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Abstract

Neural fields model macroscopic parts of the cortex which involve several populations of neurons. We consider a
class of neural field models which are represented by integro-differential equations with propagation time delays
which are space-dependent. The considered domains underlying the systems can be bounded or unbounded. A new
approach, called sequential contracting, instead of the conventional Lyapunov functional technique, is employed to
investigate the global dynamics of such systems. Sufficient conditions for the absolute stability and synchronization
of the systems are established. Several numerical examples are presented to demonstrate the theoretical results.
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1. Introduction

Neural fields are neural continuum networks which are proposed to model macroscopic parts of the cortex at pop-
ulation level. Since the pioneering works of Wilson and Cowan [37, 38] and Amari [1, 2], there have been tremendous
efforts towards developing mathematical tools to investigate neural field models. These models are typically in the
form of integro-differential equations and have revealed very rich dynamics such as traveling wavefronts, traveling
pulses and stable localized stationary solutions, see, for example, [5, 10, 14, 15, 22, 23, 24, 25, 27], and the review
articles [6, 7, 9]. Neural field models have been adopted to depict brain rhythmic activity [13, 20, 31]. More realistic
applications can be found in [16, 34].

Recently, Faye and Faugeras [12] and Van Gils et al. [32] investigated a neural field model which takes into
account transmission time delays:

∂Vi(x, t)
∂t

= −
1
li
Vi(x, t) +

N∑

j=1

∫

Ω

Wi j(x, y, t)S j(Vj(y, t − τ j(x, y)))dy + Ii(x, t) (1)

for i = 1, ...,N. Herein, x ∈ Ω, a domain in Rn, and t ≥ 0; Vi(x, t) stand for the average membrane potential of the
ith cortical population at x and at time t; li > 0 characterize the activity decay of the ith population; the connectivity
functionWi j(x, y, t) describe how the populations at y influence those at x at time t; S i(Vi(x, t)) stand for the activation
function for interacting neurons; Ii(x, t) are external currents; τi(x, y) ≥ 0 measure the propagation delays which are
space-dependent. A reasonable choice of τi(x, y) is, for example, τi(x, y) := ∥x − y∥/ci for some ci > 0, i = 1, ...,N.
If Ω is a bounded domain in Rn, then each τi is a bounded function. In this case, there exists a positive constant τM
defined by

τM := max
i=1,...,N

sup
x,y∈Ω

τi(x, y). (2)
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One can also write (1) into vector form:

∂V(x, t)
∂t

= −LV(x, t) +
∫

Ω

W(x, y, t)S(V(y, t − τ(x, y)))dy + I(x, t), (3)

where V = (V1, . . . ,VN)T , L = diag(1/li), W = [Wi j]1≤i, j≤N , S(V) := (S 1(V1), . . . , S N(VN))T , I = (I1, . . . , IN)T , τ =
(τ1, . . . , τN), and we interpret

S(V(y, t − τ(x, y))) = (S 1(V1(y, t − τ1(x, y))), . . . , S N(VN(y, t − τN(x, y))))T .

Following the setting in the fundamental theory of delay equations [18], we shall consider the evolution of membrane
potential V(x, t) according to (3) from given initial data φ, i.e.,

V(x, t) = φ(x, t), x ∈ Ω, t ∈ [−τM, 0]. (4)

Developing fundamental theory for system (1), an integro-differential equation with space-dependent time delay
is a nontrivial task. In delay equation setting, the phase space is typically C := C([−τM, 0];X), and a global solution
is to lie in C1([0,∞);X) ∩ C([−τM,∞);X), for a suitable function space X. In [12], the existence and uniqueness of
solution for (3) and (4) were reported, where X is chosen as L2(Ω;RN) with bounded Ω ⊂ Rn. On the other hand,
it was pointed out in [32] that some difficulties arise with such a choice of X, including the definition of the integral
operator G associated with the integral term in (3) and the Fréchet differentiability of G. Instead, X = C(Ω̄) was
chosen in [32] and the theory of dual semigroups was adopted to set up the framework for the study of stability and
bifurcation of steady states for system (3). In [12], a Lyapunov functional was constructed to provide a sufficient
condition for uniformly asymptotical stability of the origin for the linearized system of (3) at a stationary solution,
when the external inputs are time-independent, i.e., I(x, t) = I(x), for all t ≥ 0. In [36], a disparate approach which
analyzes the spectrum of the infinitesimal generator associated with the linearized system led to a more complicated
criterion for asymptotical stability of the origin.

When τM = 0 (delay being neglected) and Ω is a compact subset of Rn, system (3) reduces to the one studied in
[13]. The existence and uniqueness of classical solutions were established therein. In addition, a sufficient condition
for the absolute stability of the general solution was provided using the Lyapunov functional technique. By absolute
stability of the general solution or of the system, it means that any two solutions approach each other as t → ∞,
regardless of their initial data. This notion is associated with the neuronal dynamics in the sense that absolutely stable
system evolves to a state which only depends on the input, not the initial state. Such systems are able to differentiate
distinct stimuli by converging to corresponding states without hinging upon initial data. Synchronization for (3)
was also addressed in [13], where synchronization means that all homogeneous (space-independent) solutions of (3)
converge to the unique homogeneous solution which varies with respect to the space-independent input I = I(t) and
not on the initial state.

WhenΩ = Rn, this model (3) can be regarded as a generalization of Amari’s model [2], where the space-dependent
propagation delays were not taken into account. Although considering the infinite domain may not be biologically
realistic, it is more convenient mathematically, to investigate various wave solutions or spatiotemporal patterns when
Ω = Rn, see, for example, [3, 4, 33] and the references therein.

In this paper, we shall study (3) and (4) on a bounded or unbounded domain Ω in Rn. If Ω is unbounded, then
we assume that τ is an increasing function of ∥x − y∥ with a finite supremum τM := maxi=1,...,N supx,y∈Ω τi(x, y). We
develop an approach disparate from Lyapunov functionalmethod to conclude the global dynamics in the delay integro-
differential equation (3) on both bounded and unbounded domains. In particular, we shall derive the criteria for the
absolute stability and global synchronization for the systems. It turns out that we are able to extend the theory of
absolute stability for the system without delay, reported in [13], to time-delay cases and can also handle the models
on whole space domain. To this end, we shall consider solutions more regular than the ones in [12]. Indeed, we shall
focus on the solutions which are bounded and continuous in Ω and continuously differentiable in t ≥ 0.

The rest of this paper is organized as follows. In Section 2, we introduce some function spaces to be used later
and prove the existence and uniqueness of solution for (3) and (4). In Section 3, we introduce a methodology called
sequential contracting to investigate the stability and synchronization. Section 4 is devoted to the absolute stability
and synchronization of solutions for system (3). In Section 5, we provide some numerical simulations and examples.
Finally, we give a brief conclusion in Section 6.
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2. Initial value problem

In this section, we shall study the existence and uniqueness of solution to the initial value problem (3) and (4),
where the domain Ω ⊆ Rn can be bounded or unbounded. Hereafter, the Lp norm of a vector-valued function g =
(g1, ..., gN), 1 ≤ p < ∞, is defined by

∥g∥Lp(Ω) := max
i=1,...,N

∥gi∥Lp(Ω),

and we denote by Lp(Ω;RN) (in short, Lp(Ω)) the set of functions with finite norm. Similarly, the supremum norm of
a vector-valued function g = (g1, ..., gN) is given by

∥g∥∞ = max
i=1,...,N

∥gi∥∞ := max
i=1,...,N

sup
x∈Ω
|gi(x)|.

The Lp norm of a n × n matrix function w = [wi j] is defined by

∥w∥Lp (Ω) := max
i=1,...,N

N∑

j=1
∥wi j∥Lp (Ω).

Our approach to studying the existence and uniqueness of solution in the delayed neural field system (3)-(4) is similar
to the one in [12]. However, the function spaces we choose here are different and the connectivity function W is
assumed to be more regular than the one in [12] so that the present approach can treat unbounded domain Ω. In
addition, our methodology for establishing the absolute stability of solutions, presented in the next section, requires
continuous solutions of (3). Therefore, the solutions we consider are continuous in x and continuously differentiable
in t.

We now define the Banach space X := BC(Ω;RN) of bounded and continuous functions mappingΩ into RN with
the norm

∥u∥X := max
i=1,...,N

∥ui∥∞ = max
i=1,...,N

sup
x∈Ω
|ui(x)| for u = (u1, ..., uN).

For a given α ∈ (0, 1), we introduce the function space Yα := BCα(Ω; L1(Ω)) consisting of N × N matrix functions
w(x, y) = [wi j(x, y)] defined on Ω ×Ω, with the norm (cf. [28])

∥w∥Yα := sup
x∈Ω
∥w(x, ·)∥L1(Ω) + sup

x,x̂∈Ω,x!x̂

∥w(x, ·) − w(x̂, ·)∥L1(Ω)
∥x − x̂∥α

,

where ∥x − x̂∥ := max{|x1 − x̂1|, ..., |xn − x̂n|} for x = (x1, ..., xn) and x̂ = (x̂1, ..., x̂n).
We shall consider the phase space

C := C([−τM, 0];X),

the continuous functions from time interval [−τM, 0] to X with the norm

∥φ∥C := sup
θ∈[−τM ,0]

∥φ(θ)∥X.

Then, given an initial value φ ∈ C, we consider the initial value problem for a retarded functional differential equation
on X:

V̇ = F(t,Vt), V0 = φ ∈ C, (5)

where

F(t,Vt)(x) := −LVt(0)(x) +
∫

Ω

W(x, y, t)S(Vt(−τ(x, y))(y))dy + I(x, t) (6)

for x ∈ Ω and t ≥ 0. Here Vt(θ)(x) = V(x, t + θ), for θ ∈ [−τM, 0].
We now present the existence and uniqueness of solution for (5). Let [0, τM]N denote the product of N [0, τM]
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Theorem 2.1. Assume that the following assumptions hold:

(A1) S ∈ BC1(Rn;RN),

(A2) τ ∈ C(Ω ×Ω; [0, τM]N), and the continuity is uniform on Ω ×Ω,

(A3) W ∈ C([−τM,∞);Yα),

(A4) I ∈ C([−τM ,∞);X).

Then (5) has a unique solution V which is continuous in t for t ∈ [−τM ,∞) and continuously differentiable in t for
t ∈ [0,∞), i.e.,

V ∈ C1([0,∞);X) ∩ C([−τM ,∞);X).

Proof. As in [12], we shall apply the Cauchy-Lipschitz theorem for retarded functional differential equations on
Banach space to prove the local existence and uniqueness. First, we observe that F maps J × C into X, where
J := [−τM, t1] for a given t1 > 0. Indeed, for a given (t,ψ) ∈ J × C, by assumption we have

∥∥∥∥∥

∫

Ω

W(x, y, t)S(ψ(y,−τ(x, y)))dy
∥∥∥∥∥ ≤ ∥S∥∞∥W(t)∥Yα for all x ∈ Ω.

Thus, we see that F is bounded on Ω for each (t,ψ) ∈ J × C. To prove the continuity, we first focus on the integral
term of (6). For any given x, x̂ ∈ Ω,

∥∥∥∥∥

∫

Ω

W(x, y, t)S(ψ(y,−τ(x, y)))dy−
∫

Ω

W(x̂, y, t)S(ψ(y,−τ(x̂, y)))dy
∥∥∥∥∥

≤
∥∥∥∥∥

∫

Ω

W(x, y, t)S(ψ(y,−τ(x, y)))dy−
∫

Ω

W(x̂, y, t)S(ψ(y,−τ(x, y)))dy
∥∥∥∥∥

+

∥∥∥∥∥

∫

Ω

W(x̂, y, t)S(ψ(y,−τ(x, y)))dy−
∫

Ω

W(x̂, y, t)S(ψ(y,−τ(x̂, y)))dy
∥∥∥∥∥

≤ ∥S∥∞∥W(x, ·, t) −W(x̂, ·, t)∥L1(Ω)

+∥S′∥∞
∫

Ω

∥W(x̂, y, t)∥∥ψ(y,−τ(x, y)) − ψ(y,−τ(x̂, y))∥dy

≤ ∥S∥∞∥W(t)∥Yα∥x − x̂∥α

+∥S′∥∞
∫

Ω

∥W(x̂, y, t)∥∥ψ(y,−τ(x, y)) − ψ(y,−τ(x̂, y))∥dy

for x, x̂ ∈ Ω and t ∈ J, where S′ = (S ′1, . . . , S ′N). By assumptions (A1)-(A3), we see that the integral term of (6) is
continuous on Ω. Together with (A4), it follows that F(t,ψ) is continuous on Ω. Thus, we have proved that F maps
J × C into X.

To apply the Cauchy-Lipschitz theorem, it suffices to show that

(i) F is continuous with respect to (t,ψ) in each compact set in J × C;

(ii) F is Lipschitz continuous with respect to its second argument in each compact set in J × C.

For (i), observe that

F(t,ψ1)(x) − F(s,ψ2)(x) = −L[ψ1(x, 0) − ψ2(x, 0)]

+

∫

Ω

[W(x, y, t) −W(x, y, s)]S(ψ1(y,−τ(x, y))dy

+

∫

Ω

W(x, y, s)[S(ψ1(y,−τ(x, y))) − S(ψ2(y,−τ(x, y)))]dy

+I(x, t) − I(x, s).
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Then we have

∥F(t,ψ1) − F(s,ψ2)∥X ≤ ∥L∥∞∥ψ1 − ψ2∥C + ∥S∥∞ sup
x∈Ω
∥W(x, ·, t) −W(x, ·, s)∥L1(Ω)

+∥S′∥∞∥W(s)∥Yα∥ψ1 − ψ2∥C + ∥I(t) − I(s)∥X,

where ∥L∥∞ := maxi=1,...,N l−1i . By assumptions (A1)-(A4), we have justified the continuity of F, which in turn implies
(i). Furthermore, putting s = t into the above inequality yields

∥F(t,ψ1) − F(t,ψ2)∥X ≤ ∥L∥∞∥ψ1 − ψ2∥C + ∥S′∥∞∥W(t)∥Yα∥ψ1 − ψ2∥C.

Again, (ii) follows from assumptions (A1)-(A4).
From (i) and (ii), we obtain the local existence and uniqueness of solution. In fact, the solution can be extended to

all forward time. That is, there exists a unique solution V of (5) with

V ∈ C1([0,∞);X) ∩ C([−τM ,∞);X).

This can be justified by a process similar to the proof of [12, Theorem 3.2.1]. We thus complete the proof. !

Remark 2.1. When the domain Ω ⊆ Rn is bounded and satisfies the cone property, under assumption less regular
than the present one, Veltz and Faugeras [35] proved the existence and uniqueness of solution for (3) and (4) in
C([0, T ];Wk,2(Ω)) for each T > 0. By the embedding theorem, their solutions actually belong to C([0, T ];C(Ω)) if k
is large enough. Putting into the framework of delay differential equation and dual semigroups, the wellposedness of
(3) and (4) in C([−τM, 0];C(Ω̄)) and the global solution were addressed in [32]. When Ω = Rn, N = 1, τM = 0 (i.e.,
without time delays) and the connectivity matrixW is independent of t, the existence and uniqueness of solutions have
been proved in [28].

We end this section with a fundamental property of continuous dependence on initial data.

Proposition 2.1. Let V be the solution of (3) with initial data

V(x, t) = φV (t)(x), x ∈ Ω, t ∈ [−τM , 0].

Then for any given t1 > 0 and ε > 0, there exists a δ > 0 depending only on t1 and ε such that ∥V(·, t) − U(·, t)∥∞ < ε
for all t ∈ [0, t1], for any solution U of (3) with initial data φU satisfying supθ∈[−τM ,0] ∥φV (θ) − φU(θ)∥∞ < δ.

Proof. The proof follows by applying an argument similar to the proof of Theorem2.2 in [18]. !

3. Sequential contracting

In this section, we shall present the approach called sequential contracting to investigate the absolute stability and
synchronization for the neural field models (3). The idea is to establish an iteration scheme so that the behavior of the
difference of two arbitrary solutions can be estimated. Such an idea was first proposed to study asymptotic behaviors
in a class of difference-differential systems in [29, 30].

We denote byC0,1(Ω×[0,∞);R) the space consisting of functions continuous onΩ and continuously differentiable
in t ≥ 0. For an r ≥ 0, we denote Dr := {(x, t) : x ∈ Ω, t ≥ r}.

Lemma 3.1. Assume that for a real-valued function u ∈ C0,1(Dt0 ), there exists a M > 0 such that

|u(x, t)| ≤ M for all (x, t) ∈ Dt0 .

If u satisfies
∣∣∣∣∣
∂u(x, t)
∂t

+
1
l
u(x, t)

∣∣∣∣∣ ≤ b in Dt0 for some l, b > 0, (7)

then for each ε > 0, there exists a T = T (ε, t0) > t0 such that

∥u(·, t)∥∞ ≤ bl + ε for all t ≥ T.
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Proof. For an ε > 0, from (7), we observe that

∂u(x, t)
∂t

>
ε

l
if u(x, t) < −bl − ε, while ∂u(x, t)

∂t
< −

ε

l
if u(x, t) > bl + ε.

Thus, u is strictly increasing (resp., decreasing) in time if u ∈ (−∞,−bl − ε] (resp., u ∈ [bl + ε,∞)). Combining this
with the uniform boundedness of u, for any given ε > 0, we can find a T = T (ε, t0) > t0 such that u must enter the
interval [−bl − ε, bl + ε] for all t ≥ T . This completes the proof. !

Lemma 3.2. Consider a vector-valued function u ∈ C0,1(Dt0 ;RN) with u(x, t) = (u1(x, t), ..., uN(x, t)). If there exists
M > 0 such that

|ui(x, t)| ≤ M for all (x, t) ∈ Dt0 and i = 1, ...,N (8)

and u satisfies
∣∣∣∣∣
∂ui(x, t)
∂t

+
1
l
ui(x, t)

∣∣∣∣∣ ≤ β sup
t≥s
∥u(·, t)∥∞ + ω(t) (9)

over Ds+r for all s ≥ t0, i = 1, ...,N, for some positive constants β, l, r, and a function ω : [t0,∞)→ R+, then

∥u(·, t)∥∞ →
[
0, lA
1 − lβ

]
as t→ ∞ (10)

as long as βl < 1, where

A := lim sup
t→∞

ω(t) ≥ 0. (11)

Proof. Since βl < 1, we can choose a small ϵ > 0 such that

βl(1 + ϵ) < 1 (12)

and we can choose a t̃ > t0 such that ω(t) < A + ϵ for all t ≥ t̃, due to (11). By Lemma 3.1, there exists a t1 > t̃ such
that

∥ui(·, t)∥∞ ≤ l
[
β sup
t≥t0
∥u(·, t)∥∞ + A + ϵ

]
(1 + ϵ) for all t ≥ t1 and i = 1, ...,N.

Thus, we have

sup
t≥t1
∥u(·, t)∥∞ ≤ l

[
β sup
t≥t0
∥u(·, t)∥∞ + A + ϵ

]
(1 + ϵ). (13)

Note that, by (9), we have
∣∣∣∣∣
∂ui(x, t)
∂t

+
1
l
ui(x, t)

∣∣∣∣∣ ≤ β sup
t≥t1
∥u(·, t)∥∞ + A + ϵ (14)

in Dt1+r for i = 1, ...,N. Plugging (13) into (14), we obtain
∣∣∣∣∣
∂ui(x, t)
∂t

+
1
l
ui(x, t)

∣∣∣∣∣ ≤ l
[
β2 sup

t≥t0
∥u(·, t)∥∞ + β(A + ϵ)

]
(1 + ϵ) + A + ϵ,

in Dt1+r for each i = 1, ..,N.
Again, by Lemma 3.1, there exists a t2 > t1 such that

∥ui(·, t)∥∞ ≤
[
l2β2 sup

t≥t0
∥u(·, t)∥∞ + l2β(A + ϵ)

]
(1 + ϵ)2 + l(A + ϵ)(1 + ϵ) (15)
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for all t ≥ t2 and i = 1, ...,N. Repeating the above process, one can find a sequence tk ↑ ∞ such that for all k ∈ N,

sup
t≥tk
∥u(·, t)∥∞ ≤ Rkϵ sup

t≥t0
∥u(·, t)∥∞ + l(A + ϵ)(1 + ϵ)(1 + Rϵ + ... + Rk−1ϵ ),

where Rϵ := lβ(1 + ϵ) ∈ (0, 1). Since Rϵ ∈ (0, 1), we have

lim
k→∞

[
sup
t≥tk
∥u(·, t)∥∞

]
≤
l(A + ϵ)(1 + ϵ)

1 − Rϵ
.

As ϵ > 0 is arbitrary, we have justified (10) and the proof is completed. !

4. Absolute stability and synchronization

We shall discuss absolute stability and synchronization for system (3) in Subsections 4.1 and Subsection 4.2
respectively.

4.1. Absolute stability
For system (3) with a fixed input I(x, t), starting from an arbitrary initial value V0, the solution V(x, t) exists for

all t ≥ 0, by Theorem 2.1. V(x, t) is said to be absolutely stable if
(i) the solution U(x, t) of (3) evolved from any initial value close to V0 remains close to V(x, t) for all t ≥ 0, and
(ii) U(x, t) approachesV(x, t) as t → ∞ uniformly for x ∈ Ω for any solution U(x, t) of (3).

We say that a system is absolutely stable if all its solutions are absolutely stable. The notion of absolute stability was
introduced in [13] to depict a dynamical element in neuronal systems: the activities forget their initial states but do
not forget their inputs.

Previous work [13] employed the Lyapunov functional approach to derive a sufficient condition for the absolute
stability of system (3) when time delay is not taken into account, i.e., τ ≡ 0. Asymptotic stability of the origin for
the linearized (3) at a stationary solution when the external input I is time-independent, has been reported in [12].
Absolute stability for the neural field model (3) with propagation time delays has not been reported, to the best of
our knowledge. Here we shall provide a criterion for the absolute stability in the delay model (3). Furthermore, our
approach is also valid for unbounded Ω. To present our approach, we first replace (A3) and (A4) by the following
conditions:

(A3’) W ∈ BC([−τM,∞);Yα),

(A4’) I ∈ BC([−τM,∞);X).

For convenience, we lump conditions (A1), (A2), (A3’) and (A4’) together as condition (H). In this section, we always
assume that (H) holds.

Let us state the main result of this work:

Theorem 4.1. The system (3) is absolutely stable if

lmaxW∞∥S′∥∞ < 1, (16)

where lmax := maxi=1,...,N li and W∞ := supx∈Ω,t>0 ∥W(x, ·, t)∥L1(Ω).

Remark 4.1. We remark that our sufficient condition (16) for absolute stability is similar to the one in [13, Theorem
4.7] (without time delays), which is expressed by

lmax∥g∥G∥S′∥∞ < 1, (17)

where the functional g is defined by g(S )(x, t) :=
∫
Ω
W(x, y, t)S (y)dy for S ∈ C(Ω) andG is the pre-Hilbert space (with

the usual inner product) defined on C(Ω). It seems not straightforward to compare these two bounds. However, if the
connectivity matrixW is translation invariant, (17) can be reduced to calculating the eigenvalue of some Hermitian
matrix, see [13, Theorem 4.9] and [13, p.231]. Then it is possible to compare (16) and (17). In fact, the two bounds
can be better to each other depending on the choice ofW. More details are presented in Section 5. We stress that the
present Theorem 4.1 applies to the delay case.
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In general, the dynamics of system (3) can be very complicated, depending on howW and I are chosen. When
bothW and I are time-independent, i.e.,

∂V(x, t)
∂t

= −LV(x, t) +
∫

Ω

W(x, y)S(V(y, t − τ(x, y)))dy + I(x), (18)

the dynamics can be investigated by analyzing the stability of stationary solutions (if they exist). In fact, Theorem 4.1
shows that, under condition (16), if stationary solutions exist, it must be unique and globally asymptotically stable,
which means that the global dynamics is quite simple.

In the next result, we shall show the existence of stationary solutions to system (18). Then its uniqueness and
global stability are a consequence of Theorem 4.1.

Theorem 4.2. Let Ω be either the whole space Rn or a compact subset of Rn. Furthermore, if Ω = Rn, we assume
that

lim
∥x∥→∞

N∑

j=1

∫

Rn
|Wi j(x, y)|dy = 0 and lim

∥x∥→∞
Ii(x) = 0, i = 1, ..,N. (19)

Then system (18) has a stationary solution. Furthermore, the solution is unique and is globally asymptotically stable
as long as condition (16) holds.

Remark 4.2. Our sufficient condition for the stability of stationary solutions, (16), can be rewritten as

lmax

⎡
⎢⎢⎢⎢⎢⎢⎣sup
x∈Ω

max
i=1,...,N

N∑

j=1

∫

Ω

|Wi j(x, y)|dy

⎤
⎥⎥⎥⎥⎥⎥⎦ ∥S

′∥∞ < 1. (20)

On the other hand, a sufficient condition for local stability of stationary solutions of (18) has been reported in [12,
Theorem 4.2.3], which reads as

∫

Ω

⎡
⎢⎢⎢⎢⎢⎢⎣
N∑

i, j=1
l2i

∫

Ω

|W̃i j(x, y)|2dy
⎤
⎥⎥⎥⎥⎥⎥⎦ dx < 1, (21)

where W̃i j = (W̃)i, j and W̃(x, y) := W(x, y) · S′(V0(y)). Here V0 is a stationary solution of (18). In general, it is
nontrivial to compare (20) with (21) since (21) depends on the value of V0, which is usually unavailable or implicit.
Via an approach which analyzes the spectrum of the infinitesimal generator associated with the linearized system, a
more complicated criterion for asymptotical stability of the origin was established in [36]. In this regard, the choice
of the function space is again crucial for the validity of linearized stability analysis. With X = C(Ω̄), the spectral
properties for the generator of the semigroup associated with the linearized system at a steady state were analyzed in
[32]. We also note that a sufficient condition for stability of stationary solutions obtained by estimating the eigenvalues
of some self-adjoint operator arising from system (18) without time delay was reported in [11].

The rest of this subsection is devoted to proving Theorems 4.1 and 4.2. First, we need some preparations.

Lemma 4.1. Let I∞ := supt>0 ∥I(·, t)∥∞. Then for i = 1, ...,N,

sup
t≥0
∥Vi(·, t)∥∞ ≤ K∞ := max{∥V0∥C, (W∞∥S∥∞ + I∞)lmax}.

Proof. Notice that I∞ < ∞ due to (A4’). Set M := W∞∥S∥∞ + I∞. For each i = 1, ...,N, with (H), it follows from (1)
that

∣∣∣∣∣
∂Vi(x, t)
∂t

+
1
li
Vi(x, t)

∣∣∣∣∣ ≤ M, for all x ∈ Ω, t ≥ 0.
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By comparing with the following ODE

u′(t) = − 1
lmax

u(t) + M, t > 0, u(0) = ∥V0∥C,

it follows that

sup
t≥0
∥Vi(·, t)∥∞ ≤ max{∥V0∥C,Mlmax}

for i = 1, ...,N and all t ≥ T̃ for some T̃ . This completes the proof. !

Proposition 4.1. If (16) holds, then the difference of any two solutions of (3) tends to zero as t → ∞ regardless of
their initial data.

Proof. Let U and V be two solutions of (3) evolved from any two initial values φU and φV . We introduce their
difference Z := U − V with Z = (Z1, ..., ZN). We shall show that ∥Zi(·, t)∥∞ → 0 as t → ∞ for i = 1, ...,N. From (1),
we see that

∂Zi(x, t)
∂t

= −
1
li
Zi(x, t)

+

N∑

j=1

∫

Ω

Wi j(x, y, t)
[
S j(Uj(y, t − τ j(x, y))) − S j(Vj(y, t − τ j(x, y)))

]
dy

for i = 1, ...,N. Applying the mean value theorem yields

∣∣∣∣∣
∂Zi(x, t)
∂t

+
1
li
Zi(x, t)

∣∣∣∣∣ ≤ ∥S′∥∞
N∑

j=1

∫

Ω

|Wi j(x, y, t)||Zj(y, t − τ j(x, y))|dy (22)

≤ ∥S′∥∞W∞ sup
t≥s
∥Z(·, t)∥∞,

in Ds+τM for all s ≥ 0, where Ds := {(x, t) : x ∈ Ω, t ≥ s}.
Note that Z ∈ C0,1(D0;RN). Also, by Lemma 4.1, we obtain

|Zi(x, t)| ≤ 2K∞ for all (x, t) ∈ D0 and i = 1, ...,N.

Together with (22) and (16), we can apply Lemma 3.2 with β = ∥S′∥∞W∞, l = lmax and A = 0 to conclude that
∥Zi(·, t)∥∞ → 0 as t→ ∞ for i = 1, ...,N. The proof is completed. !

Let us justify Theorem 4.1.
Proof of Theorem 4.1: Due to Proposition 4.1, it suffices to show that all solutions are stable; namely, for any

given ϵ > 0 and a solution V with initial data φV , there exists a δ > 0 such that if a solution U with initial data φU
satisfying supθ∈[−τM ,0] ∥φV (θ) − φU(θ)∥∞ < δ, then

∥U(·, t) − V(·, t)∥∞ < ϵ for all t ≥ 0.

Set Z := U − V. First, we choose T > τM . For given ϵ > 0, using Proposition 2.1 we choose a small δ > 0 such
that

∥Z(·, t)∥∞ < ϵ, t ∈ [0, T ] (23)

whenever supθ∈[−τM ,0] ∥φV (θ) − φU(θ)∥∞ < δ.
We now show that (23) actually holds for all t ∈ [0,∞). Indeed, for each x ∈ Ω and t ≥ T , it follows from (22) that

∣∣∣∣∣
∂Zi(x, t)
∂t

+
1
li
Zi(x, t)

∣∣∣∣∣ ≤ ϵ∥S
′∥∞W∞ =: b

9



as long as ∥Z(·, s)∥∞ < ϵ for all s ∈ [t − τM , t]. As in the proof of Lemma 3.1, one observes

∂Zi(x, t)
∂t

> 0 if Zi(x, t) < −lib,
∂Zi(x, t)
∂t

< 0 if Zi(x, t) > lib, (24)

as long as ∥Z(·, s)∥∞ < ϵ for all s ∈ [t − τM , t]. Note that the condition (16) yields [−lib, lib] ⊂ [−ϵ, ϵ] for each
i = 1, ...,N. Together with (23) and (24), we can easily conclude that Z(x, t) always stays in [−ϵ, ϵ]n for all x ∈ Ω and
t ≥ T . Thus, all solutions of (1) are stable and this completes the proof of Theorem 4.1. !

Proof of Theorem 4.2: We first show that (18) admits a stationary solution, i.e., there exists V∗ = V∗(x) satisfying

0 = −LV∗(x) +
∫

Ω

W(x, y)S(V∗(y))dy + I(x). (25)

For this, we define the operator F : BC(Ω)→ BC(Ω) by

F u = L−1
∫

Ω

W(x, y)S(u(y))dy + L−1I(x).

Then it suffices to show that F : BC(Ω) → BC(Ω) has a fixed point (under the supremum norm). Note that if Ω is
compact, BC(Ω) ≡ C(Ω).

Choosing a closed convex set

D := {u ∈ BC(Ω) : ∥u∥∞ ≤ K},

where K := lmax∥S∥∞∥W∥Yα + lmaxI∞ and lmax is defined in (16), then we can easily obtain F (D) ⊂ D.
To apply the Schauder’s fixed point theorem, it suffices to show that F is continuous on D and F (D) is a relatively

compact subset of D. It follows from the assumption (H) that

∥F (u) − F (v)∥∞ ≤ lmax∥S′∥∞∥W∥Yα∥u − v∥∞, for any u, v ∈ D,

which implies the continuity of F .
We now justify the relative compactness of F (D). For this part, we shall divide our discussion into two cases: (i)

Ω is a compact subset of Rn, and (ii) Ω = Rn. For (i), using (H) we have

|Fi(u)(x) − Fi(u)(x̂)| ≤ lmax
[
∥S∥∞∥W∥Yα∥x − x̂∥α + |Ii(x) − Ii(x̂)|

]
, (26)

for all i = 1, ..,N, x, x̂ ∈ Ω and u ∈ D, where F (u) := (F1(u), ...,FN(u)). Note that the compactness of Ω implies
the uniform continuity of Ii. Hence we see from (26) that F (D) is equicontinuous. Also, note that F (D) is uniformly
bounded since ∥F (u)∥∞ ≤ K. By the Arzela-Ascoli theorem, we obtain the relative compactness of F (D).

For (ii), following the same process as in (i), we have the equicontinuity and uniform boundedness of F (D) when
Ω = Rn (the uniform continuity of Ii over Rn follows from the assumption that lim∥x∥→∞ Ii(x) exists). However, the
Arzela-Ascoli theorem cannot be applied to guarantee the relative compactness of F (D) since Rn is not compact. In
fact, if all functions in F (D) tend to zero uniformly at infinity, i.e., for each ε > 0, there exists a L > 0 such that

|Fi(u)(x)| < ε for all i = 1, ...,N, u ∈ D and ∥x∥ ≥ L, (27)

then the Arzela-Ascoli theorem can be generalized to Ω = Rn (see, for example, [19, P.46-47]). For this, observe that

|Fi(u)(x)| ≤ lmax∥S∥∞
N∑

j=1

∫

Rn
|Wi j(x, y)|dy + lmax|Ii(x)|, i = 1, ...,N, u ∈ D.

By assumption (19), we then obtain (27). Thus the relative compactness of F (D) is confirmed.
Consequently, the Schauder’s fixed point theorem yields that there exists a solution to (25). When (16) holds, the

uniqueness and the globally asymptotical stability of the solution follow from Theorem 4.1. !
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4.2. Synchronization
In this subsection, we shall investigate the synchronizations for system (3). More precisely, we shall consider two

types of synchronization:

max
i, j∈{1,2,...,N}

∥Vi(·, t) − Vj(·, t)∥∞ → 0 as t→ ∞; (28)

sup
x,x̄∈Ω
|Vi(x, t) − Vi(x̄, t)|→ 0 as t→ ∞, i = 1, ...,N. (29)

Notice that (28) describes the phenomenon that different layers (or populations) of neurons synchronize, whereas (29)
describes the phenomenon that the system synchronizes within each layer. We shall give some basic criteria for (28)
and (29) to take place, respectively.

To establish the synchronization for (3) among different layers, we shall try to estimate ∥Vi(·, t) − Vi+1(·, t)∥∞. Let
us fix x, y, t and denote the ith row sum ofW =W(x, y, t) as ρi = ρi(x, y, t) :=

∑N
j=1Wi j(x, y, t). We compose a matrix

W̃ whose entries compriseWi j and row sum ρi ofW:

W̃ = [W̃i j]1≤i, j≤N ∈ RN×N ,

where

W̃i j :=
⎧⎪⎪⎨
⎪⎪⎩
Wii − ρi if i = j,
Wi j otherwise.

From W̃, we further construct a matrix Ŵ:

Ŵ = [Ŵi j]1≤i, j≤N−1 := CW̃CT (CCT )−1 ∈ R(N−1)×(N−1) ,

where T denotes transpose, and C is the following (N − 1) × N matrix

C :=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 −1 0 · · · 0

0 1 −1
. . .

...
...
. . .

. . .
. . . 0

0 · · · 0 1 −1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

It can be shown that Ŵ is well defined and satisfies

CW̃ = ŴC,

by arguments similar to those in the appendix of [26]. Thus CW̃(ξ1, . . . , ξN)T = ŴC(ξ1, . . . , ξN)T , i.e.,

N∑

j=1
[W̃i j − W̃i+1, j]ξ j =

N−1∑

j=1
Ŵi j(ξ j − ξ j+1), (30)

for (ξ1, . . . , ξN) ∈ RN . This process can be regarded as a rearrangement with a transformation for the terms in the
summation.

Theorem 4.3. Under the following assumptions

(i) li = l j =: l, τi(x, y) = τ j(x, y) =: θ(x, y) and S i(x) = S j(x) =: S (x) for all i, j = 1, ...,N,

(ii) maxi, j∈{1,...,N} supx∈Ω ∥ρi(x, ·, t) − ρ j(x, ·, t)∥L1(Ω) → 0 as t→ ∞,

(iii) ω(t) := maxi, j∈{1,...,N} ∥Ii(·, t) − I j(·, t)∥∞ → 0 as t→ ∞,
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the synchronization for (3) among different layers takes place (i.e., (28) holds) as long as condition

lmax
(
W∞ + Ŵ∞

)
∥S′∥∞ < 1 (31)

holds, where Ŵ∞ := supx∈Ω,t>0 ∥Ŵ(x, ·, t)∥L1(Ω) and W∞ := supx∈Ω,t>0 ∥W(x, ·, t)∥L1(Ω).

Proof. Let V = (V1, . . . ,VN)T be a solution of (3). Set Zi(x, t) = Vi(x, t) − Vi+1(x, t) (mod N) for i = 1, ...,N. Then by
assumption (i), we have

∂Zi(x, t)
∂t

+
1
l
Zi(x, t) =

N∑

j=1

∫

Ω

Wi j(x, y, t)S (Vj(y, t − θ(x, y)))dy + Ii(x, t) (32)

−
N∑

j=1

∫

Ω

Wi+1, j(x, y, t)S (Vj(y, t − θ(x, y)))dy − Ii+1(x, t),

for i = 1, ...,N − 1. For the terms in the summations in (32),
N∑

j=1

[
Wi j(x, y, t) −Wi+1, j(x, y, t)

]
S (Vj(y, t − θ(x, y)))

= ρi(x, y, t)S (Vi(y, t − θ(x, y))) − ρi+1(x, y, t)S (Vi+1(y, t − θ(x, y)))

+

N∑

j=1

[
W̃i j(x, y, t) − W̃i+1, j(x, y, t)

]
S (Vj(y, t − θ(x, y)))

= ρi(x, y, t)S (Vi(y, t − θ(x, y))) − ρi+1(x, y, t)S (Vi+1(y, t − θ(x, y)))

+

N−1∑

j=1
Ŵi j(x, y, t)[S (Vj(y, t − θ(x, y))) − S (Vj+1(y, t − θ(x, y)))],

by (30). Thus,
∣∣∣∣∣
∂Zi(x, t)
∂t

+
1
l
Zi(x, t)

∣∣∣∣∣

≤
∫

Ω

∣∣∣∣ρi(x, y, t)S (Vi(y, t − θ(x, y))) − ρi+1(x, y, t)S (Vi+1(y, t − θ(x, y)))
∣∣∣∣dy

+

N−1∑

j=1

∫

Ω

|Ŵi j(x, y, t)||S (Vj(y, t − θ(x, y))) − S (Vj+1(y, t − θ(x, y)))|dy + ω(t)

≤
∫

Ω

|ρi(x, y, t)||S (Vi(y, t − θ(x, y))) − S (Vi+1(y, t − θ(x, y)))|dy (33)

+

∫

Ω

|ρi(x, y, t) − ρi+1(x, y, t)||S (Vi+1(y, t − θ(x, y)))|dy

+

N−1∑

j=1

∫

Ω

|Ŵi j(x, y, t)||S (Vj(y, t − θ(x, y))) − S (Vj+1(y, t − θ(x, y)))|dy + ω(t).

Note that
∫

Ω

|ρi(x, y, t)|dy ≤
N∑

j=1

∫

Ω

|Wi j(x, y, t)|dy ≤ W∞. (34)

By the mean value theorem, we obtain
∣∣∣∣∣
∂Zi(x, t)
∂t

+
1
l
Zi(x, t)

∣∣∣∣∣ (35)

≤ ∥S′∥∞
(
W∞ + Ŵ∞

)
sup
t≥s
∥Z(·, t)∥∞ + ∥S∥∞∥ρi(x, ·, t) − ρi+1(x, ·, t)∥L1(Ω) + ω(t)
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in Ds+τM , for all s ≥ 0 and i = 1, ...,N, where Ds := {(x, t) : x ∈ Ω, t ≥ s}. By letting β = ∥S′∥∞(W∞ + Ŵ∞), we see
that (31) implies lβ < 1. Also, note that |Zi(x, t)| ≤ 2K∞ for all (x, t) ∈ D0 and i = 1, ...,N (by Lemma 4.1). Then by
(ii) and (iii), we can use Lemma 3.2 to conclude that

∥Zi(·, t)∥∞ → 0 as t → ∞ for each i = 1, ...,N.

The proof is completed. !

We note that the estimation in (34) can be relaxed by imposing a condition on row sums ρi or we can lump up the
first and the last integrals (33) into one summation and define a new matrix in terms of Ŵi j and ρi, and then impose a
condition on this matrix. These will weaken condition (31).

An N × N matrix B = [bi j]1≤i, j≤N is called “circulant” [8] if [bi j]1≤i, j≤N = circ(b1, ..., bN) for some bk, k = 1, ...,N,
i.e., each row of B is a right cyclic shift of the row above it. Obviously, a circulant matrix has identical row sums. If
matrixW has identical row sums, then condition (ii) in Theorem 4.3 can be lifted. Moreover, ifW is circulant, then
(31) can be replaced by condition (16).

Corollary 4.1. System (3) attains synchronization among different layers under assumptions (i) and (iii) of Theorem
4.3, and condition (31) ifW has identical row sums, and condition (16) ifW is circulant.

Proof. IfW has identical row sums, then assumption (ii) of Theorem 4.3 holds obviously. IfW is circulant, we have
Wi+1, j = Wi, j−1 (mod N). Set Zi(x, t) = Vi(x, t) − Vi+1(x, t) (mod N) for i = 1, ...,N. Then (32) and (35) reduce to

∣∣∣∣∣
∂Zi(x, t)
∂t

+
1
li
Zi(x, t)

∣∣∣∣∣ ≤ ∥S′∥∞
N∑

j=1

∫

Ω

|Wi j(x, y, t)||Zj(y, t − θ(x, y))|dy

≤ ∥S′∥∞W∞ sup
t≥s
∥Z(·, t)∥∞

in Ds+τM for all s ≥ 0, where Ds := {(x, t) : x ∈ Ω, t ≥ s}. As in the proof of Theorem 4.3, we see that the assertion
holds under condition (16). The proof is completed. !

Remark 4.3. Assumption (ii) in Theorem 4.3 somehow depicts a sense of (eventual) balance of coupling weights
among all layers, and hence the synchronization among different layers becomes possible. Circulant coupling and
diffusive coupling: ρi(x, y, t) ≡ 0 for all i, are conditions commonly imposed on the connection matrix in the study of
coupled network systems. They indicate corresponding network structures in the systems. What we have discussed
in this subsection is about identical synchronization (or perfect synchronization), which is a idealized notion. More
practical consideration should be approximate synchronization which allows a synchronization error as t → ∞, i.e.,
the limits to zeros in (28) and (29) are replaced by a small bound ε > 0, cf. [17]. With such a notion, assumptions (i)
and (ii) in Theorem 4.3 can all be relaxed. In fact, the difference between row sums ofW, ∥ρi − ρ j∥, and variation of
delays, ∥τi − τ j∥, all contribute to the synchronization error ε.

The following theorem is for synchronization within each layer.

Theorem 4.4. Assume that Ω = Rn and

(i) W(x, y, t) =W(x − y) for all x, y ∈ Rn and t ≥ 0,

(ii) I(x, t) = I∗ for some I∗ ∈ RN, for all x ∈ Rn and t ≥ 0.

Then all solutions of (3) converge to a trivial solution (constant in space and time) as long as (16) holds. In particular,
(29) holds and the system synchronizes within each layer.

Proof. Set the operator F : RN → RN by F u = L−1
∫
RnW(x − y)S(u)dy + L

−1I∗, where u = (u1, .., uN) is a constant
vector inRN . Then (3) has a trivial solution if and only if F has a fixed point inRN . Let z = x−y. For each i = 1, ...,N,

N∑

j=1

∫

Rn
Wi j(x − y)S j(u j)dy =

N∑

j=1
S j(u j)

∫

Rn
Wi j(z)dz,
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which implies that F u ∈ RN .
For any u and v ∈ RN , we have

∥F u − F v∥ ≤ lmaxW∞∥S′∥∞∥u − v∥.

Due to (16), F is a contraction. Thus, by the contraction mapping theorem, there exists a unique vector u∗ =
(u∗1, ..., u

∗
N) ∈ RN such that F (u∗) = u∗. In other words, (3) has a trivial solution u∗. By Theorem 4.2, u∗ is globally

asymptotically stable. In particular, given any solution V of (3), we have

sup
x,x̄∈Rn

|Vi(x, t) − Vi(x̄, t)| ≤ sup
x∈Rn
|Vi(x, t) − u∗i | + sup

x̄∈Rn
|Vi(x̄, t) − u∗i |

which tends to zero as t → ∞ for all i = 1, ...,N. This completes the proof. !

We now focus on the homogeneous solutions of system (3). Assume that τ and I are space-independent andW
does not depend on x, where

W =W(t) =
∫

Ω

W(x, y, t)dy, (36)

then one can consider homogeneous (space-independent) solutions of (3). A homogeneous solution of (3) then satis-
fies

V̇(t) = −LV(t) +W(t)S(V(t − τ)) + I(t), V(t) = V0(t), t ∈ [−τM , 0], (37)

HereW(t) and the external current I(t) are assumed to be continuous for t ∈ [0,∞). Similar to Theorem 2.1, we can
obtain the global existence and uniqueness of solution for (37) if V0 ∈ C([−τM , 0];RN). The case with τ = 0 and
boundedΩ has been discussed in [13]. By Theorem 4.1, we immediately have the following corollary.

Corollary 4.2. Assume that τ, I, andW in (36) are space-independent, then (29) holds under condition (16).

Proof. By Theorem 4.1, under condition (16), any solution V(t) of (37) must be absolutely stable. Thus every solution
of (3) converges uniformly to the homogeneous solution V(t) on Ω. Therefore, for any solution V(x, t) of (3),

sup
x,x̄∈Ω
|Vi(x, t) − Vi(x̄, t)| ≤ sup

x∈Ω
|Vi(x, t) − Vi(t)| + sup

x̄∈Ω
|Vi(x̄, t) − Vi(t)|

which tends to zero as t → ∞ for all i = 1, , ...,N. This completes the proof. !

5. Numerical examples

In this section, we present four numerical examples to illustrate our theoretical results on absolute stability and
synchronization in Section 4. Note that in [12], stability theory is established only for stationary solutions of system
(3) with time-independent external currents. The numerical examples therein take zero input (I = 0) and illustrate the
stability of homogeneous solution V = 0. Our Theorem 4.1 concludes absolute stability for system (3) with general
input, and thus the numerical simulations herein allow non-constant external currents.

We also design the parameters according to Theorem 4.5 to illustrate synchronization among different layers in
system (3), which has not been reported in previous works. We follow the numerical approach used in [12] to solve
the system of equations (3). The spatial integration is discretized via the trapezoidal rule and the resulting discretized
system of delay ODEs are solved by MATLAB dde23.

We consider system (3) with two layers of neurons (N = 2) in one-dimensional spatial domain (n = 1):

∂V1
∂t
= −

1
l
V1 +

2∑

j=1

∫ 1

0
β1 je

− (x−y)
2

2σ21 j S
(
Vj

(
y, t −

|x − y|
c

))
dy + I1, (38)

∂V2
∂t
= −

1
l
V2 +

2∑

j=1

∫ 1

0
β2 je

− (x−y)
2

2σ22 j S
(
Vj

(
y, t −

|x − y|
c

))
dy + I2, (39)

14

https://www.researchgate.net/publication/220223002_Absolute_Stability_and_Complete_Synchronization_in_a_Class_of_Neural_Fields_Models?el=1_x_8&enrichId=rgreq-841974cafb03c67341ec884427a80ed8-XXX&enrichSource=Y292ZXJQYWdlOzMwMTcwODU4MztBUzozNzk0Mjk2NzYxNzUzNjRAMTQ2NzQ3NDQ5MjYwMw==
https://www.researchgate.net/publication/223860181_Some_theoretical_and_numerical_results_for_delayed_neural_field_equations?el=1_x_8&enrichId=rgreq-841974cafb03c67341ec884427a80ed8-XXX&enrichSource=Y292ZXJQYWdlOzMwMTcwODU4MztBUzozNzk0Mjk2NzYxNzUzNjRAMTQ2NzQ3NDQ5MjYwMw==
https://www.researchgate.net/publication/223860181_Some_theoretical_and_numerical_results_for_delayed_neural_field_equations?el=1_x_8&enrichId=rgreq-841974cafb03c67341ec884427a80ed8-XXX&enrichSource=Y292ZXJQYWdlOzMwMTcwODU4MztBUzozNzk0Mjk2NzYxNzUzNjRAMTQ2NzQ3NDQ5MjYwMw==


with initial data
(V1(x, t),V2(x, t)) = (φ1(x, t), φ2(x, t)), x ∈ Ω, t ∈ [−τM , 0].

We take the following setting in the numerical examples:

• the space domainΩ = [0, 1];

• the time delays τ1(x, y) = τ2(x, y) = |x − y|/c for some c > 0 so that τM = 1/c;

• the connectivity matrixW = [Wi j] with

Wi j(x, y, t) = Wi j(x − y) = βi je
− (x−y)

2

2σ2i j , for all t ≥ 0, i, j = 1, 2,

where
βi j :=

αi j
√
2πσ2i j

, i, j = 1, 2;

• the activation function S(x) := [S (x), S (x)]T , where S is sigmoidal defined by

S (x) := 1
1 + e−x

−
1
2
.

Note that the sign of αi j determines whether layer j excites or inhibits layer i. It is straightforward to compute that
∥S′∥∞ = 1/4. Herein we choose l1 = l2 =: l = 4 (so that lmax = 4) and thus lmax∥S′∥∞ = 1. Accordingly, the sufficient
condition for absolute stability in Theorem 4.1 becomes

W∞ := sup
x∈[0,1]

∥W(x, ·)∥L1([0,1]) < 1,

which is equivalent to

sup
x∈[0,1]

max

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

2∑

j=1
|β1 j|

∫ 1

0
e
− (x−y)

2

2σ21 j dy,
2∑

j=1
|β2 j|

∫ 1

0
e
− (x−y)

2

2σ22 j dy

⎫⎪⎪⎪⎬
⎪⎪⎪⎭
< 1. (40)

Example 5.1. We illustrate the absolute stability for system (38)-(39) satisfying condition (40). We take c = 10
and the external current

I(x, t) := (I1(x, t), I2(x, t)), x ∈ [0, 1], t ∈ [0,∞),

where Ii is a radially symmetric Gaussian, i.e,

Ii(x, t) := I∗i e−(x−1/2)
2/κ2i ,

and I∗1 = cos t, I
∗
2 = sin t, κi = 1. In addition, in the connectivity matrix, we choose

(α11,α12,α21,α22) = (1, 2,−4,−3), (σ11,σ12,σ21,σ22) = (2, 5, 4, 6). (41)

A computation shows that condition (40) is met. Hence the absolute stability of solutions holds and any two solutions
approach each other as t→ ∞, regardless of their initial data. For instance, we choose two different initial data:

(φ1(x, t), φ2(x, t)) = (sin πx, cosπx), x ∈ [0, 1], t ∈ [−1/10, 0];
(φ̂1(x, t), φ̂2(x, t)) = (e−t − 2, et), x ∈ [0, 1], t ∈ [−1/10, 0].

Figure 1 indicates that

∥V(·, t) − V̂(·, t)∥∞ = max
i=1,2

sup
x∈[0,1]

|Vi(x, t) − V̂i(x, t)|→ 0, as t → ∞. (42)
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Figure 1: Absolute stability in system (38)-(39). Top row: the solution (V1,V2) with initial condition (φ1(x, t), φ2(x, t)) = (sin πx, cos πx), x ∈
[0, 1], t ∈ [−1/10, 0]. Middle row: the solution (V̂1, V̂2) with initial condition (φ̂1(x, t), φ̂2(x, t)) = (e−t − 2, et) for x ∈ [0, 1], t ∈ [−1/10, 0]. Bottom
row: the evolution of ||V(·, t) − V̂(·, t)||∞ with respect to time.
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Figure 2: Loss of absolute stability in system (38)-(39). Top row: the solution (V1,V2) with initial condition (φ1(x, t), φ2(x, t)) = (sin πx, cos πx),
for x ∈ [0, 1], t ∈ [−1/10, 0]. Middle row: the solution (V̂1, V̂2) with initial condition (φ̂1(x, t), φ̂2(x, t)) = (e−t − 2, et), for x ∈ [0, 1], t ∈ [−1/10, 0].
Bottom row: the evolution of ||V(·, t) − V̂(·, t)||∞ with respect to time.
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Both solutions appear to converge to a periodic pattern.
Example 5.2. We demonstrate the loss of absolute stability by fixing σi j > 0, and choosing αi j ≫ 1 so that (40)

fails to hold. For instance, we choose the same data as in Example 5.1 but replace αi j in (41) by

(α11,α12,α21,α22) = (50, 50,−20,−20).

Then the absolute stability of solutions is lost, as illustrated in Figure 2.
Example 5.3. To compare with the results in [13], we consider τ1 = τ2 = 0 (without time delays) in system

(38)-(39). We will see that our sufficient condition for absolute stability can be weaker than the one in [13]. For
example, if we choose αi j = α > 0, σi j = σ > 0, their sufficient condition for absolute stability (see [13, p.231]) can
be reduced to α < 1/8 (independent of σ). So if we consider α = 1/4 and σ ≥ 1/

√
8π which satisfy (40) but do not

satisfy their sufficient condition, the solution is still absolutely stable. Thus, with the same data as in Example 5.1, but
replacing (41) by

αi j = α = 1/4, σi j = σ = 1/
√
8π, i, j = 1, 2,

Figure 3 illustrates that the two solutions still approach each other as t → ∞.
Example 5.4. We demonstrate the synchronization among different layers by choosing parameters satisfying

Theorem 4.3. Consider a circulant matrixW, i.e.,

α11 = α22, α12 = α21, σ11 = σ22, σ12 = σ21.

We choose the same data as in Example 5.1, but replace (41) by

(α11,α12,α21,α22) = (1, 3, 3, 1), (σ11,σ12,σ21,σ22) = (1, 4, 4, 1),

and the external current by

I1(x, t) = e−t + sin t + sin(6πx), I2(x, t) = e−2t + sin t + sin(6πx).

Then condition (40) and the assumptions in Corollary 4.1 are met, and the synchronization among two layers occurs,
i.e.,

sup
x∈[0,1]

|V1(x, t) − V2(x, t)|→ 0, as t → ∞,

as indicated in Figure 4. However, if we change αi j to, for example,

(α11,α12,α21,α22) = (40,−30,−30, 40),

so that (40) does not hold, then the synchrony is lost, as shown in Figure 5.

6. Conclusion

In this paper, based on the functional differential equation theory, we proved the global existence and uniqueness of
classical solutions for a class of neural field models. Through an iteration argument, we derived a sufficient condition
for absolute stability of the general solution in the considered systems. Such an assertion was termed all-delay stability
or the delay-independent stability, and the related issue has been called for research in [36]. The present analysis
allows the underlying spatial domainΩ to be bounded or unbounded. Our criterion for absolute stability applies to the
systems with propagation time delays which are space-dependent. The criterion for absolute stability in previous work
[13] applies to systemswithout delay and depends on an operator norm involving the connectivitymatrix function. Our
criterion also leads to the globally asymptotical stability of stationary solution for system (1) with space-independent
external currents. In addition, synchronization among different layers and within the same layer of the system were
established under some assumptions. The analysis can be extended to obtain parallel results in activity-based model
with time delays [11, 13].

While taking space-dependent delays into account in the neural field models is indeed crucial and practical, it also
raises mathematical technicality in understanding the dynamics of the models. The present approach and results are
expected to contribute toward further understanding on these important models.
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partially supported by the Ministry of Science and Technology, R.O.C.
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Figure 3: Absolute stability without time delays. Top row: the solution (V1,V2) with initial condition (φ1(x, t), φ2(x, t)) = (sin πx, cos πx), x ∈
[0, 1], t ∈ [−1/10, 0]. Middle row: the solution (V̂1, V̂2) with initial condition (φ̂1(x, t), φ̂2(x, t)) = (e−t −2, et), for x ∈ [0, 1], t ∈ [−1/10, 0]. Bottom
row: the evolution of ||V(·, t) − V̂(·, t)||∞ with respect to time.
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Figure 4: Synchronization in system (38)-(38). Top row: the solution (V1,V2) with initial condition (φ1(x, t), φ2(x, t)) = (sin πx, cos πx), x ∈
[0, 1], t ∈ [−1/10, 0]. Bottom row: the difference between V1 and V2 and evolution of ||V1(·, t) − V2(·, t)||∞ with respect to time.
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Figure 5: Loss of synchronization in system (38)-(38). Top row: the solution (V1,V2) with the initial condition (φ1(x, t), φ2(x, t)) = (sin πx, cos πx),
for x ∈ [0, 1], t ∈ [−1/10, 0]. Bottom row: the difference between V1 and V2 and evolution of ||V1(·, t) − V2(·, t)||∞ with respect to time.
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