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Abstract. We study an initial-boundary value problem for a fourth-order

parabolic partial differential equation with an unknown velocity. The equation

originated from the linearization of a two-dimensional Couette flow model, that

was recently proposed by Benilov and Vynnycky. In the case of a 180◦– contact

angle between liquid and a moving plate Benilov and Vynnycky conjectured

that the speed of the contact line blows up to infinity in finite time. In this

paper we present numerical simulations and qualitative analysis of the model.

We show that depending on the initial data and parameter values different long

time behaviors of velocity can be observed. The speed of the contact line may

blow up to infinity or converge to a constant.

1. Introduction. The contact line is the triple junction between solid, air and
liquid flow. It is well known that Navier-Stokes equations with classical boundary
conditions are not applicable if the free boundary of the flow intersects with a rigid
boundary, resulting in the contact line. In 1980 Benney and Timson [3] analyzed
the viscous liquid flow near the contact line and showed that, if the contact an-
gle is 180◦ (the angle between the solid and the liquid interfaces), the contact line
singularity, that is well known for the zero contact angle, does not arise and as a
result the interface propagation is well-defined. Their local analysis did not include
an asymptotic behavior of the contact line velocity. In a recently published pa-
per, Benilov and Vynnycky [4], under an assumption of lubrication approximation
regime, complemented the Benney and Timson results via asymptotic analysis of
the global flow. Among other characteristics of the global flow they also determined
the contact line velocity.

The Couette flow is represented schematically in Figure 1, where two parallel
horizontal rigid plates are separated by the distance H. The upper plate is moving
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Figure 1. Couette flow with the free boundary, in the reference
frame co-moving with the contact line.

to the left with a velocity U1 and the lower plate is moving to the right with a velocity
U2. The volume between these plates is filled with an incompressible viscous fluid
on the left and with vacuum on the right, with the free boundary separation. The
contact line is located on the upper plane and the position of the contact line in the
reference frame that is co-moving with a contact line is fixed at the point x = 0.
Under an assumption that a velocity of the upper plane matches a velocity of the
contact line we have: U1 = −V (t) and U2 = U−V (t), where U is a constant velocity
of the lower plate relative to the upper plate. The time evolution of the profile of
the liquid/vacuum free boundary is described by the graph of the function h(x, t)
for x > 0, and where h is the thickness of the liquid film.

We study the following initial-boundary value problem that was derived in [4,
Eqs. (5.10), (5.15), (5.17) and (5.18)]:






h̃T + α3

3 h̃XXXX − v(T ) h̃X = 0,

h̃(X, 0) = h̃0(X), −1 ≤ h̃0(X) ≤ 0,

h̃(0, T ) = 0, h̃X(0, T ) = 0, h̃XXX(0, T ) = − 3
2α3 ,

lim
X→∞

h̃X(X,T ) = lim
X→∞

h̃XXX(X,T ) = 0,

with two unknowns h̃(X,T ) = h(X,T ) − 1 and v(T ). In the original variable
h(X,T ), the initial-boundary value problem is






hT + α3

3 hXXXX − v(T )hX = 0,

h(X, 0) = h0(X), 0 ≤ h0(X) ≤ 1,

h(0, T ) = 1, hX(0, T ) = 0, hXXX(0, T ) = − 3
2α3 ,

lim
X→∞

hX(X,T ) = lim
X→∞

hXXX(X,T ) = 0,

with two unknowns h(X,T ) and v(T ). With the scaling x = 31/3

α X and t = 31/3

α T ,
we have 





ht + hxxxx − V (t)hx = 0,

h(x, 0) = h0(x), 0 < h0(x) ≤ 1,

h(0, t) = 1, hx(0, t) = 0, hxxx(0, t) = − 1
2 ,

lim
x→∞

hx(x, t) = lim
x→∞

hxxx(x, t) = 0.
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In the special case when the contact line velocity was assumed to be a constant
V (t) = V0 the problem above was studied in [8]. The class of self-similar solutions for
this partial differential equation (self-similar solutions do not satisfy the boundary
conditions of the original problem) was constructed in [7].

Benilov, in personal communications, pointed out that a classical solution of the
problem above (if it exists) should have an infinite number of constraints. It follows
from the boundary conditions and from the partial differential equation that if a
solution h(x, t) is a classical one it should satisfy the condition hxxxx(0, t) = 0.
By differentiating this new condition with respect to t and by using the partial
differential equation above as a substitution for ht one obtains an infinite series of
constraints (under an assumption of an infinite smoothness of the solution).

The existence of an infinite series of constraints for a solution of a partial dif-
ferential equation is unusual, but this is not a unique case. A similar property has
been noted for the so-called Ostrovsky equation for waves in a rotating ocean or
in a channel with bottom topography [6, 2], as well as for Kadomtsev-Petviashvili
equation [5, 1]. Finally, there are numerous models with a finite number of con-
straints, associated mostly with a scale of oceanic dynamics (see [10] and references
therein). In all such cases, the constraints reflected an adjustment of the solution
by fast dynamics, which were present in the original (exact) problem, but have been
scaled out while deriving a slow-time asymptotic model. If the initial data taken
does not comply with all the boundary constraints, it instantaneously evolves into
a state satisfying all of them. However, since numerical methods cannot, generally,
handle infinitely fast evolution, the adjusted state is not computed accurately. Once
the adjustment is complete, the numerical solution begins to satisfy the equation
accurately enough, but this adjustment makes the adjusted state different from the
one originating from the initial condition given.

The structure of the article is as follows. In section two we prove non-existence of
physically relevant stationary solutions in the Benilov-Vynnycky model and present
analytical stationary solutions in non-physical regime. In the third section using
energy method and functional inequalities we analyze a finite-interval approximation
of the original problem. We derive estimates for V (t) and for the existence times
of solutions for different types of initial data. In section four we propose a simple
numerical method, based on the finite difference approach, to solve the initial-
boundary value problem of the Benilov-Vynnycky model. We show that depending
on the initial data and parameter values, the magnitude of speed of the contact
line may blow up to infinity or converge to a constant. The short discussion is
presented in section five with a comparison of blow-up rates of numerical V (t) with
the logarithmic rate V (t) � c1 ln(t∗ − t) + c2 predicted in [4] and with a power law
rate V (t) � c1 (t∗ − t)−1/2 + c2 predicted recently in [9].

2. Formulation of the problem and analysis of stationary solutions. We
consider the following initial-boundary value problem on R+:

(P)






ht + hxxxx − V (t)hx = 0, (1a)

h(x, 0) = h0(x), 0 ≤ h0(x) ≤ 1, (1b)

h(0, t) = 1, hx(0, t) = 0, hxxx(0, t) = −1

2
, (1c)

lim
x→∞

hx(x, t) = lim
x→∞

hxxx(x, t) = 0, (1d)

with two unknowns h(x, t) and V (t).
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The solution h(x, t) has a physical meaning only if 0 ≤ h(x, t) ≤ 1 for t ≥ 0 that
implies lim

x→∞
h(x, t) = h∞(t), 0 ≤ h∞(t) ≤ 1.

The stationary solution of the problem above must satisfy

(Pstat)






uxxxx − V ux = 0, (2a)

u(0) = 1, ux(0) = 0, uxxx(0) = −1

2
, (2b)

lim
x→∞

ux(x) = lim
x→∞

uxxx(x) = 0, (2c)

Theorem 2.1. For V > 0, there exists a stationary solution to (Pstat) with u(x) ≥
1. Consequently, this stationary solution has no physical meaning.

Proof. Integrating Equation (2a) over the interval [0, x] and incorporating the first
and third boundary conditions in (2b) give

uxxx − V u = −1

2
(1 + 2V ) .

The general solution can be written as

u = c1e
V 1/3x+c2e

− 1
2V

1/3x cos(

√
3

2
V 1/3x)+c3e

− 1
2V

1/3x sin(

√
3

2
V 1/3x)+

1 + 2V

2V
. (3)

From the condition u(0) = 1 it follows that

1 = c1 + c2 +
1 + 2V

2V
. (4)

The condition ux(0) = 0 provides that

0 = c1 −
1

2
c2 + c3

√
3

2
. (5)

If V > 0, the conditions lim
x→∞

ux(x) = lim
x→∞

uxxx(x) = 0 give c1 = 0 and hence

constants c2 and c3 are uniquely defined by the conditions (4) and (5) as

c2 = − 1

2V
and c3 =

1√
3
c2.

Notice that two boundary conditions at x → ∞ lead to the same constraint and do
not identify V uniquely. Furthermore, this solution has lim

x→∞
u(x) = 2V+1

2V > 1 which

is not physical. Two nonphysical stationary state solutions for lim
x→∞

u(x) = 1.2 and

lim
x→∞

u(x) = 1.5 are shown in Figure 2 in the interval [0, 20].

It is worth mentioning that if V < 0, the conditions lim
x→∞

ux(x) = lim
x→∞

uxxx(x) =

0 give

c2 = c3 = 0.

This is in contradiction with the conditions (4, 5). Thus there is no physical sta-
tionary solution for this problem.

In the following section, we will study the problem above restricted to a finite
interval. We will explore numerically how properties of solutions depend on the
length of the truncated interval.
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Figure 2. Two stationary state solutions with lim
x→∞

u(x) = 1.2

and lim
x→∞

u(x) = 1.5

3. Formulation of the finite-interval approximation and some qualitative
analysis. We consider the following initial-boundary value problem on the finite
interval [0, L]:

(Pfin)






ht + hxxxx − V (t)hx = 0, (6a)

h(x, 0) = h0(x), 0 ≤ h0(x) ≤ 1, (6b)

h(0, t) = 1, hx(0, t) = 0, hxxx(0, t) = −1

2
, (6c)

hx(L, t) = hxxx(L, t) = 0, (6d)

with two unknowns h(x, t) and V (t).
Let us show that V (t) can be positive only during a finite time interval provided

that 0 ≤ h ≤ 1.

Theorem 3.1. If 0 ≤ h(x, t) ≤ 1, V (t) are classical solutions h ∈ C4,1, V ∈ C of

the problem (Pfin), and V (t) ≥ 0 on [0, T ] then T ≤
� L
0 h2

0(x)dx.

Proof. Multiplying Equation (6a) by h(x, t) and integrating over finite domain
(0, L), yields

d

dt

� L

0
h2dx+ 2

� L

0
h2
xxdx+ 1 + V (t)(1− h2(L, t)) = 0. (7)

Due to non-negativity of V (t) and 1− h2(L, t) this implies that

d

dt

� L

0
h2dx ≤ −1,

and integrating over [0, T ] we obtain the claimed upper bound for the time T .

Theorem 3.2. If 0 ≤ h(x, t) ≤ 1 and V (t) are classical solutions h ∈ C4,1, V ∈ C

of the problem (Pfin) and V (t) ≥ 0 on [0, T ] then the total mass M(t) =
� L
0 h(x, t)dx

is decreasing.

Proof. Integration of the equation over domain (0, L), yields

d

dt

� L

0
hdx+

1

2
+ V (t)(1− h(L, t)) = 0. (8)

This implies that M �(t) < 0 if V (t) ≥ 0.
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Similar if V (t) is negative enough i.e V (t) < − 1
2(1−h(L,t)) then the total mass is

increasing.

Theorem 3.3. If hxx(0, t) ≤ 0 and 0 ≤ h(x, t) ≤ 1 is a classical solution h ∈ C4,1

of the problem (Pfin) then the following inequality holds true

1− L1/2||h0,x||2e−(π/L)4t ≤ h(x, t) ≤ 1 + L1/2||h0,x||2e−(π/L)4t. (9)

Proof. Multiplying Equation (6a) by hxx and integrating over finite domain [0, L],
yields

1

2

d

dt

� L

0
h2
xdx+

� L

0
h2
xxxdx =

1

2
hxx(0, t).

As x = 0 is the attachment point of the liquid film to the upper moving plate that
leads to the assumption that hxx(0, t) ≤ 0 and in this case we will obtain the energy
dissipation

1

2

d

dt

� L

0
h2
xdx+

� L

0
h2
xxxdx ≤ 0. (10)

If we apply the Poincare’ inequality to the hx(x, t) with hx(0, t) = hx(L, t) = 0 and

also to the hxx(x, t) with
� L
0 hxxdx = 0 we will get

� L

0
h2
xdx ≤

�
L

π

�2 � L

0
h2
xxdx ≤

�
L

π

�4 � L

0
h2
xxxdx. (11)

It follows from (10, 11) that

1

2

d

dt

� L

0
h2
xdx+

�π

L

�4
� L

0
h2
xdx ≤ 0. (12)

This implies that � L

0
h2
xdx ≤ e−2(π/L)4t

� L

0
h2
0,xdx.

Using

|h(x, t)− h(0, t)| = |h(x, t)− 1| =
����
� x

0
hxdx

���� ≤

≤ L1/2

�� L

0
h2
xdx

�1/2

≤ L1/2||h0,x||2e−(π/L)4t,

we derive the upper and the low bounds for the thickness of the liquid film

1− L1/2||h0,x||2e−(π/L)4t ≤ h(x, t) ≤ 1 + L1/2||h0,x||2e−(π/L)4t.

If the solution was global in time the bounds (9) in the theorem above would
imply the uniform in time convergence toward h = 1. We can also use (9) to obtain
the estimation of total mass:

L− L3/2||h0,x||2e−(π/L)4t ≤ M(t) ≤ L+ L3/2||h0,x||2e−(π/L)4t.

The approach we used above is not straightforwardly applicable to the semi-
infinite domain (P) due to the integrability problem. If we assume that a short-time
initial dynamic is local in space and lim

x→∞
h(x, t) = h∞ (does not depend on time),

then we can show that the contact line velocity V (t) can be positive only during a
finite time interval. Indeed, for any constant value of h∞ we can introduce a new
variable ȟ = h−h∞. Due to the invariance of the partial differential equation, with
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respect to the shift and scaling transformations, the boundary conditions can be
preserved. We omit ȟ-notations below.

Theorem 3.4. If 0 ≤ h(x, t) ≤ 1 and V (t) are classical solutions h ∈ C4,1, V ∈ C
of the problem (P) and V (t) ≥ 0 on [0, T ] then T ≤

�∞
0 h2

0(x)dx.

Proof. Multiplying Equation (1a) by h(x, t) and integrating over domain (0,
+∞), yield

d

dt

� +∞

0
h2dx+ 2

� +∞

0
h2
xxdx+ 1 + V (t)(1− h2

∞) = 0.

Due to non-negativity of V (t) and 1− h2
∞ this implies that

d

dt

� ∞

0
h2dx ≤ −1,

and integrating over [0, T ] we obtain the claimed upper bound for the time T .

Theorem 3.5. If 0 ≤ h(x, t) ≤ 1 and V (t) are classical solutions h ∈ C4,1, V ∈ C

of the problem (P) and V (t) ≥ 0 on [0, T ] then the total mass M(t) =
� +∞
0 h(x, t)dx

is decreasing.

Proof. Integrating the equation over domain (0,+∞), yields

d

dt

� +∞

0
hdx+

1

2
+ V (t)(1− h∞) = 0.

This implies that T ≤ 2
� +∞
0 h0dx and M �(t) < 0 if V (t) ≥ 0.

Similar if V (t) is negative enough i.e V (t) < − 1
2(1−h∞) then the total mass is

increasing.
Note that because

V (t) = −M �(t) + 1/2

1− h∞
, (13)

a blow-up of V (t) is possible only if there is a blow-up of the rate of change of the
total mass or if h∞ = 1.

Theorem 3.6. There are countably many stationary solutions with V > 0 for the
finite interval problem (Pfin).

Proof. Denote a = V
1
3 , the solution (2.8) can be written as

u = c1e
ax + c2e

− 1
2ax cos

�√
3

2
ax

�
+ c3e

− 1
2ax sin

�√
3

2
ax

�
+

1 + 2V

2V
, (14)

ux = c1ae
ax + a

�
−1

2
c2 +

√
3

2
c3

�
e−

1
2ax cos

�√
3

2
ax

�

+ a

�
−
√
3

2
c2 −

1

2
c3

�
e−

1
2ax sin

�√
3

2
ax

�
,

uxx = c1a
2eax + a2

�
−1

2
c2 −

√
3

2
c3

�
e−

1
2ax cos

�√
3

2
ax

�

+ a2
�√

3

2
c2 −

1

2
c3

�
e−

1
2ax sin

�√
3

2
ax

�
,
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uxxx = c1a
3eax + a3 (c2) e

− 1
2ax cos

�√
3

2
ax

�
+ a3 (c3) e

− 1
2ax sin

�√
3

2
ax

�
.

The boundary conditions ux(0) = 0, ux(L) = 0, and uxxx(L) = 0 lead to

A




c1
c2
c3



 =




0
0
0



 ,

where

A =





1 − 1
2

√
3
2

e
3
2 θ

�
− 1

2 cos
�√

3
2 θ

�
−

√
3
2 sin

�√
3
2 θ

�� �√
3
2 cos

�√
3
2 θ

�
− 1

2 sin
�√

3
2 θ

��

e
3
2 θ cos

�√
3
2 θ

�
sin

�√
3
2 θ

�





and θ = aL. The determinant of the matrix has to be zero in order to have nontrivial
solutions, i.e.,

−
√
3

2
+

�
3

2
sin

�√
3

2
θ

�
+

√
3

2
cos

�√
3

2
θ

��
e

3
2 θ = 0

which implies that

√
3

�
sin

�√
3

2
θ +

π

6

�
− 1

2
e−

3
2 θ

�
= 0.

Notice that θ = 0 is a solution. Furthermore, since f1(θ) = sin
�√

3
2 θ + π

6

�
is

an oscillatory function bounded above by 1 and bounded below by −1 and f2(θ) =
1
2e

− 3
2 θ is a monotone decreasing function with range [0, 1

2 ], there are countably many

solutions θn = LV 1/3
n , n = 1, 2, .... See Figure 3. Let (c̃1, c̃2, c̃3) be a normalized

vector that belongs to non-empty Ker(A) then (c1, c2, c3) = γ(c̃1, c̃2, c̃3), to define
γ we need to use the boundary conditions u(0) = 1 and uxxx(0) = − 1

2 which give
the constraints

u(0) = c1 + c2 +
1 + 2V

2V
= 1,

uxxx(0) = a3 (c1 + c2) = −1

2
,

which are equivalent to c1 + c2 = − 1
2V . Hence γ = − 1

2V (c̃1+c̃2)
.

In Figure 4, we show the stationary solutions (14) for several choices of L with
θ = θ1 and several choices of θ with L = 1 respectively.

Theorem 3.7. If u is the stationary solution of (Pfin), h is the time-dependent
solution of (Pfin), and lim

t→∞
V (t) = V∞, we have lim

t→∞
h(x, t) = u(x).

Proof. In the finite interval [0, L],

ht + hxxxx − V (t)hx = 0,

uxxxx − V∞ux = 0.

Let w = h− u. We have

wt + wxxxx − V (t)wx + ux (V∞ − V (t)) = 0.

and
w(0, t) = 0, wx(0, t) = 0, wxxx(0, t) = 0,
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Figure 3. The solutions of f1(θ) = f2(θ) where f1(θ) =

sin
�√

3
2 θ + π

6

�
and f2(θ) =

1
2e

− 3
2 θ.
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Figure 4. Left: The stationary solutions (14) for different L with
θ = θ1; Right: The stationary solutions (14) for different θ with
L = 1.

wx(L, t) = wxxx(L, t) = 0.

Multiplying both sides by wxx and then integrating from 0 to L, we obtain

d

dt

� L

0

1

2
(w2

x)dx+

� L

0
(wxxx)

2 dx =

� L

0
wxxux (V∞ − V (t)) dx.

By using Cauchy-Schwarz for the right hand side term and Poincare inequality for
wxx,

d

dt

� L

0

1

2
(w2

x)dx+

� L

0
(wxxx)

2 dx ≤ ε2
� L

0
|wxx|2dx+

1

ε2

� L

0
|ux (V∞ − V (t)) |2dx

≤
�
ε
L

π

�2 � L

0
|wxxx|2dx+

1

ε2

� L

0
|ux (V∞ − V (t)) |2dx

which gives

d

dt

� L

0

1

2
(w2

x)dx+

�
1−

�
ε
L

π

�2
�� L

0
(wxxx)

2 dx ≤ 1

ε2

� L

0
|ux (V∞ − V (t)) |2dx.
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Since

u = − 1

2V∞
e−

1
2V

1/3
∞ x cos(

√
3

2
V 1/3
∞ x)− 1√

3

1

2V∞
e−

1
2V

1/3
∞ x sin(

√
3

2
V 1/3
∞ x) +

1 + 2V∞
2V∞

,

= − 1√
3V∞

e−
1
2V

1/3
∞ x cos

�√
3

2
V 1/3
∞ x− π

6

�
+

1 + 2V∞
2V∞

,

Thus

|ux| = | 1√
3

1

V 2/3
∞

e−
1
2V

1/3
∞ x sin(

√
3

2
V 1/3
∞ x)| ≤ 1

2
√
3V 2/3

∞
.

We then have

d

dt

� L

0

1

2
(w2

x)dx+

�
1−

�
ε
L

π

�2
�� L

0
(wxxx)

2 dx ≤ 1

ε2

� L

0
|ux (V∞ − V (t)) |2dx

≤ 1

ε2
1

12V 4/3
∞

L|V∞ − V (t)|2.

Taking ε < π
L , we have lim

t→∞
h(x, t) = u(x) when lim

t→∞
V (t) = V∞.

4. Numerical method. In this section, we apply a semi-implicit method to study
the solutions of the problem (Pfin). The computational domain is (0, L). A uniform
grid of points xj = j∆x where 0 ≤ j ≤ N and N = L

∆x is used. The step size in
time is ∆t. The discretization of Eq. (6a) in time yields

hn+1
j − hn

j

�t
+ (hn+1

j )xxxx − V n+1(hn
j )x = 0

where hn
j is the numerical approximation of h(xj , tn). The implicit discretization

of hxxxx is chosen to ensure that the step size can be chosen reasonably, i.e., ∆t ∼
O(∆x) instead of ∆t ∼ O(∆x)4. The explicit discretization of hx is chosen to avoid
nonlinearity in unknown variables hn+1

j and V n+1. Thus the updating formula is
�
I +∆tD4

�
hn+1
j − V n+1∆tD1hn

j = hn
j , for j = 2, ..., N − 2 (15)

where I is the identity matrix and D4, D1 are numerical operators which approxi-
mate fourth-order and first-order differential operators respectively. We simply use
the five-point central scheme for D4 and the first order upwind scheme for D1 which
uses different discretization depends on the wind direction −V , i.e.,

D4hj =
hj+2 − 4hj+1 + 6hj − 4hj−1 + hj−2

(∆x)4
,

and

D1hj =

�
hj+1−hj

∆x if V > 0,
hj−hj−1

∆x if V < 0.

For the boundary conditions, we use the following discretization.

h(0, t) = 1 → hn
0 = 1,

hx(0, t) = 0 → −3hn
0 + 4hn

1 − 1hn
2 = 0,

hxxx(0, t) = − 1
2 → −−5hn

0 +18hn
1 −24hn

2 +14hn
3 −3hn

4
2�x3 = 1

2 ,
hx(L, t) = 0 → hn

N−2 − 4hn
N−1 + 3hn

N = 0,
hxxx(L, t) = 0 → 5hn

N−4 − 18hn
N−3 + 24hn

N−2 − 14hn
N−1 + 3hn

L = 0.

(16)

The time step is chosen to satisfy the CFL condition ∆t ≤ ∆x/|V | and the number
of interval N used is 128.
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Notice that the initial velocity V 0 is not required when we solve (15) with the
aforementioned boundary conditions. The discretized equation (15) and boundary
conditions (16) form a linear system with N + 2 unknown hn+1

j (j = 0, ..., N),
V n+1, and N +2 equations, which can be solved easily. The first step of calculation
sometimes yields a large change in thickness h when the given initial data does
not comply with all the boundary constraints. This is because the algorithm seeks
the solution h and V to satisfy the equation and boundary conditions in one step.
The contradiction between initial values and a partial differential equation was
previously analyzed in [11, 12] and it is also imposed an additional difficulty on
construction of a numerical solution of two-phase Stefan problem.

We first demonstrate the first order convergence of our numerical scheme with
two initial conditions. The first initial condition is a 5-th order polynomial function
which satisfies all the boundary conditions and h(L) = 0.2, i.e.,

h(x) = c5x
5 + c4x

4 + c3x
3 + c2x

2 + c1x+ c0, (17)

where 




c0 = 1,
c1 = 0,

c2 = L3+80h(L)−80
32L2

c3 = − 1
12 ,

c4 = 7L3−240h(L)+240
96L4

c5 = −L3+48h(L)−48
48L5

with L = 1 while the second initial condition is 0.8 cos10(π2x) + 0.2 on the domain
[0, 1]. We choose the second initial condition because it generates a wave front which
looks like the one shown in [4]. Since the exact solution is not available, numerical
tests were conducted on four different sizes of meshes: ∆x, 2∆x, 4∆x and 8∆x
with N = 256. The step size ∆t = c∆x is chosen to satisfy the CFL constrain, i.e.
c < 1/|V |. We choose ∆t = 5 × 10−6 and ∆t = 1 × 10−5 which are small enough
for these two initial conditions, respectively. Denote the solution with mesh size
∆x as h∆x. We compute the differences between solutions in L2-norm for various
times and list them in Table 1 and Table 2. For the polynomial initial condition,
the blow-up time for the velocity V happened before t = 0.02 thus the value is
not listed (In Table 1, we denote it as N/A). We use the notation order1 (order2)
for the base-2 logarithm of ratio of consecutive differences between three solutions
obtained by grid sizes ∆x, 2∆x, and 4∆x (by grid sizes 2∆x, 4∆x and 8∆x ). It
is clear that our scheme achieves the first order accuracy for both initial conditions
at any given time which is away from the blow up time.

5. Numerical results.

5.1. Computational results for h(L) = 0.2. In Figure 5, we show the evolution
of h(x, t) and V (t) with two different initial conditions (i) 5-th order polynomial
which satisfies the boundary conditions and h(L) = 0.2 and (ii) 0.8 cos10(π2x) + 0.2
at different time. The time steps are chosen as 5 × 10−6 and 10−5 respectively
and ∆x = 1/256. The numerical solutions of h(x, t) increase and get close to 1 no
matter what the initial condition is. The velocity V (t) approach to −∞ when h(x, t)
approaches to 1. We terminated the numerical simulations when V (t) becomes
singular.
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t 0.004 0.008 0.012
�h8∆x − h4∆x�2 7.3330× 10−3 9.0178× 10−3 8.5428× 10−3

�h4∆x − h2∆x�2 3.7293× 10−3 4.5260× 10−3 4.3535× 10−3

�h2∆x − h∆x�2 1.8848× 10−3 2.2976× 10−3 2.1988× 10−3

order1 0.9755 0.9831 0.9725
order2 0.9845 0.9896 0.9854

t 0.016 0.02
�h8∆x − h4∆x�2 7.4858× 10−3 N/A
�h4∆x − h2∆x�2 3.8257× 10−3 3.8576× 10−3

�h2∆x − h∆x�2 1.9347× 10−3 1.8337× 10−3

order1 0.9684 N/A
order2 0.9836 1.0729

Table 1. Accuracy test for the algorithm with the 5-th order poly-
nomial initial condition which satisfies five boundary conditions
and h(1) = 0.2.

t 0.004 0.008 0.012
�h8∆x − h4∆x�2 5.3658× 10−3 8.2930× 10−3 8.3770× 10−3

�h4∆x − h2∆x�2 2.8713× 10−3 4.2579× 10−3 4.3009× 10−3

�h2∆x − h∆x�2 1.4475× 10−3 2.1356× 10−3 2.1650× 10−3

order1 0.9021 0.9618 0.9618
order2 0.9881 0.9955 0.9903

t 0.016 0.020
�h8∆x − h4∆x�2 7.4567× 10−3 7.0468× 10−3

�h4∆x − h2∆x�2 3.8448× 10−3 3.4685× 10−3

�h2∆x − h∆x�2 1.9422× 10−3 1.7313× 10−3

order1 0.9556 1.0226
order2 0.9852 1.0025

Table 2. Accuracy test for the algorithm with the initial condition
0.8 cos10(π2x) + 0.2.

In Figure 6, we demonstrate how the evolution of h(x, t) and V (t) varies with
respect to L with the initial condition as the 5-th order polynomial which satisfies
the boundary conditions and h(L) = 0.2 for L = 2, and 6 . We observe the finite-
time blow up for V (t) in both cases. For L = 2, V (t) approaches −∞ while, for
L = 6, V (t) approaches ∞. Note that the initial condition for the case L = 6 is
nonphysical. In Figure 7, we change the initial condition to 0.8 cos10(π2

x
L ) + 0.2.

We see that the finite-time blow up for V (t) decreases when L increases and both
velocities approach ∞. To understand the behavior of finite-time blow up solutions,
it requires further theoretical analysis.

5.2. Computational results for h(L) = 1.2. In Figure 8, we start with non-
physical initial condition as the 5-th order polynomial which satisfies the boundary
conditions and h(L) = 1.2 for L = 1, 5, 10. When L = 1 and 5, the solutions h
decrease and approach to stationary solutions (existence of which was obtained in
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Figure 5. The evolution of h(x, t) and V (t) for two different initial
conditions: (i) a 5-th order polynomial wave profile which satisfies
the boundary conditions and (ii) 0.8 cos10(π2x) + 0.2.
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Figure 6. The evolution of h(x, t) and V (t) for the initial con-
ditions given by a 5-th order polynomial (17) which satisfies the
boundary conditions and h(L) = 0.2 for L = 2, and 6.

Theorem 3.6) while the velocities V (t) approach to different constants. We ob-
served that not all solutions are attracted to the stationary solutions. For L = 10,
the velocity V (t) blows up in finite time. In Figure 9, we start with nonphysical
initial condition 0.8 cos10(π2

x
L ) + 1.2 for L = 1, 5, 10. When L = 1, the solution h
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Figure 7. The evolution of h(x, t) and V (t) for two different L
with the initial condition 0.8 cos10(π2

x
L ) + 0.2.

decreases and V (t) increases first and approaches to a constant in time. For L = 5
and 10, the velocities V (t) for both cases approach to a constant and the solution
h remains bounded by 1 from below.

5.3. Comparison of solutions with various L. In Figure 10, we provide a com-
parison for solutions in the short (L = 4), medium (L = 16) and long (L = 64)
intervals. As we discussed before, the first step of calculation sometimes yields a
large change in the thickness h when the given initial data does not comply with
all the boundary constraints. We thus compute the solution at t = 10−3 with the
initial condition 0.8 cos10(π2x) + 0.2 in the interval [0, 1] and 0.2 for the rest of the
interval [1, 128] with the mesh size ∆x = 1/32 (4097 grid points in total) and the
time step ∆t = 10−5 first. Then we use part of this solution (the first 129, 513, and
2049 grid points) as the initial conditions for the intervals L = 4, 16, and 64. The
evolution of h(x, t) and V (t) are shown in Figure 10 in the interval [0, 6] since the
solutions stay close to a constant after 6.

Notice that in the infinite interval, the boundary condition limx→∞ hx = 0 im-
plies limx→∞ hxx = 0. However, this is not true for a finite interval truncated prob-
lem. Nevertheless, hxx(L, t) becomes closer to zero as L becomes large. The second
order finite difference estimations give 3.27× 10−4, −1.05× 10−11 and 2.18× 10−14

for L = 4, 16 and 64 at t = 0.0625, respectively. We can see that the solutions
h are very close to each other for different choices of L and the difference of V
only becomes noticeable when the time is close to the blow up time. In Figure
11, we use the numerical results for L = 64 and do least-square fitting by using
V (t) � c1 ln(t∗ − t) + c2 [4] and V (t) � c3 (t∗ − t)−1/2 + c4 [9], respectively,
for 800 grid points before the blow up time. With the choice t∗ = 0.064563,
the best fittings are V (t) � 15.14 ln(t∗ − t) + 61.54 denoted by blue line and
V (t) � −0.5459 ln(t∗ − t) − 14.51 denoted by green line, respectively. We see
that the blow up rate of the contact line velocity V (t) is between the logarithmic
one proposed in [4] and the power law one in [9].
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Figure 8. The evolution of h(x, t) and V (t) for the initial con-
ditions given by a 5-th order polynomial (17) which satisfies the
boundary conditions and h(L) = 1.2 for L = 1, 5, and 10.

From the above simulations, we observe that |V | blows up in finite time for
physical initial conditions while V may blow up in finite time or stay bounded for
nonphysical initial conditions.

6. Discussion. We have thus explored the behavior of viscous liquid film between
two parallel horizontal moving plates. In particular, we showed analytically and
numerically that the contact line velocity V (t) exhibits a finite time singularity
if the contact angle is 180◦. We have also estimated the local existence times of
solutions for the related model (1a) and studied stationary solutions.

First, it is suggested by the results shown in Figure 11 that the blow up rate of
the contact line velocity V (t) is between the logarithmic one proposed in [4] and
the power law one in [9]. Rigorous asymptotical analysis of the blow-up rate of
V (t) is not straightforward and is open for future study. Second, in non-physical
regime the steady state seems to be an attractor but we were able to prove this only
under additional assumptions. Finally, one can develop more accurate numerical
computations to better resolve the singular behavior of V (t).
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Figure 9. The evolution of h(x, t) and V (t) for the different initial
conditions: 0.8 cos10(π2

x
L ) + 1.2 for L = 1, 5, 10.
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Figure 10. The evolution of h(x, t) and V (t) for L = 4, 16, and 64.

0.056 0.057 0.058 0.059 0.06 0.061 0.062 0.063 0.064

−250

−200

−150

−100

−50

0

t

V

t
*
 = 0.064563

0.055 0.06 0.065

10
1

10
2

t

|V
|

t* = 0.064563

Figure 11. Left: the red line corresponds to the numerical contact
line velocity V (t), the blue line is the least-square fitting of the
numerical data for V (t) using V (t) � c1 ln(t∗ − t) + c2 and the
green line is the least-square fitting using V (t) � c3 (t∗−t)−1/2+c4.
Right: the semilogy plot to see different fittings more clearly.

[8] D. E. Pelinovsky, A. R. Giniyatullin and Y. A. Panfilova, On solutions of the reduced model

for the dynamical evolution of contact lines, Transactions of Nizhni Novgorod State Technical
University n.a. Alexeev N.4, 94 (2012), 45–60.



1460 MARINA CHUGUNOVA, CHIU-YEN KAO AND SARUN SEEPUN

[9] D. E. Pelinovsky and C. Xu, On numerical modelling and the blow-up behavior of contact

lines with a 180◦ contact angle, J. Engineer. Math., 2015.

[10] J. Le Sommer, G. M. Reznik and V. Zeitlin, Nonlinear geostrophic adjustment of long-wave

disturbances in the shallow-water model on the equatorial beta-plane, Journal of Fluid Me-
chanics, 515 (2004), 135–170.

[11] M. Vynnycky and S. L. Mitchell, On the accuracy of a finite-difference method for parabolic

partial differential equations with discontinuous boundary conditions, Num. Heat Trans B ,

64 (2013), 275–292.

[12] S. L. Mitchell and M. Vynnycky, On the numerical solution of two-phase Stefan problems

with heat-flux boundary conditions, J. Comp. Appl. Maths, 264 (2014), 49–64.

Received July 2013; 1st revision December 2013; final revision June 2014.

E-mail address: Marina.Chugunova@cgu.edu
E-mail address: Ckao@cmc.edu
E-mail address: sseepun@students.pitzer.edu

http://dx.doi.org/10.1007/s10665-014-9763-9
http://www.ams.org/mathscinet-getitem?mr=MR2260711&return=pdf
http://dx.doi.org/10.1017/S0022112004000229
http://dx.doi.org/10.1017/S0022112004000229
http://dx.doi.org/10.1080/10407790.2013.797312
http://dx.doi.org/10.1080/10407790.2013.797312
http://www.ams.org/mathscinet-getitem?mr=MR3164102&return=pdf
http://dx.doi.org/10.1016/j.cam.2014.01.003
http://dx.doi.org/10.1016/j.cam.2014.01.003
mailto:Marina.Chugunova@cgu.edu
mailto:Ckao@cmc.edu
mailto:sseepun@students.pitzer.edu

	1. Introduction
	2. Formulation of the problem and analysis of stationary solutions
	3. Formulation of the finite-interval approximation and some qualitative analysis
	4. Numerical method
	5. Numerical results
	5.1. Computational results for h(L)=0.2
	5.2. Computational results for h(L)=1.2
	5.3. Comparison of solutions with various L

	6. Discussion
	Acknowledgments
	REFERENCES

