = Ti,j − Ti−1,j

and
D+x

ij T = Ti+1,j − Ti,j

The Eikonal equation becomes an equation for Tij . Since Tij is a variable, it is not possible to decide which
quantity to use for the maximum a priori. Instead, we solve eight different equations corresponding to the
different combinations (disregarding the zero-zero combination) and use the equation which gives the smallest
value of Tij . Since the T value of FAR and BOUNDARY points is infinite, they will not contribute to the
calculation. Once the T values for all points are computed, the height of the sand pile at (i, j) is given by
h− Tij where h is the height at the source.

The two-dimensional algorithm, as is, will not work with non-prismatic obstacles, since at different T -values
(corresponding to different heights in the sandpile) the cross-section of the obstacle with the x-y plane will be
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Figure 6.5: Ray Tracing/Fast Marching: Square Prism

different. For example, the cross-section of a circular cone at different T -values will be circles of increasing or
decreasing radii. To overcome this difficulty the obstacle is not fixed at the beginning. Instead, the obstacle
shape is parameterized by the T -value. When doing the gradient calculation, the algorithm checks to see if
a neighbor of Tij is in the obstacle (which depends on the height of Tij). If so, that point is not used in the
calculation. Computation continues until no CLOSE points remain. Points inside the obstacle will remain
FAR for each step and will not be computed.

6.4 Main Results

6.4.1 Results of Computation

Ray Tracing Algorithm

Below are plots of the calculations for a square prism (Figure 6.5), a non-convex prism (Figure 6.6), an
asymmetric prism (Figure 6.7), and a circular prism (Figure 6.8). The results for the first two shapes are
exact, but the results for the circular prism are not since the boundary was approximated by a 20 vertex
polygon.

Fast Marching Method

Below are plots of a square prism (Figure 6.5), a circular prism (Figure 6.8), and a non-convex prism (Fig-
ure 6.6). The third shape shows the algorithm can handle concavities. The fourth demonstrates non-symmetric
obstacles (Figure 6.7). These four are indistinguishable from the results of the ray tracing method. However,
this algorithm is also capable of handling disconnected obstacles (Figure 6.9) as well as non-prismatic obstacles
(Figure 6.10).

6.4.2 Limitation and Difficulties

Ray Tracing Algorithm

Once the shortest paths are found, the calculation is straightforward and as accurate as the floating point
representation on computers. The only accuracy problem comes from how well the obstacle base can be
approximated by a polygon and using too big number of polygonal vertices can eventually slow down the
calculation. It is more or less straightforward to implement the method for more than one obstacle as long as
the problem can be reduced to two dimensions.
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Figure 6.6: Ray Tracing/Fast Marching: Prism with Downstream Concavity

Figure 6.7: Ray Tracing/Fast Marching: Asymmetric Prism with Concavity
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Figure 6.8: Ray Tracing/Fast Marching: Circular Prism

Figure 6.9: Fast Marching: Disconnected Obstacle
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Figure 6.10: Fast Marching: Non-Prismatic Obstacle (Cone)

However, it is computationally very expensive to implement the method for obstacles with cross sections
that change with z-coordinate since such implementation requires efficient computation of visibility between
all pairs of vertices.

Fast Marching Method

The two-dimensional algorithm works for any prismatic obstacle, including those with asymmetries and con-
cavities. There could be multiple, disconnected obstacles (i.e. two cylinders). It is necessary to modify this
algorithm in a straight-forward way to deal with truly three-dimensional obstacles. The method works for
simple objects such as cones and pyramids. However, there are several types of obstacle for which the algo-
rithm will fail. The method must be modified before it could predict sandpile shapes around obstacles with
holes. There will also be a problem with cliffs (where the sand will build up on top and eventually fall off).
This has the effect of creating a second source. Currently the algorithm assumes a unique source.

One disadvantage of the fast marching method as compared to the ray tracing method is that fast marching
is an approximate scheme. However, it will converge to the correct answer as the mesh size is decreased. The
scheme presented here is first order, but it is possible to use a higher order method for the gradient calculation.

6.4.3 Conclusions

Finding the shape of a granular heap in a hopper with corrective flow inserts is of interest in industry. For
example, this would allow computation of the volume of granular material in the heap given only the geometry
of the hopper and the height of the pile underneath the source. Two distinct methods, ray tracing and fast
marching, have been shown to give the profile of heaps around a large class of obstacles. The only assumption
about the heap is that the angle with the horizontal, or angle of repose, is constant everywhere.

The ray tracing method assumes the obstacle is prismatic, that is, depends only on x and y. First the
boundary of the obstacle is discretized. It is important to keep track of which boundary points are visible
from each other and from the source. To find the height of the pile at any point the length of the shortest
path from to the source in the x−y plane is computed. Since the angle of repose δ is constant along this path,
the change in height from the source is found by multiplying the length of this path by tan(δ). The accuracy
of this method depends on how finely the obstacle boundary is discretized.

The fast marching method works for more general obstacles than ray tracing such as cones, which are of
primary interest in the industry. Level sets are computed in an upwind scheme from the source using the
Eikonal equation ||∇T || = const. The height at the source is given initially. Then the nearest points are
updated in an expanding fashion until every grid point has a height value. The accuracy of this method
depends on the order of the scheme used to compute the gradient.
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