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Abstract. Let (M, g) be a connected, closed, orientable Riemannian surface and denote by λk(M, g)
the kth eigenvalue of the Laplace−Beltrami operator on (M, g). In this paper, we consider the map-
ping (M, g) �→ λk(M, g). We propose a computational method for finding the conformal spectrum
Λc

k(M, [g0]), which is defined by the eigenvalue optimization problem of maximizing λk(M, g) for k
fixed as g varies within a conformal class [g0] of fixed volume vol(M, g) = 1. We also propose a compu-
tational method for the problem where M is additionally allowed to vary over surfaces with fixed genus,
γ. This is known as the topological spectrum for genus γ and denoted by Λt

k(γ). Our computations sup-
port a conjecture of [N. Nadirashvili, J. Differential Geometry 61 (2002) 335–340.] that Λt

k(0) = 8πk,
attained by a sequence of surfaces degenerating to a union of k identical round spheres. Furthermore,
based on our computations, we conjecture that Λt

k(1) = 8π2√
3

+ 8π(k − 1), attained by a sequence of
surfaces degenerating into a union of an equilateral flat torus and k − 1 identical round spheres. The
values are compared to several surfaces where the Laplace−Beltrami eigenvalues are well-known, in-
cluding spheres, flat tori, and embedded tori. In particular, we show that among flat tori of volume
one, the kth Laplace−Beltrami eigenvalue has a local maximum with value λk = 4π2�k

2
�2(�k

2
�2 − 1

4
)−

1
2 .

Several properties are also studied computationally, including uniqueness, symmetry, and eigenvalue
multiplicity.
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1. Introduction 1

Let (M, g) be a connected, closed, orientable Riemannian surface and ΔM,g : C∞(M) → C∞(M) de- 2

note the Laplace−Beltrami operator. The Laplace−Beltrami eigenproblem is to find eigenvalues λ(M, g) and 3

eigenfunctions, ψ(x;M, g) for x ∈M , satisfying 4

−ΔM,g ψ(x;M, g) = λ(M, g) ψ(x;M, g) x ∈M. (1.1)
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Denote the spectrum of −ΔM,g by σ(M, g) := {0 = λ0(M, g) < λ1(M, g) ≤ . . .}. For a general introduction to1

properties ofΔM,g and σ(M, g), we refer to [4,13]. Given a fixed manifold M , consider the mapping g �→ σ(M, g).2

Let G(M) denote the class of Riemannian metrics g on M . We recall that a metric g is conformal to g0 if there3

exists a smooth function ω : M → R+ such that g = ωg0. The conformal class, [g0], consists of all metrics4

conformal to g0. Following [9], for k fixed, we define the conformal kth eigenvalue of (M, [g0]) to be5

Λck(M, [g0]) := sup{Λk(M, g) : g ∈ [g0]}, (1.2)

where Λk(M, g) := λk(M, g) · vol(M, g).4 Let M(γ) denote the class of orientable, closed surfaces with genus γ6

and consider the mapping (M, g) �→ σ(M, g). For k fixed, the kth topological eigenvalue for genus γ is defined7

Λtk(γ) := sup{Λk(M, g) : M ∈ M(γ), g ∈ G(M)}. (1.3)

The conformal and topological eigenvalues are finite (see Sect. 2). We refer to the conformal eigenvalues and8

topological eigenvalues collectively as the conformal spectrum and topological spectrum, respectively.9

For some conformal classes, the first few conformal eigenvalues are known explicitly. However, little is known10

about the larger conformal eigenvalues of any conformal class, (M, [g0]). The topological spectrum is only known11

for γ = 0 with k = 1, 2 and γ = 1 with k = 1 (a conjecture exists for γ = 2, k = 1). We discuss these results12

and provide some references in Section 2.13

In this work, we study the conformal and topological spectra computationally. To the best of our knowledge,
this is the first computational study of the conformal and topological spectra. To achieve this goal, for constants
ω+ > ω− > 0, we define the admissible set,

A(M, g0, ω−, ω+) := {ω ∈ L∞(M) : ω− ≤ ω ≤ ω+ a.e.}.

For a fixed Riemannian surface (M, g0) and a function ω ∈ A(M, g0, ω−, ω+), we consider the generalized14

eigenvalues, characterized by the Courant−Fischer formulation15

λk−1(M, g0, ω) = min
Ek ⊂ H1(M)

subspace of dim k

max
ψ∈Ek,ψ �=0

∫
M

|∇ ψ|2dμg0∫
M ψ2ωdμg0

, (1.4)

where Ek is in general a k-dimensional subspace of H1(M) and dμg0 is the measure induced by the metric16

g0. Note that for ω ∈ C∞ ∩ A(M, g0, ω−, ω+), the identity ΔM,ωg = 1
ωΔM,g implies that λk(M, g0, ω) =17

λk(M,ωg0). As above, we define a volume-normalized quantity, Λk(M, g, ω) = λk(M, g, ω)·∫M ωdμg and consider18

the optimization problem,19

Λ�k(M, g0, ω−, ω+) = sup{Λk(M, g0, ω) : ω ∈ A(M, g0, ω−, ω+)}. (1.5)

20

Proposition 1.1. Fix k ∈ N. Let (M, g0) be a smooth, closed Riemannian surface and 0 < ω− < ω+. Then
there exists an ω� ∈ A(M, g0, ω−, ω+) which attains Λ�k(M, g0, ω−, ω+), the supremum in (1.5). Furthermore,
for any ε > 0, there exist constants ω+(ε) and ω−(ε) satisfying ω+(ε) > ω−(ε) > 0 such that

Λck(M, [g0]) − ε ≤ Λ�k (M, g0, ω−(ε), ω+(ε)) ≤ Λck(M, [g0]).

Our proof of Proposition 1.1, which we postpone to Section 2.5, uses the direct method in the calculus of21

variations. As discussed further in Section 2.1, similar results are given in [28, 41, 51] and considerably more22

4Note that by the dilation property of eigenvalues, λk(M, cg) = c−1λk(M, g), this is equivalent to minimizing λk(M, g0) over
{g ∈ [g0] : vol(M, g) = 1}.
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regularity can be shown for a metric attaining the first conformal eigenvalue. Our strategy is thus to approximate 1

the solution to (1.2) by computing the solution to (1.5) for a sequence of values ω+ and ω− such that ω+ ↑ ∞ 2

and ω− ↓ 0. The bound in Proposition 1.1 justifies this strategy. Similarly, we approximate (1.3), the topological 3

spectrum for genus γ, by 4

sup{Λk(M, g0, ω) : M ∈ M(γ), g0 ∈ G(M), and ω ∈ A(M, g0, ω−, ω+)}. (1.6)

For a given closed Riemannian surface (M, g0) and constants k ≥ 1 and ω+ > ω− > 0, we develop a 5

computational method for seeking the conformal factor ω ∈ A(M, g0, ω−, ω+) which attains the supremum 6

in (1.5). To achieve this aim, we evolve ω within A(M, g0, ω−, ω+) to increase Λk(M, g0, ω). If ω were assumed 7

smooth, this would be equivalent to evolving a metric g within its conformal class, [g0] to increase Λk(M, g). 8

We also develop a computational method for approximating the topological spectrum for genus γ = 0 and 9

γ = 1 via (1.6). The method depends on an explicit parameterization of moduli space, and in principle could 10

be extended to higher genus [7, 23]. 11

Our computations support a conjecture of N. Nadirashvili [40] that Λtk(0) = 8πk, attained by a sequence 12

of surfaces degenerating to a union of k identical round spheres (see Sect. 5.1). That is, for dimension n = 2, 13

and a genus γ = 0 surface, the inequality, Λtk(0) ≥ 8πk, of ([9], Cor. 1) is tight. Based on our computations, 14

we further conjecture that Λtk(1) = 8π2√
3

+ 8π(k − 1), attained by a sequence of surfaces degenerating into a 15

union of an equilateral flat torus and k−1 identical round spheres (see Sect. 5.3). This surface was also recently 16

studied by Karpukhin [26]. As a comparison, we show that among flat tori, Λk has a local maximum with value 17

Λk = 4π2
⌈
k
2

⌉2
(⌈

k
2

⌉2 − 1
4

)− 1
2
. We conjecture that this is the global maximum among flat tori. A detailed study 18

of the first non-trivial conformal eigenvalue of flat tori is also conducted in Section 5.2. 19

1.0.0.1. Outline. In Section 2, we provide some background material and review related work. This includes 20

a discussion of properties of the Laplace−Beltrami eigenproblem and its solution, a brief discussion of moduli 21

spaces, variations of eigenvalues with respect to the conformal structure, and the spectrum of the disconnected 22

union of a surface and a sphere. We also provide a proof of Proposition 1.1. In Section 3, we discuss the 23

Laplace−Beltrami eigenproblem on a sphere and flat tori, which are central to later sections. In Section 4, we 24

describe our computational methods. In Section 5, we compute the conformal spectrum of several Riemannian 25

surfaces and the topological spectrum for genus γ = 0 and γ = 1 surfaces. We conclude in Section 6 with a 26

discussion. 27

2. Background and related work 28

Let (M, g) be a connected, closed, smooth Riemannian manifold of dimension n ≥ 2. The first fundamental 29

form onM can be written (using Einstein notation) in local coordinates as g = gijdx
idxj , where gij = g(∂xi , ∂xj ). 30

Let dμg denote the measure on (M, g) induced by the Riemannian metric. Let 〈·, ·〉g denote the L2-inner 31

product on (M, g) and denote ‖f‖g = 〈f, f〉 1
2
g . In local coordinates the divergence and gradient are written 32

(∇f)i = ∂if = gij∂jf and divX =
1√|g|∂i

√
|g|X i. Here gij is the inverse of the metric tensor g = gij and | · | 33

is the determinant. The Laplace−Beltrami operator, ΔM,g : C∞(M) → C∞(M) is written in local coordinates 34

ΔM,gf = div∇f =
1√|g|∂i

√
|g|gij∂jf. (2.1)

Denote the spectrum of −ΔM,g by σ(M, g). For a general introduction to properties of ΔM,g and σ(M, g), we 35

refer to [4, 13]. 36
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Properties of ΔM,g and σ(M, g).1

(1) The eigenvalues λk(M, g) are characterized by the Courant−Fischer formulation2

λk−1(M, g) = min
Ek ⊂ H1(M)

subspace of dim k

max
ψ∈Ek,ψ �=0

∫
M

|∇ ψ|2dμg∫
M ψ2dμg

, (2.2)

where Ek is in general a k-dimensional subspace of H1(M) and at the minimizer, Ek =3

span({ψj(·;M, g)}kj=1).4

(2) For fixed (M, g), λk(M, g) ↑ ∞ as k ↑ ∞ and each eigenspace is finite dimensional. We have λ0 = 05

and the corresponding eigenspace is one dimensional and spanned by the constant function. Eigenspaces6

belonging to distinct eigenvalues are orthogonal in L2(M) and L2(M) is spanned by the eigenspaces. Every7

eigenfunction is C∞ on M .8

(3) (dilation property) For (M, g) fixed, the quantity λk(M, g) vol(M, g)
2
n , where n is the dimension, is invariant

to dilations of the metric g. That is, for any α ∈ R+,

λk(M,αg) vol(M,αg)
2
n = λk(M, g) vol(M, g)

2
n .

Since vol(M,αg) = α
n
2 vol(M, g), this is equivalent to λk(M,αg) = α−1λk(M, g). For surfaces (n = 2),9

Λk(M, g) = λk(M, g) vol(M, g) is invariant to dilations of the metric g.10

(4) (Spectrum of disconnected manifolds) If (M, g) is a disconnected manifold, M = M1 ∪M2, then σ(M, g) =11

σ(M1, g) ∪ σ(M2, g).12

(5) (Weyl’s Law) Let N(λ) := #{λk(M, g) : λk(M, g) ≤ λ}, counted with multiplicity. Then

N(λ) ∼ ωnvol(M, g)
(2π)n

λn/2 as λ ↑ ∞,

where ωn = π
n
2

Γ ( n
2 +1) is the volume of the unit ball in Rn. In particular,

λk ∼ (2π)2

ω
2
n
n vol(M, g)

2
n

k
2
n as k ↑ ∞.

2.1. Related work13

We briefly summarize some related work. A recent review was given by Penskoi [48].14

Although eigenvalue optimization problems were already proposed by Lord Rayleigh in the late 1870s [54]
(see also the surveys [3,21]), eigenvalue optimization problems posed on more general surfaces were not studied
until the 1970s. The first result in this direction is due to Hersch, who showed that

Λt1(0) = Λ1(S2, g0) = 8π ≈ 25.13,

attained only by the standard metric (up to isometry) on S2 [22] (see also [13], p. 94 or [56], Chap. III). Yang
and Yau generalized this result in [61], proving

Λt1(γ) ≤ 8π(1 + γ).

In [29], N. Korevaar generalized this result to larger eigenvalues, showing there exists a constant C, such that

Λtk(γ) ≤ C (1 + γ) k.
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This result shows that the topological spectrum is finite and since Λck(M, [g0]) ≤ Λtk(γ) for any M ∈ M(γ) and
g0 ∈ G(M), that conformal eigenvalues are finite as well. In [39], N. Nadirashvili proved that

Λt1(1) = Λ1(T2, g0) =
8π2

√
3

≈ 45.58,

attained only by the flat metric on the equilateral torus (generated by (1, 0) and (1
2 ,

√
3

2 ), see Sect. 3.3). Indeed,
it was already known to Berger that the maximum of Λ1 over all flat tori is attained only by the equilateral
torus [5]. For k = 2, N. Nadirashvili showed that

Λt2(0) = 16π ≈ 50.26,

attained by a sequence of surfaces degenerating to a union of two identical round spheres [40]. Nadirashvili also 1

conjectured that Λtk(0) = 8πk, attained by a sequence of surfaces degenerating to a union of k identical round 2

spheres. In [24], the first eigenvalue of genus γ = 2 surfaces are studied both analytically and computationally 3

and it is conjectured that 4

Λt1(2) = 16π ≈ 50.26, (2.3)

attained by a Bolza surface, a singular surface which is realized as a double branched covering of the sphere. 5

We next state several relevant results5 of Colbois and El Soufi [9], from whom we have also adopted notation for 6

the present work. It is shown that for any Riemannian surface (M, g) and any integer k ≥ 0, Λck(M, [g]) ≥ Λtk(0). 7

Furthermore, for all k, 8

Λck+1(M, [g]) − Λck(M, [g]) ≥ Λt1(0) = 8π (2.4)

which implies that Λck(M, [g]) ≥ 8πk. This implies that 9

Λtk(γ) ≥ Λt�(γ) + 8π(k − 
), for k ≥ 
 ≥ 0. (2.5)

Intuitively, (2.5) states that the kth topological eigenvalue must be at least as large as the eigenvalue associated
with the surface constructed by gluing k − 
 balls of the appropriate volume to the surface which maximizes
the 
th eigenvalue; see Section 2.4. Taking 
 = 0, (2.5) gives

Λtk(γ) ≥ 8πk.

Finally, for any fixed integer k ≥ 0, the function γ �→ Λtk(γ) is non-decreasing. 10

Recently it has been shown (independently by several authors) that the supremum in (1.2) for the first 11

conformal eigenvalue, Λc1(M, [g0]), is attained by an extremal metric, g� ∈ [g0], and several results on the 12

regularity of g� have been proven [28,41,51]. In particular, g� is smooth and positive, up to a finite set of some 13

conical singularities on M . G. Kokarev also studies the existence and regularity of higher conformal eigenvalues 14

Λck(M, [g0]) [28]. 15

Closely related to conformal and topological spectra is the study of extremal metrics on closed surfaces, on
which there has recently been significant development [25–27,32,47,49,50]. A Riemannian metric g on a closed
surface M is said to be an extremal metric for Λk(M, g) if for any analytic deformation gt such that g0 = g the
following inequality holds:

d
dt
Λk(M, gt)

∣∣∣
t↓0

≤ 0 ≤ d
dt
Λk(M, gt)

∣∣∣
t↑0
.

Recently, M. Karpukhin [26] investigated a number of extremal metrics studied in [27,32,47,49] and showed, by 16

direct comparison with the equilateral torus glued to kissing spheres, that none are maximal. This is precisely 17

the configuration which, based on numerical evidence, is conjectured to be maximal in the present paper. 18

5We state the 2-dimensional results here for simplicity, but several of these results are proven for general dimension.
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For dimension n ≥ 3, the topological spectrum does not exist. Indeed, Urakawa [60] found a sequence of1

Riemannian metrics, {gn}n, of volume one on the sphere S3 such that λ1(S3, gn) → ∞. Colbois and Dodziuk2

showed that every compact manifold, M , with dimension n ≥ 3 admits a unit-volume metric g with arbitrarily3

large first eigenvalue, λ1(M, g) [8].4

In [17], S. Friedland studies the problem of finding a metric with L∞ constraints within its conformal class5

to minimize (increasing) functions of the Laplace−Beltrami eigenvalues. For the sphere, S2, he shows that the6

infimum is attained at a metric which is bang-bang, i.e., activates the pointwise constraints almost everywhere.7

Note that these results do not shed light on the maximization problem, (1.5); we do not expect a conformal8

factor achieving the supremum in (1.5) to be bang-bang.9

There are also a number of other types of bounds for eigenvalues on Riemannian manifolds. In particu-10

lar, there are a number of both upper and lower bounds for Laplace−Beltrami eigenvalues of manifolds with11

positive Ricci curvature (see, for example [13], Chap. III, [30, 37]). [19, 52] give upper bounds on the second12

eigenvalue of n-dimensional spheres for conformally round metrics. [11,12,46] study isoperimetric problems for13

Laplace−Beltrami eigenvalues of compact submanifolds.14

2.2. A brief discussion of moduli spaces15

Given two oriented, 2-dimensional Riemannian manifolds, (M1, g1) and (M2, g2), a conformal mapping is an16

orientation-preserving diffeomorphism h : M1 → M2 such that h∗(g2) = ωg1 where ω is a real-valued positive17

smooth function onM1. We say that (M1, g1) and (M2, g2) are conformally equivalent (or have the same complex18

structure if one identifies the induced Riemann surface) if there exists a conformal mapping between them. The19

moduli space of genus γ, Mγ , is the set of all conformal equivalence classes of closed Riemannian surfaces of20

genus γ. Roughly speaking, the moduli space parameterizes the conformal classes of metrics for a given genus.21

Here, we introduce some very basic results from moduli theory for genus γ = 0 and γ = 1 surfaces. By the22

Uniformization Theorem, every closed Riemann surface of genus γ = 0 is conformally equivalent to the Riemann23

sphere, so the moduli space consists of a single point [23].24

Every genus γ = 1 Riemann surface is conformally equivalent to a Riemann surface C/Γτ where, for given25

τ ∈ H , Γτ = {m+ nτ : m,n ∈ Z} is a lattice group on C. Here H = {τ ∈ C : �τ > 0} denotes the upper half26

plane.27

Theorem 2.1 ([23], Thm. 1.1). For any two points τ and τ ′ in the upper half-plane, the two tori C/Γτ and
C/Γτ ′ are conformally equivalent if and only if

τ ′ ∈ PSL(2,Z)τ :=
{
aτ + b

cτ + d
: a, b, c, d ∈ Z and ad− bc = 1

}

where PSL(2,Z) denotes the projective special linear group of degree two over the ring of integers.28

Thus, the moduli space for genus γ = 1, can be represented as the quotient space H/PSL(2,Z) and the29

fundamental domain is the green shaded area in Figure 2 (right). The moduli spaces for surfaces with genus γ ≥ 230

have been studied in great detail (see, for example, [23]). However, a computationally tractable parameterization31

for general Mγ is non-trivial.32

To find the topological spectrum (1.3) in practice, we use the moduli space to parameterize the conformal33

classes of metrics [g0]. In the following section we discuss how the conformal factor ω is varied within each34

conformal class.35

2.3. Variations of Laplace−Beltrami eigenvalues within the conformal class36

In this section, we compute the variation of a simple Laplace−Beltrami eigenvalue within the conformal class.37

General variations of a Laplace−Beltrami eigenvalue with respect to the conformal factor are discussed in [16].38

In this work, we only require the variation of a simple eigenvalue.39
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Let (M, g) be a fixed Riemannian manifold and consider the conformal class, consisting of metrics ωg, where ω 1

is a smooth, positive-valued function on M . Using (2.1), the Laplace−Beltrami operator on (M,ωg) is expressed 2

as 3

ΔM,ωgf =
1

ωn/2
√|g|∂i

(
ω

n
2 −1

√
|g|gij∂jf

)
. (2.6)

Proposition 2.2. Let (λ, ψ) be a simple eigenpair of −ΔM,ωg. The variation of λ with respect to a perturbation 4

of the conformal function ω is given by 5〈
δλ

δω
, δω

〉
ωg

=
1

〈ψ, ψ〉ωg

〈
−n

2
λω−1ψ2 +

n− 2
2

ω−1‖∇ωgψ‖2
ωg , δω

〉
ωg

. (2.7)

In particular, for n = 2, 6

〈
δλ

δω
, δω

〉
ωg

= −λ
〈
ω−1ψ2 , δω

〉
ωg

〈ψ, ψ〉ωg = −λ
〈
ψ2 , δω

〉
g

〈ωψ, ψ〉g · (2.8)

Proof. Taking variations with respect to ω, taking the (M,ωg)-inner product with ψ, and using the eigenvalue
equation, −ΔM,ωg ψ = λ ψ, yields

δλ 〈ψ, ψ〉ωg =
〈
ψ,

n

2
ω−1δω(−λψ) − n− 2

2
div

[
(ω−1δw)∇ωgψ

]〉
ωg

.

Applying Green’s formula yields (2.7). � 7

2.4. Spectrum of the disconnected union of a surface and a sphere 8

It is useful to consider the spectrum of a disconnected union of a surface (M, g) and the sphere (S2, g0),
denoted (M ′, g′). Generally, the spectrum of disconnected manifolds consists of a union of the spectra of the
connected components. Here, we consider the case where the sphere is dilated such that the kth eigenvalue of
(M, g) is equal to the first eigenvalue of (S2, g0). Consider the dilation

(S2, g0) �→ (S2, αg0).

We choose α such that λ1(S2, αg0) = λk(M, g) implying

α−1λ1(S2, g0) = λk(M, g).

Since (S2, αg0) contributes an extra zero eigenvalue, the (k + 1)th eigenvalue of the disjoint union (M ′, g′) is 9

then λk(M, g). The (k + 1)th volume-normalized eigenvalue of (M ′, g′) is then 10

Λk+1(M ′, g′) = λk(M, g) · (vol(S2, αg0) + vol(M, g)
)

11

= λk(M, g) · αvol(S2, g0) + λk(M, g) · vol(M, g) 12

= Λ1(S2, g0) + Λk(M, g). 1314

We remark that (M ′, g′) can be viewed as the degenerate limit of a sequence of surfaces [9]. 15

2.5. Proof of Proposition 1.1 16

Fix k ≥ 1. Let (M, g0) be a smooth, closed Riemannian surface and 0 < ω− < ω+. Write A =
A(M, g0, ω−, ω+). Our proof of existence employs the direct method in the calculus of variations and fol-
lows [14, 21]. We first show that the supremum of Λk(M, g0, ·) on A, as defined in (1.5), is finite and
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Λ�k(M, g0, ω−, ω+) ≤ λck(M, [g0]). Let ω ∈ A be arbitrary. By assumption, (M, g0) is compact, so A ⊂ L2.
Thus, C∞ is dense in A. Using the weak* continuity of Λk(M, g0, ·), there exists an ω̃ ∈ C∞ ∩A with

Λk(M, g0, ω) ≤ Λk(M, g0, ω̃) + ε.

Taking ε ↓ 0 we obtain Λ�k(M, g0, ω−, ω+) ≤ λck(M, [g0]) <∞.1

Let {ω�}∞�=1 be a maximizing sequence, i.e., lim�↑∞ Λk(M, g0, ω�) → Λ�k. Since A is weak* sequentially2

compact, there exists a ω� ∈ A and a weak* convergent sequence {ω�}∞�=1 such that ω� → ω� [14,21]. Since the3

mapping ω → Λk(M, g0, ω) is weak* continuous over A, Λ�k = lim�↑∞ Λk(M, g0, ω�) = Λk(M, g0, ω�) [14, 21].4

For any ε > 0, by the definition of supremum in (1.2), there exists an ω̄ ∈ C∞(M) such that

0 ≤ Λck(M, [g0]) − Λk(M, ω̄g0) ≤ ε.

Since M is a compact surface, there exists ω+(ε) > ω−(ε) > 0 such that ω̄ ∈ A(M, g0, ω−(ε), ω+(ε)). Using the
optimality of Λ�k, we have that

Λck(M, [g0]) − ε ≤ Λk(M, ω̄g0) = Λk(M, g0, ω̄) ≤ Λ�k(M, g0, ω−(ε), ω+(ε)). �

3. The Laplace−Beltrami spectrum for spheres and tori5

3.1. Spectrum of a sphere6

Consider S
2 = {(x, y, z) ∈ R

3 : x2 + y2 + z2 = 1} and let ι : S
2 ↪→ R

3 be the inclusion. Let g0 := ι∗(dx2 +
dy2 +dz2) be the Riemannian metric on S2 induced from the Euclidean metric dx2 +dy2 +dz2 on R3. Consider
the parameterization

x = cosφ sin θ, y = sinφ sin θ, z = cos θ,

where θ ∈ [0, π] is the colatitude and φ ∈ [0, 2π] is the azimuthal angle. We compute vol(S2, g0) = 4π. In these
coordinates, the Laplace−Beltrami operator is given by

Δf =
1

sin θ
∂θ (sin θ ∂θf) + sin−2 θ ∂2

φf.

The eigenvalues of the Laplacian on (S2, g0) are of the form 
(
+ 1), 
 = 0, 1, . . ., each with multiplicity 2
+ 1.7

It follows by scaling that the eigenvalues of a sphere of area 1 are Λ(S2, g0) = 4π
(
+1). Typically, the spherical8

harmonic functions6, denoted Y�,m(θ, φ), are chosen as a basis for each eigenspace. Numerical values of the9

volume-normalized eigenvalues, Λk(S2, g0), are listed in Table 1 for comparison.10

Remark 3.1. We remark that there are other (spatially dependent) metrics on the sphere isometric to g0 and11

hence have the same Laplace−Beltrami spectrum. This impacts the uniqueness of optimization results presented12

later. An example of such a metric is constructed as follows.13

Let N = (0, 0, 1) and S = (0, 0,−1) be the north pole and south pole of S2. There is a C∞ diffeomor-
phism (stereographic projection) π : S2 − {N} −→ R2, π(x, y, z) =

(
x

1−z ,
y

1−z
)
. The inverse map is given by

π−1 : R2 −→ S2 − {N},

π−1(u, v) =
(

2u
1 + u2 + v2

,
2v

1 + u2 + v2
,
−1 + u2 + v2

1 + u2 + v2

)
·

Let h := (π−1)∗g0 be the pullback Riemannian metric on R2. Then

h =
4(du2 + dv2)
(1 + u2 + v2)2

·

6See http://dlmf.nist.gov/14.30.

http://dlmf.nist.gov/14.30
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Figure 1. A Hammer projection of a conformal factor on the sphere that is isometric to the
round sphere (and hence has the same spectrum). See Section 3.1.

For any α ∈ R, define the dilation Tα : R2 −→ R2 by Tα(u, v) = (eαu, eαv). In particular, T0 is the identity
map. For each α ∈ R, we define the following Riemannian metric on S2 − {N},

gα := (π−1 ◦ Tα ◦ π)∗g0 = π∗T ∗
αh =

1
(cosh(α) + sinh(α) · z)2 g0.

Then gα extends to a C∞ Riemannian metric on S2 with constant sectional curvature +1. Note that when 1

α = 0, the right hand side recovers g0. 2

The diffeomorphism π−1 ◦ Tα ◦ π : S
2 − {N} −→ S

2 − {N} extends to a diffeomorphism φα : S
2 −→ S

2, and 3

gα = φ∗αg0. So φα : (S2, gα) → (S2, g0) is an isometry and ι◦φα : (S2, gα) −→ (R3, dx2 +dy2+dz2) is an isometric 4

embedding. The isometric conformal factor for α = 1
2 is plotted in Figure 1. To plot this conformal factor on 5

the sphere in Figure 1 (and again for Figs. 9 and 10 (left)), we have used the Hammer projection, 6

x =
2
√

2 cosφ sin θ
2√

1 + cosφ cos θ2
, y =

√
2 sinφ√

1 + cosφ cos θ2
, 7

8

where θ ∈ [0, 2π] is the azimuthal angle (longitude) and φ ∈ [−π
2 ,

π
2

]
is the altitudinal angle (latitude). 9

3.2. Spectrum of k “kissing” spheres 10

Let (S2, g0) be the sphere embedded in R3 with the canonical metric. We consider k copies of (S2, g0) and bring 11

them together in R3, so that they are “barely touching”. (This can be made precise by considering a sequence 12

of surfaces degenerating in this configuration [9]). We refer to this configuration as k kissing spheres. It follows 13

from Section 2.4 that k kissing spheres will have k zero eigenvalues (0 = λ0 = . . . = λk−1) with corresponding 14

eigenfunctions localized and constant on each sphere. The first nonzero volume-normalized eigenvalue is 15

Λk = 8πk (λk has multiplicity 3k). (3.1)

The corresponding eigenfunctions can be chosen to be spherical harmonic functions supported on each single 16

sphere. Numerical values of the kth eigenvalue of k kissing spheres are listed in Table 1 for comparison. 17
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(0,0) (2π,0)

(2π,2π)(0,2π)

x

y

(0,0) (1,0)

(1+a,b)(a,b)

u

v

a

b

−1 −0.5 0 0.5 1
0

0.5

1

1.5

2

Figure 2. (Left) Coordinates used in the construction of a flat torus. (Right) The fundamental
domain for the moduli space of genus γ = 1 Riemannian surfaces (see Sects. 2.2 and 3.3).

3.3. Spectrum of flat tori1

The flat torus is generated by identification of opposite sides of a parallelogram with the same orientation.2

Consider the flat torus with corners (0, 0)t, (1, 0)t, (a, b)t, and (1 + a, b)t. We refer to this torus as the (a, b)-flat3

torus. This is isometric to the quotient of the Euclidean plane by the lattice L, R2/L, where L is the lattice4

generated by the two linearly independent vectors, b1 = (1, 0)t and b2 = (a, b)t.5

The spectrum of the (a, b)-flat torus can be explicitly computed [18, 34, 38]. Define6

B = (b1, b2) =
(

1 a
0 b

)
.7

8

The dual lattice L∗ is defined L∗ =
{
y ∈ R2 : x · y ∈ Z, ∀x ∈ L

}
and has a basis given by the columns of9

D = (Bt)−1. For the (a, b)-flat torus, we compute10

D = (d1, d2) = (Bt)−1 =
(

1 0
−a
b

1
b

)
.11

12

Each y ∈ L∗ determines an eigenfunction ψ(x) = e2πıx·y with corresponding eigenvalue λ = 4π2‖y‖2. Since
y ∈ L∗ =⇒ −y ∈ L∗, each nontrivial eigenvalue has even multiplicity. It follows that the eigenvalues of the
(a, b)-flat torus are of the form

λ(a, b) = 4π2
[
c21
(
1 + a2/b2

)− 2c1c2a/b2 + c22/b
2
]
, (c1, c2) ∈ Z

2.

More precisely, we can write a Courant−Fischer type expression for the kth eigenvalue,13

λk(a, b) = min
E⊂Z

2

|E|=k+1

max
(c1,c2)∈E

4π2
[
c21
(
1 + a2/b2

)− 2c1c2a/b2 + c22/b
2
]
. (3.2)

For example, the first eigenvalue of the (1
2 ,

√
3

2 )-torus, λ1 = 16π2

3 (multiplicity 6), is obtained when (c1, c2) =14

(±1, 0), ±(1, 1), or (0,±1) implying Λ1 = λ1b = 8π2√
3

≈ 45.58. Numerical values of volume-normalized15

Laplace−Beltrami eigenvalues, Λk(a, b) := λk(a, b) · b for the square flat torus, (a, b) = (0, 1), and equilateral16

flat torus, (a, b) = (1
2 ,

√
3

2 ) are listed in Table 1 for comparison.17
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− −

(0,0) (1,0)

(1+a,b)(a,b)

u

v

(0,0) (1,0)

(1+a,b)(a,b)

u

v

(1+a2,b2)(a2,b2)

Figure 3. An illustration of the transformations of flat tori in Proposition 3.2 (see Sect. 3.3).

It is useful to consider the linear transformation from the [0, 2π]2 square to the (a, b)-flat torus, 1

(
u
v

)
=

1
2π

(
1 a
0 b

)(
x
y

)
and

(
x
y

)
=

2π
b

(
b −a
0 1

)(
u
v

)
. (3.3)

See Figure 2. The pullback metric on the square is then given by

1
4π2

(
1 a
a a2 + b2

)
.

Using (2.6), we obtain the Laplace−Beltrami operator on the square 2

Δa,b =
4π2

b2
[
(a2 + b2)∂2

x − 2a∂x∂y + ∂2
y

]
. (3.4)

By construction, this mapping is an isometry and hence the eigenvalues of the flat Laplacian on the (a, b)-flat 3

torus are precisely the same as the eigenvalues of Δa,b on [0, 2π]2 (with periodic boundary conditions). 4

The volume of the flat torus is simply b. In this section, we consider the optimization problem 5

sup
(a,b)∈R2

Λk(a, b), where Λk(a, b) := b · λk(a, b). (3.5)

Up to isometry and homothety (dilation), there is a one-to-one correspondence between the moduli space of flat 6

tori and the fundamental region, 7

F := {(a, b) ∈ R
2 : a ∈ (−1/2, 1/2] and a2 + b2 ≥ 1}, (3.6)

as illustrated in Figure 2 (right). It follows that the admissible set in (3.5) can be reduced to F . To see this 8

more explicitly, we prove in the following proposition that there exist three transformations of the parameters 9

(a, b) which preserve the value of Λk(a, b). The first two are isometries and the third corresponds to a rotation 10

and homothety. The last two are due to the SL(2,Z) invariance of Z2 [23]. Each transformation is illustrated in 11

Figure 3. By composing these transformations, the fundamental domain can be restricted to F and furthermore, 12

on F , eigenvalues are symmetric with respect to the b-axis. 13

Proposition 3.2. The value of Λk(a, b) := b · λk(a, b) is invariant under the transformations 14

(a, b) �→ (−a, b), (a, b) �→ (a+ 1, b), and (a, b) �→
( −a
a2 + b2

,
b

a2 + b2

)
. 15

16
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Proof. The first transformation is an isometry of the flat torus and leaves the spectrum, and hence Λk, invariant.1

Suppose that ψa,b(u, v) is an eigenfunction of the (a, b)-flat torus. Define the function on the (a + 1, b)-flat2

torus,3

ψa+1,b(u, v) =
{

ua,b(u, v) if v > b
a (u− 1)

ψa,b(u − 1, v) if v ≤ b
a (u− 1).

4

Since ψa,b(u, v) is periodic, ψa+1,b(u, v) is periodic too. The function constructed is an eigenfunction of the flat5

tori (a+ 1, b) with the same eigenvalue.6

To check invariance with respect to the third transformation, we consider the mapping7

(x̃, ỹ) = (−y, x), and
(
ã, b̃

)
=

( −a
a2 + b2

,
b

a2 + b2

)
·8

We then have9

Δx̃,ỹ

(ã,b̃)
ũ =

4π2(
b

a2+b2

)2

[(( −a
a2 + b2

)2

+
(

b

a2 + b2

)2
)
ũx̃x̃ − 2

(
a

a2 + b2

)
ũx̃ỹ + ũỹỹ

]
= λũ10

11

=⇒ 4π2

b

[
uyy − 2auxy + (a2 + b2)uxx

]
= λ

(
b

a2 + b2

)
u = λb̃u12

Thus, the spectrum scales by the factor 1
a2+b2 , but Λk is invariant. �13

Proposition 3.2 allows us to reduce the optimization problem (3.5) to14

Λ�k = max {Λk(a, b) : (a, b) ∈ F} . (3.7)

The following proposition shows that (3.7) has a solution and gives a local maximum. We denote by �·� the15

ceiling function, �x� for x > 0 is the smallest integer not less than x.16

Proposition 3.3. Fix k ≥ 1. There exists a flat torus represented by a point (a�k, b
�
k) ∈ F attaining the supre-17

mum in (3.7). Furthermore, the maximal value18

Λ̃k = max

{
Λk(a, b) : (a, b) ∈ F with a2 + b2 ≥

(⌈
k

2

⌉
− 1

)2
}

(3.8)

has the following analytic solution19

Λ̃k =
4π2

⌈
k
2

⌉2√⌈
k
2

⌉2 − 1
4

, (3.9)

which is attained by the (a, b)-flat torus with (a, b) =
(

1
2 ,

√⌈
k
2

⌉2 − 1
4

)
. The optimal value in (3.9) is obtained

only for the integer lattice values

(c1, c2) = (1, 0), (−1, 0), (1, 1), (−1,−1),
(

0,
⌈
k

2

⌉)
, and

(
0,−

⌈
k

2

⌉)

and thus the maximal eigenvalue has multiplicity 6.20
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Proof. By Proposition 3.2, we may restrict to the set F as defined in (3.6). Since every eigenvalue of a flat torus
has even multiplicity, without loss of generality, we assume k to be even,

k = 2m for m ∈ Z.

We consider the Courant−Fischer type expression for the kth eigenvalue (3.2) with a trial subspace of the form

Ek = {(0, 0), (0,±1), . . . (0,±m)}.
(This is equivalent to using (2.2) and a trial subspace of the form Ek = span

{
1, e±ı�y

}m
�=1

on the square). For
each k, we obtain

Λk(a, b) = b λk(a, b) ≤ 4π2m2

b
·

Let λ�
k denote the eigenvalues of the flat tori with (a, b) = (0, 1). For each k, define b̃k :=

Ck

λ�
k

. Thus, for b > b̃k,

b λk(a, b) ≤ 1 λ�
k .

This implies that for each k we can further restrict the admissible set to cl(F ) ∩ {(a, b) : b ≤ b̃k}, where cl(·) 1

denotes closure. Since this is a compact set, the supremum is attained. 2

To show (3.9), we rewrite the optimization problem using the expression for Laplace−Beltrami eigenvalues 3

of flat tori in (3.2), 4

max
(a,b)

min
E⊂Z

2

|E|=k+1

max
(c1,c2)∈E

Λ(a, b; c1, c2) where Λ(a, b; c1, c2) := 4π2

[
(c1a− c2)2

b
+ c21b

]
. (3.10)

In (3.10), we can rewrite

Λ(a, b; c1, c2) = ctA(a, b)c where A(a, b) =
4π2

b

(
a2 + b2 −a
−a 1

)
and c =

(
c1
c2

)
.

Furthermore, for every (a, b) ∈ F , we compute 5

(trA)2 − 4det(A) =
16π4

b2
[
(a2 + b2 + 1)2 − 4b2

]
=

16π4

b2
[
a2 + (b − 1)2

] [
a2 + (b + 1)2

] ≥ 0, 6
7

which shows that each sublevel set of the quadratic form can be viewed as an ellipse, circular for (a, b) = (0, 1). 8

Thus, the equation for the eigenvalues of the (a, b)-flat torus (3.2) can be interpreted as follows. We consider 9

increasingly large sub-level-sets of the (a, b)-ellipse, i.e., {(x, y) : Λ(a, b;x, y) ≤ γ} for increasing γ. Eigenvalues 10

occur every time the sub-level-sets of the ellipse enclose a new integer lattice point. We thus interpret (3.10) as 11

finding the (a, b)-parameterized ellipse for (a, b) ∈ F whose kth smallest enclosed value on the integer lattice is 12

maximal. 13

When k = 1 (or equivalently, k = 2), we have from (3.10) that 14

Λ̃1 = max
(a,b)∈F

{
min

c∈E\(0,0)
ctA(a, b)c

}
≤ max

(a,b)∈F
(0, 1)A(a, b)(0, 1)t = max

(a,b)∈F
4π2

b
=

8π2

√
3
. 15

16

However, if we choose (a, b) =
(

1
2 ,

√
3

2

)
, and solve the inner optimization problem in (3.10) to find the normalized 17

eigenvalue, we obtain Λ1(a, b) = 8π2√
3
. This implies that Λ̃1 = 8π2√

3
. 18

Thus we can assume k > 2. Let m > 1 and k = 2m. Observe that for b > m, the first k nontrivial 19

eigenvalues are obtained from (3.10) by choosing c1 = 0 and c2 = ±1,±2, . . . ,±m. In this case, we find that 20
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Λk = 4π2m2/b ≤ 4π2m, attained in the case where (a, b) =
(

1
2 ,m

)
. We conclude that Λ̃2m ≥ 4π2m and that we1

can restrict the admissible set to b ≤ m.2

We consider candidate subsets Ejk ⊂ Z2, j = 1, 2 of the form3

E1
k = {(0, 0), (0,±1), . . . (0,±m)}4

E2
k = {(0, 0), (0,±1), . . . (0,±(m− 1)) , (±1, 0)}5

67

From (3.10), we have that8

Λ̃k ≤ max
(a,b)∈F
b≤m

min
j=1,2

max
c∈Ej

k

Λ(a, b, c1, c2)9

10

We see that for n < m,

Λ(a, b, 0,m) = 4π2m
2

b
≥ 4π2n

2

b
= Λ(a, b, 0,±n)

and so the elements in E1
k are dominated by (c1, c2) = (0,m). Thus,

max
c∈E1

k

Λ(a, b, c1, c2) =
4π2m2

b
·

Looking at E2
k, we have to compare the functions Λ(a, b, 1, 0) = 4π2

(
a2+b2

b

)
and Λ(a, b, 0,m−1) = 4π2(m−1)2

b .

If a2 + b2 ≥ (m− 1)2 then the first term dominates. Thus, we have shown that if a2 + b2 ≥ (m− 1)2 then

Λk(a, b) ≤ 4π2 · max
(a,b)∈F
b≤m

min
{
a2

b
+ b,

m2

b

}
≤ 4π2 · max√

3
2 ≤b≤m

min
{

1/2
b

+ b,
m2

b

}

The first term is increasing for b ≥ 1√
2
. The second term is decreasing in b. The optimal value of b is found by

setting the two terms equal to each other. They are equal at b =
√
m2 − 1/4 with value 4π2m2√

m2−1/4
. Thus, for all

(a, b) ∈ F , with a2 + b2 ≥ (m− 1)2 we have that

Λk(a, b) ≤ 4π2m2√
m2 − 1/4

.

with equality for (a, b) =
(

1
2 ,
√
m2 − 1/4

)
. Equation (3.9) then follows from the substitution m �→ ⌈

k
2

⌉
. �11

Remark 3.4. We note that the admissible sets in (3.8) and (3.7) agree for k = 1, 2, 3, 4 and thus, the local12

maximum for (3.8) given in Proposition 3.3 is the global solution for (3.7). In particular, we recover the result13

of [5] that 8π2√
3

is the largest first eigenvalue for any flat torus of volume one.14

In Figure 4, we plot Λk(a, b) for k = 1 . . . 16 and (a, b) ∈ F . Each eigenvalue has multiplicity two, so only15

odd values of k are shown. Note that Λk(a, b) has local maxima which are not globally maxima. We tabulate16

the values of the maximum of Λk(a, b) in Table 1 for k = 1, . . . , 8.17

Remark 3.5. We conjecture that the solutions to the optimization problems in (3.8) and (3.7) agree. According
to the proof of Proposition 3.3, this conjecture is equivalent to the statement: for a2 +b2 < (m−1)2 with m ≥ 3,
the ellipse

E(a, b) =

{
c ∈ R

2 : ctA(a, b)c ≤ 4π2m2√
m2 − 1/4

}

contains at least 1 + 2m integer points.18
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Figure 4. The first 16 volume-normalized eigenvalues, Λk(a, b), of flat tori plotted as a function
of the tori parameters (a, b). Each eigenvalue has multiplicity two, so only odd eigenvalues are
shown (see Sect. 3.3).
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The maximal value for k = 2, Λ�2 = 45.58, is less than the value for the 2-kissing spheres, Λ2 = 50.26.1

Generally, for all k �= 1, 3, the maximum value for Λ�k is less than the value for k kissing spheres. Since the2

topological spectrum is a non-decreasing function of the genus [9], this implies that flat tori do not attain the3

genus γ = 1 topological spectrum for k �= 1, 3. Since, by (2.4), Λt3(1) ≥ Λt1(1) + 4π ≈ 95.85, a flat tori also does4

not attain the genus γ = 1 topological spectrum for k = 3. Thus, for k ≥ 2, to study the topological spectrum,5

we require an inhomogeneous conformal factor.6

3.4. Spectrum of embedded tori7

To provide another comparison, we consider the torus embedded in R3 with parameterization,

x(u, v) = ((r cosu+R) cos v, (r cosu+R) sin v, r sinu) , u, v ∈ [0, 2π].

Here r > 0 is the minor radius, R > r is the major radius, u is the poloidal coordinate, and v is the toroidal
coordinate. See Figure 5. We consider the metric induced from R3,

g(u, v) =
(
r2 0
0 (r cosu+R)2

)
.

From (2.6), we obtain the Laplace−Beltrami operator

Δf = r−2 (r cosu+R)−1 ∂u (r cosu+R) ∂uf + (r cosu+R)−2 ∂2
vf.

Noting that the Laplace−Beltrami eigenvalue problem −Δψ = λψ is separable, we take ψ(u, v) = φ(u)eımv for8

m ∈ N to obtain the periodic eigenvalue problem on the interval [0, 2π],9

−r−2∂2
uφ+ r−1 sinu (r cosu+R)−1

∂uφ+m2 (r cosu+R)−2
φ = λφ. (3.11)

Note that the eigenvalues for m > 0 have multiplicity at least two. We obtain spectrally accurate solutions10

to (3.11) using the Chebfun Matlab toolbox [15]. Let T2
a denote the torus with volume (2π)2Rr = 1 and11

(squared) aspect ratio a2 = R/r > 1. In Figure 5, we plot the volume-normalized Laplace−Beltrami eigenvalues,12

Λk(a) := λk(T2
a, g) · vol(T2

a, g), as a function of the aspect ratio, a. We remark that a similar figure appears13

in [20], where the eigenvalues are computed using a finite difference method. Numerical values of the eigenvalues14

for the horn torus (a = 1) are listed in Table 1 for comparison.15

Now, consider the problem of maximizing the kth Laplace−Beltrami eigenvalue over the aspect ratio, a,16

sup
a∈[1,∞)

Λk(a). (3.12)

As a→ ∞, for fixed k, it is straightforward to show using the Courant−Fischer formula that Λk(a) → 0, so there17

exists an a�k which attains the supremum in (3.12). From Figure 5, we observe that a�k is an increasing sequence,18

corresponding to a sequence of tori with increasingly large aspect ratio. The numerical values of the optimal19

eigenvalues are listed in Table 1. The maximal eigenvalues have multiplicity greater than one. Each of the20

corresponding optimal eigenspaces contain an eigenfunction which is non-oscillatory in the poloidal coordinate21

and increasingly oscillatory in the toroidal coordinate (i.e., the first eigenfunction of (3.11) for an increasing22

sequence in m). Compared to, e.g., the flat tori studied in Section 3.3, these maximal eigenvalues are relatively23

small and will not be further discussed.24

4. Computational methods25

In this section, we introduce a numerical method for approximating the conformal and topological spectra26

of a Riemannian surface (M, g), as given in (1.2) and (1.3). Our method is an adaption of the methods found27

in [1, 42–45] for shape optimization problems involving extremal eigenvalues of the Laplacian to the setting of28
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Figure 5. (Left) A diagram of the coordinates used for the embedded tori. (Right) The eigen-
values of an embedded torus with volume one as the aspect ratio is varied (see Sect. 3.4.

Laplace−Beltrami eigenvalues of Riemannian surfaces using the computational tools developed in [31, 57]. Our 1

approach is to approximate (1.2) and (1.3) using (1.5) and (1.6) respectively, as justified by Proposition 1.1. 2

For the computation of Laplace−Beltrami eigenpairs, we use both finite element and spectral methods, which 3

we describe in Section 4.1. Generally spectral methods are more accurate than finite element methods, but are 4

difficult to implement for general surfaces. Therefore, we use spectral methods for computations on the torus 5

and finite element methods for computations on other surfaces. 6

We numerically solve the optimization problem in (1.5) as follows. For a fixed surface, (M, g0), we evolve ω 7

within A(M, g0, ω−, ω+) to increase Λk(M, g0, ω). At each iteration, the variation of Λk(M, g, ω) with respect to 8

the conformal factor is computed using Proposition 2.2, as described below in Section 4.2. This can be viewed as 9

an “optimizethen-discretize” approach to the problem, where the analytically computed gradient is evaluated 10

using discretized quantities. This is in contrast to the “discretizethen-optimize” approach in which a finite 11

dimensional version of the problem would be formulated and the gradient of the discretized objective function 12

would be used. The BFGS quasi-Newton method is then used to determine a direction of ascent, in which the 13

metric is evolved for a step-length determined by an Armijo−Wolfe line search. A log-barrier interior-point 14

method is used to enforce L∞(M) constraints. The process is iterated until a metric g satisfying convergence 15

criteria is obtained. Metrics obtained by this approach are (approximately) local maxima of Λk(M, g), not 16

necessarily global maxima. We repeat this evolution for many different choices of initial metric and choose the 17

conformal factor which yields the largest value of Λk(M, g). 18

For the solution of the optimization problem in (1.6), we additionally must consider a parameterization of the 19

conformal classes. For genus γ = 1, this parameterization (a, b) ∈ F is described in Section 2.2 and illustrated in 20

Figure 2(right). We use the same strategy as for (1.5), except we also evolve the parameters a and b to increase 21

Λk(M, g, ω). The derivatives of λk(M, g, ω) with respect to the parameters a and b are computed in Section 4.2. 22

The reader may have noticed that we use Hadamard’s formula (Prop. 2.2) to compute the variation of 23

λk(M,ωg0) with respect to the conformal factor, ω, and this formula is only valid for simple eigenvalues. It is 24

well-known that eigenvalues λk(M, g) vary continuous with the metric g, but are not differentiable when they 25

have multiplicity greater than one. In principle, for an analytic deformation gt, left- and right-derivatives of 26

λk(M, gt) with respect to t exist [16, 48] and could be computed numerically. However, in practice, eigenvalues 27

computed numerically that approximate the Laplace−Beltrami eigenvalues of a surface are always simple. This 28
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is due to discretization error and finite precision. Thus, we are faced with the problem of maximizing a function1

that we know to be non-smooth, but whose gradient is well-defined at points in which we sample. For a variety2

of such non-smooth problems, the BFGS quasi-Newton method with an inexact line search has proven to be3

very effective [36], but the convergence theory remains sparse. In particular, for this problem, a gradient ascent4

algorithm will generate a sequence of conformal factors where the kth and (k + 1)th eigenvalues will converge5

towards each other. The sequence will become “stuck” at this point and the objective function values will6

be relatively small compared to the optimal value. As reported in other computational studies of extremal7

eigenfunctions [1, 42, 44], for this problem we observe that a BFGS approximation to the Hessian avoids this8

phenomena.9

Finally, in Proposition 1.1, we introduced two constants ω+ and ω− which provide point-wise bounds on the10

conformal factor ω(x) for x ∈M . An approximate solution to (1.2) can be obtained by computing the solution11

to (1.5) for a sequence of values ω+ and ω− such that ω+ ↑ ∞ and ω− ↓ 0. In practice, we fix ω+ and ω− to12

be large and small constants respectively. Taking sequences tending to ±∞ would be a poor idea as conformal13

factors with very large or small values reduce computational accuracy.14

In the following subsections, we describe the methods used for the computation of the Laplace−Beltrami15

eigenpairs, as well as compute the variation of Laplace−Beltrami eignenvalues with respect to the conformal16

factor and moduli space parameters.17

4.1. Eigenvalue computation18

In this section, we describe the finite element and spectral methods for computing Laplace−Beltrami19

eigenpairs.20

Finite Element Method21

For some of our eigenpair computations, we use the finite element method (FEM) [6, 33, 53, 55], which we22

briefly describe here. The finite element method is based on the weak formulation of (1.1), given by23 ∫
M

∇Mψ · ∇Mη = λ

∫
M

ψη, ∀ η ∈ C∞(M). (4.1)

Numerically, we represent M ⊂ R3 as a triangular mesh {V = {vi}Ni=1, T = {Tl}Ll=1}, where vi ∈ R3 is the ith
vertex and Tl is the lth triangle. We use piecewise linear elements to discretize the surface, so that the triangular
mesh approaches the smooth surface in the L2-sense as the mesh is refined. We choose linear conforming elements
{ei}Ni=1 satisfying ei(vj) = δi,j , where δi,j is the Kronecker delta symbol, and write S = span{ei}Ni=1. The discrete
Galerkin version of (4.1) is to find a φ ∈ S, such that

∑
l

∫
Tl

∇Mφ · ∇Mη = λ
∑
l

∫
Tl

φ η, ∀η ∈ S.

We define24

φ =
N∑
i

xiei25

Aij =
∑
l

∫
Tl

∇Mei∇Mej26

Bij =
∑
l

∫
Tl

eiej ,27

28

where the stiffness matrix, A, is symmetric and the mass matrix, B, is symmetric and positive definite. Both29

A and B are sparse N ×N matrices. The finite element method approximates solutions to (4.1) by solving the30
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Figure 6. Relative error of the finite element method for computing the first 50
Laplace−Beltrami eigenvalues on the unit sphere. Each curve in this figure represents one
eigenvalue (lower eigenvalues are more accurate) (see Sect. 4.1).

generalized matrix eigenproblem, 1

Ax = λBx, φ =
N∑
i

xiei. (4.2)

There are a variety of numerical packages to solve (4.2). We use Matlab’s built-in function eigs with default 2

convergence criteria. This eigenvalue solver is based on Arnoldi’s method [35,58]. Figure 6 demonstrates the 2nd 3

order of convergence in the mesh size h (∼√
N−1) for the Laplace−Beltrami eigenvalues of the unit sphere; see 4

Section 3.1 for explicit analytic values. Higher eigenvalues generally have larger error than lower eigenvalues; 5

higher order elements could be used for improved accuracy. 6

To further demonstrate the flexibility of the finite element method for computing eigenvalues of surfaces 7

and to provide a comparison of eigenvalues for a “typical” embedded mesh, we also consider a surface in the 8

shape of Homer Simpson embedded in R3, equipped with the induced metric. This mesh has 21,161 vertices. In 9

Figure 7, we plot the first 8 nontrivial eigenfunctions. Note that in Figure 7 and later three-dimensional plots 10

(Figs. 11, 12, 13, 17, and 18), we use a Matlab visualization effect, achieved by the command, lighting phong. 11

Although the reflection makes it easier to see the three dimensional structure, it also slightly distorts the color. 12

Numerical values of the corresponding volume-normalized eigenvalues are listed in Table 1 for comparison. We 13

use this mesh again in Section 5.1 to illustrate a solution for the topological eigenvalue problem. 14

Since the finite element method approximates the variational problem (2.2) by a variational problem where 15

the trial functions are taken to be a linear combination of basis functions, it overestimates the eigenvalues. This 16

is undesirable since (1.5) and (1.6) are maximization problems. Lower bounds on the eigenvalues could also be 17

obtained numerically using non-conforming elements [2], however this is beyond the scope of this paper. 18

Spectral Method 19

For eigenvalue computations on the torus, we use a spectral method [59], which we briefly discuss here. We 20

use the transformation, given in (3.3) and illustrated in Figure 2, that takes the (a, b)-flat torus to the [0, 2π]2 21

square. The Laplace−Beltrami operator, Δa,b, on the square is defined in (3.4). Thus, we seek solutions to the 22
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λ1 = 7.74 λ2 = 16.98 λ3 = 20.58 λ4 = 21.53

λ5 = 42.58 λ6 = 71.36 λ7 = 87.92 λ8 = 95.38

Figure 7. The first eight nontrivial Laplace−Beltrami eigenfunctions on the “Homer Simpson”
mesh (see Sect. 4.1).

eigenvalue problem1

Δa,bψ = λωψ (4.3)

defined on the [0, 2π]2 square with periodic boundary conditions. The discrete operators obtained by spectral
collocation for the first and second derivatives on a one-dimensional periodic grid on [0, 2π] with (even) N points
are represented by the Toeplitz matrices

D =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 − 1
2 cot 1h

2

− 1
2 cot 1h

2

. . . . . . + 1
2 cot 2h

2

+ 1
2 cot 2h

2

. . . − 1
2 cot 3h

2

− 1
2 cot 3h

2

. . .
...

...
. . . . . . + 1

2 cot 1h
2

+ 1
2 cot 1h

2 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
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D(2) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

. . .
...

. . . − 1
2 csc2

(
2h
2

)
. . . + 1

2 csc2
(

1h
2

)
− π2

3h2 − 1
6

+ 1
2 csc2

(
1h
2

) . . .

− 1
2 csc2

(
2h
2

) . . .
...

. . .

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

Here, h = 2π
N (see, for example, [59], Chap. 3). The two-dimensional operators are then easily obtained from D

and D(2) using the Kronecker product, ⊗. That is, if I represents the N ×N identity matrix, then

D(2)
x,x = D(2) ⊗ I, D(2)

x,y =
1
2

((I ⊗D) ∗ (D ⊗ I) + (D ⊗ I) ∗ (I ⊗D)) , and D(2)
y,y = I ⊗D(2),

are N2 ×N2 discrete approximations to ∂2
x, ∂2

x,y, and ∂2
y respectively. A discrete approximation to (4.3) is then

given by
4π2

b2

[
(a2 + b2)D(2)

x,x − 2aD(2)
x,y +D(2)

y,y

]
v = λΩv, v ∈ R

N2
.

Here Ω is a diagonal matrix with entries given by the values of ω. This generalized eigenvalue problem is then 1

solved using Matlab’s built-in function eigs with default convergence criteria. In Figure 8, we give a log-log 2

plot of the relative error of the first 16 eigenvalues for the conformal factor given by ω(x, y) = ecosx+cos y on the 3

equilateral torus. The method is seen to be spectrally convergent. 4

4.2. Gradient flow of conformal factor and moduli space parameterization 5

Here, we apply Proposition 2.2 to the eigenvalues of the sphere and (a, b)-flat torus. The results are stated
as propositions for reference. First, consider the mapping ω �→ λk(ω) satisfying

−Δ ψ = ω λ(ω) ψ on S
2.

Proposition 4.1. Let λ(ω) be a simple eigenvalue of (S2, ωg0) and corresponding eigenfunction ψ normalized
such that 〈ψ, ψ〉ωg0 = 1. Then,

δλ

δω
· δω = −λ〈ψ2ω−1, δω〉ωg0 ,

where 〈f, h〉ωg0 =
∫

S2 fhωdμg0 . 6

We next compute the gradient of a Laplace−Beltrami eigenvalue on the (a, b)-flat tori with respect to both 7

the conformal factor ω and the parameters a and b. Recall the linear transformation introduced in Section 3.3 8

which takes the [0, 2π]2 square to the (a, b)-flat torus (see Fig. 2). Consider the mapping (a, b, ω) �→ λk(a, b, ω) 9

satisfying 10

−Δa,b ψ = ω λ(a, b, ω) ψ on [0, 2π]2. (4.4)

where Δa,b is defined in (3.4). 11
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Figure 8. Relative error of the spectral method for computing Laplace−Beltrami eigenvalues
on a torus. Similar to Figure 6, each of the 16 curves in this figure represents one eigenvalue
(Lower eigenvalues are more accurate). See Section 4.1.

Proposition 4.2. Let λ(a, b, ω) be a simple eigenvalue of an (a, b)-flat torus with conformal factor ω and1

corresponding eigenfunction ψ normalized such that 〈ψ, ψ〉ωg0 = 1. Then,2

∂λ

∂a
= −〈ψ, ω−1Δaψ〉ωg0 , Δa :=

4π2

b2
[
2a∂2

x − 2∂x∂y
]

3

∂λ

∂b
= −〈ψ, ω−1Δbψ〉ωg0 , Δb :=

2λω(x, y)
b

+
8π2

b
∂2
x4

δλ

δω
· δω = −λ〈ψ2ω−1, δω〉ωg0 ,5

6

where 〈·, ·〉ωg0 is the inner product induced by the metric,

〈f, h〉ωg0 =
∫
M

fhdμg =
∫

[0,2π]2
fh

√
|g|dxdy =

b

4π2

∫
[0,2π]2

f(x, y)h(x, y)ω(x, y)dxdy.

All computations for the flat torus using the spectral method are done on the domain [0, 2π]2 (with periodic7

boundary conditions). Eigenvalue derivatives are computed numerally using the formulae in Proposition 4.2.8

The operators Δa and Δb are implemented using the Toeplitz matrices, D and D(2), and the Kronecker product9

as discussed in Section 4.1.10

Finally, we can use Proposition 4.2 and the relationships11

∂x =
1
2π
∂u and ∂y =

a

2π
∂u +

b

2π
∂v,12

13

to push these derivatives forward from the square to the flat torus (see Fig. 2). We obtain the following result,14

which is used in the finite element computations on flat tori.15
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Proposition 4.3. Let λ(a, b, ω) be a simple eigenvalue of an (a, b)-flat torus with conformal factor ω and 1

corresponding eigenfunction ψ normalized such that 〈ψ, ψ〉ωg0 = 1. Then, 2

∂λ

∂a
= −〈ψ, ω−1Δaψ〉ωg0 , Δa := −2

b
∂u∂v 3

∂λ

∂b
= −〈ψ, ω−1Δbψ〉ωg0 , Δb :=

2λω
b

+
2
b
∂2
u 4

δλ

δω
· δω = −λ〈ψ2ω−1, δω〉ωg0 , 5

6

where 〈f, h〉ωg0 =
∫

T2 fhωdμg0 is the inner product on the flat torus. 7

5. Computations of conformal and topological spectra 8

In this section, we compute the conformal spectrum for several manifolds and topological spectrum for genus 9

γ = 0, 1. Numerical values of volume-normalized eigenvalues, Λk, are given in Table 1 for comparison. 10

5.1. The topological spectrum of genus zero Riemannian surfaces 11

By the Uniformization Theorem, any closed genus-0 Riemannian surface (M, g) is conformal to S2 with the
canonical metric of constant sectional curvature, g0 [23]. In other words, the moduli space of closed Riemannian
surfaces consists of one point and the conformal spectrum for any genus γ = 0 Riemannian surface is identical.
In particular, for any genus zero Riemannian surface, (M, g),

Λck(M, [g]) = Λck(S
2, [g0]) = Λtk(0).

In this section, we approximate Λck(S
2, g0) using the computational methods described in Section 4. To 12

compute the Laplace−Beltrami eigenvalues, we use the finite element method on a mesh of the sphere with 13

40, 962 vertices. The optimization problem is solved using a quasi-Newton method, where the gradient of the 14

eigenvalues is computed via Proposition 4.1. 15

The best conformal factors found for k = 1, 2, . . . , 6 are presented in Figure 9 and the corresponding numerical 16

values given in Table 1. For this computational experiment, we have chosen many different initializations for 17

the conformal factors. The initial conditions used for Figure 9 were the sum of localized Gaussians located at 18

points equidistributed on the sphere. To further illustrate our computational method, we consider a randomly 19

initialized conformal factor. In Figure 10 (left), we plot for k = 2, the 1st, 6th, 10th, and 26th iterates of the 20

conformal factor. The mesh of the sphere used here has 10,242 vertices. The optimization code is only able to 21

achieve a value of Λ = 47.77 for this grid size and initial condition, however the general pattern of the conformal 22

factor having two localized maxima is clearly observed. 23

Hersch’s result that the standard metric on S2 is the only metric up to isometry attaining Λt1(0) is supported 24

in the computational results [22]. This numerical result gives just one representative from the isometric class 25

(see Rem. 3.1), where a conformal factor on the sphere, isometric to the uniform conformal factor, is constructed 26

that gives the same first topological eigenvalue. For k = 2, it was shown in [40] that the maximum is approached 27

by a sequence of surfaces degenerating to a union of two identical round spheres, a configuration we refer to as 28

two kissing spheres, with second eigenvalue Λt2(1) = 16π ≈ 50.26. The value Λ�2 = 50.78, obtained numerically is 29

slightly larger. As discussed in Section 4.1, the finite element method used overestimates the Laplace−Beltrami 30

eigenvalues and hence the value of the maximum. After having solved this problem on a sequence of increasingly 31

fine meshes, we believe that this small discrepancy is the result of numerical error. The conformal factor on S2
32

corresponding to “two kissing spheres” is the one shown in the top right panel of Figure 9. 33

From Figure 9, we further observe that the kth eigenvalue is large precisely when the metric has k localized 34

regions with large value. This corresponds to the “k-kissing spheres” surface as described in Section 3.2. Observe 35

that for increasingly large k, the regions where the metric is localized is increasingly small. Since it is possible 36



24 C.-Y. KAO ET AL.

Λ

−

−

−

−

−

Figure 9. A Hammer projection of the best conformal factors found for Λk, k = 1, . . . , 6 on
the sphere (see Sect. 5.1).
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Figure 10. Iterates of the proposed computational method. (Left) A sequence of conformal
factors on the sphere to maximize Λ2. See Section 5.1. (Right) A sequence of tori to maximize Λ1

(see Sect. 5.3).

for the eigenfunctions to become very concentrated at these regions of concentrated measure, we reason that for 1

larger values of k, to improve accuracy we should use a finer mesh at these regions or, equivalently, deform the 2

surface at these points to locally enlarge the volume. We choose the later option, and consider a mesh consisting 3

of k spheres “glued” together which approximates k kissing spheres. For example, to construct the mesh for 4

k = 2, we remove one element (triangle) from the mesh representing each sphere and then identify the edges 5

associated with the missing faces of the two punctured balls. On those glued meshes, we again maximize Λ1 as 6

a function of the conformal factor, ω. The best conformal factor found for k = 1, . . . , 6 is plotted in Figure 11. 7

In each case, the conformal factor is very flat and the optimal values obtained are very close to 8πk. 8

To further test these optimal conformal factors, we consider configurations of spheres with different sizes; 9

see Figure 12. For Λ1, we consider a mesh approximating a sphere with radius 1/2. For Λ2 to Λ6, we consider 10

meshes approximating glued spheres. The larger spheres have radius 1 and the smaller spheres have radius 1/2. 11

In each case, we verified that the constructed surface has genus γ = 0 using the Euler characteristic of the mesh. 12

In each case, the conformal factor is very flat on each sphere and the optimal values obtained are very close 13

to 8πk. 14
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Λ1 = 25. Λ31 2 = 50. Λ82 3 = 75.39

Λ4 = 100. Λ25 5 = 125. Λ66 6 = 150.76

Figure 11. The best conformal factors found for Λk, k = 1, . . . 6, on genus zero meshes
representing k-kissing spheres (see Sect. 5.1).

As another computational experiment, we again consider the mesh of “Homer Simpson”, as discussed in1

Section 4.1. For this mesh, we compute a conformal factor ω� which attains Λc1 and plot the function u =2

log(ω�)/2 in Figure 13. The first eight non-zero eigenvalues computed for this conformal factor are given by3

2.01, 2.01, 2.01, 5.93, 6.03, 6.04, 6.12 and 6.17. We see that the first three eigenvalues are close to the first three4

eigenvalues of the unit sphere (λ = 2.00). The 4th–8th eigenvalues are near to the 4th–8th eigenvalues of the unit5

sphere (λ = 6.00). This discrepancy in the higher eigenvalues may be explained by (i) we only approximately6

solve the optimization problem and (ii) higher eigenvalues are more sensitive to perturbations in the conformal7

factor.8

5.2. The conformal spectrum of flat tori9

In this section, we study the first conformal eigenvalue of the (a, b)-flat tori for various values of (a, b). For10

all computations, we use the spectral method described in Section 4. For a comparison, we first compute the11

first non-trivial eigenvalue of the (a, b)-flat tori.12

From (3.2), it is not difficult to show that the first non-trivial eigenvalue of the (a, b)-flat torus is λ1(a, b) = 4π2

b2 .13

Thus, the volume normalized eigenvalue is given by Λ1(a, b) = 4π2

b . Note that Λ1(a, b) is monotone decreasing in14
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Λ1 = 25. Λ31 2 = 50. Λ62 3 = 75.39

Λ4 = 100. Λ05 5 = 125. Λ36 6 = 150.75

Figure 12. The best conformal factors found for Λk, k = 1, . . . 6 on genus zero meshes repre-
senting a unit sphere kissing with k − 1 spheres with radius 1/2 (see Sect. 5.1).

b and does not depend on a. When b =
√

3
2 , we recover the optimal value Λ�1 = 8π2√

3
, as discussed in Section 3.3. 1

A plot of Λ1(a, b) for (a, b) ∈ F is given in Figure 14 (left). Note that this is the same as the top left panel of 2

Figure 4, except the range of values of b is smaller. Values of Λ1(a, b) for a small selection of parameters (a, b) 3

are also tabulated Figure 14. The parameters (a, b) chosen are indicated by crosshairs, ‘+’, in Figure 14 (left). 4

We abbreviate the first conformal eigenvalue of the flat torus, Λc1(Ta,b, [g0]), by Λc1(a, b). We recall from (2.4) 5

that Λc1(a, b) > 8π ≈ 25.13. Clearly we have that Λc1(a, b) ≤ 8π2√
3
≈ 45.58 with equality only at (a, b) = (1

2 ,
√

3
2 ). 6

Proposition 5.1. For fixed a, Λc1(a, b) is a non-increasing function in b. 7

Proof. The Rayleigh quotient for the first nonzero eigenvalue can be written

λ1(a, b, ω) = min∫
ψω=0∫
ψ2ω=1

4π2

∫
[0,2π]2

1
b2

(aψx − ψy)2 + ψ2
x dxdy.
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Figure 13. A plot of the function u = log(ω�)/2, where ω� is the conformal factor correspond-
ing to the first conformal eigenvalue Λc1, for a “Homer Simpson” mesh (see Sect. 5.1).

Let a and ω fixed and let b2 ≥ b1. Let ψ be an eigenfunction corresponding to λ1(a, b1, ω) (which could have1

multiplicity greater than one). Then we have that2

λ1(a, b2, ω) ≤ 4π2

∫
[0,2π]2

1
b22

(aψx − ψy)2 + ψ2
x dxdy3

≤ 4π2

∫
[0,2π]2

1
b21

(aψx − ψy)2 + ψ2
x dxdy4

= λ1(a, b1, ω)56

We conclude that for a and ω fixed, λ1(a, b, ω) is a non-increasing function in b.7

Fix a. Take b2 > b1 and let ω2 be a conformal factor attaining Λc1(a, b2). Then,8

Λc1(a, b1) ≥ λ1(a, b1, ω2) by optimality9

≥ λ1(a, b2, ω2) by the monotonicity of λ1(a, b, ω2) in b10

= Λc1(a, b2). �1112

In Figure 14 (right), we plot values of Λc1(a, b) for (a, b) ∈ F , computed on a 40 × 40 mesh. An eigenvalue13

optimization problem was solved for the values of (a, b) indicated by crosshairs, ‘+’; the other values were14

obtained by interpolation. Values of Λc1(a, b) for a small selection of parameters (a, b) are also tabulated. We15

observe that for fixed a, the value of Λc1(a, b) is non-increasing in b, as proved in Proposition 5.1. We also16
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(a, b) Λ1(a, b) Λc
1(a, b)

A ( 1
2
,
√

3
2

) 45.58 45.58
B (0, 1) 39.48 39.48
C ( 1

2
, 1) 39.48 40.33

D ( 1
4
, 3

2
) 26.32 33.45

E (0, 2) 19.74 30.97
F ( 1

2
, 2) 19.74 30.95

Figure 14. (Left) The first eigenvalue of (a, b)-flat tori, Λ1(a, b), for values of (a, b) ∈ F .
Selected values of (a, b), indicated by crosshairs, ‘+’, are tabulated below for reference. (Right)
The first conformal eigenvalue of (a, b)-flat tori, Λc1(a, b), for values of (a, b) ∈ F . Selected values
are tabulated below for reference. An eigenvalue optimization problem was solved for values of
(a, b) indicated by crosshairs, ‘+’; the other values were obtained by interpolation. (bottom)
Tabulated values of Λ1(a, b) and Λc1(a, b) for selected values of (a, b). The conformal factors
attaining the given values of Λc1(a, b) plotted in Figure 15 (see Sect. 5.2).

observe that Λc1(a, b) varies smoothly with (a, b). In Figure 15, the optimal conformal factors are plotted on the 1

(a, b)-tori for these values of (a, b). The flat metric attains the maximal value obtained for the square torus, 2

(a, b) = (0, 1), and equilateral torus, (a, b) = (1/2,
√

3/2). As b increases and the torus becomes long and thin, 3

the best conformal factors found have structure which have higher density along a thin strip. We observe that 4

the optimal conformal factor continuously deforms as the parameters (a, b) change. This is in contrast with other 5

eigenvalue optimization problems where the optimizing structure can be discontinuous with changing objective 6

function parameters [43, 44]. 7

5.3. The topological spectrum of genus one Riemannian surfaces 8

In this section, we approximate Λtk(1) using the computational methods described in Section 4. We proceed 9

with several numerical studies. First we use a spectral method to identify approximate maximizers by varying 10

(a, b, ω) on a flat torus. By examining the structure of the minimizers, we recognize that the minimizer is 11

obtained by a configuration consisting of the union of an equilateral flat torus and k−1 identical round spheres. 12

We then use a finite element method on a mesh given by this configuration to provide further evidence that 13

this is the optimal configuration. 14

In this first numerical study, the Laplace−Beltrami eigenvalues of a fixed surface satisfying (4.3) are computed 15

using a spectral method on a 60×60 mesh. As discussed in Section 2.2, the moduli space for γ = 1, as shown by 16

the shaded area in Figure 2(right), parameterizes the conformal classes of metrics [g0]. Thus, any genus γ = 1 17
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Figure 15. A plot of the function u = log(ω�)/2, where ω� is the conformal factor attaining
Λc1(a, b) for the values of (a, b) in the table in Figure 14 (see Sect. 5.2).
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Figure 16. Maximal triples (a, b, ω) obtained for k = 1 (left), k = 2 (center), and k = 3
(right). The color represents the conformal factor, ω. (see Sect. 5.3).

surface can be described by a triple (a, b, ω) where (a, b) ∈ F as in (3.6) and ω a smooth positive function. 1

The optimization problem is solved using a quasi-Newton method, where the gradient of the eigenvalues with 2

respect to the triple (a, b, ω) is computed via Proposition 4.2. 3

Using this computational method, the best triples (a, b, ω) found for k = 1, 2, and 3 are presented in Figure 16. 4

To obtain these triples, we chose many different initializations. The initial conditions used for Figure 1 were the 5

sum of localized Gaussians located at distributed points on the torus. To further illustrate our computational 6

method, we consider a randomly initialized conformal factor. In Figure 10 (right), we plot for k = 2, the 0th, 7

5th, 24th, and 30th iterates of the conformal factor on the (a, b)-torus. 8

The computational results in Figure 16 (left) support Nadirashvili’s result that Λt1(1) = 8π2√
3

≈ 45.58 is 9

attained only by the flat metric on the equilateral flat torus, (a, b) =
(

1
2 ,

√
3

2

)
[39]. For k = 2, the optimal 10

conformal factor found is mostly flat with one localized maximum. The value obtained (Λ2 = 68.2) is very 11

close to the value found for the disconnected union of an equilateral flat torus and a sphere of appropriate 12

volumes, Λ2 = Λt1(1) + Λt1(0) ≈ 70.72 (see Sect. 2.4). For k = 3, the optimal conformal factor found is mostly 13

flat with two localized maximum. The value obtained (Λ2 = 86.91) is not as close to 95.85, the value for the 14

disconnected union of an equilateral flat torus and two spheres. For larger values of k, we observe that optimal 15

metrics are mostly flat, but have k − 1 localized regions with large value. However, as for the genus γ = 0 16

case described in Section 5.1, the computational problem becomes increasingly difficult with larger values of k 17

because the localized regions are increasingly small. It is thus very difficult to realize metrics which correspond 18

to this configuration using this method. 19

To compute optimal configurations for larger values of k, we proceed as follows as in Section 5.1 and use a 20

mesh which consists of a torus which has been deformed locally at k−1 points. In effect, this mesh approximates 21

the configuration of k−1 spheres “kissing” a flat tori. For example, to construct this mesh for k = 2, we remove 22

one face from the mesh representing the flat tori and one face from the mesh representing the sphere. We then 23

identify the edges associated with the missing faces of these two punctured surfaces. As discussed in Section 2.4, 24

for an equilateral flat torus, (a, b) =
(

1
2 ,

√
3

2

)
, and spheres of appropriate size, we can obtain kth eigenvalue at 25

least as large as 26

Λk =
8π2

√
3

+ 8π(k − 1). (5.1)

On this mesh, we use the finite element method to compute the Laplace−Beltrami eigenvalues and initialize a 27

quasi-Newton optimization method using a random conformal factor. We observe that the maximal eigenvalue 28

is achieved when the conformal factor is nearly constant over the mesh. See Figure 17, where the optimal values 29

are given by Λ2 = 70.70, Λ3 = 95.80, Λ4 = 120.94, and Λ5 = 146.06 which are indeed very close to those given 30

in (5.1). 31
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Figure 17. To maximize Λk, for k = 2, 3, 4, and 5, we consider a mesh of a flat torus glued to
1, 2, 3, and 4 kissing spheres. The optimal conformal factors found, displayed here, are nearly
constant (see Sect. 5.3).

To further test these optimal solutions, we consider several other configurations of spheres and flat tori.1

As shown in Figure 18, we take k = 2 and consider a torus glued to a sphere with radius a factor of 0.7 of2

the optimal radius. Initializing the optimization method with a constant uniform conformal factor, an optimal3

conformal factor is achieved where the sphere has a relatively high conformal value and the torus has relatively4

low conformal value. See Figure 18 (top left). An eigenfunction associated to λ2 is plotted in Figure 18 (top5

right). For k = 5, we consider a torus glued to 4 spheres which have radii a factor of 0.75, 0.9, 1.1, and 1.256

of the optimal radius. Again initializing the optimization method with a constant uniform conformal factor, we7

obtain the conformal factor in Figure 18 (bottom left). An eigenfunction associated to λ5 is plotted in Figure 188

(bottom right). In these two experiments, the optimal numerical values Λ2 = 70.6997 and Λ5 = 146.9935 are9

close to the values given in (5.1).10

Finally, we report the results for one additional computational experiment. Recall that our proposed numerical11

method is only able to find local maxima of the non-concave optimization problem (1.5). In addition to many12
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Figure 18. A mesh of a flat torus glued to one (top) and four (bottom) kissing spheres, used
for maximizing Λ2 and Λ5 respectively. The figures on the left display the optimal conformal
factor and the figures on the right display an eigenfunction corresponding to λk (see Sect. 5.3).

randomly initialized initial configurations, configurations with localized Gaussians, and configurations consisting 1

of glued spheres and tori, we initialized the method using one additional configuration, two kissing flat equilateral 2

tori. For a moment, consider two embedded tori stacked on each other so that the holes are aligned and the 3

contact is smooth (Homer would think of a stack of donuts). This configuration is of a different type than 4

two kissing balls since the perturbation occurs along a one-dimensional submanifold rather than at a single 5

point. Since this type of perturbation is more difficult to analyze, we thought that it would be useful to check 6

this configuration numerically. However, as we demonstrated in Sections 3.3 and 3.4 the eigenvalues associated 7

with embedded tori are generally not as large as those associated with flat tori. Thus, we consider gluing 8

two equilateral flat tori along a strip as shown in Figure 19. Here colors and arrows indicate the glued edges. 9

Numerically, we remove a strip from each of the two flat tori and identify element vertices and element edges 10

along the cut edges. This constructed surface has genus γ = 1, as verified numerally using the Euler characteristic 11

of the mesh. The first few eigenvalues of this configuration are given in Table 1. The value of Λ2 is very small 12

as compared to (5.1) with k = 2. 13
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Figure 19. Kissing equilateral flat tori. Edges with the same color are glued together (see
Sect. 5.3.

6. Discussion and further directions1

We have presented a computational method for approximating the conformal and topological spectra, as2

defined in (1.2) and (1.3). Our method is based on a relaxation, given in (1.5), for which we prove existence3

of a minimizer (see Proposition 1.1). Based on the results of extensive computations, we make the following4

conjecture.5

Conjecture 1. The following hold for the topological spectrum:6

• Λtk(0) = 8πk, attained by a sequence of surfaces degenerating to a union of k identical round spheres.7

• Λtk(1) = 8π2√
3

+ 8π(k − 1), attained by a sequence of surfaces degenerating into a union of an equilateral flat8

torus and k − 1 identical round spheres.9

The first part of this conjecture was also stated by Nadirashvili in [40]. A proof of the conjecture involving10

Λtk(0) would imply that the lower bound, Λtk(0) ≥ 8πk, proven in ([9], Cor. 1), is tight. This conjecture is11

proven for k = 1 and k = 2 in [22, 40] respectively. The conjecture involving Λtk(1) agrees with the eigenvalue12

gap estimate (2.4), proven in [9], and the result of [39] for k = 1. The relatively large value of Λk for the13

configuration consisting of a union of an equilateral flat torus and k − 1 identical round spheres was recently14

used by A. Karpukhin to show that a number of extremal metrics are not maximal [26].15

For dimension n = 2, Weyl’s law states that for any fixed surface (M, g), Λk(M, g) ∼ 4πk as k → ∞. The16

conjectured topological spectrum for genus γ = 0, 1 has asymptotic behavior Λtk(γ) ∼ 8πk. Thus, the conjecture17

implies that for fixed k, there exist surfaces with kth eigenvalue which exceed the asymptotic estimate given18

by Weyl’s law by no more than a factor of two. As a comparison, we proved in Section 3.3 that among flat19

tori, Λk has a local maximum with value 4π2
⌈
k
2

⌉2
(⌈

k
2

⌉2 − 1
4

)− 1
2
. For k large, we obtain Λk ∼ 2π2k. Noting20

that 4π < 2π2 < 8π, this rate lies between Weyl’s estimate and the conjectured topological spectrum for genus21

γ = 1.22

In Section 5.3, we used an explicit parameterization of the genus one moduli space to compute the topological
spectrum. Higher genus moduli spaces (e.g. γ = 2) could in principle be treated in the same way [7,23], although
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Table 1. A comparison of various volume-normalized eigenvalues, Λk(M, g) = λk(M, g) ·
vol(M, g). This is equivalent to λk(M, g) after the metric has been normalized to have unit
volume. The first table are the Laplace−Beltrami eigenvalues of the sphere, square flat torus
(a, b) = (0, 1), equilateral flat torus (a, b) =

(
1
2 ,

√
3

2

)
, horn embedded torus, Homer Simpson,

and kissing equilateral flat tori as discussed in Sections 3.1, 3.3, 3.4, 4.1, and 5.3 respectively.
The second table are the Laplace−Beltrami eigenvalues for varying Riemannian surfaces: k
kissing spheres, best flat tori, best embedded tori, and the disjoint union of an equilateral torus
and k−1 spheres as defined in (3.1), (3.9), (3.12), and (5.1). The third table gives the computed
topological spectra for genus γ = 0 and γ = 1 surfaces.

Square Equilateral Horn emb. Homer Kissing
k Sphere flat torus flat torus torus Simpson tori

1 25.13 39.47 45.58 23.21 7.464 34.21
2 25.13 39.47 45.58 23.21 16.45 34.21
3 25.13 39.47 45.58 30.63 19.94 43.98
4 75.39 39.47 45.58 66.58 20.89 43.98
5 75.39 78.95 45.58 66.58 41.23 78.22
6 75.39 78.95 45.58 78.80 69.83 78.22
7 75.39 78.95 136.7 83.71 85.40 78.22
8 75.39 78.95 136.7 83.71 92.32 78.22

k Kissing Best flat Best embedded Equil. torus
spheres torus torus and k − 1

k (3.1) (3.9) (3.12) spheres (5.1)

1 25.13 45.58 23.47 45.58
2 50.26 45.58 23.47 70.71
3 75.39 81.55 65.09 95.85
4 100.5 81.55 65.09 120.9
5 125.6 120.1 108.34 146.1
6 150.7 120.1 108.34 171.2
7 175.9 159.2 150.25 196.3
8 201.0 159.2 150.25 221.5

k Λt
k(0) Λt

k(1)

1 25.13 45.58
2 50.26 70.71
3 75.39 95.85
4 100.5 120.9
5 125.6 146.1
6 150.7 171.2

we do not attempt this here. For genus γ = 2, (2.3) and the spectral gap (2.4) together imply that

Λtk(2) ≥ 8π(k + 1)

where the lower bound is attained by attaching k − 1 spheres to a Bolza surface (a singular surface which is 1

realized as a double branched covering of the sphere). It was observed by Colbois and El Soufi ([10], Cor. 3.1) 2

that this bound is not tight; the union of two equilateral flat tori gives a higher second eigenvalue than the 3

union of a Bolza surface with a round sphere. The high genus topological spectrum is largely open and is a very 4

interesting future direction. 5
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