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We present an adaptive spectral/discontinuous Galerkin (DG) method on curved elements
to simulate high-frequency wavefronts within a reduced phase-space formulation of
geometrical optics. Following recent work, the approach is based on the use of level
sets defined by functions satisfying the Liouville equations in reduced phase-space and,
in particular, it relies on the smoothness of these functions to represent them by rapidly
convergent spectral expansions in the phase variables. The resulting (hyperbolic) system
of equations for the coefficients in these expansions are then amenable to a high-order
accurate treatment via DG approximations. In the present work, we significantly expand on
the applicability and efficiency of the approach by incorporating mechanisms that allow for
its use in scattering simulations and for a reduced overall computational cost. With regards
to the former we demonstrate that the incorporation of curved elements is necessary to
attain any kind of accuracy in calculations that involve scattering off non-flat interfaces.
With regards to efficiency, on the other hand, we also show that the level-set formulation
allows for a space p-adaptive scheme that under-resolves the level-set functions away from
the wavefront without incurring in a loss of accuracy in the approximation of its location.
As we show, these improvements enable simulations that are beyond the capabilities of
previous implementations of these numerical procedures.

© 2013 Elsevier Inc. All rights reserved.

1. Introduction

In the absence of generally applicable numerical schemes that allow for full-wave calculations at very short wavelengths,
the “geometrical optics” (GO) model [25] still constitutes the basis of state-of-the-art software tools for high-frequency wave
simulations (see e.g. [1,18] and the references cited there). This model is derived from standard (acoustic, electromagnetic,
elastic) wave equations via the WKB approximation procedure, resulting in an (“eikonal”) equation for the phase of the field

St(x, t) + c(x)
∣∣∇x S(x, t)

∣∣ = 0, (1)

and in transport equations for the coefficients in an expansion of its amplitude in inverse powers of the wavenumber. The
relevance of this model in a wide variety of applications (ranging from radar and imaging to path planning and control)
has provided sustained impetus for the continued development of numerical techniques for its resolution. In this paper,
we introduce a new approach that provides significant improvements over recently proposed techniques based on level-set
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formulations of the evolution of the wavefronts defined by Eq. (1) (that is, of the isosurfaces of the function S) when these
are viewed as fronts in the extended phase-space.

The fully-nonlinear nature of Eq. (1) poses substantial challenges from both a theoretical and a computational perspective.
Most importantly perhaps, and as is well-known, solutions are generally multi-valued. A single-valued solution can be
distinguished in the viscosity sense which corresponds to waves of first arrival [9,10]. In a number of applications, however,
knowledge of these waves is not sufficient, as waves with longer travel times may carry significant energy (possibly larger
than that of first arrival; see e.g. [15]). In these cases, the standard approach to the numerical evaluation of multi-arrival
travel times relies on Lagrangian “ray tracing”, that is, on the method of characteristics. In this context, this approach can
be interpreted as following the evolution of particles under the Hamiltonian dynamics⎧⎪⎪⎨⎪⎪⎩

dx

dt
= ∇p H(x, p) = c(x)

p

|p| ,
dp

dt
= −∇x H(x, p) = −|p|∇xc(x),

(2)

where the Hamiltonian H(x, p) is equal to c(x)|p|, and the position x and the momentum variable (or “slowness vector”) p
constitute the “phase-space” (x, p).

While certainly appealing due to its simplicity, the practical use of ray tracing may encounter substantial difficulties in
the reconstruction of the wavefront, which must be effected through interpolation of points that evolve according to (2).
More precisely, in cases where neighboring rays diverge from each other, the quality of the interpolated wavefront may
quickly deteriorate unless additional tracking points (trajectories) are added a posteriori [20–22]. The need for simulation
methodologies that can overcome these limitations and thus allow for more efficient and accurate representations, has
generated a renewed interest in GO over the last few years; see e.g. [11] and the references therein. Among the resulting
contributions, those that are based on solution of the Liouville equation

ft(x, p, t) − ∇p f · |p|∇xc + ∇x f · c(x)
p

|p| = 0, (3)

associated with (2) have been shown to hold significant promise [16,6,11,13,14,7]. This is largely due to the fact that (3) can
be solved on an Eulerian (albeit higher-dimensional) grid thus avoiding issues of ray divergence. Moreover, the formulation
in (3) can be interpreted as an “unfolding” of the multi-valued solutions of (1) and, as such, solutions to (3) are actually
smooth in phase space.

Our approach is largely based on the developments in [7] which, in turn, relied on the level-set formulation of [16]. To
introduce it, we first note that, since the Hamiltonian H(x, p) remains constant along characteristics, it can be normalized
to H(x, p) = 1, leading to the constraint

|p| = 1

c(x)
.

Thus, solutions to (3) can be sought in the form

f (x, p, t) = c(x)δ
(|p| − c(x)−1)u

(
x,

p

|p| , t

)
.

In this paper, we shall consider two-dimensional wavefronts, in which case the above considerations allow for a recasting
of Eq. (3) as

L2[u] = ut + c cos(θ)ux1 + c sin(θ)ux2 + (
cx1 sin(θ) − cx2 cos(θ)

)
uθ = 0, (4)

where

x = (x1, x2), p = c(x)−1(cos(θ), sin(θ)
)
,

and u = u(x1, x2, θ) is defined in the “reduced phase-space” (x, θ). The formulation of [16] then is based on the observation
that the wavefront can be defined as the intersection of level sets

{u = 0} ∩ {v = 0},
of functions satisfying the linear (Liouville) equations{

L2[u] = 0,

L2[v] = 0.
(5)

The original approximate solutions of (5) in [16], however, relied on low-order finite-difference approximations (partic-
ularly at material interfaces) and thus they did not take full advantage of their smoothness. The work in [7], on the other
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hand, sought to improve on this by introducing an entirely different approach to the discretization of the equations in (5).
More precisely, this latter work proposed a spectral expansion of solutions in the phase variable θ (or phase variables (θ,φ)
in three dimensions) and a high-order discontinuous Galerkin finite element approach to the solution of the hyperbolic
system that results for the coefficients in the expansion. The initial developments in [7], however, were restricted to con-
sideration of flat interfaces; and moreover, the approach entailed the detailed solution of the equations in (5) throughout
their domain of definition, thus neglecting a significant characteristic of the model, namely, that only the evolution of the
intersection of the zero level-sets of u and v is of interest.

In this paper, we propose means to overcome these two limitations. On the one hand, we show that the straightforward
application of the scheme in [7] to simulations of scattering off curved surfaces fails to produce accurate solutions if the
surface is not suitably approximated (see e.g. [3] for related observations in the context of CFD models). More importantly,
we show that this can be remedied by introducing curved simplicial elements, and we detail how these can implemented
within the spectral/DG methodology. With regards to localization of solutions near the intersection of their zero isosurfaces,
on the other hand, we introduce a space p-adaptive version of the algorithm that enables us to under-resolve away from
the physical wavefront. For the present discussion, the adaptive mechanism is solely based on this qualitative localization
principle, as we do not attempt to derive rigorous a-posteriori estimates that might provide more quantitative guidelines for
a refinement strategy. Similarly, with regards to time-integration, we work with uniform time steps that lead to stable pro-
cedures in the presence of high-order discretizations. The derivation of a-posteriori estimates and of possible non-uniform
time-stepping procedures are left for future work.

Even though we only applied our method to isotropic wave propagation, it can be extended to solve high frequency
anisotropic wave propagation based on a similar framework proposed in [17].

The rest of the paper is organized as follows. First, and for the sake of completeness, we begin in the next section
with a brief review of the spectral/DG formulation of [7], extending it to allow for curved simplicial elements. The specific
elements are then described in Section 3, where we also explain our strategy for p-adaptivity. Numerical results obtained
from an implementation of the resulting algorithms are included in Section 4, which substantiate our claims of improved
applicability and efficiency without any sacrifice in accuracy. Finally, conclusions follow in Section 5.

2. A spectral/DG formulation

2.1. The spectral formulation in reduced phase-space

As we mentioned, the Liouville formulation (4) unfolds multi-valued solutions which thus become smooth in phase
space. To take advantage of this property, we posit a spectral decomposition [7]

u(x1, x2, θ, t) =
N∑

n=−N

Un(x1, x2, t)einθ ,

in the phase variables. From this, Eq. (4) readily implies that

U =

⎡⎢⎢⎢⎢⎢⎣
U−N

U−N+1
...

U N−1
U N

⎤⎥⎥⎥⎥⎥⎦ ∈C
2N+1,

satisfies the linear system of equations

Ut + A1Ux1 + A2Ux2 + BU = 0, (6)

where A1, A2, and B ∈ C
(2N+1)×(2N+1) are defined as⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

(A1)kl = c

2
δk−1,l + c

2
δk+1,l,

(A2)kl = − ic

2
δk−1,l + ic

2
δk+1,l,

(B)kl = −(N − i + 2)
γ̄

2
δk−1,l + (N − i)

γ

2
δk+1,l.

Here

δk,l =
{

1 if k = l,

0 if k �= l,

denotes the Dirac delta,
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γ = γ (x1, x2) = cx1 + icx2 ,

and γ̄ = cx1 − icx2 denotes its conjugate.

2.2. The DG formulation in the space variables

The nature of the system (6) makes it amenable to a high-order treatment via discontinuous Galerkin (DG) discretiza-
tions [8]. To introduce these, we first rewrite the system in “conservation form”, that is, in the form

Ut + div
(

F (U )
) + C U = 0, (7)

where

F (U ) = [A1U , A2U ],
and C = B − ∂x1 A1 − ∂x2 A2, that is,

C = −(N − k + 3)
γ̄

2
δk−1,l + (N − k − 1)

γ

2
δk+1,l.

As was shown in [7], the system can be explicitly diagonalized. More precisely, if

ν = (v1, v2) = (
cos(η), sin(η)

)
denotes a unit vector and

A(ν) = ν1 A1 + ν2 A2 = c

2

(
δk−1,le

−iη + δk+1,le
iη)

,

then we have

Λ = S−1 A S,

where S = P V ,

(V )kl = 1√
N + 1

sin

(
klπ

2(N + 1)

)
,

and P and Λ are diagonal matrices with

P (η) j j = e−i jη, (Λ) j j = λ j = c(x1, x2) cos

(
jπ

2(N + 1)

)
.

Since there are exactly N positive and N negative eigenvalues,

λ1 > λ2 > · · · > λN > λN+1 = 0 > λN+2 > · · · > λ2N+1,

the matrix A can be decomposed as

A = A+ + A− = S(η)Λ+(x1, x2)S−1(η) + S(η)Λ−(x1, x2)S−1(η),

where

A± = S(η)Λ±(x1, x2)S−1(η),

and Λ+ = diag(λ1, λ2, . . . , λN ,0, . . . ,0) and Λ− = diag(0, . . . ,0, λN+2, . . . , λ2N+1).
To approximate the solution of (7), we consider a curved simplicial partition Th = {Kn} of a computational domain

Ω ∈ R
2 and local spaces Pk(Kn) on each element Kn consisting of polynomials of degree smaller than or equal to k. Then,

expanding

Uh|Kn =
Nk∑
j=1

φ j(x1, x2)cKn
j (t) (8)

in terms of basis functions φ j ∈ Pk(K ) (see Appendix A), a DG formulation takes on the form∫
∂Uh

∂t
φ dx −

∫
F (Uh) · ∇φ dx +

∫
C Uhφ dx +

∫
F̂h · νφ ds = 0, (9)
Kn Kn Kn ∂ Kn
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for all φ ∈ Pk(Kn), where ν is the outward unit normal vector to ∂ Kn and F̂h · ν is the numerical flux on ∂ Kn [8]. Letting
φ = φi , Eq. (9) implies∫

Kn

Nk∑
j=1

(
cKn

j (t)
)

tφ jφi dx1 dx2 −
∫
Kn

A1

Nk∑
j=1

cKn
j (t)φ j(φi)x1 dx1 dx2 −

∫
Kn

A2

Nk∑
j=1

cKn
j (t)φ j(φi)x2 dx1 dx2

+
∫
Kn

C
Nh∑
j=1

cKn
j (t)φ jφi dx1 dx2 +

∫
∂ Kn

F̂h · νφi ds = 0, (10)

which defines a system of ordinary differential equations for cKn
j (t) once an approximation to the flux is chosen. For the hy-

perbolic system (7), a most natural choice is that associated with “upwinding” which, with the above notation, corresponds
to

F̂h · ν = A+U+
h + A−U−

h ,

where U±
h = limε→0 Uh(x ∓ εν). Explicitly, we have

F̂h · ν = A+
( Nk∑

j=1

φ j(x1, x2)cKn
j (t)

)+
+ A−

( Nk∑
j=1

φ j(x1, x2)cKn
j (t)

)−
, (11)

and, if ∂ Kn1, ∂ Kn2, ∂ Kn3 denote the (curved) edges of Kn , we may write∫
∂ Kn

F̂h · νφi ds =
3∑

f =1

Nk∑
j=1

∫
∂ Knf

(
A+φ jc

Kn
j (t) + A−φ jc

neighbor(Kn)

j (t)
)
φi dl,

where neighbor(Kn) is the simplex that shares the boundary ∂ Knf with Kn .

3. The adaptive method on curved elements

In this section, we describe in detail the procedure described in Section 2. To this end, we begin in Section 3.1 by
describing the isoparametric elements we use for a higher order representation of the boundary ∂Ω which, as we shall see,
allow for the application of the resulting scheme to the simulation of scattering off non-flat interfaces. In Section 3.2, on
the other hand, we briefly describe our adaptivity strategy to reduce the overall computational effort.

3.1. Curved elements

To allow for general curved geometries, we use regular meshes of triangles (that is meshes whose triangles are such that
the ratio of their diameter to the radius of the biggest ball totally included in them is uniformly bounded) and modify those
with vertices on the curved boundaries by using standard isoparametric mappings; see, for example, [4,2].

We recall that these are elements wherein the basis for the mapping from a reference element Kref = {(r, s) ∈ [−1,1] ×
[−1,1], r + s � 1} onto a general curved triangle coincides with the collection of local shape functions.

A general, isoparametric curved triangle K with vertices P1, P2, P3 is defined as K := Ψ (Kref ), where

Ψ =
(p+1)(p+2)

2∑
j=1

d jψ j : Kref →R
2.

Here, ψ j are basis functions of polynomials of total degree p and the coefficients d j can be determined by requiring that Ψ

interpolate (p+1)(p+2)
2 , suitably defined collocation points.

More precisely, for instance, the geometry of a quadratic isoparametric element K with vertices P1, P2, P3 is defined as
Ψ (Kref ) = K through the mapping

Ψ =
6∑

j=1

d jψ j : Kref →R
2,

where
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ψ1(r, s) = −(r + s)/2, ψ2(r, s) = (r + 1)/2,

ψ3(r, s) = (s + 1)/2, ψ4(r, s) = −(r + 1)(r + s),

ψ5(r, s) = (r + 1)(s + 1), ψ6(r, s) = −(s + 1)(r + s).

The coefficients d1,d2, . . . ,d6 ∈ R
2 can be determined from the requirement that Ψ interpolate the vertices of K and

points along its edges. Specifically, if C = P j+3 is a given point on the edge joining A = P j and B = Pmod( j,3)+1 ( j = 1,2,3),
so that the image of

ΦE : [−1,1] → R
2, t → A

1 − t

2
+ B

1 + t

2
+

(
C − A + B

2

)
(1 − t)(1 + t),

defines the edge itself, we have

d j = P j, d j+3 = P j+3 − (P j + Pmod( j,3)+1)/2.

With this notation, and transforming onto the reference triangle, Eq. (10) becomes

Nk∑
j=1

∫
Kref

φiφ j J Kn dr ds
(
cKn

j (t)
)

t

=
Nk∑
j=1

∫
Kref

J Kn

(
A1φ j

(
(φi)rry + (φi)ssy

))
dr ds cKn

j (t) +
Nk∑
j=1

∫
Kref

J Kn

(
A2φ j

(
(φi)rry + (φi)ssy

))
dr ds cKn

j (t)

−
Nk∑
j=1

∫
Kref

Cφiφ j J Kn dr ds cKn
j (t) −

3∑
f =1

Nk∑
j=1

1∫
−1

(
A+φ jc

Kn
j (t) + A−φ jc

neighbour(Kn)

j (t)
)
φi

∥∥Φ ′
E(l)

∥∥dl, (12)

where

J Kn = ∣∣det DΨ (r, s)
∣∣.

Equivalently, letting

M Kn
ij =

∫
Kref

φiφ j J Kn dr ds, (13)

D A1r
i j =

∫
Kref

J Kn A1φ j(φi)rrx dr ds, D A2r
i j =

∫
Kref

J Kn A2φ j(φi)rry dr ds, (14)

D A1s
nm =

∫
Kref

J Kn A1φ j(φi)ssx dr ds, D A2s
nm =

∫
Kref

J Kn A2φ j(φi)ssy dr ds, (15)

C̃i j =
∫

Kref

Cφiφ j J Kn dr ds,

the system to be solved takes the form

Nk∑
j=1

M Kn
ij

(
cKn

j (t)
)

t =
Nk∑
j=1

(
D A1r

i j + D A1s
i j + D A2r

i j + D A2s
i j − C̃i j

)
cKn

j (t) −
3∑

f =1

Nk∑
j=1

1∫
−1

(
A+φ jc

Kn
j (t)

)
φi

∥∥Φ ′
E(l)

∥∥dl

−
3∑

f =1

Nk∑
j=1

1∫
−1

(
A−φ jc

neighbour(Kn)

j

)
φi

∥∥Φ ′
E(l)

∥∥dl. (16)
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3.2. Adaptivity

Although the formulation (16) assumes a constant element order throughout the computational domain this is certainly
not necessary to derive a well-posed scheme. This is particularly relevant in the present context where only the one-
dimensional wavefront in the three-dimensional space (x1, x2, θ) is of interest. The wavefront is defined as the intersection
of the zero level sets of

u(x1, x2, θ, t) =
N∑

n=−N

Un(x1, x2, t)einθ =
N∑

n=−N

Nk∑
j=1

φ j(x1, x2)cKn
u j (t)einθ ,

and

v(x1, x2, θ, t) =
N∑

n=−N

Vn(x1, x2, t)einθ =
N∑

n=−N

Nk∑
j=1

φ j(x1, x2)cKn
v j (t)einθ ,

and this can be used to formalize an adaptive scheme wherein higher resolution is constrained to the vicinity of this
intersection. Specifically, in this initial contribution, we propose a simple adaptive procedure that is based on the use of
high-order elements only where the absolute values of u and v lie below a threshold hc . More precisely, if

|u|, |v| < hc,

at one of the vertices of Kn then we use a high-order k = khigh there; otherwise, a lower order k = klow is used. As we
mentioned, the study of possible improvements of this strategy based on rigorous a-posteriori estimates will be the subject
of future work.

4. Numerical results

In this section, we present a variety of numerical results from an implementation of the procedure delineated in Sec-
tion 3.1 that clearly demonstrate the improvements in applicability and efficiency over prior realizations. To complete the
description of our present scheme to resolve the system (16), we need only specify the choice of basis functions, quadrature
formulas and time integrator. For the latter we simply resort to “strong stability preserving Runge–Kutta (SSP-RK) methods”
[12,5] of an order that is commensurate with that of the (highest-order) spatial elements, leading to a CFL condition

�t � h

2khigh + 1
,

where h is minimum length of the edges; as we said, the exploration of alternative (adaptive) time stepping algorithms is
left for future work. The (orthonormal) basis functions, derived from Jacobi polynomials, and the quadrature formulas we
use [24], on the other hand, are described in Appendix A.

The numerical results that follow are intended to exemplify the convergence of the procedure, the effects of curved
geometries, and those of p-adaptivity. For the sake of definiteness we shall consider interfaces that are “perfectly reflecting”
although other boundary conditions can be treated with similar ease [7]. In the case of reflecting interfaces, the appropriate
boundary condition translates to [7]

U−
h = −S−(

B S−)−1
B
(

I − Π−)
U+

h ,

where

(B)kl = δk,l − ei(2η−π)(N−(k−1))δk,2N+2−l,

η denotes the polar angle of the (exterior) normal vector at x ∈ ∂Ω , and

Π− = S−(
S−)T

.

First, we test the accuracy of different order schemes. Since it is not trivial to have an exact solution of (4) satisfying the
reflecting boundary condition, we test the convergence on the function

u(x, θ, t) = (
x7 + y7 − t7) 5∑

k=−5

ei4kθ ,

satisfying the inhomogeneous equation

ut + c cos(θ)ux1 + c sin(θ)ux2 + (
cx1 sin(θ) − cx2 cos(θ)

)
uθ = G(x, θ, t), (17)
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Table 1
Convergence test results at T = 1 for k-order approximation in space and (k + 1)-order RK in time for k = 1,2,3 and 4. We successively partition the
domain [−1,1] × [−1,1] into 2, 8, 32, 128, 512, 2014 triangular elements. The time step is also chosen such that the CFL condition is satisfied.

N = 21 RK 2

Triangles L2-error Order
2 3.0907E+00
8 1.9292E+00 0.68

32 9.4741E−01 1.03
128 3.2993E−01 1.52
512 9.2968E−02 1.82

2048 2.3892E−02 1.96
8192 6.0038E−03 1.99

N = 21 RK 3

Triangles L2-error Order
2 2.1048E+00
8 7.7342E−01 1.44

32 1.9650E−01 1.98
128 3.2803E−02 2.58
512 4.6514E−03 2.81

2048 5.4549E−04 3.09

N = 21 RK 4

Triangles L2-error Order
2 8.6365E−01
8 3.1817E−01 1.44

32 3.8033E−02 3.06
128 2.8857E−03 3.72
512 1.9952E−04 3.85

2048 1.1272E−05 4.15

N = 21 RK 5

Triangles L2-error Order
2 6.6447E−01
8 7.1111E−02 3.22

32 3.6080E−03 4.30
128 1.2810E−04 4.82
512 3.9567E−06 5.02

Fig. 1. The mesh with quadratic isoparametric elements for annulus with (a) 24 elements, (b) 96 elements.

for an appropriately defined function G and c(x1, x2) = 1 on the domain Ω = [−1,1] × [−1,1]. The specific form of the de-
pendence of u on θ guarantees that it satisfies the boundary condition and also leads to a finite-term series in phase space.
In Table 1, we show the convergence test for a DG formulation with polynomials of degree k and SSP-RK of degree k + 1.
The results at T = 1 for k = 1,2,3,4 are demonstrated on different number of triangular elements and global convergence
in k + 1 order are observed.

Next, we test the accuracy of different order schemes on the mesh with curved elements. For simplicity, quadratic
isoparametric elements are used. We use the function

u(x, θ, t) = sin(πt) cos(θ) cos

(
2 tan−1

(
y

x

)
− θ

)
= sin(πt) cos(θ)

(
x2 − y2

x2 + y2
cos(θ) + 2xy

x2 + y2
sin(θ)

)
which satisfies the inhomogeneous equation (17) for an appropriately defined function G and c(x1, x2) = 1 on the annulus
domain Ω = {0.5 � r � 1}. Notice that this function satisfies the boundary conditions. The coarser mesh has 24 curved
elements and is shown in Fig. 1(a), and its corresponding refined mesh is shown in Fig. 1(b). In Table 2, we show the
convergence test for a DG formulation with polynomials of degree k and SSP-RK of degree k + 1. The results at T = 0.5
for k = 1 and 2 are demonstrated on different number of curved elements and global convergence in k + 1 order are also
observed. With the usage of quadratic isoparametric elements, we observe the third order accuracy.

As mentioned before, curved elements can give a better representation of the geometry of the boundary. Here we would
like to illustrate the fact that curved elements are crucial and need to be used when waves are reflected from the bound-
aries. This is mainly because we expect the solution to be smooth in the variable θ . If the boundary is not smooth, the
boundary conditions may introduce spurious results.

We consider a seed point right at the focus (0,0) of a parabola y = x2 − 1
4 . The boundary at y = 0.75 and the parabola

y = x2 − 1
4 are reflecting boundaries. In Fig. 2(a), we sample points on the parabola to construct a triangulation of the

domain. On the other hand, we use curved simplicial elements in Fig. 2(b). Numerical results for wavefronts with speed
c(x) = 1 at t = 0.1625, 0.325, 0.4875, 0.65, 0.8125, 0.975, and 1.1375 are shown in blue, green, red, cyan, magenta, yellow
and blue respectively for both cases in the physical space. Since the seed point is right at the focus of parabola, the
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Table 2
Convergence test results at T = 0.5 for difference order approximation in space and time. We successively partition the annulus domain Ω = {0.5 � r � 1}
into 24, 96, 384, 1536, and 6144 curved elements.

N = 21 RK 2

Triangles L2-error Order
24 4.3455E−02
96 1.1660E−02 1.90

384 3.0397E−03 1.94
1536 7.6903E−04 2.00
6144 1.9356E−04 1.99

N = 21 RK 3

Triangles L2-error Order
24 7.7779E−02
96 1.1186E−03 2.80

384 1.5036E−04 2.89
1536 1.9255E−05 2.97
6144 2.4110E−06 3.00

Fig. 2. The wavefronts with speed c(x) = 1 at t = 0.1625,0.325,0.4875,0.65,0.8125 and 0.975 for (a) regular triangular elements, (b) curved simplicial
elements. (For interpretation of the colors in this figure, the reader is referred to the web version of this article.)

Fig. 3. (a) The zeros level sets at t = 0.1625. (b) The zeros level sets at t = 0.325. (c) The zeros level sets at t = 0.4875. (d) The wavefront in phase space at
t = 0.1625. (e) The wavefront in phase space at t = 0.325. (f) The wavefront in phase space at t = 0.4875.

wavefronts reflected from the parabola boundary become plane wavefronts. We can see that the result on regular triangular
elements display spurious oscillations while the result on curved elements are free of them and give a correct approximation
to the exact solution.

Let us recall that these physical wavefronts are the projection of wavefronts in phase space. In Fig. 3(a, b, c), two zero
level sets intersected with each other at the wavefront in phase space in Fig. 3(d, e, f) at t = 0.1625, 0.325, and 0.4875
are shown. The level sets of u and v become convoluted as time involves. We see that one of the zero level set starts
to wrap around itself and becomes tube-like. In Fig. 3(d, e, f), we also show the p-adaptivity mesh. High order khigh = 4
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Fig. 4. The wavefront reflected from curved boundary at t = 0.15, 0.3, 0.45, and 0.6 for different order approximation in space and time with k = 2 (top,
left), k = 3 (top, right), k = 4 (bottom, left) and k = 5 (bottom, right).

Table 3
Time comparison in seconds for non-p-adaptivity and p-adaptivity method at various time with p = 2, 3, and 4.

64 elements Non-p-adaptivity khigh = 4 Ratio

t = 0.1 1.70 0.50 3.40
t = 0.2 3.62 1.05 3.45
t = 0.3 5.53 2.15 2.57
t = 0.4 7.45 3.48 2.02
t = 0.5 9.37 5.27 1.78

256 elements Non-p-adaptivity khigh = 4 Ratio

t = 0.1 16.83 2.45 6.87
t = 0.2 35.10 6.53 5.38
t = 0.3 53.43 12.23 4.37
t = 0.4 71.78 19.58 3.67
t = 0.5 90.15 29.33 3.07

approximation are used in gray elements while low order klow = 1 approximation are used in white elements. We will talk
more about the efficiency of adaptivity at the end of this section.

In the next example, we show that the wavefronts are better reconstructed by high order schemes. In Fig. 4, the numer-
ical simulations are done for order k = 2,3,4 and 5 respectively. The wavefronts start from a seed point at (0,0), propagate
outward, and then reflect both from square boundary and the circular boundary which is glued by four piecewise parabola.
We can clearly see that lower order schemes give wiggling solutions while high order schemes provide highly accurate
solutions.

In Table 3, a qualitative comparison on the computational time for seed point at (0,0) and constant propagation speed
c(x) = 1 in a square domain is given. In the p-adaptivity computation, we use piecewise linear approximation (klow = 1)
for low order elements and piecewise quantic approximation (khigh = 4) for high order elements. For coarse meshes, such
as the one with 64 triangles, the method without p-adaptivity takes 1.78 times longer than the method with p-adaptivity
for khigh = 4 at t = 0.5. The p-adaptivity computation does not gain too much mainly because the triangular elements are
big in the coarse mesh which causes the wavefronts to touch most of elements. This means that we need to use higher
degree polynomial approximations on most of elements. For finer meshes, like the one with 256 triangles, the method
without p-adaptivity takes 3.07 times longer than the method with p-adaptivity for khigh = 4 at t = 0.5. This illustrated
the efficiency in finer mashes. However, as time goes on, we notice that the time ratio drops no matter how fine is the
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Fig. 5. p-Adaptivity on two different meshes with 16 and 256 elements at t = 0.325, t = 0.975 and t = 1.625 respectively. Elements with high order
approximation are shown in dark gray color.

Fig. 6. The wavefronts at t = 0.325, t = 0.975, t = 1.625 and t = 3.575. We can clearly see that the wavefront will expand more and more elements as time
goes on.

mesh. This is mainly because the surfaces in the phase space gets more convoluted and the wavefronts “expand” more and
more elements. In particular, if the wavefronts keeps reflecting from the boundary, the wavefronts is going to “expand” all
elements eventually.

In Fig. 5, we demonstrate the numerical results for two different meshes with 16 and 256 elements respectively. In the
p-adaptivity computation, we use piecewise linear approximation (klow = 1) for low order elements and piecewise quartic
approximation (khigh = 4) for high order elements. The wavefronts in phase space at t = 0.325, t = 0.975, t = 1.625 for 16
elements are shown in (a), (b) and (c) and for 256 elements are shown in (d), (e) and (f) respectively. This confirms our
argument that the wavefronts expand most of elements at a later time and also on a coarse mesh. The projection onto the
physical space is shown in Fig. 6 on 16-element mesh. The wavefront at a much later time t = 3.575 shows the complexity
of reflecting wavefronts.

5. Conclusion

We have presented a novel implementation of a recently introduced methodology for the simulation of high-frequency
waves. The schemes are based on level-set formulations of the eikonal model which are discretized spectrally in the phase
variables and with a discontinuous Galerkin procedure in physical space. The new approach incorporates an accurate treat-
ment of interfaces through the use of isoparametric elements, and is accelerated with an adaptive strategy that relies on the
use of high-order approximations only in a neighborhood of the wavefront in phase space. A variety of numerical examples
demonstrate the improved capabilities that result from these amendments. In particular, we have shown that the use of
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curved elements constitutes an actual requirement for the attainment of accurate solutions in the presence of non-flat (e.g.
reflecting) boundaries, and that adaptive mechanisms can be used to achieve a significant computational speed-up without
any sacrifice in accuracy. These developments suggest a number of directions for further improvement, including the deriva-
tion and use of a-posteriori error estimates (to provide further guidance in space-adaptivity), the adoption of alternative
bases to represent phase variations (e.g. wavelets, to allow for localization) and the use of non-uniform time integrators (to
weaken stability demands), which will be the subject of forthcoming work.
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Appendix A. Spatial basis functions and quadrature rules

In this appendix, and for the sake of completeness, we describe the spatial basis functions and quadratures that we use
in the solution of (16). With regards to the former, we choose to work with a basis that results from consideration of a
family of orthonormal polynomials of degree at most k on the reference triangle Kref . The resulting diagonal nature of the
mass matrices (13) corresponding to (flat) interior triangles makes this choice beneficial, even if this property is lost for the
(curved) boundary elements. Specifically, the basis we considered [19] is constructed as an appropriate tensor product of
the Jacobi polynomials Pα,β

n (x) which are defined by

Pα,β

0 (x) = 1,

Pα,β

1 (x) = 1

2

(
α − β + (α + β + 2)x

)
,

2(n + 1)(n + α + β + 1)(2n + α + β)Pα,β

n+1(x)

=
{
(2n + α + β + 1)

(
α2 − β2) + x

(2n + α + β + 2)!
(2n + α + β − 1)!

}
Pα,β

n − 2(n + α)(n + β)(2n + α + β + 2)Pα,β

n−1

or

Pα,β
n (x) = 1

(−1)n2nn!(1 − x)α(1 + x)β
dn

dxn

{
(1 − x)α(1 + x)β

(
1 − x2)n}

.

An orthonormal basis on Kref = {(r, s) ∈ [−1,1] × [−1,1], r + s � 1} then is given by

φi(r, s) = φ(nm)(r, s) = P 0,0
n (a)

(
1 − b

2

)n

P 2n+1,0
m (b)

/√(
2

2n + 1

)(
1

n + m + 1

)
where

i = 1

2
(n + m + 1)(n + m + 2) − n, a = 2(1 + r)

(1 − s)
− 1 and b = s.

From the orthogonality relation

1∫
−1

(
1 − x

2

)α(
1 − y

2

)β

Pα,β
n (x)Pα,β

m (x)dx = δnm
2

2n + α + β + 1

(n + α)!(n + β)!
n!(n + α + β)!

it readily follows that

−1∫
−1

−s∫
−1

φ(nm)φ(n′m′) dr ds = δnn′δmm′ .

Also, the evaluation of the integrals in (14), (15) require the calculation of the partial derivatives of φi . In this connection,
we have

∂φi(r, s)

∂r
=

(
2

1 − s

)
dp0,0

n (a)

da

(
1 − b

2

)n

P 2n+1,0
m (b)

/√(
2

2n + 1

)(
1

n + m + 1

)
and, using the identity
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dpα,β
n (a)

da
=

(
n + α + β + 1

2

)
pα+1,β+1

n−1 (a),

we obtain

∂φi(r, s)

∂r
=

{
(n+1

2 )p1,1
n−1(

2(1+r)
(1−s) − 1)( 1−s

2 )n−1 P 2n+1,0
m (s)/

√
( 2

2n+1 )( 1
n+m+1 ) when n � 1,

0 when n = 0.

Similarly, the s-derivative is given by

∂φi(r, s)

∂s
= 2(1 + r)

(1 − s)2

(
n + 1

2

)
p1,1

n−1

(
2(1 + r)

(1 − s)
− 1

)(
1 − s

2

)n

P 2n+1,0
m (s)

/√(
2

2n + 1

)(
1

n + m + 1

)

− p0,0
n

(
2(1 + r)

(1 − s)
− 1

)
n

2

(
1 − s

2

)n−1

P 2n+1,0
m (s)

/√(
2

2n + 1

)(
1

n + m + 1

)

+ p0,0
n

(
2(1 + r)

(1 − s)
− 1

)(
1 − s

2

)n(m + 2n + 2

2

)
P 2n+2,1

m−1 (s)
/√(

2

2n + 1

)(
1

n + m + 1

)
.

Finally, we consider the issue of approximation of the two-dimensional integrals on Kref triangle in (14), (15) and of the
line (edge) integrals in (16). For two dimensional integrals, we use symmetric quadrature rules proposed by Wandzura [24].
The method uses a simple group theory and numerical optimization to design the quadrature rules up to order 30 on the

equilateral triangle Teq with the vertices (1,0), (− 1
2 ,

√
3

2 ) and (− 1
2 ,−

√
3

2 ). Basically, the form

n∑
i=1

wi f (xi, yi)

serves to approximate the integral∫
Teq

f (x, y)dx dy

up to a certain order accuracy by choosing the weights wi and quadrature points (xi, yi) appropriately. These weights wi
and quadrature points (xi, yi) are given in the paper. Since we now want to compute the integral on the reference triangles
Tref with the vertices (1,−1), (−1,1) and (−1,−1), we use the linear transformation

x̃ = 4

3
x − 1

3
,

ỹ = −2

3
x + 2√

3
y − 1

3

to get the quadrature points (x̃i, ỹi) on the reference triangle Tref and w̃i = 8
3
√

3
wi . For the line integral, we simply use the

Gaussian quadrature rule [23].
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